Data Supplements: 2015 Focused Update on Primary PCI for Patients With STEMI

Data Supplement 1-A. Observational Studies Comparing Culprit Artery-Only Revascularization Versus Multivessel PCI (Section 2)
Data Supplement 1-B. RCTs Comparing Culprit Artery-Only Revascularization Versus Multivessel PCI (Section 2)
Data Supplement 2. RCTs for Aspiration Thrombectomy (Section 3)
References

Data Supplement 1-A. Observational Studies Comparing Culprit Artery-Only Revascularization Versus Multivessel PCI (Section 2)

Study Acronym Author Year	Aim of Study; Study Type; Study Size (N)	Patient Population	Primary Endpoint and Results	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events and Summary
lqbal MB, et al., 2014 (1) <u>25371542</u>	Aim: To investigate mortality for COR vs. MV PCI at the time of PPCI for patients presenting with STEMI Study type: Observational. Used multivariate analysis and propensity matching Size: 3984 (MV PCI at time of PPCI=555; COR=3429)	Inclusion criteria: • STEMI and PPCI • MVD defined as >50% stenosis in ≥2 epicardial coronary arteries <u>Exclusion criteria</u> : • LM >50% stenosis • Cardiogenic shock	 <u>1° endpoint</u>: 1-y mortality Total study population: 7.4% (COR) vs.10.1% (MV) (p=0.031) Adjusted HR Total population: 0.65 (95% CI: 0.47-0.91; p=0.011) Propensity matched cohort: 164/2418 (6.8%) vs. 41/403 (10.2%) , p=0.059 Adjusted propensity matched cohort HR: 0.64 (95% CI: 0.45-0.90; p=0.010) 	 Inverse probability treatment weighted analyses also confirmed COR as an independent predictor for reduced in- hospital MACE (odds ratio, 0.38; 95% CI, 0.15–0.96; p=0.040) and survival at 1 year (hazard ratio, 0.44; 95% CI, 0.21– 0.93; p=0.033).
Santos AR, et al., 2014 (2) <u>24502933</u>	Aim: To assess the impact of a MV PCI at the time of PPCI on in-hospital morbidity and mortality in patients with STEMI undergoing PPCI Study type: Observational: Portuguese Society of Cardiology's Registry of Acute Coronary Syndromes (ACS) Size: 257 (MV PCI at time of PPCI 77 vs. COR 180)	Inclusion criteria: • STEMI • Enrolled in Portuguese Society of Cardiology Registry • MVD defined as ≥50% Exclusion criteria: • Staged MV PCI • History of prior CABG	 <u>1° endpoint</u> : In-hospital mortality <u>COR vs. MV PCI at time of PPCI:</u> In-hospital Mortality: 14/180 (7.8%) vs. 2/77 (2.6%), p=NS Adjusted mortality OR: 12.92, 95% CI 0.67-248.4, p=0.09 	
Jeger R, et al., 2014 (3) <u>24461983</u>	Aim: To assess whether MV PCI at time of PPCI vs. COR in patients with STEMI and MVD influences 1-y outcome Study type: Observational: Swiss Nationwide Acute Myocardial Infarction in Switzerland Plus Registry (AMIS)	 Inclusion criteria: STEMI or new LBBB MVD defined as a ≥50% in ≥2 different major epicardial coronary arteries and/or involving the LM. Written informed consent to enroll 	<u>1° endpoint</u> : 1-y all-cause mortality MV PCI 12/442 (2.7%) vs COR: 40/1467 (2.7%), p>0.99	 MACCE at 1 y (all-cause death, re-MI, any cardiac re- intervention, re- hospitalization due to any cardiovascular diagnosis, and CVA): Adjusted OR for MV PCI vs COR=0.69, 95% CI 0.51– 0.93, p=0.017

		in registry.		
	Size: 1909 (MV PCI at time of PPCI 442 vs.			
	COR 1467)	Exclusion criteria:		
Manari A, et al., 2014 (4) <u>24403174</u>	Aim: To examine the differences in cardiac outcomes for patients with STEMI and MVD as a function of whether they underwent COR or MV PCI, either at the time of PPCI or as a staged procedure. Study type: Observational retrospective: REAL registry Size: 2061 (MV PCI at time of PPCI 367, Staged MV PCI within 60 d 988, COR 706)	 Absence of follow-up data Inclusion criteria: STEMI and MVD enrolled in REAL registry Exclusion criteria: N/A 	I° endpoint: Mortality at 30 d and 2 y COR vs. staged MV PCI 30-d mortality: adjusted HR: 2.81 (95% CI: 1.34-5.89; p=0.006) 2-y mortality: adjusted HR: 1.93 (95% CI: 1.35-2.74; p=0.0002) MV PCI at time of PPCI vs. staged MV PCI: 30-d mortality adjusted HR: 2.58 (95 % CI: 1.06-6.26; p=0.03) 2-y adjusted HR: 1.08 (95% CI: 0.64-1.82; p=0.76) COR vs. MV PCI at time of PPCI 2-y unadjusted mortality:127/706 (18.0%) vs. 26/367 (7.1%), p=0.0002	 Study looked at timing of MV PCI and showed that staged MV PCI was associated with better outcomes than either COR or MV PCI at the time of PPCI
Jaguszewski M, et al., 2013 (5) <u>24384288</u>	Aim: To compare the outcomes with MV PCI at the time of PPCI with COR Study type: Observational: Swiss Nationwide Acute Myocardial Infarction in Switzerland Plus Registry (AMIS) Size: 4941 (MV PCI at time of PPCI-1108 vs. COR-3833)	Inclusion criteria: • STEMI • MVD: stenosis ≥50% in at least two of three major coronary arteries and/or involving the LM (in pts with prior CABG) Exclusion criteria: • N/A	1° endpoint: In-hospital mortality MV PCI at time of PPCI vs. COR: 81/1108 (7.3%) vs. 168/3833 (4.4%), p<0.001	
Bauer T, et al., 2013 (6) <u>22192297</u>	Aim: To evaluate the impact of MV-PCI during a single procedure on in-hospital outcomes of patients with MVD presenting with ACS Study type: Observational: Euro Heart Survey Registry with STEMI Size: 2537 (MV PCI during a single	 Inclusion criteria: Hemodynamically stable patients with ACS MVD defined as ≥2 vessels with ≥70% stenosis Undergoing PCI Exclusion criteria: N/A 	<u>1° endpoint</u> : In-hospital mortality <u>MV PCI during single procedure vs. COR:</u> • 6/419 (1.4%) vs. 72/2118 (3.4%), p=0.03 • In-hospital mortality adjusted OR: 0.48 (95% CI: 0.21-1.13; p=0.73)	 Non-fatal MI: higher with MV PCI (8.8% vs.1.6%, p<0.0001)
Dziewierz A, et al., 2010 (7) 20643243	Aim: To assess the impact of MV PCI at time of PPCI vs COR in pts with STEMI and MVD Study type: Observational: Euro-Transfer Registry	 N/A <u>Inclusion criteria</u>: Patients with STEMI included in Euro-transfer registry MVD on cath <u>Exclusion criteria</u>: N/A 	<u>1° endpoint</u> : 1-y mortality <u>MV PCI at time of PPCI vs. COR</u> • 11/70 (15.7%) vs. 57/707 (8.1%), p=0.043 • Adjusted OR: 2.04 (95% CI: 0.89– 4.66; p=0.09)	 30-d mortality: 12.9% vs.5.9% (p=0.039) Adjusted 30-d mortality: OR: 2.42 (95% CI: 0.96-6.06; p=0.06)

	Size: 777(MV PCI at time of PPCI 70 vs. COR 707)				
APEX-AMI Toma M, et al., 2010 (8) 20530505	Aim: To evaluate the 90-d outcomes for MV PCI performed at the time of PPCI Study type: Observational: APEX AMI Size: 2201(MV PCI at time of PPCI 217 vs. COR 1984)	Inclusion criteria: ≥18 y Ischemic symptoms <6 h	1° endpoint: 90-d mortality and composite of death, CHF, and cardiogenic shock MV PCI at time of PPCI vs. COR: • • 90-d mortality: 27/217 (12.4%) vs. 111/1984 (5.6%), p<0.001; Adjusted HR:	•	Limited inclusion of only STEMI pts that met the APEX-AMI trial criteria.
Hannan EL, et al., 2010 (9) 20129564	Aim: To examine the differences in in- hospital and longer-term mortality for patients with STEMI and MVD as a function of whether they underwent COR or MV PCI, either at the time of PPCI or as a staged procedure <u>Study type</u> : Observational; NY State Registry <u>Size</u> : 4,024 (MV PCI at time of PPCI=503; Staged MV PCI =259; COR=3,521)	Inclusion criteria: STEMI within 24 h undergoing PPCI MVD NY State resident Exclusion criteria: Missing data on EF Thrombolytic therapy Shock Prior CABG	1° endpoint: In hospital, 12-, 24-, and 42- mo mortality For MV PCI at time of PPCI vs. COR: • In-hospital mortality: 3.4% vs.2.0% (p=0.14) • 12-mo mortality: 7.1% vs.5.5%, (p=0.23) • 24-mo mortality: 8.6% vs.6.6% (p=0.17) • 42-mo mortality: 11.7% vs. 10.7% (p=0.23) • Propensity matched 42-mo mortality: 59/503 vs. 54/503 Staged MV PCI during index admission vs. COR: • In-hospital mortality: 1.2% vs.1.9% (p=0.48) • 12-mo mortality: 3.9% vs.5.5% (p=0.53) • 24-mo mortality: 6.3% vs.7.4% (p=0.71) • 42-mo mortality: 6.3% vs.7.4% (p=0.72) For Staged MV PCI within 60 d vs. COR: • 12-mo mortality: 1.3% vs.3.3% (p=0.04) • 24-mo mortality: 3.7% vs.4.3% (p=0.21) • 42-mo mortality: 5.6% vs.7.4% (p=0.71)	•	Used propensity matched data to evaluate the outcome of MV PCI at various time points compared with COR. Of note, for the subgroup of patients without shock, low EF or arrhythmias, MV PCI at the time of PPCI as compared with COR resulted in a higher in hospital mortality (2.4% vs.0.9%,p=0.04) and trends toward higher 24-mo (7.2% vs.4.9%, p=0.07) and 42-mo (10.4% vs.6.7%, p=0.08) mortality
Cavender MA et al.,	Aim: To examine the outcomes of patients	Inclusion criteria:	<u>1° endpoint</u> : In-hospital mortality.	•	Bleeding (non-shock patients): 6.71%

2009 (10) <u>19660603</u>	with STEMI undergoing MV PCI at time of PPCI vs. patients undergoing COR <u>Study type</u> : Observational: NCDR Registry <u>Size</u> : 28,936 (MV PCI at time of PPCI 3,134 vs. COR 25,802)	 STEMI treated with PPCI ≥1 additional major artery with significant stenosis. Exclusion criteria: PCI of LM Staged PCI in hospital Recent thrombolytics 	MV PCI at time of PPCI vs. COR: • In hospital mortality: 246/3134 (7.85%) vs. 1321/25802 (5.12%), p<0.01 • Patients without shock: 3.26% vs.2.53% (p=0.09); Adjusted mortality: OR=1.23 (95% CI: 0.94- 1.61; p=1.23) • Patients with shock: 36.49% vs.27.77% (p≤0.01); Adjusted mortality: OR=1.54 (95% CI: 1.22- 1.95; p<0.01)	 (MV at time of PPCI) vs.5.30% (COR), p<0.01 Trend towards more renal failure with MV PCI at time of PPCI 2.31% vs.1.81% (p=0.09) Very large registry also analyzed outcomes according to presence or absence of shock.
Varani E, et al., 2008 (11) <u>18798239</u>	Aim: To examine a strategy of COR vs.MV- PCI on clinical outcomes in a cohort of patients with STEMI treated with PPCI and compare the outcomes of MVD patients according to the type of revascularization (MV PCI at the time of PPCI vs. staged MV PCI vs. COR) <u>Study type</u> : Observational: single center <u>Size</u> : Total=399. MV PCI before discharge 243 (divided into groups: MV PCI at time of PPCI= 147; MV PCI within 24 h =48; and MV PCI after 24 h but before before discharge=48); COR=156	 Inclusion criteria: Ongoing symptoms within 24 h STEMI MVD (≥2 major epicardial coronary arteries or their major branches with stenosis ≥70%) Exclusion criteria: PCI for acute occlusion after angiography 	Endpoints: Death from any cause and any revascularization. Time point not specified. In-hospital mortality for COR vs. MV PCI at time of PPCI: 8/156 (5.1%) vs. 12/147 (8.2%), p<0.05 COR vs. MV PCI at time of PPCI vs. MV PCI within 24 h vs. MV PCI before discharge 6.6% vs. 9.9% vs. 2.1% vs. 2.1% (p=0.066 for overall comparison) excluding pts with shock or CHF: 6.3% vs.3.3% vs.2.1% vs.2.1% (p=0.257)	Complete revascularization in 46% of patients with MVD
Qarawani D, et al., 2008 (12) <u>17428557</u>	Aim: To compare outcomes with two strategies used for treating MVD and acute MI Study type: Observational: Single center Size: 120 (MV PCI at time of PPCI 95 vs. COR 25)	Inclusion criteria: Prolonged >30 min ischemic chest pain Symptom onset <12 h	1° endpoint: In-hospital MACE (re-ischemia, re-MI, acute CHF and mortality) MV PCI vs. COR: • • 16.7% vs. 52%, p=0.0001. • Adjusted OR for In-hospital MACE:14.68, 95% CI: 3.03–71.12, p=0.001	 In-hospital mortality: 4.2% vs.4.0%, p=NS 1-year mortality for MV PCI vs. COR: 9/95 (9.5%) vs. 2/25 (8.0%), p=0.06 MV PCI associated with improved hospital survival when compared with COR even after adjusting for other factors MV PCI had higher rates of transient renal failure (8.4% vs.4.0%, p=0.01) and trend toward higher 1-y mortality (9.4% vs.8.0%, p=0.06)
Corpus RA, et al., 2004 (13) <u>15389238</u>	Aim: To compare outcomes between an aggressive MV PCI strategy either at time of PPCI or before hospital discharge and COR <u>Study type</u> : Observational: Single Center <u>Size</u> : 506 (MV PCI 152 [Divided into 2 groups: MV PCI at the time of PPCI=26; staged in hospital PCI=126] vs.	Inclusion criteria: STEMI Symptom onset ≤ 12 h MVD defined as ≥70% stenosis of ≥2 epicardial coronary arteries or their major branches Exclusion criteria: PCI of vein graft or LM	1° endpoint:Numerous endpoints at 1 yearMV PCI (either at time of PPCI or staged) vs COR: Death 11% vs 12 %, p=0.82 Re-infarction: 13.0% vs 2.8%, p<0.001 Revascularization: 25% vs 15%, p=0.007 MACE: 40% vs 28%, p=0.006	 Multivessel PCI was an independent predictor of MACE at 1 year (odds ratio=1.67, 95% CI 1.10-2.54, p=01).

	COR 354)	 PCI for acute occlusion after coronary angioplasty or arteriography; MVD and staged revascularization procedures of the non-IRA after discharge from the hospital. 	<u>1-yr mortality MV PCI at time of PPCI vs</u> staged MV PCI vs COR: 5/26 (19.2%) vs. 12/126 (9.5%) vs. 42/354 (11.9%), p=0.36	
Roe MT, et al., 2001 (14) <u>11448417</u>	<u>Aim</u> : To determine the feasibility and safety of MV PCI at the time of PPCI <u>Study type</u> : Case Controlled <u>Size</u> : 158 (MV PCI at the time of PPCI 79 [Divided into 2 Groups: MV PCI at time of PPCI=68; Rescue PCI=11] vs. COR 79 ([PPCI 61,Rescue PCI=18])	Inclusion Criteria: Patients with AMI undergoing PCI ≥1 coronary stenosis ≥50% in a non-culprit vessel) Exclusion criteria: PCI of branch vessels of IRA PCI of LM	<u>1° endpoint</u> : Death, re-MI, repeat PCI or CABG at 6 mo <u>MV PCI at time of PPCI vs. COR:</u> 35.3% vs 27.9% p=NS	 Study found higher mortality for MV PCI vs. COR in the primary PCI group at 30 d but no difference in events at 6 mo Study involved a mix of POBA and stents <u>6-mo mortality for MV PCI at time of PPCI vs. COR</u>: 19/79 (24.1%) vs.13/79 (16.1%), p=NS

Data Supplement 1-B. RCTs Comparing Culprit Artery-Only Revascularization Versus Multivessel PCI (Section 2)

Study Acronym Author Year	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention	Primary Endpoint and Results	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events and Summary
DANAMI 3- PRIMULTI Engstrom T, et al., 2015 (15) (Not yet in PubMed)	Aim: To determine whether staged angiographic or FFR guided revasc in STEMI patients with MVD reduces the primary endpoint of all cause death, reinfarction and repeat revascularisation compared with COR <u>Study type</u> : Randomized <u>Size</u> : 627 (314 staged MV PCI; 313 COR)	Inclusion criteria: STEMI ≤12 h Successful IRA PPCI >50% stenosis >2mm in non- IRA suitable for PCI Exclusion criteria: Hemodynamic instability or ischemia in non IRA territory CTO of non-IRA	Intervention: Complete in- hospital revasc with staged MV PCI for lesions >90% and staged FFR-guided MV PCI for lesions of 50- 90% severity(n=314) <u>Comparator</u> : COR (n=313)	 <u>1° endpoint</u>: MACE at 12 mo (Death, MI, ischemia-driven revasc of non-IRA lesions) <u>MV PCI vs. COR</u> 40/314 (13%) patients treated with staged MV PCI vs 68 of 313 (22%) patients treated with COR, p=0.004; (HR 0.56, 95% CI 0.38-0.83, p=0.001) 	 12-mo mortality: 15/314 (5%) vs. 11/313 (4%) This study used FFR guidance for lesions of 50%-90% severity. Benefit was driven by a significant reduction in ischemia- driven revascularization; death and MI rates were similar
CvLPRIT Gershlick AH, et al., 2015 (16) <u>25766941</u>	<u>Aim</u> : To compare differences in outcome for patients with STEMI and MVD randomized to MV PCI or COR <u>Study type</u> : Randomized <u>Size</u> : 296 (MV PCI=150; COR=146)	Inclusion criteria: • STEMI <12 h	Intervention: MV PCI either at time of PPCI or as a staged in- hospital procedure (n=150) <u>Comparator</u> : COR (n=146)	<u>1° endpoint</u> : Composite of death, re- MI, CHF and ischemia- driven revasc at 12 mo <u>MV PCI vs. COR</u> 10.0% vs.21.2% (HR: 0.45; 95% CI: 0.24-0.84; p=0.009)	 65% of pts underwent MV PCI at time of PPCI Benefit was driven by sum of individual endpoints; no statistically significant difference in outcome in individual components of primary endpoint Total 12-mo mortality: 4/150 (2.7%) vs. 10/146 (6.9%) (HR: 0.38; 95% CI: 0.12- 1.20; p=0.09

PRAMI Wald DS, et al., 2013 (17) 23991625 Dambrink JH, et al., 2010 (18) 20542783	Aim: To compare the outcomes of MV PCI at the time of PPCI with COR and an ischemia guided approach to non-culprit artery disease. Study type: Randomized Size: 465 (234 MV PCI at time of PPCI; 231 COR) Aim: To compare effect of early invasive FFR guided management vs. COR and	 Indication for or contraindication to complete revasc Prior Q wave MI Prior CABG Shock, VSD or Moderate to severe mitral regurgitation Chronic kidney disease Stent thrombosis CTO of the only non-IRA Inclusion criteria: Acute STEMI (incl LBBB) Successful PPCI MVD with ≥50% stenosis in ≥1 other artery suitable for PCI Exclusion criteria: Shock, Prior CABG, LM or ostia of both LAD and circumflex with >50% stenosis CTO of non-IRA Inclusion criteria: STEMI patients undergoing successful PPCI 	Intervention: MV PCI at the time of PPCI (n=234) <u>Comparator</u> : COR with ischemia guided approach to non-culprit artery disease (n=231) <u>Intervention</u> : PPCI and elective (within 3 wk) FFR guided management of non	1° endpoint: MACE: (death from cardiac causes, nonfatal MI, or refractory angina). Results assessed after mean f/u of 23 mo MV PCI at the time of PPCI vs. COR • 9.0% vs.22.9%, (HR 0.35, 95% CI 0.21–0.58, <0.001) 1° endpoint: EF at 6 mo FFR guided staged PCI vs. COR and	 Trial stopped early by DSMB HR for components of primary endpoint (MV PCI vs PPCI only): Death from cardiac causes: 0.34 (95% CI, 0.11 to 1.08) Non-fatal MI: 0.32 (95% CI, 0.13 to 0.75) Refractory angina: 0.35 (95% CI, 0.18 to 0.69) All-cause mortality: 12/234 (5.1%) vs 16/231 (6.9%), p=NS MACE at 6 mo: 21% vs. 22%, p=0.929 MACE at 2 warm 25 4% vs.
20042765	ischemia-guided management on LV EF <u>Study type</u> : Randomized <u>Size</u> : 121 (FFR-guided MV PCI 80; COR 41)	 MVD with ≥1 additional major artery or branch with ≥50 % disease and at least 2.5 mm diameter Exclusion criteria: Urgent indication for additional revasc >80 y CTO of non IRA Prior CABG LM ≥50 %, Restenotic lesions in non-IRA Chronic atrial fibrillation, Limited life expectancy Other factors that made complete follow-up unlikely. 	IRA disease (n=80) <u>Comparator</u> : COR with conservative ischemia- guided management of non IRA (n=41)	ischemia-guided approach: EF 59± 9% vs. 57± 9%, p=0.362	 MACE at 3 years: 35.4% vs 35.0%, p=0.96 Death or MI at 3 years: 20.3% vs 0%, p=0.002 Death at 3 years: 2/80 vs. 0/41

Politi L, et al., 2010 (19) <u>19778920</u>	Aim: To compare long-term outcomes of three different strategies during PPCI in patients with STEMI and MVD: COR vs. staged MV PCI vs. MV PCI at the time of PPCI <u>Study type</u> : Randomized <u>Size</u> : 214 (65 MV PCI at time of PPCI; 65 staged MV PCI; 84 COR)	Inclusion criteria: Chest pain within 12 h STEMI Exclusion criteria: Cardiogenic shock LM ≥50% Prior CABG Severe valvular heart disease Unsuccessful PPCI	Intervention: PPCI plus staged MV PCI: 65; MV PCI at the time of PPCI (n=65) <u>Comparator</u> : COR (n=84)	1° endpoint:MACE at mean f/u 2.5y: (death, re-Ml, re-hospitalization forACS and repeat coronary revasc)MV PCI at the time of PPCI vs.staged MV PCI vs. COR:• 23.1% vs.20% vs.50% p<0.001• Adjusted HR for MACE for MVPCI at the time of PPCI vsCOR: 0.495, 95% CI 0.262 to0.933, p=0.030• Adjusted HR for MACE forStaged MV PCI vs COR: 0.377,95% CI 0.194 to 0.732 p=0.004	•	There were no differences in outcomes for staged MV PCI vs. MV PCI at time of PPCI but small number of enrolled patients Mortality for MV PCI vs COR: 10/130 (7.7%) vs.13/84 (15.5%),
HELP-AMI, et al., Di Mario C, et al., 2004 (20) <u>16146905</u>	<u>Aim</u> : To evaluate the efficacy of a complete revascularization strategy at the time of PPCI on reducing repeat revascularizations in follow-up <u>Study type</u> : Randomized <u>Size</u> : 69 (MV PCI at time of PPCI 52; COR 17)	Inclusion criteria: Ischemic CP and STEMI MVD on angiogram technically amenable to PCI Exclusion criteria: Lesion in bypass grafts Prior PCI or stent in segment with disease Thrombolysis within past wk; Shock LM disease Intention to treat more than 1 lesion Calcified or tortuous vessels with lesions; side branch >2 mm	Intervention: MV PCI at time of PPCI (n=52) <u>Comparator</u> : COR then PCI of other vessels at operators discretion (n=17)	<u>1° endpoint</u> : Any repeat revasc at 1 y <u>MV PCI at time of PPCI vs. COR</u> : 17.3% vs.35.3%, p=0.174	•	Very small study; Unbalanced randomization <u>12-mo mortality:</u> 1/52 (1.9%) vs. 0/17 (0%), p=0.754

ACS indicates acute coronary syndrome; AMI, acute myocardial infarction; BRAVE-2, Beyond 12 hours Reperfusion Alternative Evaluation trial; C, coronary; CAD, coronary artery disease; Cath, catheterization; CHF, congestive heart failure; CI, confidence interval; Contra, contraindications; COR, culprit artery-only (or infarct related artery-only) PCI; CR, complete revascularizations; CTO, chronic total occlusion; CV, cardiovascular; CVA, stroke; EF, ejection fraction; FFR, Fractional Flow Reserve; f/u, follow up; Fx, fibrinolysis; gp, group; HR, hazard ratio; IR, incomplete revascularization; IRA, infarct related artery; LAD, left anterior descending artery; LBBB, left bundle branch block; LM, left main; LV, left ventricle; MACE, major adverse cardiac events; MI, myocardial infarction; MVD; multivessel disease; MV PCI, multivessel PCI; NY, New York; Occ, occlusion; OR, odds ratio; PA, pulmonary artery; PCI, percutaneous coronary intervention; PCWP, pulmonary-capillary wedge pressure; POBA, balloon angioplasty; PPCI, primary PCI; pts., patients; RCT, randomized control trial; revasc, revascularization; RR, relative risk; SK, streptokinase; SPECT, single-photon emission computed tomography; STE, ST elevation; STEMI, ST elevation myocardial infarction; tPA, tissue plasminogen activator; TVR, target vessel revascularization; tx, treatment; and VSD, ventricular septal defect.

Data Supplement 2. RCTs for Aspiration Thrombectomy (Section 3)

Study Acronym Author Year	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention	Primary Endpoint and Results	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events and Summary
TOTAL Jolly SS, et al., 2015 (21) 25853743	Aim: To assess whether thrombus aspiration reduces MACE in patients with STEMI <u>Study type</u> : Randomized <u>Size</u> : 10,732 (thrombectomy 5372, PCI alone 5360);	Inclusion criteria: • Symptoms of myocardial ischemia lasting for ≥ 30 min • Definite ECG changes indicating STEMI • Patients referred for primary PCI • Randomized within 12 h of symptom onset and prior to diagnostic angiography Exclusion criteria: • Prior CABG • Life expectancy <6 mo due to non-cardiac condition	Intervention: Thrombus aspiration before PCI (5033) <u>Comparator</u> : PCI alone (5030)	<u>1º endpoint</u> : Composite of CV death, re-MI, cardiogenic shock, NYHA heart failure within 180 d <u>Thrombectomy vs PCI alone:</u> 6.9% vs. 7.0% (HR: 0.99; 95% CI: 0.85-1.15; p=0.86)	 Safety endpoint: Stroke within 30 d: thrombectomy 0.7% vs. 0.3% PCI alone (HR: 2.06; 95% CI: 1.13-3.75; p=0.02) <u>CV death</u>: thombectomy 3.1% vs. 3.5% PCI alone (HR: 0.90; 95% CI 0.73-1.12; p=0.34). <u>Primary outcome + stent thrombosis</u> <u>+TVR</u>: thrombectomy 9.9% vs. 9.8% PCI alone, (HR: 1.00; 95% CI: 0.89-1.14; p=0.95). <u>Summary:</u> No group differences with respect to re- MI, shock, NYHA heart failure, stent thrombosis, TVR, major bleeding, net clinical benefit (primary efficacy outcome or stroke). No differences in rate of primary outcome in pre-specified subgroups, including extent of thrombus burden. Improved ST resolution and lower rates of distal embolization with thrombectomy Bailout thrombectomy rate 7.1% among patients randomized to PCI alone. No or possible thrombus present (TIMI thrombus grade 0-1) in 6.7% thrombectomy patients, 8.1% PCI-alone patients.
TASTE Lagerqvist B, et al., 2014 (22) 25176395	<u>Aim</u> : To assess if thrombus aspiration reduces mortality in STEMI pts at 1 y in the TASTE study <u>Study type</u> : Randomized <u>Size</u> : 7244 (3621 thrombectomy, 3623 PCI alone)	 Inclusion criteria: Chest pain, at least for 30 min, onset of sx to admission <24 h STEMI or LBBB Exclusion criteria: Need for CABG Previous randomization in TASTE trial 	Intervention: Thrombus aspiration before PCI (3621) Comparator: PCI only (3623)	<u>1° endpoint</u> : N/A (previously reported in TASTE)	 <u>Events at 1 year f/u:</u> <u>Death from any cause</u> 5.3% vs. 5.6% (HR: 0.94; 95% CI: 0.78-1.15; p=0.57), <u>Rehospitalization for MI</u> 2.7% vs. 2.7% (HR: 0.97; 95% CI: 0.73-1.28; p=0.81), stent thrombosis 0.7% vs. 0.9% (HR: 0.84; 95% CI: 0.50-1.40; p=0.51) <u>Incidence of composite of death, rehospitalization for MI, or stent thrombosis</u> 8.0% v. 8.5% (HR: 0.94; 95% CI: 0.8-1.11; p=0.48). Outcome events were recorded on the

					basis of registry data and were not systematically adjudicated (ascertainment of outcome events may have been less accurate than a RCT). Results cannot necessarily be extrapolated to very high- risk pts who would not have been eligible for inclusion.
TASTE Frobert O et al., 2013 (23) 23991656	<u>Aim</u> : To assess if thrombus aspiration reduces mortality in STEMI pts.	 Inclusion criteria: Chest pain, at least for 30 min Onset of sx to admission<24 h 	Intervention: Thrombus aspiration before PCI (3621) Comparator: PCI only (3623)	1° endpoint: All-cause mortality at 30 d Thrombus aspiration vs PCI only: 2.8% vs 3.0%; HR: 0.94; 95% CI:	 <u>Rate of rehospitalization for recurrent MI</u> <u>at 30 d :</u> HR:0.61; 95% CI:0.34-1.07; p=0.09 <u>Rate of stent thrombosis</u>: HR: 0.47; 95% CI: 0.20-1.02; p=0.06).
	<u>Study type</u> : Randomized <u>Size</u> : 7244 (3621 thrombectomy, 3623 PCI alone)	STEMI or LBBB Exclusion criteria: Need for CABG Previous randomization in TASTE trial		0.72-1.22; p=0.63	 <u>TVR</u> did not differ between groups Bias due to the treating physician being aware of the group to which pt was assigned and entering the angiographic variables. No adjudication of events and no blinded review of angiograms
INFUSE-AMI Stone GW, et al., 2012 (24) <u>22447888</u>	<u>Aim</u> : To evaluate reduction of infarct size by IC abciximab, manual aspiration thrombectomy or both (with bivalirudin anticoagulation) <u>Study type</u> : Randomized, 2x2 factorial design <u>Size</u> : 353 with evaluable MRI in thrombectomy arms (thrombectomy=174; no thrombectomy=179)	Inclusion criteria: STEMI >30 min and ≥1 mm PPCI sx-onset-to- device time of ≤5 h Exclusion criteria: Prior MI, CABG, or LAD stent Shock or CPR Prior lytic or IIb/IIIa inhibitor for the present admission	Intervention: Thrombectomy (174) <u>Comparator</u> : No thrombectomy (179)	<u>1° endpoint</u> : Infarct size at 30 d as assessed by cardiac MRI <u>Thrombectomy vs no thrombectomy:</u> Infarct size 17.0% vs 17.3% (p=0.51)	There were also no significant differences in absolute infarct mass or abnormal wall motion score
EXPIRA Sardella G, et al., 2009 (25) <u>19161878</u>	Aim: To determine the effects of manual thrombectomy device on myocardial perfusion and infarct size assessed by CE-MRI <u>Study type</u> : Randomized <u>Size</u> : 175	Inclusion criteria: • 1st STEMI <9 h from sx onset	Intervention: Manual thrombectomy-PCI (88) <u>Comparator</u> : PCI alone (87)	<u>1° endpoint</u> : Occurrence of final myocardial blush grade ≥2 <u>Manual thrombectomy vs.PCI alone</u> 88% vs. 60%; p=0.001	 <u>Rate of ST resolution >70%;</u> (manual thrombectomy-PCI vs. PCI [64% vs.39%; p=0.001]) Cardiac death at 9 mos lower with manual thrombectomy-PCI (p=0.02) CE-MRI substudy: presence and extent of MVO in acute phase (significantly lower with manual thrombectomy-PCI) and infarct size extent at 3 mo (significant reduction with manual thrombectomy-PCI) Single center experience with small no. of pts.

TAPAS Vlaar PJ, et al., 2008 (26) <u>18539223</u>	Aim: To determine cardiac death or reinfarction rate at 1y <u>Study type</u> : Randomized <u>Size</u> : 1071	Inclusion criteria: • AMI sx >30 min • Time from sx onset <12 h, STE >0.1mV in ≥2 leads Exclusion criteria: • Rescue PCI after	Intervention: Thrombus aspiration (535); 1 y f/u (530) <u>Comparator</u> : PCI (536); 1 y f/u PCI (530)	<u>1º endpoint</u> : Combined cardiac death or non-fatal re-MI at 1y; <u>Thrombus aspiration vs. PCI alone:</u> 5.6% vs.9.9% [HR: 1.81; 95% CI: 1.16-2.84; p=0.009]	•	<u>1 y cardiac death</u> : Thrombus aspiration vs. PCI:3.6% vs.6.7% [HR: 1.93; 95% CI: 1.11-3.37; p=0.02] Limited power to assess clinical outcome. No systematic measurement of infarct size or LVF performed.
		 thrombolysis Known concomitant disease with life expectancy <6 mo 				
Svilaas T, et al., 2008 (27) <u>18256391</u>	<u>Aim</u> : To assess whether manual thrombus aspiration is superior to conventional treatment during primary PCI <u>Study type</u> : Randomized <u>Size</u> : 1071	Inclusion criteria: AMI sx >30 min Time from sx onset <12	Intervention: Thrombus aspiration (535) <u>Comparator</u> : PCI alone (536)	<u>1° endpoint</u> : Post procedure myocardial blush grade of 0 (no myocardial blush) or 1 (minimal myocardial blush or contrast density). <u>Thrombus aspiration vs. PCI alone:</u> 17.1 % vs.26.3% [RR: 0.65; 95% CI: 0.51-0.83; p<0.001]	•	Information vs. PCI alone at 30- day: Major bleeding: 3.8% vs.3.4%, RR: 1.11; 95% CI: 0.60-2.08; p=0.11 Target vessel revascularization: 4.5% vs.5.8%, RR: 0.77; 95% CI 0.46-1.30; p=0.34), Reinfarction: 0.8% vs.1.9%, RR: 0.40; 95% CI: 0.13-1.27; p=0.11, Death:2.1% vs.4.0%, RR: 0.52; 95% CI 0.26-1.07; p=0.07 MACE: 6.8% vs.9.4%, RR: 0.72; 95% CI: 0.48-1.08; p=0.12 Single-center study using surrogate endpoints (myocardial blush grade and ECG variables); performed randomization prior to coronary angiography (selection bias since some patients did not undergo PCI/received alternative therapy)

CABG indicates coronary artery bypass graft; CE-MRI, contrast enhanced MRI; CI, confidence interval; cMRI, cardiac magnetic resonance imaging; Contra, contraindications; CrCI, creatinine clearance; CV, cardiovascular; ECG, electrocardiogram; EM, Export Medtronic; GP2B/3A, glycoprotein IIb/IIIa; Hgb, hemoglobin; Hosp., hospitalization; HR, hazard ratio; IC, intracoronary; ITT, intention-to-treat; LVF, Left ventricular function; MACE, major adverse cardiac events; MACCE, major adverse cardiac and cerebrovascular events; MI, myocardial infarction; MVO, microvascularobstruction; NYHA, New York Heart Association; OR, odds ratio; PCI, percutaneous coronary intervention; PL, platelet count; RCT, randomized controlled trial; RR, relative risk; STEMI, ST-elevation myocardial infarction; STR, ST-segment resolution; SVG, Saphenous venous graft; TIMI, Thrombolysis In Myocardial Infarction; TS, thrombus score; and TVR, target vessel revascularization.

References

- Iqbal MB, Ilsley C, Kabir T, et al. Culprit Vessel Versus Multivessel Intervention at the Time of Primary Percutaneous Coronary Intervention in Patients With ST-Segment-Elevation Myocardial Infarction and Multivessel Disease: Real-World Analysis of 3984 Patients in London. Circ Cardiovasc Qual Outcomes. 2014;7:936-43.
- 2. Santos AR, Picarra BC, Celeiro M, et al. Multivessel approach in ST-elevation myocardial infarction: impact on in-hospital morbidity and mortality. Rev Port Cardiol. 2014;33:67-73.
- 3. Jeger R, Jaguszewski M, Nallamothu BN, et al. Acute multivessel revascularization improves 1-year outcome in ST-elevation myocardial infarction: a nationwide study cohort from the AMIS Plus registry. Int J Cardiol. 2014;172:76-81.
- Manari A, Varani E, Guastaroba P, et al. Long-term outcome in patients with ST segment elevation myocardial infarction and multivessel disease treated with culprit-only, immediate, or staged multivessel percutaneous revascularization strategies: Insights from the REAL registry. Catheter Cardiovasc Interv. 2014;84:912-22.
- 5. Jaguszewski M, Radovanovic D, Nallamothu BK, et al. Multivessel versus culprit vessel percutaneous coronary intervention in ST-elevation myocardial infarction: is more worse? EuroIntervention. 2013;9:909-15.
- 6. Bauer T, Zeymer U, Hochadel M, et al. Prima-vista multi-vessel percutaneous coronary intervention in haemodynamically stable patients with acute coronary syndromes: analysis of over 4.400 patients in the EHS-PCI registry. Int J Cardiol. 2013;166:596-600.
- Dziewierz A, Siudak Z, Rakowski T, et al. Impact of multivessel coronary artery disease and noninfarct-related artery revascularization on outcome of patients with ST-elevation myocardial infarction transferred for primary percutaneous coronary intervention (from the EUROTRANSFER Registry). Am J Cardiol. 2010;106:342-7.
- 8. Toma M, Buller CE, Westerhout CM, et al. Non-culprit coronary artery percutaneous coronary intervention during acute ST-segment elevation myocardial infarction: insights from the APEX-AMI trial. Eur Heart J. 2010;31:1701-7.
- Hannan EL, Samadashvili Z, Walford G, et al. Culprit vessel percutaneous coronary intervention versus multivessel and staged percutaneous coronary intervention for ST-segment elevation myocardial infarction patients with multivessel disease. JACC Cardiovasc Interv. 2010;3:22-31.
- Cavender MA, Milford-Beland S, Roe MT, et al. Prevalence, predictors, and in-hospital outcomes of non-infarct artery intervention during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction (from the National Cardiovascular Data Registry). Am J Cardiol. 2009;104:507-13.
- 11. Varani E, Balducelli M, Aquilina M, et al. Single or multivessel percutaneous coronary intervention in ST-elevation myocardial infarction patients. Catheter Cardiovasc Interv. 2008;72:927-33.
- 12. Qarawani D, Nahir M, Abboud M, et al. Culprit only versus complete coronary revascularization during primary PCI. Int J Cardiol. 2008;123:288-92.
- 13. Corpus RA, House JA, Marso SP, et al. Multivessel percutaneous coronary intervention in patients with multivessel disease and acute myocardial infarction. Am Heart J. 2004;148:493-500.
- 14. Roe MT, Cura FA, Joski PS, et al. Initial experience with multivessel percutaneous coronary intervention during mechanical reperfusion for acute myocardial infarction. Am J Cardiol. 2001;88:170-3, A6.
- Engstrom T, Kelbaek H, Helqvist S, et al. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI 3-PRIMULTI): an open-label, randomised controlled trial. The Lancet. 2015; Online publication.
- 16. Gershlick AH, Khan JN, Kelly DJ, et al. Randomized Trial of Complete Versus Lesion-Only Revascularization in Patients Undergoing Primary Percutaneous Coronary Intervention for STEMI and Multivessel Disease: The CvLPRIT Trial. J Am Coll Cardiol. 2015;65:963-72.
- 17. Wald DS, Morris JK, Wald NJ, et al. Randomized trial of preventive angioplasty in myocardial infarction. N Engl J Med. 2013;369:1115-23.
- 18. Dambrink JH, Debrauwere JP, van 't Hof AW, et al. Non-culprit lesions detected during primary PCI: treat invasively or follow the guidelines? EuroIntervention. 2010;5:968-75.
- 19. Politi L, Sgura F, Rossi R, et al. A randomised trial of target-vessel versus multi-vessel revascularisation in ST-elevation myocardial infarction: major adverse cardiac events during long-term follow-up. Heart. 2010;96:662-7.
- 20. Di Mario C., Mara S, Flavio A, et al. Single vs multivessel treatment during primary angioplasty: results of the multicentre randomised HEpacoat for cuLPrit or multivessel stenting for Acute Myocardial Infarction (HELP AMI) Study. Int J Cardiovasc Intervent. 2004;6:128-33.
- 21. Jolly SS, Cairns JA, Yusuf S, et al. Randomized trial of primary PCI with or without routine manual thrombectomy. N Engl J Med. 2015;372:1389-98.
- 22. Lagerqvist B, Frobert O, Olivecrona GK, et al. Outcomes 1 year after thrombus aspiration for myocardial infarction. N Engl J Med. 2014;371:1111-20.
- 23. Frobert O, Lagerqvist B, Olivecrona GK, et al. Thrombus aspiration during ST-segment elevation myocardial infarction. N Engl J Med. 2013;369:1587-97.
- 24. Stone GW, Maehara A, Witzenbichler B, et al. Intracoronary abciximab and aspiration thrombectomy in patients with large anterior myocardial infarction: the INFUSE-AMI randomized trial. JAMA. 2012;307:1817-26.
- 25. Sardella G, Mancone M, Bucciarelli-Ducci C, et al. Thrombus aspiration during primary percutaneous coronary intervention improves myocardial reperfusion and reduces infarct size: the EXPIRA (thrombectomy with export catheter in infarct-related artery during primary percutaneous coronary intervention) prospective, randomized trial. J Am Coll Cardiol. 2009;53:309-15.

- 26. Vlaar PJ, Svilaas T, van der Horst IC, et al. Cardiac death and reinfarction after 1 year in the Thrombus Aspiration during Percutaneous coronary intervention in Acute myocardial infarction Study (TAPAS): a 1-year follow-up study. Lancet. 2008;371:1915-20.
- 27. Svilaas T, Vlaar PJ, van der Horst IC, et al. Thrombus aspiration during primary percutaneous coronary intervention. N Engl J Med. 2008;358:557-67.