2017 VA/SCD Guideline Data Supplement

Table of Contents

Data Supplement 1. Nonrandomized Trials, Observational Studies, and/or Registries for History and Physical Examination – (Section 4.1)	,
Data Supplement 2. Nonrandomized Trials, Observational Studies, and/or Registries of Noninvasive Evaluation (12-lead ECG, Exercise Testing and	
Electrocardiographic Monitoring) – (Section 4.2.1)	
Data Supplement 3. RCTs Comparing Ambulatory Electrocardiography – (Section 4.2.2)	
Data Supplement 4. Nonrandomized Trials, Observational Studies, and/or Registries of Ambulatory Monitors – (Section 4.2.2)	,
Data Supplement 5. Nonrandomized Trials, Observational Studies, and/or Registries of Implanted Cardiac Monitors – (Section 4.2.3)	,
Data Supplement 6. Nonrandomized Trials, Observational Studies, and/or Registries Comparing Noninvasive Cardiac Assessment- (Section 4.2.4)	,
Data Supplement 7. Nonrandomized Trials, Observational Studies, and/or Registries Comparing Biomarkers – (Section 4.2.5))
Data Supplement 8. RCTs Evaluating EP Study for VA – (Section 4.3.2)	
Data Supplement 9. Nonrandomized Trials, Observational Studies, and/or Registries of EP Study for VA - (Section 4.3.2)	,
Data Supplement 10. RCTs for Preventing SCD with HF Medications - (Section 5.2)	
Data Supplement 11. RCTs and Nonrandomized Trials, Observational Studies, and/or Registries Related to Surgery and Revascularization Procedures – (Section 5.5)	,
Data Supplement 12. Nonrandomized Trials, Observational Studies, and/or Registries of Arrhythmic Surgery and Revascularization for Arrhythmia	
Management – (Section 5.5.1)	·
Data Supplement 13. RCTs for Autonomic Modulation – (Section 5.6)	;
Data Supplement 14. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries for Autonomic Modulation – (Section 5.6)	į
Data Supplement 15. RCTs Comparing Acute Management of Specific Arrythmias - (Section 6)	
Data Supplement 16. Nonrandomized Trials, Observational Studies, and/or Registries Comparing Acute Management of Specific Arrythmias – (Section 6) 58	;
Data Supplement 17. RCTs Secondary Prevention Sudden Death in Ischemic Heart Disease – (Section 7.1.1)	,
Data Supplement 18. Nonrandomized Trials, Observational Studies, and/or Registries for Secondary Prevention Sudden Death in Ischemic Heart Disease –	
(Section 7.1.1)	J
Data Supplement 19. Nonrandomized Trials, Observational Studies, and/or Registries for Coronary Artery Spasm – (Section 7.1.1.1)	
Data Supplement 20. Nonrandomized Trials, Observational Studies, and/or Registries for Post CABG VT/VF – (Section 7.1.1.2)	J
Data Supplement 21. RCTs and Nonrandomized Trials, Observational Studies, and/or Registries of ICDs Primary Prevention VA and Sudden Death in Patients	
with Ischemic Cardiomyopathy – (Section 7.1.2)77	
Data Supplement 22. RCTs Evaluating Treatment and Prevention of Recurrent VA in Patients with Ischemic Heart Disease – (Section 7.1.3)	,
Data Supplement 23. Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Recurrent Arrhythmias in IHD – (Section 7.1.3)	j
Data Supplement 24. Nonrandomized Trials, Observational Studies, and/or Registries of NICM – (Section 7.2))
Data Supplement 25. RCTs Secondary Prevention SCD in NICM – (Section 7.2.1)	
Data Supplement 26. Nonrandomized Trials, Observational Studies, and/or Registries of Secondary Prevention SCD in NICM – (Section 7.2.1)	
Data Supplement 27. RCTs Primary Prevention SCD in NICM – (Section 7.2.2))
Data Supplement 28. Nonrandomized Trials, Observational Studies, and/or Registries of Primary Prevention of SCD in NICM – (Section 7.2.2)	

Data Supplement 29. RCTs and Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Recurrent VA in Patients With NICM – (S 7.2.3)	Section
Data Supplement 30. Nonrandomized Trials, Observational Studies, and/or Registries of Arrhythmogenic Right Ventricular Cardiomyopathy – (Section 7	.3) 127
Data Supplement 31. Nonrandomized Trials, Observational Studies, and/or Registries of Hypertrophic Cardiomyopathy – (Section 7.4)	145
Data Supplement 32. Nonrandomized Trials, Observational Studies, and/or Registries of Myocarditis – (Section 7.5)	159
Data Supplement 33. Nonrandomized Trials, Observational Studies, and/or Registries of Cardiac Sarcoidosis – (Section 7.6)	160
Data Supplement 34. Nonrandomized Trials, Observational Studies, and/or Registries of Other Infiltrative Cardiomyopathies – (Section 7.6.1)	168
Data Supplement 35. Nonrandomized Trials, Observational Studies, and/or Registries of Use of ICD and WCD in Patients with HFrEF - (Section 7.8.1)	170
Data Supplement 36. Nonrandomized Trials, Observational Studies, and/or Registries Related to LVAD – (Section 7.8.3)	173
Data Supplement 37. Nonrandomized Trials, Observational Studies, and/or Registries Related to ICD Use After Heart Transplantation – (Section 7.8.4)	173
Data Supplement 38. Nonrandomized Trials, Observational Studies, and/or Registries Evaluating the Risk of Sudden Death or VA in Patients with	
Neuromuscular Disorders – (Section 7.8)	175
Data Supplement 39. Nonrandomized Trials Related to Cardiac Channelopathies – (Section 7.9)	184
Data Supplement 40. Nonrandomized Trials Related to Congenital LQTS – (Section 7.9.1.1.)	196
Data Supplement 41. Nonrandomized Trials Related to Catecholaminergic Polymorphic Ventricular Tachycardia – (Section 7.9.1.2.)	207
Data Supplement 42. Nonrandomized Trials Related to Brugada Syndrome – (Secction7.9.1.3)	211
Data Supplement 43. Nonrandomized Trials Related to Early Repolarization "J-wave" Syndrome – (Secction 7.9.1.4)	221
Data Supplement 44. Nonrandomized Trials Related to Short-QT Syndrome – (Secction 7.9.1.5)	225
Data Supplement 45. RCTs Related to VA in the Structurally Normal Heart – (Section 8)	228
Data Supplement 46. Nonrandomized Trials, Observational Studies, and/or Registries Related to Outflow Tract and AV Annular VA – (Section 8.1)	230
Data Supplement 47. Nonrandomized Trials, Observational Studies, and/or Registries of Catheter Ablation in Papillary Muscle VA - (Section 8.2)	238
Data Supplement 48. Nonrandomized Trials, Observational Studies, and/or Registries Related to Interfascicular Reentrant VT (Belhassen Tachycardia)-	
(Section 8.3)	241
Data Supplement 49. Nonrandomized Trials, Observational Studies, and/or Registries Related to Idiopathic Polymorphic VT/VF - (Section 8.5)	242
Data Supplement 50. Nonrandomized Trials, Observational Studies, and/or Registries of PVC-induced Cardiomyopathy - (Section 9)	247
Data Supplement 51. Nonrandomized Trials, Observational Studies, and/or Registries Related to Pregnancy - (Section 10.2)	258
Data Supplement 52. RCTs Comparing Medication-Induced Arrhythmias - (Section 10.7)	267
Data Supplement 53. Nonrandomized Trials, Observational Studies, and/or Registries of Medication-Induced Arrhythmias (Section 10.7)	268
Data Supplement 54. Nonrandomized Trials, Observational Studies, and/or Registries Related to ACHD - (Section 10.8)	274
Data Supplement 55. Nonrandomized Trials, Observational Studies, and/or Registries of S-ICD - (Section 11.1)	293
Data Supplement 56. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries for WCD – (Section 11.2)	299
Data Supplement 57. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries for Special Considerations for Catheter Ablation – (Sec	tion
12)	300
Data Supplement 58. Nonrandomized Trials, Observational Studies, and/or Registries Related to Post-Mortem Evaluation of SCD - (Section 13)	304
Data Supplement 59. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries of Terminal Care - (Section 14)	308
Data Supplement 60. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries for Shared Decision Making – (Section 15)	314
Data Supplement 61. Randomized Trials, Observational Studies, and/or Registries Related to Cost and Value Considerations - (Section 16)	317

Methodology and Evidence Review

The recommendations listed in this guideline are, whenever possible, evidence based. An extensive evidence review was conducted from April through September 2016, that included literature published through September 2016. Other selected references published through March 2017 were incorporated by the writing committee. Literature included was derived from research involving human subjects, published in English, and indexed in MEDLINE (through PubMed), EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Key search words included but were not limited to the following: accelerated idioventricular rhythm, advanced cardiac life support, ambulatory electrocardiography, amiodarone, amyloidosis, Antiarrhythmic drugs ARNI – Angiotensin Receptor-Neprilysin Inhibitor, arrhythmias, arrhythmogenic right ventricular dysplasia, atenolol, autonomic modulation, biomarkers, CABG, cardiac, catheter ablation, cardiac arrest, cardiac arrhythmia, cardiac catheterization, cardiac magnetic resonance imaging, cardiac sympathetic denervation, cardiac troponin, cardiomyopathy, catecholaminergic polymorphic ventricular tachycardia, carvedilol, choice behavior, coronary artery bypass surgery, coronary stent, cryoablation deactivation, decision-making, digoxin toxicity, dilated cardiomyopathy, dilated non ischemic cardiomyopathy, disease management, Dor Procedure, drug induced arrhythmia, drug induced long QT, emergency medical services, electrical storm, electrocardiography, electrophysiologic study, electrophysiologic techniques, electrophysiological testing, emergency management, end of life, endocardiectomy exercise test, Fabry's disease, fibrillation, flecainide, heart arrest, heart disease, hemochromatosis, hemodynamically stable ventricular tachycardia, holter monitor, hypertrophic, implantable cardiac monitor, incessant, infiltrative heart disease, intervention, lamin a/c left ventricular assist device, left ventricular reconstruction, lidocaine, long QT syndrome, loop recorder, LV dysfunction, metoprolol, monomorphic, muscular dystrophies, myocardial infarction/therapy, myotonic dystrophy, nadolol, natriuetic peptides, papillary muscle, patient perspective, patient preference, percutaneous coronary, polymorphic, Polymorphous Ventricular Tachycardia, premature ventricular contractions, procainamide, propranolol, pulseless electrical activity, PVC induced cardiomyopathy, resting ecg, renal denervation, resuscitation, risk stratification, secondary prevention, shared decision making, sotalol, spinal cord stimulation, subcutaneous implantable cardioverter defibrillators, sudden cardiac death, sudden death, syncope, tachycardia, torsades de pointes, vagal nerve stimulation ventricular, ventricular arrhythmias, ventricle extrasystole, ventricular fibrillation, ventricular premature complexes, ventricular tachycardia

Abbreviations: 1° indicates primary; 2°, secondary; AAD, antiarrhythmic drugs; ACA, aborted cardiac arrest; ACC, American College of Cardiology; ACHD, adult congenital heart disease; ACLS, advanced cardiac life support; ACS, acute coronary syndrome; AF, atrial fibrillation; AHA, American Heart Association; AMI, acute myocardial infarction; ARVC, arrhythmogenic right ventricular cardiomyopathy; AS, atrial stenosis; AT, atrial tachyarrhythmias; AV, atrioventricular; AVID, antiarrhythmics versus implantable defibrillators; BB, beta blocker; BBB, bundle branch block; BBRVT, bundle branch reentrant ventricular tachycardia; BID, two times a day; BNP, brain natriuretic peptide; BP, blood pressure; BrS, Brugada syndrome; CA, cardiac arrest; CABG, coronary artery bypass graft; CABG-PATCH, coronary artery bypass graft patch trial; CAD, coronary artery disease; CASH, cardiac arrest study Hamburg; CASS, coronary artery surgery study; CE, cardiac event; CHF, congestive heart failure; CHFSTAT, survival trial of antiarrhythmic therapy in congestive heart failure; CI, confidence interval; CIBIS II, cardiac insufficiency bisoprolol study II; CIDS, Canadian implantable defibrillator; ICD, cardiovascular implantable electronic device; CMRI, cardiac magnetic resonance imaging; COPD, chronic obstructive pulmonary disease; CPR, cardiopulmonary resuscitation; CPVT, catecholaminergic polymorphic ventricular tachycardia; CRT, cardiac reshynchronization therapy; CS, carotid sarcoidosis; CT, computed tomography; CV, cardiovascular; CVD, cardiovascular disease; CXR, chest x-ray; DCM, dilated cardiomyopathy; DEFINITE, defibrillator in nonischemic cardiomyopathy treatment evaluation; DFT, defibrillation threshold; DINAMIT, defibrillator in acute myocardial infarction trial; DM1, myotonic dystrophy 1; DM2, myotonic dystrophy; DYS, dystrophin; ECG, electrocardiogram; EDMD2, Emery-Dreifuss muscular dystrophy type 2; EF, ejection fraction; EFFORTLESS S-ICD, evaluation of factors impacting clinical outcome and cost effectiveness of the S-ICD; EGM, electorgram EMD, electromechanical dissociation; EP, electrophysiological; EPS, electrophysiological study; ERP, effective refractory period; ESRD, end stage renal disease; EURO-VT Study, Euro-ventricular tachycardia study; GDMT, guideline-directed management and therapy; GFR, glomerular filtration rate; HCM, hypertrophic cardiomyopathy; HELP-VT, heart center of Leipzig VT study; HF, heart failure;

HPS, His-Purkinje system; HR, hazard ratio; HTN, hypertension; Hx, history; HV, His Purkinje conduction rate; ICD, implantable cardioverter-defibrillator; ICU, intensive care unit; IDCM, idiopathic dilated cardiomyopathy; IDE, investigational device exemption; ILR, implantable loop recorder; IRIS, insulin resistance intervention after stroke; IV, intravenous; KM, Kaplan-Meier; LBBB, left bundle branch block; LCSD, left cardiac sympathetic denervation; LGE, late gadolinium enhancement; LQTS, long QT syndrome; LV, left ventricle; LVAD, left ventricular assist device; LVEF, left ventricular ejection fraction; LVH, left ventricular hypertrophy; LVOT, left ventricular outflow tract; MACE, major adverse cardiac event; MADIT, multicenter automatic defibrillator implantation trial; MAGIC, magnesium in coronaries; MD, muscular dystrophy; MI, myocardial infarction; MR, mitral regurgitation; MRI, magnetic resonance imaging; MTWA, microvolt T-wave alternans; MUSTT, multicenter unsustained tachycardia trial; N/A, not available; NICM, nonischemic dilated cardiomyopathy; NPV, negative predictive value; NS, not significant; NSVT, nonsustained ventricular tachycardia; NYHA, New York Heart Association classification for heart failure; NT-proBNP, Nterminal pro b-type natriuretic peptide; OHCA, out-of-hospital cardiac arrest; OPTIC, optimal pharmacological therapy in cardioverter defibrillator patients; OR, odds ratio; PainFREE Rx II, pacing fast ventricular tachycardia reduces shock therapies; PARADIGM-HF, prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial; PCI, percutaneous coronary intervention; PE, physical examination; PES, programmed electrical stimulation; PM, papillary muscle; PMCD, Perimortem Cesarian Delivery; PMCS, Perimortem Cesarian Section; PMVT, polymorphic ventricular tachycardia; PO, per os; PROCAT, Parisian region out of hospital cardiac arrest; PVC, premature ventricular contractions; PVR, pulmonary valve replacement; QoL, quality of life; RBB, right bundle branch; RBBB, right bundle branch block; RCSD right cardiac sympathetic denervation; RCT, randomized controlled trials; RNA, radionuclide angiography; RR, relative risk; RRR relative risk ratio; RyR2, Ryanodine receptor type 2; S-ICD, subcutaneous implantable cardioverter-defibrillator; SAECG, signal averaged ECG; SBP, systolic blood pressure; SCA, sudden cardiac arrest; SCD, sudden cardiac death; SCD-HeFT, sudden cardiac death in heart failure trial; SCS, spinal cord stimulation; SHD, structural heart disease; SMASH VT, substrate mapping and ablation in sinus rhythm to halt ventricular tachycardia; SND, sinus node dysfunction; SQTS, short QT syndrome; STICH, surgical treatment for ischemic heart failure; STICHES, surgical treatment for ischemic heart failure extension study; SVT, supraventricular tachycardia; SYNTAX, synergy between PCI with Taxus and cardiac surgery; TdP, torsades de pointes; TIA, transient ischemic attack; TOF, tetralogy of Fallot; VA, ventricular arrhythmias; VALIANT, valsartan in acute myocardial infarction; VANISH, ventricular tachycardia ablation versus escalated antiarrhythmic drug therapy in ischemic heart disease; VERP, ventricular effective refractory period; VF, ventricular fibrillation; VFL, ventricular flutter; VHD, valvular heart disease; VT, ventricular tachycardia; VTE, ventricular tachyarrhythmic events; and WCD, wearable cardiac defibrillator.

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
• Ruwald, et al. 2012	Study type:	Inclusion criteria:	<u>1° endpoint:</u>	• The incidence rates observed are
(1)	Retrospective	Patients hospitalized or	Incidence of syncope and	higher than previously reported
• <u>22588456</u>	observational study	seen in emergency	associations with comorbidities and	and the age distribution of syncope
	from a registry cohort	department with first	pharmacotherapy	is widely different according to
	with matched	episode of syncope	Results:	gender. Syncope is more common
	controls.	between 1997 and 2009.	Age distribution peaked at 20, 60,	in females, in the elderly, is
		Exclusion criteria:	and 80 y. Incidence was higher in	generally a diagnosis associated
	Size: 127,508 patients	Not specified	women in all age groups, although	with considerable comorbidity.
	with first episode of		the peak in the oldest age group	 The data may be influenced by
	syncope. Each subject		occurred 5–7 y earlier in men. CVD	the fact that the study is
	paired with 5 age and		was present in 28% of the subjects,	dominated by syncope leading to
	sex matched controls.		and drug therapy was being used by	hospitalization and emergency
			48%. There was an association	department visits.
			between CVD and admission for	
			syncope, inversely related to age -	
			0–29 y (OR: 5.8); 30–49 y (OR: 4.4);	
			50–79 y (OR: 2.9), and <u>></u> 80 y (OR:	
			2.0). Cardiovascular	
			pharmacotherapy associated with	
			age and risk of syncope was similar.	
 Soteriades et al. 	<u>Study type</u> :	Inclusion criteria:	<u>1° endpoint</u> :	 Cardiac syncope constitutes a
2002 (2)	Retrospective analysis	Reported episodes of	Death from any cause, MI or death	high-risk group for morbidity and
• <u>12239256</u>	of a prospectively	syncope by subjects in	from coronary heart disease, and	premature mortality from CVD.
	enrolled long term	Framingham study	fatal or nonfatal stroke.	 Patients with unknown cause are
	population cohort	population examined	Results: Overall incidence of a first	a mixed group at apparent
	(Framingham)	between 1971 and 1998.	report of syncope was 6.2 per 1000	increased risk for death and
		Reports coded as "yes,"	person-y, with an increase with	warrant further diagnostic testing.
	Size: 727 patients with	"no," or "maybe."	increasing age, most prominent at	 Vasovagal syncope has a benign
	reported syncope and		70 y. Age-adjusted incidence was 7.2	prognosis.
	long term follow up	Exclusion criteria:	per 1000 person-y among both men	
	from a population of	Equivocal reports of	and women. Causes among men and	
	7814 participants	syncope (N=120),	women were: cardiac causes (13.2%	
	(3563 men and 4251	participants who had not	and 6.7%), unknown (31.0% 40.7%),	

Data Supplement 1. Nonrandomized Trials, Observational Studies, and/or Registries for History and Physical Examination – (Section 4.1)

		head trauma (N=47), incomplete records (N=7).	(8.6% and 9.9%), medication (6.3% and 7.2%), and "other" (9.5% and 6.1%). Recurrences were reported in 21.6%). There were 847 deaths from all causes, 263 MI or deaths from coronary heart disease, and 178 fatal or nonfatal strokes during a mean follow-up of 8.6 y (median, 7.7). Participants with cardiac syncope had lower survival than those without syncope.	
1993 (3) Rei • <u>8417050</u> of a pat	etrospective analysis f a consecutive atient cohort ize: 491 patients	Consecutive series of patients with advanced HF without a Hx of CA referred for optimization of medical therapy, often in conjunction with pre- transplant evaluation, between 1983 and 1991 <u>Exclusion criteria</u> : Prior Hx of CA.	SCD Results: After a mean follow-up of 365±419 d, 165 patients (35%) were alive, 148 (30%) had undergone heart transplantation, 69 (14%) had died suddenly, 66 (13%) had died of progressive HF, 19 (4%) had died of noncardiac or unknown causes and 24 (4%) were lost to follow-up. All-causes at I y was 29% and sudden death was 15%. All cause mortality was greater in patients with syncope (65% vs. 25%, p<0.00001). SCD risk	syncope are at increased risk of all cause mortality, largely associated with an increased risk of SCD.

Data Supplement 2. Nonrandomized Trials, Observational Studies, and/or Registries of Noninvasive Evaluation (12-lead ECG, Exercise Testing and Electrocardiographic Monitoring) – (Section 4.2.1)

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
• Steinman et al.	Study type: retrospective	Inclusion criteria: regular	<u>1° endpoint:</u> diagnosis of VT	• VT is the most common diagnosis
1989 (4)	cohort	wide QRS tachycardia in		in adults with stable, wide complex
• <u>2915409</u>		conscious adults	<u>Results:</u> 75% of patients had	tachycardia
	Size: 20 patients		atherosclerotic heart disease, with	
		Exclusion criteria:	remote MI in 73%	
		hemodynamic instability	Diagnosis of VT established in	
			17/20 patients, by AV dissociation	
			or the use of Wellens'criteria. EP	
			testing in 17 patients confirmed	
			the diagnosis of VT in 94%.	
• Brugada et al.	Study type: prospective	Inclusion criteria: ECGs	1º endpoint: mechanism	 Absence of RS in all precordial
1991 (5)	cohort	with wide QRS (<u>></u> 0.12 s)	confirmed by EPS	leads was highly specific for VT
• <u>2022022</u>				• When RS is present in 1 or more
	<u>Size</u> : 554 tachycardias	Exclusion criteria: AAD	Results: New criteria had	precordial leads, RS interval of >100
		treatment	sensitivity of 0.987 and specificity	ms is highly specific for VT
			of 0.965.	 Other criteria included AV
				dissociation and morphology in leads
				V1-2 and V6
• Wellens HJ et	Study type: Prospective	Inclusion criteria:	<u>1º endpoint:</u> development of	• Capture or fusion beats seen only
al. 1978 (6)	cohort	Diagnosis confirmed by	algorithm for differentiation of VT	infrequently
• <u>623134</u>	c : 440,500, 70, (His bundle ECG recording	from SV1	
	Size: 140 ECGs, 70 of	Freehood and and a start of the	Decultor Findlings successful of ()/T	
	sustained vi and 70 SVI	Exclusion criteria: Atrial	Results: Findings suggestive of VI:	
	with aberrancy, in 122	normation or nutter in	QRS >0.14 s; left axis deviation;	
• Elbondy et al	Study type: retrospective		19 and no internet and in a death and	• 41 patients had NSV/T
	schort analysis	intermediate pro test	<u>1⁻ enapoint</u> : cardiac death or	• 41 patients nau insvi.
▲ 12106835		probability of CAD		• Study was anneu more at ischemic
■ <u>12100055</u>	Size: 1460		Bosults: Exercise induced V/A	
	5126. 1400	Exclusion criteria: Hy of	occurred in 1/6 nations (10%)	
		MI or revascularization		

		CAD documented on	During follow-up (median 2.7 y), 1°	
		angiography, or LBBB	endpoint occurred in 36 patients.	
			In multivariate analysis,	
			independent predictors of cardiac	
			events were exercise-induced VA	
			(chi-square 4.7, p=0.03) and	
			exercise heart rate (chi-square 18,	
			p=0.0001).	
 Grady et al. 	Study type: retrospective	Inclusion criteria:	1° endpoint: All-cause mortality,	 Exercise-induced LBBB predicts a
1998 (8)	matched control cohort	Exercise-induced LBBB	PCI, open heart surgery, nonfatal	higher risk of death and major
• <u>9440667</u>	study		MI, documented symptomatic or	cardiac events.
		Exclusion criteria:	sustained VT, or implantation of a	
	Size: 70 cases and 70	preexcitation or	permanent pacemaker or an ICD.	
	matched controls	permanent pacemakers	Results: 37 events (28 in LBBB, 9	
			in controls) occurred during mean	
			3.7 y follow-up	
			Adjusted relative risk in LBBB was	
			2.78 (95% CI: 1.16–6.65, p=0.02)	
ABCD	Study type: prospective,	Inclusion criteria:	<u>1° endpoint</u> : appropriate ICD	 Combination of MTWA and EPS
 Costantini et al. 	non-randomized cohort	ischemic	discharge or SCD	identifies a subset of patients most
2009 (9)		cardiomyopathy, EF <u><</u> 40%,		likely to benefit from ICD.
• <u>19195603</u>	Size: 566 patients	and NSVT	Results: 39 patients (7.5%) met	 Negative predictive value is not
			the 1° endpoint after a median	100%, indicating that a small subset
		Exclusion criteria:	follow-up of 1.9 y; MTWA had a	of patients may still have events even
		unstable CAD, NYHA class	positive predictive value of 9% and	if both tests are negative.
		IV HF, prior CA, sustained	NPV of 95%, comparable to EPS	
		VA, unexplained syncope;	(11% and 95% respectively)	
		recent (<28 d) MI, CABG,	Event rate with both positive	
		or PCI; permanent AF;	MTWA and EPS was 12%, vs. 2%	
		taking AAD at baseline	with both negative (p=0.017)	
• Desai et al.	Study type: retrospective	Inclusion criteria:	1° endpoint: cardiovascular death	• 801 patients (1.8%) had a QRS>120
2006 (10)		Patients with ECGs at a		ms; another 2300 had BBB
• <u>16828632</u>	Size: 46,933 consecutive	single center	Results: After adjustment in the	No specific information on
	patients with ECGs		Cox model for age, gender, and	arrhythmic death
		Exclusion criteria:	heart rate, the QRS duration score	
		preexcitation; BBB or	was a strong independent	
			predictor of cardiovascular	

		paced patients considered separately	mortality. For every 10ms increase in QRS duration, there was an 18% increase in cardiovascular risk.	
 Freedman et al. 1987 (11) <u>3597997</u> 	Study type: retrospective Size: 15,609 patients from the CASS study (Coronary Artery Surgery Study); 522 with BBB	Inclusion criteria: All patients from CASS; BBB patients compared to those without Exclusion criteria: preexcitation, ventricular pacing, nonspecific IVCD, previous myocardial surgery	<u>1° endpoint:</u> mortality <u>Results:</u> LBBB associated with 5- fold greater mortality; RBBB 2-fold greater mortality (p<0.0001 for both)	• Mean EF in LBBB patients 40% vs. 49% in RBBB and 57% in patients without BBB
 Baldasseroni et al. 2002 (12) <u>11868043</u> 	Study type: retrospective analysis of outpatient registry Size: 5517 patients	Inclusion criteria: unselected outpatients with HF Exclusion criteria: N/A	<u>1° endpoint:</u> mortality <u>Results:</u> LBBB was present in 1391 patients (25.2%) and was associated with an increased 1y mortality rate from any cause (HR 1.70; 95% CI: 1.41–2.05) and sudden death (HR: 1.58; 95% CI: 1.21–2.06).	• LBBB Is associated with higher mortality in CHF
• MUSTT • Zimetbaum et al. 2004 (13) • <u>15289365</u>	Study type: retrospective substudy Size: 431	Inclusion criteria: CAD, EF<40%, NSVT Exclusion criteria: treatment with AAD or an ICD	1° endpoint: CA or arrhythmic death <u>Results:</u> LBBB and intraventricular conduction delay were associated with a 50% increase in the risk of both arrhythmic and total mortality. RBBB was not associated with arrhythmic or total mortality. LVH was the only ECG predictor of arrhythmic (HR 1.35; 95% CI: 1.08–1.69) but not total mortality.	• Likely reflects the effect of ventricular dyssynchrony

 Buxton et al. 2005 (14) <u>16022960</u> 	Study type: _retrospective substudy from PainFREE Rx II Size: 431 patients	Inclusion criteria: patients in the study with CAD and a baseline ECG. Exclusion criteria: HCM, BrS, LQTS	1° endpoint:recurrence of VT/VFResults:QRSd was ≤120 ms in 291of 431 (68%) patients (LBBB 65,RBBB 48, IVCD 124). Over 12mofollow-up, VT/VF occurred in 95(22%) patients (22% of patientswith QRSd ≤120ms vs.23% of patients with QRSd>120ms, p=NS).	• QRS duration is not useful in predicting recurrent VT/VF.
• MADIT-II • Monasterio et al. 2013 (15) • <u>24028998</u>	Study type: substudy of prospective clinical trial Size: 175 patients	Inclusion criteria: CAD, EF ≤30% Exclusion criteria: AF; heart rate <80 beats/min	<u>1° endpoint:</u> appropriate ICD therapy and SCD <u>Results:</u> Neither QTV nor TWA predicted SCD. Appropriate ICD therapy was predicted by combining IAA90 from T wave alternans testing and QTVN after adjusting for relevant correlates.	• Increased TWA and QTV are independent predictors of appropriate ICD therapy in MADIT-II patients with elevated heart rate at baseline.
• MASTER • Chow et al. 2008 (16) • <u>18992649</u>	Study type: prospective, non-randomized cohort study of MTWA testing Size: 575 patients; all received ICDs	Inclusion criteria: post- MI, EF≤30% Exclusion criteria: AF or atrial flutter, Hx of sustained VT/VF or CA, MI in past mo, revascularization within 3 mo, class IV CHF, advanced cerebrovascular disease	1° endpoint:SCD or appropriateICD therapyResults:SCD or appropriate ICDtherapy occurred in 48 of361 (13%, 6.3%/y) MTWA non-negative and 22 of 214 (10%,5.0%/y) MTWA negative patients.A non-negativeMTWA test result was notassociated with 1° endpoint (HR:1.26; 95% CI 0.76–2.09; p=0.37)	• Total mortality was significantly increased in MTWA non-negative patients (HR: 2.04; 95% CI: 1.10– 3.78; p=0.02). MTWA did not identify patients at a higher risk of a VT.
 Gupta et al. 2012 (17) 22424005 	Study type: meta-analysis	Inclusion criteria: predominantly prior MI	<u>1° endpoint:</u> VT events were defined as the total and	 Negative MTWA result would decrease the annualized risk of VTE from 8.85% to 6.37% in MADIT-II–

	Size: 20 prospective cohort studies consisting of 5,945 subjects	or left ventricular dysfunction <u>Exclusion criteria:</u> healthy patients; BrS; LQTS	arrhythmic mortality and nonfatal sustained or ICD-treated VT <u>Results:</u> Although there was a modest association between positive MTWA and VTE (RR: 2.45; 95% CI:1.58-3.79) and nonnegative MTWA and VTE (RR: 3.68; 95% CI: 2.23–6.07), test performance was poor (positive MTWA: LR+ 1.78, LR– 0.43; nonnegative MTWA: LR+ 1.38, LR– 0.56)	 type patients and from 5.91% to 2.60% in SCD-HeFT-type patients. Despite a modest association, results of spectrally derived MTWA testing do not sufficiently modify the risk of VTE to change clinical decisions
• MADIT-II • Dhar et al. 2008 (18) • <u>18534364</u>	Study type: substudy of randomized clinical trial that estimated the association of prolonged QRSd ≥140ms with arrhythmic outcomes Size: 1232 patients	Inclusion criteria: prior MI, EF ≤30% Exclusion criteria: indicated for an ICD; NYHA class IV; coronary revascularization within the preceding 3 mo; MI within the past mo; advanced cerebrovascular disease; other potentially life- threatening conditions	1° endpoint: SCD in the medically treated arm and SCD or first appropriate ICD therapy for rapid VT/VF in the ICD-treated arm <u>Results</u> : In the medically treated arm, prolonged QRS was a significant independent predictor of SCD (HR: 2.12; 95% CI1.20–3.76, p=0.01). In the ICD-treated arm, prolonged QRS did not predict SCD or rapid VT/VF (HR: 0.77; 95% CI 0.47–1.24, p=0.28).	• Prolonged QRS does not predict SCD/VT/VF in ICD treated patients but does predict SCD in medically treated patients.
 Bloomfield et al. 2004 (19) <u>15451804</u> 	Study type: prospective cohort Size: 177 patients	Inclusion criteria: prior MI, EF≤30% Exclusion criteria: AF or atrial flutter; requirement for ventricular pacing; unstable CAD; NYHA class IV HF; unable to exercise on a bicycle or treadmill	<u>1° endpoint:</u> 2y all-cause mortality <u>Results:</u> For abnormal MTWA compared to normal (negative) test, the HR: 4.8; p=0.02; for QRS >120ms compared to ≤120ms, the HR for 2y mortality was 1.5 (p=0.367). The actuarial mortality rate was substantially lower among patients with normal MTWA (3.8%; 95% CI: 0–9.0) than	• Among MADIT II–like patients, MTWA is better than QRS duration at identifying a high-risk group; it is also better at identifying a low-risk group unlikely to benefit from ICD therapy.

			the mortality rate in patients with a narrow QRS (12.0%; 95% CI: 5.6– 18.5).	
 Iuliano et al. 2002 (20) <u>12075267</u> 	Study type: retrospective analysis of CHF-STAT <u>Size:</u> 669 patients	Inclusion criteria: ischemic or nonischemic cardiomyopathy, NYHA class II-IV, ≥10 PVCs/h, EF <40% Exclusion criteria: recent MI, Hx of ACA, QRS >180ms, or a QTc >500ms	1° endpoint: total mortality and sudden death <u>Results:</u> Prolonged QRS (≥120 ms) was associated with a significant increase in mortality (49.3% vs 34.0%, p=0.0001) and sudden death (24.8% vs 17.4%, p=0.0004). LBBB was associated with worse survival (p=0.006) but not sudden death	• QRS prolongation is an independent predictor of both increased total mortality and sudden death in patients with HF.
 Perez-Rodon, et al. 2014 (21) <u>24993462</u> 	Study type: Retrospective observational study, aimed at studying the association between specific ECG abnormalities and mortality in patients with syncope from the GESINUR study. Size: 524 patients	Inclusion criteria: Patients in the GESINUR study who had syncope and had available, readable ECG and 12 mo follow-up data	 <u>1° endpoint:</u> all-cause mortality <u>Results</u>: Abnormal ECGs in 344 patients (65.6%). 33 Patients died during follow-up (6.3%): 1 due to SCD Atrial fibrillation (OR: 6.8; 95% Cl: 2.8–16.3, p<0.001) intraventricular conduction disturbances (OR: 3.8; 95% Cl: 1.7–8.3; p=0.001), LV hypertrophy ECG criteria (OR: 6.3, 95% Cl: 1.5–26.3; p=0.011) ventricular pacing (OR 21.8, 95% Cl 4.1–115.3, P <.001) 	• Although an abnormal ECG in patients with syncope is a common finding, only the presence of atrial fibrillation, intraventricular conduction disturbances, left ventricular hypertrophy ECG criteria, and ventricular pacing is associated with 1-year all-cause mortality.

Study Acronym;	Aim of Study;	Patient Population	Study Intervention (# natients) /	Endpoint Results (Absolute Event	Relevant 2° Endpoint (if any);
Year Published	Study Size (N)		Study Comparator	Rates,	Adverse Events
			(# patients)	P values; OR or RR; &	
				95% CI)	
• Barrett et al.	Aim: Compare	Inclusion criteria: patients	Intervention: 24 h	<u>1° endpoint</u> :	Prolonged duration
2014 (22)	Holter to a 14 d	for evaluation of cardiac	Holter and 14 d	Adhesive 96, Holter 61	monitoring for detection of
• <u>24364106</u>	paterielectroue	diriiyuiiiid	autiesive pateri	events (p<0.001)	lead less-obtrusive
	Study type: Head	Exclusion criteria: skin	Comparator:		Adhesive-patch monitoring
	to head	allergies, conditions, or	Detection of		platforms could replace
	comparison,	sensitivities to any of the	arrhythmia over total		conventional Holter monitoring
	simultaneous	components of	wear time.		in patients referred for
		the adhesive patch	Any 1 of 6		ambulatory ECG monitoring.
	Size:	monitor, receiving or	arrhythmias, including		
	146 pt	anticipated to receive	supraventricular		
		pacing or external direct	tachycardia,		
		the anticipation of being	greater than 3s AV		
		exposed to high-frequency	block. VT. or		
		surgical equipment during	polymorphic VT/VF.		
		the monitoring period			
• de Asmundis et	Aim: head to	Inclusion criteria:	Intervention: 24 h	1° endpoint: Clinical	 Longer time and patient-
al. 2014 (23)	head comparison	Indication for monitor	monitor and 15 d	diagnosis for	activated monitor improved
• <u>24574492</u>	of 24 h Holter	(palpitations 92.3%,	HeartScan	symptoms:	yield. This was NOT a loop
	and hand held	dizziness 7.7%)		Holter 1.8%	recorder
	patient-activated	Fuchacian anitania.	Comparator: Percent	HeartScan 89%	
	even monitor	Exclusion criteria:	clagnosis of symptom-	(p<0.01)	
	(100 1000)	or an ICD syncone	related arrigtminas		
	Study type:	structural heart			
	Sequential	diseases, ECG			
	comparison	abnormalities, and a Hx of			
	(Holter, then	documented arrhythmia.			
	monitor)				

Data Supplement 3. RCTs Comparing Ambulatory Electrocardiography – (Section 4.2.2)

<u>Size</u> : 625		

Study Acronym; Author;	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR;	Summary/Conclusion Comment(s)
Year Published			& 95% CI)	
• Turakhia et al. 2013	Study type:	Inclusion criteria: Zio	1° endpoint: evaluated compliance,	 Demonstrates yield and compliance
(24)	observational	placed	analyzable signal time, interval to	with patch monitor although VT/VF
• <u>23672988</u>			arrhythmia detection, and diagnostic	not a major issue here
	<u>Size</u> : 26,751	Exclusion criteria:	yield of the Zio Patch,	
		N/A	COMPARED: first 48h with later (mean	
			7.6 d)	
			Results:	
			Any arrhythmia: 62.2% vs 43.9%	
			Symptomatic arrhythmia: 9.7% vs 4.4%	
			VT 187 pt (0.7%)	
			PMVT, TdP, VF 6 pt (0.0%)	
• Linzer et al. 1990	Study type:	Inclusion criteria:	1° endpoint: Monitor up to 1 mo with	 25% yield for syncope Dx after
(25)	observational	Syncope with negative	Loop	negative Holter
• <u>2371954</u>		Holter		 VT/VF uncommon (1 pt)
	<u>Size</u> : 57		Results: arrhythmia was the cause of	
		Exclusion criteria:	symptoms (diagnostic	
		Patients who had	yield 25%; 95% CI: 14–38%).	
		undergone EPS	VT (1 patient), high grade AV block	
			(2 patients), SVT (1 patient),	
			asystole or junctional bradycardia from	
			neutrally mediated syncope (3	
			patients) and normal cardiac	
			rhythms (the remaining 7 patients).	

Data Supplement 4. Nonrandomized Trials, Observational Studies, and/or Registries of Ambulatory Monitors – (Section 4.2.2)

Veen Dublished	· · · · • • •			Comment(s)
Year Published			& 95% CI)	
 Turakhia et al. Am J Car 2013 (24) <u>23672988</u> 	Study type: observational Size: 26,751	Inclusion criteria: Zio placed Exclusion criteria: N/A	<u>1° endpoint</u> : evaluated compliance, analyzable signal time, interval to arrhythmia detection, and	• Demonstrates yield and compliance with patch monitor although VT/VF not a major issue here
			diagnostic yield of the Zio Patch COMPARED: first 48 h with	
			Results: Any arrhythmia: 62.2% vs 43.9% Symptomatic arrhythmia: 9.7% vs 4.4% VT 187 pt (0.7%) PMVT, TdP, VF 6 patients	
	Study type:	Inclusion critoria: AMI and	(U.U%)	 Intermittent AV block was
 Bloch Thomsen et al. 	observational	reduced LVEF	<u>rognostic significance of</u>	associated with "very high risk of
2010 (26)			arrhythmias post MI with	cardiac death"
• <u>20837897</u>	<u>Size</u> :	Exclusion criteria: Refusal;	reduced LVEF	
	297 participants	inability of the patient to		
		participate in the study	Results:	
		because of other serious	Brady and	
		nlanned coronary bypass graft	137 nations (16%) with	
		surgery (N=184), or death	86% asymptomatic. 13%	
		(N=89).	incidence of NSVT (≥16 bts),	
			3% sustained VT (≥30 sec),	
			3% VF (≥16 bts). Also 28%	
			AF with fast vent response;	
• CARISMA • Bloch Thomsen et al. 2010 (26) • <u>20837897</u>	Study type: observational Size: 297 participants	Inclusion criteria: AMI and reduced LVEF Exclusion criteria: Refusal; inability of the patient to participate in the study because of other serious illness (N=312), planned coronary bypass graft surgery (N=184), or death (N=89).	diagnostic yield of the Zio Patch COMPARED: first 48 h with later (mean 7.6 d) Results: Any arrhythmia: 62.2% vs 43.9% Symptomatic arrhythmia: 9.7% vs 4.4% VT 187 pt (0.7%) PMVT, TdP, VF 6 patients (0.0%) 1° endpoint: incidence and prognostic significance of arrhythmias post MI with reduced LVEF Results: Brady and tachyarrhythmia's seen in 137 patients (46%), with 86% asymptomatic. 13% incidence of NSVT (\geq 16 bts), 3% sustained VT (\geq 30 sec), 3% VF (\geq 16 bts). Also 28% AF with fast vent response; 10% high degree AV block;	• Intermittent AV block was associated with "very high risk of cardiac death"

Data Supplement 5. Nonrandomized Trial	s, Observational Studies, and	d/or Registries of Implanted	Cardiac Monitors – (Section 4.2.3)
--	-------------------------------	------------------------------	------------------------------------

			7% sinus brady, 5% sinus	
			arrest	
• Linzer et al. 1990	Study type:	Inclusion criteria: Syncope	1° endpoint: Monitor up to	• 25% yield for syncope diagnosis
(25)	observational	with negative Holter	1 mo with Loop	after negative Holter
• <u>2371954</u>		_		_
	<u>Size</u> :	Exclusion criteria: Prior EPS.	Results: arrhythmia was	
	57 participants		the cause of symptoms	
			(diagnostic yield 25%; 95%	
			CI 14–38%). VT (1 patient),	
			high grade AV block (2	
			patients), SVT (1 patient),	
			asystole or junctional	
			bradycardia from neutrally	
			mediated syncope (3	
			patients) and normal	
			cardiac rhythms (the	
			remaining 7 patients).	
• Volosin et al. 2013	Study type:	Inclusion criteria: Patients	1° endpoint: Evaluate	 Sensitivity is high (96.5% or 99.3% if
(27)	Observational, for	who transmitted data studied	tachycardia detection of	programmed for slower VT.
• <u>23439867</u>	CareLink monitoring	with induced VA at time of	device and software	 Shows excellent detection in
	service	ICD implant testing.		artificial environment.
	<u>Size</u> :		Results: 15.1% had VT or	
	2190 patients overall	Exclusion criteria: Patients	FVT detected, although true	
	who transmitted data.	who did not transmit over 4	VT was seen in only 10.4%.	
	Also studied induced	mo period	For induced 1909	
	arrhythmias		tachycardia episodes	
			reviewed. Sensitivity of	
			VT/VF was 99.3%	
• Krahn et al. 1999	Study type:	Inclusion criteria: recurrent	<u>1° endpoint</u> : Detection of	Demonstrates utility of loop
(28)	Observational	undiagnosed syncope	arrhythmias related to	although no VT/VF seen in this
• <u>9918528</u>			recurrent syncope, with	relatively small study.
	Size:	Exclusion criteria: unlikely to	prior Holter	
	85	survive 1y, were unable to		
		give informed consent, had a	Kesults: 68% had syncope.	
		previously implanted	Arrhythmia seen in 42%	
		programmable medical	who transmitted rhythm	
		device, were pregnant, or	during symptoms.	

		were women of childbearing potential not on a reliable form of contraception.	Bradyarrhythmia in 18, tachyarrhythmia in 3 (SVT 2, AFL 1; no VT/VF)	
 Solbiati et al. 2016 (29) <u>27092427</u> 	Study type: Systematic review, Meta-analysis Size: 579 participants in 4 trials	Inclusion criteria: Unexplained Recurrent Syncope, evaluation of loop recorder vs no loop recorder Exclusion criteria: N/A	 <u>1° endpoint</u>: To assess the incidence of mortality, QoL, adverse events and costs of ILRs vs. conventional diagnostic workup in people with unexplained syncope <u>Results</u>: No difference in long-term mortality 2 studies showed trend of reduction in syncope relapse after diagnosis with the ILR Higher rate of diagnosis (RR: 0.61; 95% CI: 0.54–0.68) 	• This confirmed the advantage of the ILR in making a diagnosis in unexplained syncope, with trend seen in reduction of relapse.

Data Supplement 6. Nonrandomized Trials, Observational Studies, and/or Registries Comparing Noninvasive Cardiac Assessment– (Section 4.2.4)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
VALIANT Solomon of	Aim: To evaluate	Inclusion criteria:	Intervention:	<u>1° endpoint:</u> The risk of	• Each 5% lower LVEF was
al. 2005 (30)	SCD in patients post	subsequent MI with HF.	SCD. Evaluation of	the first 30 d after MI: 1.4%	increase in adjusted risk of
• <u>15972864</u>	MI with left ventricular	LV dysfunction, or both	EF determined by echocardiography	per mo, 95% CI: 1.2%–1.6% and decreased to 0.14% per	SCD or CA with resuscitation.
	dysfunction and/or	Exclusion criteria: ICD	as well as other	mo 95% Cl: 0.11%–0.18%	
	HF	in place prior to randomization	parameters.	after 2 y after MI. Patients	

	Study type: Observational study of patients enrolled in a RCT		Comparator: N/A	with LVEF <30% were at the greatest risk for SCD	
• SCD-HEFT • Gula et al. 2008 (31) • <u>19033019</u>	Aim: To determine with baseline assessment of EF being performed using echocardiography, RNA, or contrast angiography impacted the likelihood of survival. Study type: Observational analysis of patients enrolled into a RCT Size: 2,521 patients	Inclusion criteria: Patients with HF, NYHA class II-III and LVEF ≤35% Exclusion criteria: Contraindication to amiodarone or 1° prevention ICD	Intervention: Type of modality to evaluate LVEF and clinical outcomes. Comparator: N/A	<u>1° endpoint</u> : Multivariable analysis showed that there was no significant difference in survival between patients enrolled based on LVEF determined RNA vs. echocardiography (HR: 1.06; 95% CI: 0.88–1.28), RNA Vs. angiography (HR: 1.25; 95% CI: 0.97–1.62), or echocardiography vs. angiography (HR: 1.18; 95% CI: 0.94–1.48).	• Among HF patients with an LVEF between 20% and 35%, each 5% increase in LVEF was associated with a lower mortality risk (HR: 0.81; 95% CI: 0.75–0.88). The findings were similar for each initial EF imaging modality, with the interaction term combining imaging method and LVEF in the Cox model was NS (p=0.71).

Data Supplement 7. Nonrandomized Trials, Observational Studies, and/or Registries Comparing Biomarkers – (Section 4.2.5)

Study Acronym; Author;	Aim of Study; Study Type;	Patient Population	Study Intervention (# patients) /	Endpoint Results (Absolute Event Rates,	Relevant 2° Endpoint (if any); Study Limitations;
Year Published	Study Size (N)		(# patients)	95% CI)	Adverse Events
 Korngold et al. 2009 (32) <u>19470888</u> 	<u>Aim</u>: Evaluate baseline NT-proBNP levels to predict risk of SCD in a general population of women.	Inclusion criteria: Women nurses 30–55 y of age Exclusion criteria: Blood sample not	Intervention: NT- proBNP data at baseline. 99 SCD cases and 294 matched controls.	<u>1° endpoint:</u> Relationship of NT-proBNP and SCD (RR for 1-standard deviation increment 1.49; 95% Cl: 1.09–2.05; p=0.01)	• Women with NT-proBNP levels above the cut point of 389 pg/mL were at increased risk of SCD (RR 5.68; 95% CI: 1.78–18.2; p=0.003).
		collected	Comparator: N/A		

	Study type: Case Control Size: 32,826 women with biomarker data out of 121,700 enrolled				
 Patton et al. 2011 (33) 21044699 	Aim: Evaluate risk of SCD as function of baseline NT-proBNP in a community cohort of older men and women Study type: Cohort study Size: 5,447 men and	Inclusion criteria: Men and women 65 y of age and older randomly selected from 4 communities Exclusion criteria: NT- proBNP levels not available	Intervention: NT- proBNP levels were analyzed both as a continuous variable, where the natural log of NT- proBNP was used, and as categorized into quintiles Comparator: N/A	<u>1° endpoint</u> : Higher NT- proBNP levels were associated with SCD, with an unadjusted HR: 4.2; 95% CI: 2.9, 6.1; p=0.001 for the highest vs. lowest quintile	• NT-proBNP was associated with SCD after adjustment for clinical characteristics and risk factors (age, sex, race, and other associated conditions), with an adjusted HR for the fifth vs. the first quintile of 2.5 (95% CI: 1.6, 3.8; p=0.001).
• Scott et al. 2009 (34) • <u>19789399</u>	womenAim:Evaluatewhether BNP levelscan predict SCD andVA in patientswithout ICDsStudy type:Meta-Analysis ofObservationalStudiesSize:14 studies (6studies with 3,543patients without ICDand 8 studies of1,047 patients withICD)	Inclusion criteria: Studies evaluating BNP or NT-proBNP levels for SCD or VA Exclusion criteria: Overlapping studies	Intervention: BNP and NT-proBNP levels evaluated for SCD risk in patients without ICD or VA risk in patients with ICD Comparator: N/A	<u>1° endpoint</u>: Increased BNP or NT-proBNP predicted SCD with a RR: 3.68; 95% CI: 1.90–7.14 in patients without ICDs. Increased BNP or NT- proBNP predicted VA with a RR: 2.54; 95% CI: 1.87– 3.44.	• The risk of SCD associated with increased BNP or NT- proBNP tended to be higher in patients with a lower LVEF. However, there was not a significant interaction between BNP level and LVEF on risk prediction.

 Blangy et al. 2007 (35) <u>17526509</u> 	Aim: Evaluate biomarkers on VT risk in patients with ICD post MI Study type: Observational Size: 121 men and women	Inclusion criteria: Patients with spontaneous sustained VT post MI receiving ICD <u>Exclusion criteria</u> : N/A	Intervention: Serum BNP, hs-CRP, and procollagen levels measures at baseline Comparator: N/A	<u>1° endpoint</u>: In a multivariate analysis, an increased serum BNP (OR: 3.75; 95% CI: 1.46–9.67), an increased hs-CRP (OR: 3.2; 95% CI: 1.26–8.10, and an increased PINP (OR: 3.71; 95% CI: 1.40– 9.88 were associated with a higher VT incidence.	• In addition, LVEF <0.35 (OR 2.19; 95% CI: 1.00–4.79) was associated with a higher VT incidence.
 HF ACTION Ahmad et al. 2014 (36) 24952693 	Aim: Evaluate biomarkers in prediction of sudden deathand progressive HF death in patients with HF with reduced EF Study type: Observational analysis of subjects enrolled in a RCT Size: 813 subjects	Inclusion criteria: NYHA class II to IV chronic HF with EF≤35% Exclusion criteria: • Biomarker data not obtained • Inability to exercise	Intervention: NT- proBNP, galectin-3, and ST2 levels were assessed at baseline in patients enrolled in the trial of exercise training vs. usual care Comparator: N/A	<u>1° endpoint</u> : Elevations in each biomarker was associated with increased risk for SCD death in both adjusted and unadjusted analyses. However, increases in the biomarkers had stronger associations with pump failure than SCD. Clinical variables along with NT- proBNP levels were predictors sudden cardiac death (C statistic: 0.73).	 NT-proBNP was more strongly predictive of pump failure (C statistic: 0.87) Addition of ST2 and galectin-3 led to improved net risk classification of 11% for SCD. There was no improvement in net risk reclassification for pump failure death with ST2 or galectin-3
 Levine et al. 2014 (37) <u>24837348</u> 	Aim: To evaluate the ability of BNP or NT-proBNP to predict VA in patients with 1° prevention ICDs Study type: Observational Size: 564 patients	Inclusion criteria: BNP or NT-proBNP levels and 1° prevention ICD Exclusion criteria: BNP or NT-proBNP not available within 12mo of ICD implantation.	Intervention: BNP or NT-proBNP levels to predict risk of VA Comparator: N/A	<u>1° endpoint:</u> In multivariate analysis NT- proBNP was associated with increased risk of VA with HR: 5.75; p<0.001 and BNP was associated with increased risk with HR: 3.40; p<0.01.	• Quartile analyses showed higher relative risk of VA compared to the relative risk of all-cause mortality for both BNP and NT-proBNP.

 Berger et al. 2002 (38) <u>12021226</u> 	Aim: To evaluate role of BNP in predicting SCD in patients with HF with LVEF ≤35% Study type: Observational Size: 452 patients	Inclusion criteria:Patients with HF andreduced EF with BNPlevel measured atbaselineExclusion criteria:Patients with hearttransplantation or VAD	Intervention: BNP levels at baseline and association with subsequent SCD Comparator: N/A	<u>1° endpoint</u> : In multivariate analysis, log BNP level was the only independent predictor of sudden death	• Using a cutoff point of log BNP 2.11 (130 pg/mL), the KM sudden death-free survival rates were significantly higher in patients below (99%) compared with patients above (81%) this cutoff point (p=0.0001)
---	---	---	--	---	--

Data Supplement 8. RCTs Evaluating EP Study for VA – (Section 4.3.2)

Study	Aim of Study;	Patient Population	Study Intervention	Endpoint Results	Relevant 2° Endpoint (if any);
Acronym;	Study Type;		(# patients) /	(Absolute Event Rates,	Study Limitations;
Author;	Study Size (N)		Study Comparator	P values; OR or RR; &	Adverse Events
Year Published			(# patients)	95% CI)	
 Buxton AE, et 	Aim: to analyze the	Inclusion criteria: CAD,	Intervention: AAD	<u>1° endpoint</u> :	 61% of events were
al. Circ 2002	relationship of EF	EF <u><</u> 40%, and	or ICD for	 Total mortality and 	arrhythmic among inducible
(39)	and inducible VA to	asymptomatic,	inducible patients	arrhythmic deaths/cardiac	patients with EF ≥30% and only
• <u>12417544</u>	mode of death	unsustained VT		arrests more common in	42% among noninducible
			Comparator: EF	patients with EF <30%	patients, p=0.002
	<u>Study type</u> :	Exclusion criteria: History	30–40% vs. <30%	 Arrhythmic deaths 	
	Prospective,	of syncope, sustained		similar in patients with EF	
	randomized, RCT	VT/VF more		<30% and 30–40%	
		than 48 h after AMI,		 Relative contribution of 	
	Size: 1791 patients	unsustained VT		arrhythmic deaths to total	
		only in the setting of drug-		mortality was higher in	
		induced LQTS or AMI or		inducible patients (58% of	
		that was attributable		deaths vs. 46% of deaths	
		to acute metabolic		in noninducible patients,	
		disorders or drug toxicity,		p=0.004	
		or symptomatic,			
		unsustained VT			

 MUSTT Buxton AE, et al NEJM 1999 (40) <u>10601507</u> 	Aim: to test the usefulness of EPS for risk stratification for SCD Study type: Prospective, randomized, RCT Size: 704 patients with inducible, custained VA	Inclusion criteria: CAD, EF≤40%, and asymptomatic, unsustained VT Exclusion criteria: History of syncope, sustained VT/VF more than 48 h after AMI, unsustained VT only in the setting of drug- induced LOTS or AMI or	ntervention: AAD or ICD Comparator: Patients with inducible VT/VF at EPS randomized to treatment with AAD or ICD vs. no specific antiarrhythmic treatment	 <u>1° endpoint</u>: CA or arrhythmic death At 5 y, inducible patients treated with AAD/ICD had a significantly lower risk of arrhythmic death or CA (25%) than patients not receiving antiarrhythmic therapy (32%) (RR: 0.73; 95% CI: 0.53–0.99) 	 The risk of cardiac arrest or death from arrhythmia among patients who received treatment with ICDs was significantly lower than that among the patients discharged without receiving defibrillator treatment (RR: 0.24; 95% CI: 0.13–0.45; p<0.001). Reduction in 1° endpoint in AAD/ICD arm was due to reduction in avents in patients
• MUSTT • Buxton et al.	sustained VA <u>Aim</u> : to test the usefulness of EPS for	induced LQTS or AMI or that was attributable to acute metabolic disorders or drug toxicity, or symptomatic, unsustained VT <u>Inclusion criteria</u> : CAD, EF <40%, and asymptomatic.	treatment	<u>1° endpoint</u> : CA or arrhythmic death	reduction in events in patients treated with ICDs, not AAD • Patients with ischemic cardiomyopathy and
2000 (41) • <u>10874061</u>	risk stratification for SCD <u>Study type</u> : Prospective, randomized, RCT <u>Size</u> : 1750 patients (353 inducible: 1397	unsustained VT <u>Exclusion criteria</u> : History of syncope, sustained VT/VF more than 48 h after AMI, unsustained VT only in the setting of drug- induced LOTS or AMI or	Comparator: Inducible VT/VF at EPS and not treated with AAD or ICD compared to noninducible patients	At 2 and 5 y, noninducible patients had a significantly lower risk of arrhythmic death or CA (12%, 24%) than inducible patients (18%. 32%) (adjusted p<0.001). Overall mortality at 5 y	asymptomatic, unsustained VT with inducible VT have a significantly greater risk of SCD or CA and higher overall mortality than similar patients who are noninducible
	noninducible)	that was attributable to acute metabolic disorders or drug toxicity, or symptomatic, unsustained VT		was lower in noninducible patients (44% vs. 48%, adjusted p=0.005). <u>Safety endpoint (if</u> <u>relevant)</u> : N/A	

MADIT-I	Aim: To evaluate	Inclusion: Previous MI,	Comparator:	All-cause mortality:	• In patients with a prior MI,
• Moss et al.	whether	LVEF ≤35%, NSVT,	Control (101	Control 32% vs. ICD 13%	low EF who are at high risk for
1996 (42)	prophylactic ICD, as	inducible VT at EPS that	patients)	(RRR -59% ARR -19%)	VT, prophylactic therapy with
• <u>8960472</u>	compared with	was non-suppressed with			an ICD leads to improved
	conventional	IV procainamide or	Intervention:		survival as compared with
	medical therapy,	equivalent AAD	ICD (95 patients)		conventional medical therapy.
	would improve				
	survival in a high-risk	Exclusion: previous CA or			
	group of patients	VT causing syncope that			
	with NSVT, reduced	was not associated with an			
	LVEF and previous	AMI; symptomatic			
	MI.	hypotension while in a			
		stable rhythm; and MI <3			
	Study type:	wk, prior CABG <2 mo or			
	prospective	PCI <3 mo, as were			
	multicenter RCT	women of childbearing			
		age who were not using			
	Size: 196 patients	medically prescribed			
		contraceptives, patients			
		with advanced			
		cerebrovascular disease,			
		patients with any			
		condition other than			
		cardiac disease that was			
		associated with a reduced			
		likelihood of survival for			
		the duration of the trial,			
		and patients who were			
		participating in other			
		clinical trials			
• SCD-HeFT	Aim: Evaluate	Inclusion: NYHA class I-III	Intervention 1:	All-cause mortality:	• In patients with NYHA class II
Bardy et al.	wnether	HF, LVEF≤35%		control 36% vs. ICD 29%	Or III HF and LVEF≤35%,
2005 (43)	amiodarone or a	Fuchasiana (10) and 1	(829 patients)	(KKK -23% and AKK -7%)	amiodarone has no favorable
• 15659722	conservatively	Exclusion: <18 y, unable to			effect on survival, whereas
	programmed shock-	give consent	intervention 2:		single-lead, snock-only ICD
	only, single-lead ICD				therapy reduces overall
	would decrease the				

	risk of death from any cause in a broad population of patients with mild- to-moderate HF <u>Study type:</u> prospective multicenter RCT		GDMT plus amiodarone (845 patients) Comparator 1: GDMT plus Placebo (847 patients)		mortality. This was the longest and largest ICD trial.
• MADIT-II • Moss et al. 2002 (44) • <u>11907286</u>	Aim: To evaluate the benefit of ICD in patients with prior MI and reduced LVEF Study type: RCT Size: 1232 patients	Inclusion: Prior MI (>1 mo), EF ≤30% Exclusion: existing indication for ICD; NYHA class IV at enrollment; had undergone coronary revascularization <3 mo; MI <30 d, advanced cerebrovascular disease, childbearing age and not using contraceptive, presence of any condition other than cardiac disease that was associated with a high likelihood of death during the trial, or unwilling to provide consent	Comparator: Control (490 patients) Intervention: ICD (742 patients)	All-cause mortality: control 22% vs. ICD 16% (RRR -28% and ARR -6%)	• In patients with a prior MI and advanced left ventricular dysfunction, prophylactic ICD improves survival and should be considered as a recommended therapy.

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
• Hilfiker et al. 2015	Study type:	Inclusion criteria: Patients	1° endpoint: SCD or appropriate	 Mixed population of patients
(45)	prospective cohort	who underwent EPS for SCD	ICD therapy	• EPS identifies patients who are likely
• <u>26131339</u>		risk evaluation because of		to have recurrent VA or SCD.
	Size: 265 patients	structural or functional	Results: Sustained VT was	
		heart disease and/or	induced in 125 patients (47.2%)	
		electrical conduction	and non-sustained VT in 60	
		abnormality and/or after	patients (22.6%)	
		syncope/CA.	153 patients (57.7%) underwent	
			ICD implantation	
		Exclusion criteria: Not	1° endpoint event occurred in 49	
		specified	patients (18.5%).	
			Cox regression analysis showed	
			that both sustained VT during	
			EPS (HR: 2.26; 95% CI: 1.22–4.19,	
			p=0.009) and EF<5% (HR: 2.00;	
			95% CI: 1.13–3.54, p=0.018) were	
			independent predictors of 1°	
			endpoint events.	
 Bourke et al. 1991 	Study type:	Inclusion criteria: recent	1° endpoint: documented	 EPS predicts VT/VF in follow-up of
(46)	prospective cohort	AMI	sustained VT/VF or witnessed	survivors of AMI
• <u>1907984</u>			sudden death	
	Size: 1209 patients	Exclusion criteria: early		
		recurrence of angina	Results: Sustained monomorphic	
		requiring treatment;	VT was inducible by programmed	
		spontaneous VT or VF more	electrical stimulation in 75	
		than 48 h after MI; CHF not	(6.2%).	
		controlled with furosemide;	14 infarct survivors (19%) with	
		significant noncardiac	inducible VT experienced	
		disease	spontaneous VT or VF compared	
			with 34 (2.9%) of those without	
			inducible VT (p<0.0005).	

 Bailey et al. 2001 (47) <u>11738292</u> 	Study type: meta- analysis Size: 4022 post-MI patients	Inclusion criteria: 44 reports for which incidence of major arrhythmic events and predictive accuracy could be inferred Exclusion criteria: N/A	 <u>1° endpoint:</u> sustained VT/VF, CA, sudden death <u>Results:</u> positive EPS had 61.6% sensitivity and 84.1% specificity 2 y probability of event was 25.5% RR 6.6; OR 8.5 	 Multiple tests evaluated: SAECG; heart rate variability; severe VA on ambulatory electrocardiography; EF; and EPS. Results for all tests evaluated were similar EPS has moderate predictive value for life-threatening VA.
 Schmitt et al. 2001 (48) <u>11401129</u> 	Study type: prospective cohort Size: 98 post-MI patients identified as high risk by noninvasive markers	Inclusion criteria: post-MI patents identified as high risk by scoring system including EF, PVCs, and abnormal SAECG Exclusion criteria: Hx of spontaneous sustained VT	<u>1° endpoint:</u> sudden death, symptomatic VT, CA <u>Results:</u> Patients underwent EPS. Event rate was 33% with a positive EPS vs. 2.6% (p<0.0001) with a negative EPS.	 A subgroup of 96 high-risk patients declined EPS. In this non-consent group, cardiac mortality (combined sudden and nonsudden) was significantly higher (log-rank chi-square 9.38 RR 4.7; 95% Cl: 1.6–13.9, p=0.0022) compared to group treated according to results of EPS. 20/21 patients with a positive EPS had ICD implanted.
 Brembilla-Perrot et al. 2004 (49) <u>15358027</u> 	Study type: Prospective observational Size: 180 patients (119 CAD, group 1; 61 DCM, group 2)	Inclusion criteria: EF<40% and syncope Exclusion criteria: unstable angina; recent AMI; recent coronary angioplasty or CABG; second- or third- degree AV block; sustained supraventricular or ventricular arrhythmia; clinical HF not controlled by furosemide; uncontrolled electrolyte abnormalities; significant noncardiac disease; or amiodarone treatment.	<u>1° endpoint</u> : cardiac mortality <u>Results</u> : Sustained VT was induced in 44 group I patients (37%) and 13 group II patients (21%); VFL (>270 beats/min) or VF was induced in 24 group I patients (19%) and 9 group II patients (15%) VT or VF induction was predictive of mortality in CAD and identified a group with high cardiac mortality (46%), compared with patients with a negative study, who had a lower mortality (6%;	• EPS may be useful to determine mechanism of syncope in patients with ischemic cardiomyopathy.

			p<0.001). Cardiac mortality was	
			only correlated with EF in DCM.	
Bhandari AK Circ	Study type:	Inclusion criteria: LQTS	1° endpoint: EP testing in LQTS	 Inducibility of nonsust VT did not
1985 (50)	retrospective single	with syncope or ACA		provide prognostic information.
• <u>2856866</u>	center	Mean QTc 550 msec	Results: RV and LV EPS, 3	 EP studies of limited value in
			extrastimuli, with and without	diagnosis, treatment of LQTS patients.
	<u>Size</u> : 15	11 control subjects, normal	isuprel	
		QTc	Rapid polymorphic VT: 40%	
		Exclusion criteria:	No pt with inducible sustained VT	
		N/A	or VF	
 Giustetto C EHJ 	Study type:	Inclusion criteria: Short QTc	1° endpoint: outcomes with	 Short QTS may be a cause of SCD in
2006 (51)	Retrospective single	≤340 msec and personal or	AICD or hydroquinidine	infancy
• <u>16926178</u>	center	family Hx of CA. 73% males.		 Hydroquinidine may be proposed in
			Results: Median age dx 30y (4-	children or patients not suitable for
	<u>Size</u> : 29	Exclusion criteria: N/A	80); 62% symptomatic: syncope	AICD
			24%, AF 31%. 34% ACA (10	 PES sensitivity 50%
			patients); 2/10 had CA in infancy.	
			In 28% ACA was initial symptom.	
			ICD implanted in 14; 10	
			hydroquinidine. Median followup	
			23 mo (9-49), one pt with	
			appropriate ICD shock. No pt on	
			hydroquinidine had SCD or	
			syncope.	
			FS 18/29: Ventricular FRP 140-	
			180 msec. VF induced in 61%	
			(11/18); 3/6 with documented VF	
			had inducible VF: sensitivity 50%.	
			AERP CL 600: 120-180 ms, mean	
			157.	
 Mahida S JACC 	Study type:	Inclusion criteria: Patients	1° endpoint: Inducibility of VF in	• EPS not useful to risk stratify patients
2015 (52)	multicenter	with ER and ACA due to VF	patients with ACA and ER on ECG	with prior VF arrest and ER
• <u>25593056</u>	observational	underwent EPS. Mean age	and outcomes. Followup 7±4.9 y	
		36 ± 13y. Followup with ICD		
	<u>Size</u> : 81	interrogations.	Results: VF inducible in 22%.	

		Exclusion criteria: N/A	Recurrent VF in 33% of inducible VF, vs. 33% of those with non- inducible VF. p=NS, 0.93. VF inducibility did not correlate with max J wave amplitude or distribution	
• Giustetto C JACC 2011 (53) • <u>21798421</u>	Study type: retrospective multi- center Size: 53	Inclusion criteria: European Short QT Registry patients with QTc ≤360 msec with Hx sudden death, ACA, syncope; patients with QTc ≤340 msec included without symptoms. 75% males. Family Hx SCD/CA (11). Genotype positive 23% of probands: HERG in 4 families (N588K in 2, T6181 in 2; CACNB2b in one family) Exclusion criteria: N/A	<u>1° endpoint</u> : syncope, CA or approp ICD shocks SQTS <u>Results:</u> Mean Followup 64±27 mo. Median age 26 y (IQR 17– 39). 62% symptomatic: 32% with ACA (13 patients) or sudden death (4), syncope (8), AF (6), palpatations (13). Age at CA 3 mo–62 y. Males: >90% of CA occurred between 14–40 y. Prevalence CA males 35%, females 30%. AICD in 24, hydroquinidine in 12. 11/12 with prior CA received ICD: 2 approp ICD shocks. 58% complications of ICD, inapprop shocks due to T wave oversensing 4/14. PES: 28 patients. VERP CL 600- 500: mean 166 msec. AERP 166 msec. VF induced in 16/28: 3/28 with prior CA = sensitivity 37%, NPVs 58%. Overall event rate 3.3%/y: 4.9% in patients without AA drugs. Asymptomatic patients: 27. ICD implanted in 9 due to + family Hx	 SQTS assoc with SCD in all ages Symptomatic patients have high risk of recurrent arrhythmic events Patients treated with Hydroquinidine did not have arrhythmic events Asymptomatic patients: no CA/ICD shocks. PES not sensitive
			or induced VF. Two long term	

			quinidine. One syncope; 2 nonsust VT on ICD.	
 Raczak et al. 2004 (54) <u>15226627</u> 	Study type: prospective cohort Size: 112 patients	Inclusion criteria: post-MI patients with documented VF, sustained VT, or syncope and NSVT Exclusion criteria: AF, SND or AV block, insulin- dependent DM, frequent (>5%) ectopic beats	<u>1° endpoint</u> : appropriate ICD shock or sudden or unwitnessed death <u>Results:</u> Sustained VT induced in 84% and 77% of patients who did or did not develop arrhythmia in follow-up (p=0.34) Baroreflex sensitivity <3.3 ms/mmHg was only predictor of arrhythmia recurrence in patients with EF <35% (sensitivity 79%, specificity 74%, positive and NPVs 83% and 68%)	 97 patients had ICDs implanted EPS not useful in predicting arrhythmias in follow-up
• AVID • Brodsky et al. 2002 (55) • <u>12228785</u>	Study type: substudy from prospective clinical trial Size: 572 patients	Inclusion criteria: patients with VF, VT with syncope, or sustained VT in the setting of LV dysfunction who underwent EPS Exclusion criteria: N/A	1° endpoint: death or recurrent VT/VF <u>Results:</u> 384 (67%) had inducible sustained VT or VF. Inducible patients were more likely to have CAD, previous infarction, and VT as their index arrhythmic event. Inducibility of VT or VF did not predict death or recurrent VT or VF.	• EPS is of limited value in patients with a Hx of sustained VA.
 MADIT II Daubert et al. 2006 (56) <u>16386671</u> 	Study type: substudy from prospective clinical trial <u>Size</u> : 593 patients	Inclusion criteria: Patients from MADIT II (previous MI, EF≤30%) who received ICDs and underwent EPS Exclusion criteria: control patients; ICD patients with no EPS	<u>1° endpoint</u> : sustained VT/VF <u>Results:</u> The 2 y KM event rate for VT or VF was 29.4% for inducible patients and 25.5% for noninducible patients (p=0.280, by log-rank analysis).	• ICD therapy for spontaneous VF was less common (p=0.021) in inducible patients than in noninducible patients.

			Inducible patients had a greater likelihood of experiencing ICD therapy for VT than noninducible patients (p=0.023).	
 ABCD Costantini et al. 2009 (9) <u>19195603</u> 	Study type: Prospective cohort; patients underwent EPS and T wave alternans testing; ICDs were implanted if either test was positive Size: 566 patients	Inclusion criteria: ischemic cardiomyopathy (EF ≤40%) and NSVT Exclusion criteria: unstable CAD; NYHA class IV; prior CA, sustained VT, or unexplained syncope; <28 d from MI, CABG, or PCI; permanent AF; on an AAD.	 <u>1° endpoint</u>: appropriate ICD discharge or sudden death <u>Results:</u> 39 (7.5%) met the 1° end point at 1y T wave alternans achieved 1 y positive (9%) and negative (95%) predictive values comparable to EPS (11% and 95%). Event rate with both tests negative was 2% vs. 12% with back negative was 2% vs. 12% with 	• Both tests somewhat helpful in risk stratification, but NPV is not 100%
• DEFINITE • Daubert et al. 2009 (57) • <u>19545338</u>	Study type: substudy of DEFINITE <u>Size</u> : 204 patients	Inclusion criteria: dilated cardiomyopathy (EF≤35%), NSVT or frequent PVCs, and NYHA class I-III, randomized to ICD arm; noninvasive EPS performed through ICD Exclusion criteria: NYHA class IV or permanent pacemaker	Both tests positive (p=0.017).1° endpoint:appropriate ICDtherapy for VT/VF or arrhythmicdeathResults:Inducibility was found in29 of 204 patients (VT in 13, VF in16).34.5% of the inducible group(10 of 29) experienced ICDtherapy for VT or VF orarrhythmic death vs.12.0% (21of 175) of the noninduciblepatients (HR: 2.60; p=0.014).	• Inducibility of either VT or VF was associated with an increased likelihood of subsequent ICD therapy for VT or VF.
 Gold et al. 2000 (58) <u>11127468</u> 	Study type: prospective, multicenter Size: 215 patients	Inclusion criteria: patients undergoing diagnostic EPS who were in sinus rhythm and able to do bicycle exercise; reasons for EPS included syncope, CA, sustained VT, SVT	1° endpoint:SCD, sustainedVT/VF or appropriate ICD therapyResults:KM survival analysis ofthe 1° end point showed that T-wave alternans predicted events	• Both T-wave alternans testing and EPS predicted VT.

		<u>Exclusion criteria:</u> not specified	with a RR:10.9; EPS had a RR: 7.1; and SAECG had a RR: 4.5. Multivariate analysis of 11 clinical parameters identified only T-wave alternans and EPS as independent predictors of events.	
 Gatzoulis et al. 2013 (59) 23588627 	Study type: prospective cohort Size: 158 patients	Inclusion criteria: symptomatic idiopathic DCM >6 mo Exclusion criteria: Hx of aborted SCD or sustained VT; NYHA class IV; Hx of MI or myocarditis; significant VHD; hypertrophic or restrictive cardiomyopathy; alcohol-associated disease; cardiac toxicity	<u>1° endpoint:</u> total mortality and appropriate ICD activation <u>Results:</u> EPS performed in all patients; 44 (27.8%) had inducible VT/VF. ICDs implanted in 41/44 inducible patients and 28/114 noninducible patients. No difference in mortality Inducibility was associated with ICD activation events (30/41 inducible patients (73.2%) vs. 5/28 noninducible patients (17.9%), p=0.001.	• EPS inducibility of sustained VT/VF is predictive of future ICD activation but not total mortality in patients with CDM

Data Supplement 10. RCTs for Preventing SCD with HF Medications - (Section 5.2)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
CAPRICORN	Study type: RCT	Inclusion criteria:	Intervention: Carvedilol	1° endpoint: All-cause	• BB improve mortality
• Dargie et al. 2001		Recent MI (3-12 d); EF	up to 25mg BID	mortality 12% vs 15%, HR:	post-MI in patients
(60)	Aim: to test	<40%		0.77; 95% CI 0.60–0.98,	with LV dysfunction
• <u>11356434</u>	whether carvedilol		Comparator: Placebo	p=0·03).	
	added to standard	Exclusion criteria			 VT/VF significantly
	AMI care in				reduced.

	patients with left ventricular dysfunction would improve outcomes. <u>Size:</u> 1959	Uncontrolled HF, unstable angina, hypotension, bradycardia		VT/VF: 3.9% vs. 0.9%. HR: 0.24; 95% CI 0.11-0.49; p<0.0001.	
• US CARVEDILOL • Packer et al. 1996 (61) • <u>8614419</u>	Study type: RCT <u>Aim:</u> To determine the effects of carvedilol on survival and hospitalization <u>Size:</u> 1094	Inclusion criteria: CHF, LVEF<35% Exclusion criteria Major procedure or surgery within 3 mo.	Intervention: Carvedilol Comparator: Placebo	1° endpoint: survival and hospitalization - Mortality: 7.8% vs. 3.2 % - SCD 3.8% vs. 1.7%	• BB have a large effect on all cause and SCD mortality.
 CIBIS II No Authors listed (62) 10023943 	Study type: RCT Aim: To investigate the efficacy of bisoprolol in decreasing all- cause mortality in chronic HF Size: 2647	Inclusion criteria: EF <35%, class III, IV, standard therapy, Exclusion criteria N/A	Intervention: Bisoprolol	1° endpoint:mortalityCIBIS-II was stopped early,All-cause mortality 11.8% vs17.3%. p<0.0001.	• Bisoprolol reduces all-cause mortality and mortality from SCD.
 MERIT HF Hjalmarson et al. (63)2000 <u>10714728</u> 	<u>Study type:</u> RCT <u>Aim:</u> To examine the effects of metoprolol CR/XL on mortality,	Inclusion criteria: NYHA class II to IV, EF<40%; optimum standard therapy. Exclusion criteria	Intervention: Metoprolol succinate Comparator: Placebo	1° endpoint:mortality and hospitalization (time to event)All-cause mortality: 34% SCD: 41% RR	• BB reduce mortality in patients with HF.

 V-HEFT-II Cohn et al. 1991 (64) 2057035 	hospitalization, symptoms, and QoL in patients with HF. <u>Size:</u> 3991 <u>Study type:</u> RCT <u>Aim:</u> To better define vasodilator therapy in HF <u>Size:</u> 804	N/A Inclusion criteria: NYHA Class II-III Exclusion criteria N/A	Intervention: Enalapril Comparator: Isosorbide Dinitrite	1° endpoint:mortalityMortality 18% vs. 25% p=0.016.SCD: 14% vs. 23%, p<0.05 favoring enalapril	• Enalapril in patients with HF reduces mortality and SCD compared to Isosorbide Dinitrite
 Val-HeFT Cohn et al. 2001 (65) <u>11759645</u> 	Study type: RCT. <u>Aim:</u> To explore the efficacy of the addition of ARB to ACE-I therapy. <u>Size:</u> 5010	Inclusion criteria: NYHA II, III Exclusion criteria N/A	Intervention: Valsartan (added to ACE-I) Comparator: Placebo	<u>1° endpoint</u> : all-cause mortality Result: no difference in all- cause mortality.	 ARB added to ACE-I are not additionally helpful
• VALIANT • Pfeffer et al. 2003 (66) • <u>14610160</u>	Study type: RCT Aim: To explore the effects of ARB added to ACE-I therapy. Size: 14,703	Inclusion criteria: Post-MI, LVEF<35%. Class I or II HF. <u>Exclusion criteria</u> N/A	Intervention: Valsartan 160 BID <u>Comparator</u> : Valsartan 80 BD Both added to enalapril	<u>1° endpoint</u> : all-cause or CV mortality No difference in either all-cause or CV related mortality	• ARB added to ACE-I are not additionally helpful
• ELITE	Study type: RCT	Inclusion criteria:	Intervention: Losartan Comparator: Captopril	<u>1° endpoint</u> : tolerability measure	• ARB better than ACE,

• Pitt et al. Lancet	Aim: To determine	NYHA II – IV, EF <40%,			 Only ARB trial to
1997 (67)	the relative efficacy	age >65 y		2° measure: mortality	show a difference in
• <u>9074572</u>	of ACE vs. ARB in	Exclusion criteria			SCD.
	HF	N/A		All-cause mortality 4.8% vs.	 Small trial,
				8.7% (p=0.035)	 Mortality was a 2°
	<u>Size:</u> 722				end-point.
				36% relative risk reduction	
				in SCD	
• ELITE II	Study type: RCT	Inclusion criteria:	Intervention: Losartan	1° endpoint: all-cause	 There were no
 Pitt et al. 2000 (68) 		Age >60 y, class II-IV	Comparator: Captopril	mortality and SCD	significant differences
• <u>10821361</u>	<u>Aim:</u> To confirm	HF, EF <40%.			in all-cause mortality or
	whether losartan is			all-cause mortality (11.7 vs	sudden death or
	superior to	Exclusion criteria		10.4%) p=0.16	resuscitated arrests
	captopril	N/A		or sudden death or	
				resuscitated arrests (9.0 vs	
	<u>Size:</u> 3152			7.3%) p=0.08	
•RALES	Study type: RCT	Inclusion criteria:	Intervention:	1° endpoint: all-cause	 Spironolactone
•Pitt et al. 1999 (69)		Class III, IV HF, EF	spironolactone	mortality	reduced all-cause
• <u>10471456</u>	Aim: To explore	<35%,			mortality and SCD in
	whether a		Comparator: placebo	Death: 46% vs. 35%.	patients with HF.
	mineralocorticoid	Exclusion criteria		p<0.001	
	antagonist could	N/A		SCD: 13% vs. 10%, p=0.02	
	reduce mortality in				
	patients with HF.				
	Size: 1662				
	<u>5120.</u> 1003	Inclusion critoria:	Intonyontion:	19 and nointy All source	Enlaranana raducad
	Study type: NOT	2-14 d post MI	Enlerenone	mortality	Epierenone reduced
● Fitt et al. 2003 (70) ● 12668699	Aim: To determine	1 VEE < 10%	Comparator: Placebo	mortanty.	nationts with HE
• 12008033	the effect of		comparator. Flacebo	Death: 14% vs 17% PP	
	enlerenone on	Exclusion criteria		0 95 p=0.009	
	mortality among	Creatinine >2.5		0.03, p=0.008.	
	natients with AMI			SCD: 5% vs 6% (n=0.03)	
	and IV dysfunction				
	Size: 6632			Safety endpoint (if	
	<u> </u>			relevant):	
	<u>Size:</u> 6632			<u>Safety endpoint (if</u> <u>relevant)</u> :	

				Hyperkalemia: 5.5% eplerenone vs. 3.9% Hypokalemia: 8.4%	
				eplerenone vs. 13.1%	
• EMPHASIS	Study type: RCT	Inclusion criteria:	Intervention:	<u>1º endpoint</u> : composite –	• Significant reduction
• Zannad et al. 2011		Class II HF	Eplerenone	death and HF hospitalization	on composite
(71)	Aim: To evaluate	EF <35%			endpoint. Non-
• <u>21073363</u>	the effect of		Comparator: Placebo	1° composite endpoint:	significant reduction in
	eplerenone on	Exclusion criteria		18.3% vs. 25.9% (p<0.001)	SCD.
	patients with	AMI, NYHA III, IV, GFR			
	chronic systolic HF.	<30		SCD: 4.4% vs. 5.5%, p=0.12	
	Size: 2737			Safety endnoint (if	
	<u></u>			relevant):	
				Hyperkalemia: 11.8% vs.	
				7.2%	
PARADIGM	Study type: RCT	Inclusion criteria:	Intervention:	1° endpoint: CV death (2°	
• Desai et al. 2015		Class II-IV HF	Eplerenone	analysis exploring mode of	
(72)	Aim: 2° analysis of	EF <40%		death)	
• <u>26022006</u>	the original	Guideline rec. med	Comparator: Placebo		
	PARADIGM-HF trial	therapy		CV death: HR: 0.80; 95% CI	
	to explore mode of			0.72–0.89, p<0.001.	
	death.	Exclusion criteria			
		AMI, NYHA III, IV, GFR		Among CV deaths,	
	<u>Size:</u> 8399	<30		SCD: HR: 0.80; p=0.008	
				death due to worsening UF:	
				пк. 0.79; р=0.034	
Study Acronym;	Aim of Study;	Patient Population	Study Intervention	Endpoint Results	Relevant 2° Endpoint (if any);
----------------------------------	----------------------	-------------------------	---------------------	----------------------------	---
Author;	Study Type;		(# patients) /	(Absolute Event Rates,	Study Limitations;
Year Published	Study Size (N)		Study Comparator	P values; OR or RR; &	Adverse Events
			(# patients)	95% CI)	
STICH	Aim: Cause of death	Inclusion criteria: age	Intervention: CABG	CABG therapy tended to	
• Carson et al.	analysis for the 462	≥18 y, CAD amenable to	(plus medical	reduce cardiovascular	
2013 (73)	deaths during the	CABG, and LVEF ≤35%	therapy)	deaths (HR: 0.83; 95% CI:	
• <u>24621972</u>	original follow-up			0.68–1.03; p=0.09) and	
	period of a median	Exclusion criteria:	Comparator: medical	significantly reduced the	
	of 56 mo of the	left main coronary	therapy alone	most common modes of	
	parent trial that	stenosis ≥50% or		death: sudden death (HR:	
	compared CABG	Canadian		0.73; 95% CI: 0.54–0.99;	
	plus medical	Cardiovascular Society		p=0.041) and fatal pump	
	therapy to medical	III-IV angina while		failure events (HR: 0.64;	
	therapy alone to	receiving medical		95% CI: 0.41–1.00;	
	reduce death from	therapy		p=0.05). Time-dependent	
	any cause			estimates indicated that	
				the protective effect of	
	Study type: RCT			CABG principally occurred	
	Size: 1212 patients			after 24 mo in both	
				categories.	
STICHES	Aim: Compare CABG	Inclusion criteria: age	Intervention: CABG	<u>1° endpoint</u> : lower	 <u>Cardiac arrest outcomes</u>:
 Velazquez et 	plus medical	≥18 y, CAD amenable to	(plus medical	mortality with CABG	 Sudden/arrhythmic death
al. 2016 (74)	therapy to medical	CABG, and LVEF ≤35%	therapy)	(58.9%) than the medical	116 (19%) CABG, 154 (26%)
• <u>27040723</u>	therapy alone to			therapy (66.1%) group.	medical therapy
	reduce death from	Exclusion criteria:	Comparator: medical	CABG vs. medical	 Within 30 d after
	any cause	left main coronary	therapy alone	therapy, HR: 0.84; 95% CI:	randomization
		stenosis ≥50% or		0.73–0.97; p=0.02 by log-	• CA requiring CPR, 25 (4%)
	Study type: RCT	Canadian		rank test.	CABG and 2 (0.3%) medical
		Cardiovascular Society			therapy.
	Size: 1212 patients,	III-IV angina while			
	with 9.8 y median	receiving medical			
	followup	therapy			

Data Supplement 11. RCTs and Nonrandomized Trials, Observational Studies, and/or Registries Related to Surgery and Revascularization Procedures – (Section 5.5)

AVID Registry	Aim: determine	Inclusion criteria:	Intervention:	Patients who underwent	
• Cook et al.	whether patients	Ventricular fibrillation	revascularization; ICD	revascularization	
2002 (75)	with CAD who	or symptomatic VT		had better survival than	
• 12040343	underwent	(defined		those who did not after	
	revascularization	as VT with syncope or		the index event (HR: 0.67;	
	after a life-	VT with symptoms and		p=0.002). With a mean	
	threatening VA have	LVEF ≤0.40 [VT/VF]).		follow-up period of	
	improved survival	Also, patients with		24.2±13.5 mo, crude	
	rate when	unexplained syncope		death rates (with 95%	
	compared with	who had inducible and		confidence limits) were	
	those who did not	symptomatic VT during		21.4%±4.8% in the	
	undergo revasc; and	EPS.		revascularization group	
	evaluate the			and 29.4%±2.0% in the	
	interaction of			medically treated group.	
	revascularization				
	with ICD therapy			After adjustment, HR	
				unchanged at 0.67,	
	Study type:			significance decreased to	
	observational			p=0.01.	
	Size: 3117 patients			The association of better	
	with life-threatening			survival with ICD was	
	VA, of whom 2321			consistent regardless of	
	(77%) had CAD and			revascularization status	
	281 (17%)				
	underwent CABG				
	after the index				
	event				
 Mondésert et 	Aim: determine the	Inclusion criteria: LVEF	Intervention:	Revascularization was not	
al. 2016 (76)	impact of	≥40%, first clinical	coronary	associated with	
• <u>26806581</u>	revascularization on	sustained VA, without	revascularization	significantly lower rate of	
	recurrent VA or	ACS		recurrent VA or death	
	death			(multivariable HR: 0.86;	
				95% CI 0.60–1.24, p=0.43)	
	Study type:			regardless of whether	
	observational			complete or incomplete	
				(HR: 0.65; 95% CI 0.25–	

	Size: 274 patients, mean follow-up 6.2 Y			1.69, p=0.37) or PCI or CABG (HR: 1.02; 95% CI 0.53–1.94, p=0.96). ICD associated with significantly lower	
 Ngaage et al. 2008 (77) <u>18355509</u> 	Aim: assess the outcomes in patients undergoing CABG after ischemic	Inclusion criteria: patients who underwent CABG with preceding VT or VF	Intervention: CABG	mortality (HR: 0.23; 95% CI 0.09– 0.55, p=0.001). Perioperative mortality was 6.5%, and 5 y survival rate was 88%, comparable to patients	
	VT/VF (after MI, with exercise, with CA) <u>Study type</u> : observational			without prior VT/VF.	
	Size: 93 patients undergoing CABG				
 Every et al. 1992 (78) 1593036 	Aim: estimate the possible effect of CABG on the subsequent outcome of patients who have been resuscitated from CA	Inclusion criteria: OHCA survivors, neurologically recovered, coronary disease, no prior CABG or other revascularization		Significant association of CABG with lower risk of subsequent CA during follow-up RR: 0.48; 95% CI 0.24–0.97, p=0.04). Also, lower cardiac mortality (RR: 0 .65; 95% CI 0.39–1.10, p=0.10).	
	Study type: observational Size: 265 patients, 85 treated with CABG, 180 medical management,				

• van der Burg et	Aim: determine	Inclusion criteria: VA	Intervention: N/A	Patients with	
al. 2003 (79)	relation between	CA survivors with CAD	,	ischemic/viable	
• 14530201	ischemia, viability,			myocardium (N=73) were	
	scar tissue (and			revascularized if possible.	
	revascularization),			ICD in 112 (72%) patients.	
	and the incidence of			15 cardiac deaths	
	VA (and survival) in			occurred and 42 (29%)	
	patients with CA and			patients had recurrent	
	coronary disease			VA. Patients with events	
	Study type:			(death or recurrence)	
	observational			exhibited more often a	
				severely depressed LVEF	
	Size: 153 patients,			(≤30%), more extensive	
	follow-up up to 3 y			scar tissue, and less	
				ischemic/viable	
				myocardium on perfusion	
				imaging and	
				less frequently	
				underwent	
				revascularization.	
				Multivariate analysis	
				identified extensive scar	
				tissue and LVEF ≤30% as	
				the only predictors of	
				death/recurrent VA	
PROCAT	<u>Aim:</u> assess	Inclusion criteria:	Intervention:	At least 1 significant	
• Dumas et al.	the effect of an	patients with OHCA	immediate PCI	coronary lesion was	
2010 (80)	invasive strategy for	with presumed cardiac		found in 304 (70%)	
• <u>20484098</u>	patients with OHCA	etiology and with		patients, in 128 (96%) of	
	on hospital survival.	coronary anglogram		134 patients with ST-	
	Charles to man	performed at admission		segment elevation, and in	
	<u>Study type</u> :			1/0 (58%) OF 301 patients	
	observational			without SI-segment	
	Since 425 patients			elevation. iviuitivariable	
	Size: 435 patients			analysis showed	
	treated with an			successful coronary	

• PROCAT II registry • Dumas et al. 2016 (81) • <u>27131438</u>	immediate coronary angiogram at admission with coronary angioplasty if possible <u>Aim:</u> assess the association between early PCI and favorable outcome (cerebral performance category 1 to 2 at discharge) <u>Study type:</u> observational <u>Size</u> : 695 patients treated with an immediate coronary angiogram at admission without ST elevation on post-resuscitation ECG	Inclusion criteria: patients with OHCA with presumed cardiac etiology and with coronary angiogram performed at admission	Intervention: immediate PCI	angioplasty to be an independent predictor of survival, regardless of the post resuscitation ECG pattern (OR: 2.06; 95% CI: 1.16–3.66). At least 1 significant coronary lesion was found in 403 of 695 patients (58%). A PCI was performed in 199 of 695 (29%). A favorable outcome was observed in 87 of 200 (43%) in patients with PCI compared with 164 of 495 (33%) in patients without PCI (p=0.02). After adjustment, PCI was associated with a better outcome (adjusted OR: 1.80; 95% CI: 1.09–2.97, p=0.02).	
 SYNTAX Serruys et al. 2009 (82) <u>19228612</u> 	Aim: To show PCI is noninferior to CABG for major adverse cardiac or cerebrovascular event (i.e., death from any cause, stroke, MI, or repeat revascularization) during 12 mo	Inclusion criteria: previously untreated three-vessel or left main CAD (or both) with stable/unstable angina or atypical chest pain Exclusion criteria:	Intervention: PCI with Taxus Express paclitaxel-eluting stents Comparator: CABG	<u>1° endpoint</u> : rates of major adverse cardiac or cerebrovascular events at 12 mo were significantly higher in the PCI group (17.8%, vs. 12.4% for CABG; p=0.002)	• At 12 mo, the rates of death and MI were similar between the 2 groups; stroke was significantly more likely to occur with CABG (2.2%, vs. 0.6% with PCI; p=0.003).

	Study type: RCT Size: 1800 patients with 12 mo follow- up	Previous PCI or CABG, AMI, or the need for concomitant cardiac surgery			
• SYNTAX • Milojevic et al. 2016 (83) • <u>26764065</u>	Aim: to investigate specific causes of death, and its predictors, after revascularization for complex CAD in patients Study type: RCT Size: 1800 patients with 12 mo follow- up	Inclusion criteria: previously untreated 3- vessel or left main CAD (or both) with stable/unstable angina or atypical chest pain Exclusion criteria: Previous PCI or CABG, AMI, or the need for concomitant cardiac surgery	Intervention: PCI with Taxus Express paclitaxel-eluting stents Comparator: CABG	<u>1° endpoint</u>: 97 deaths after CABG and 123 deaths after PCI during a 5 y followup. After CABG, 49.4% of deaths were cardiovascular, with the greatest cause being heart failure, arrhythmia, or other causes (24.6%). After PCI, the majority of deaths were cardiovascular (67.5%) and as a result of MI (29.3%). Treatment with PCI vs. CABG was an independent predictor of cardiac death (HR: 1.55; 95% CI: 1.09–2.33; p = 0.045).	• SCD: 24 (2.8%) with PCI, 15 (1.9%) with CABG, HR: 1.61; 95% CI: 0.83–3.11, p=0.16.
• SCD-HeFT • Al-Khatib et al.	<u>Aim:</u> examine the effect of the ICD on	Inclusion criteria: Overall SCD-HeFT,	Intervention: ICD	There was no significant difference in ICD benefit	
2008 (84) • <u>18479330</u>	the outcomes of patients with prior coronary revascularization enrolled in SCD- HeFT	NYHA class II or III CHF symptoms and a LVEF ≤35% due to ischemic or nonischemic heart disease.	Comparator: no ICD	across the revascularization subgroups (all p>0.1). There was a trend toward improved survival with an ICD in patients who had	

Study to Size: of patients these in criteria, had no revascu 178 (20 PCI only had prio and 165 prior PC	ype:RCTThis substudy, patierype:RCTwith ischemic heartdisease who were no randomized to amiodarone (N= 884 and who had comple revascularization dat (revascularization data were missing or patients).ype:RCTf the 882 s who met and who had comple (revascularization dat data were missing or patients).y, 284 (32%) or CABG only, 5 (19%) had Cl and CABG.	ents lot 4) lete lata on 2	their CABG >2 y before randomization (HR: 0.71; 95% CI: 0.49–1.04) that was not observed in patients who had their CABG ≤2 y before randomization (HR:1.40; 95% CI: 0.61–3.24)	
 Nageh et al. Aim: as 2014 (85) 25146702 25146702 surgery with pe resuscit arrest <3 mo p revascu and the in patient: revascu after SC Study tr observa evaluat mortalii approp therapy Size: 16 had car 	sess the role Inclusion criteria: n cardiac cardiac surgery and I patients within 3 mo prioperative within 3 mo tated VA bost post prioperative swho had prioperative prioperation prioperative prioperation prioperative prioperative prioperative prioperative prioperative swho had prioperative prioperative prioperative prioperative prioperative prioperative prioperative	ICD Overall group rates	The 1° endpoint of total mortality and appropriate shocks were observed in 52 35 (38%) and 28 (30%) of patients, respectively Conclusion was that recurrent VA are not prevented by CABG	

and ICD within 3 mo; 93/164 had an ICD for sustained		
pre- or		
postoperative VT or		
fibrillation requiring		
resuscitation, mean		
follow-up 49 mo		

Data Supplement 12. Nonrandomized Trials, Observational Studies, and/or Registries of Arrhythmic Surgery and Revascularization for Arrhythmia Management – (Section 5.5.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
 Kumar et al. 2015 (86) 25925229 	Aim: To characterized the reasons for VT ablation failure and describe alternative interventional procedures. Study type: Single center experience Size: 62	Inclusion criteria: Sixty- seven patients with VT refractory to 4±2 AAD and 2±1 previous endocardial/epicardial catheter ablation attempts underwent transcoronary ethanol ablation, surgical epicardial window (Epi- window), or surgical cryoablation	<u>1° endpoint</u> : abolishment of at least 1 inducible VT, complete success, partial success (abolishment of at least 1 spontaneous VT), and failure (residual inducibility of spontaneous VT). <u>Results:</u> Transcoronary ethanol ablation alone was attempted in 37 patients, OR- Cryo alone in 21 patients, and a combination of transcoronary ethanol ablation and OR-Cryo (5 patients), or transcoronary ethanol ablation and Epi- window (4 patients), in the remainder. Overall, alternative interventional procedures abolished ≥1	• The conclusion was that a collaborative strategy of alternative interventional procedures offers the possibility of achieving arrhythmia control in high-risk patients with VT that is otherwise uncontrollable with AAD and standard percutaneous catheter ablation techniques.
			inducible VT and terminated	

	Study type: Single		tailored to the patient's	
	center experience-		anatomy and presentation	
	case report			
	<u>Size</u>: 3			
 Sartipy et al. 2006 	Aim: The aim of this	Inclusion criteria: From	1° endpoint: Mortality and Vt	 Authors concluded that the Dor
(89)	study was to evaluate	July 1997 to December	inducible or spontaneous	procedure including endocardiectomy
• <u>16368337</u>	the Dor procedure	2003, 53 consecutive		and cryoablation yields a very high (90%)
	including VT surgery	patients with left	Results: Early mortality was 2	freedom from spontaneous VT and
		ventricular aneurysm and	of 53 (3.8%). Mean followup	eliminates the need for an ICD in most
	Study type: Single	VT underwent surgical	was 3.7 y. At 1, 3, and 5 y	patients
	center experience	ventricular restoration	overall actuarial survival was	 Karolinska Institute is a specialized
		including nonguided	94%, 80%, and 59%,	center.
	<u>Size</u> : 53	endocardiectomy and	respectively. Surgical success	
		cryoablation. Twenty-four	rate in patients with	
		patients had at least 1	preoperative spontaneous VT	
		preoperative episode of	was 91%. Inducible VT was	
		spontaneous VT, and 29	found in 5 of 35 patients who	
		patients had inducible-	underwent postoperative	
		only VT.	programmed stimulation.	
			There was no arrhythmia-	
		Exclusion criteria: N/A	related late death and there	
			was no loss to follow-up.	
 Choi et al. 2015 (90) 	Aim: The aim is to	Inclusion criteria: During	1° endpoint: Patients	 The authors concluded that surgical
• <u>25697752</u>	describe surgical	the period from March	outcomes.	cryoablation is an option for highly
	cryoablation of VA	2009 to March 2014, 190		symptomatic drug-resistant VAs
	from the LVOT region	consecutive patients with	Results: Surgical cryoablation	emanating from the LVOT region. Yet,
	inaccessible for	focal VA originating from	was successful in 3 of the 4	the procedure is not effective for all
	ablation because of	the LVOT underwent	patients. The 4 th patient	patients, and coronary injury is a risk.
	epicardial fat or	ablation at Brigham and	subsequently had successful	
	overlying coronary	Women's Hospital,	endocardial catheter ablation.	
	arteries	Boston. The study	During a mean followup of 22	
		describes 4 patients (2%)	± 16 mo (range 4–42 mo), all	
	Study type: Single	who underwent surgical	patients showed abolition of	
	center experience	cryoablation.	or marked reduction in	
			symptomatic VA. However, 1	
	<u>Size</u> : 4		patient subsequently required	

		Exclusion criteria: N/A	percutaneous intervention to the LAD; another developed progressive left ventricular systolic dysfunction caused by NICM; and a third patient underwent permanent pacemaker implantation because of complete AV block after concomitant aortic valve replacement.	
 Patel et al. 2016 (91) <u>26377813</u> 	Aim: to determine effectiveness of hybrid surgical epicardial mapping and ablation at the time to LVAD placement Study type: Single center experience. Retrospective review. Size: 5	Inclusion criteria: From March 2009 to October 2012, 5 patients (4 men and 1 woman, age range 52–73 y) underwent open chest EPS and epicardial mapping for recurrent VT while the heart was exposed during the period of LVAD implantation Exclusion criteria: N/A	Endpoint: post LVAD VA. Results: Epicardial mapping was considered if patients had recurrent VT despite failed prior endocardial ablation and/or electrocardiogram (EKG) features of an epicardial exit. Activation and/or a substrate mapping approach were employed during all procedures. 3 of 5 patients (60%) had acute procedural success. In all patients, VT was either eliminated or significantly reduced with epicardial ablation. 1 patient had mediastinal bleeding delaying sternal closure. During a follow-up period of 363±368 d, 4 patients died due to nonarrhythmic causes.	• Open-chest hybrid epicardial mapping and ablation for recurrent VT is feasible and can be considered in select patients during the period of LVAD implantation.
 Mulloy et al. 2013 (92) <u>22520722</u> 	<u>Aim:</u> to determine whether intraoperative cryoablation in select	Inclusion criteria: 50 consecutive patients undergoing implantation of the HeartMate II LVAD	<u>1° endpoint</u> : post LVAD ventricualr arrhythmias.	• Postoperative VA can be minimized by preoperative risk assessment and intraoperative treatment. Localized cryoablation in select patients offers

patients reduces the	were examined. 14 of	Results: Compared with	promising early feasibility when
incidence of	these patients had	NoCryo, the Cryo group had	performed during HeartMate II LVAD
postoperative VA after	recurrent preoperative	significantly decreased	implantation.
LVAD.	VA. Of those patients with	postoperative resource use	 None of the Cryo patients had
	recurrent VA, half	and complications (p<0.05).	recurrent postoperative VA compared
Study type: Single	underwent intraoperative	Recurrent postoperative VA	with 4 (57%) of the NoCryo group
center experience.	cryoablation (Cryo: N=7)	did not develop in any of the	(p=0.02).
Retrospective review.	and half did not (NoCryo:	Cryo patients (p=0.02).	
	N=7).		
<u>Size</u> : 14			
	Exclusion criteria: N/A		

Data Supplement 13. RCTs for Autonomic Modulation – (Section 5.6)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
• Schwartz PJ et al.	Study type:	Inclusion criteria:	Intervention: High risk:	1° endpoint: SCD.	LCSD may be considered
1992 (93)	RCT	Patients post-MI (30	1:1:1 BB (oxprenolol) vs.	22 mo	as a possible alternative for
		d); High risk (evidence	LCSD;	High Risk:	high-risk patients with
	Aim: To explore the	of Vfib or Vtach); low	Low risk: BB vs. placebo.	Placebo 21.3%	contraindications to BB.
	influence of BB vs.	risk (no evidence of VF		Oxprenolol 2.7%	
	LCSD in patients at	or VT.	Comparator: Placebo	LCSD 3.6%	
	high risk for SCD.				
		Exclusion criteria		Low Risk:	
	<u>Size:</u> 144 high risk;	N/A		Placebo: 5.2%	
	869 low risk			Oxprenolol: 1.6%	
 Krittayaphong et al. 	Study type:	Inclusion criteria:	Intervention:	<u>1° endpoint</u> :	 BB may be useful for
2002 (94)	RCT	VA with LBBB, inferior	Atenolol 50-100mg/day	Atenolol significantly	patients with RVOT and
• <u>12486439</u>		axis morphology.		decreased PVC count	symptomatic VA.
	Aim: To determine	Symptomatic (VA	Comparator: Placebo	(p=0.001) and average	
	the efficacy of	disturbed their daily		heart rate (p<0.001)	
	atenolol in the	activities)		compared to placebo.	
	treatment of			Both placebo and	
	symptomatic VA	Exclusion criteria			

from RVOT	SHD.	atenolol decreased	
compared with		symptom frequency.	
placebo			
<u>Size:</u> 52			

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Year Published	Study Size		& 95% CI)	comment(s)
 Vaseghi et al. 2014 (95) <u>24291775</u> 	Study type: retrospective chart review <u>Aim:</u> To describe the experiences of patients with VT storm who underwent cardiac sympathetic denervation. <u>Size</u> : N= 41 (14 LCSD;	Inclusion criteria: VT storm (>3 events requiring treatment in 24 h) or refractory VA and ICD shocks who underwent cardiac sympathetic denervation between April 2009 and December 2012. Exclusion criteria: N/A	 <u>1° endpoint</u>: Survival free of ICD shocks. <u>Results:</u> Survival free of ICD shocks: 30% in LCSD; 48% in the BCSD. (p=0.04) number of shocks decrease from Mean of 19 pre CSD to 2.3 (p<0.001) 	• Bilateral cardiac sympathetic denervation appears better than LCSD
 Ajijola et al. 2012 (96) <u>22192676</u> 	27 BCSD) <u>Study type:</u> Case Series <u>Aim:</u> To describe the experiences of patients with bilateral cardiac sympathetic denervation (or RCSD after unsuccessful LCSD) Size: N=6	Inclusion criteria: Patients with ongoing VAs with LCSD and maximal med therapy Exclusion criteria: N/A	1° endpoint: Reduction in Ventricular events Results: • • Complete response in 4/6 • Partial response in 1/6 • No response in 1/6 (PMVT)	• Our study suggests that patients with incessant VA for whom no other therapeutic options exist, bilateral cardiac sympathetic denervation may be beneficial.
 Ukena et al. (97) <u>27364940</u> 	Study type:Multicenter (5) CaseSeriesAim:To describe theeffect of renaldenervation onrefractory VT	Inclusion criteria: CHF; Recurrent VA refractory to medications and ablation Exclusion criteria: N/A	1° endpoint:Reduction in Ventricular eventsResults: Median VT/VF: • 4 wk prior =21 • 1 mo post =2 (p=0.004) • 3 mo post =0 (p=0.006)	• Renal sympathetic denervation appeared safe and was associated with a reduction in VT/VF events.

Data Supplement 14. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries for Autonomic Modulation – (Section 5.6)

	<u>Size</u> : N=13		No peri-procedural adverse events Baseline BP was low but no change in BP.	
• Grimaldi et al. 2012	Study type: Case	Inclusion criteria:	1° endpoint: Ventricular arrhythmia	• SCS may decrease the rate of
(98)	Series (from patients	Patients with CM, ICDs		VA.
• <u>22877745</u>	enrolled in an under-	and previous VF or 2xVT	Results:	
	enrolled RCT – trial		Patient 1 had a 75% reduction in VA	
	was a 2 mo alternating	Exclusion criteria: N/A	with SCS on	
	on/off design.)		Patient 2 had a 100% reduction in VA	
			with SCS on.	
	Aim: To describe the		(These are the authors reports,	
	experiences of		numbers in the table don't quite add	
	patients with SCS on		to this. Not sure how the math was	
			done)	
	Size: N=2			

Data Supplement 15. RCTs Comparing Acute Management of Specific Arrythmias - (Section 6)

Study Acronym; Author;	Aim of Study; Study Type;	Patient Population	Study Intervention (# patients) /	Endpoint Results (Absolute Event Rates,	Relevant 2° Endpoint (if any); Study Limitations;
Year Published	Study Size (N)		Study Comparator	P values; OR or RR; &	Adverse Events
			(# patients)	95% CI)	
 Kudenchuk et 	Aim: Compare	Inclusion criteria: 18 y	Intervention: IV	<u>1° endpoint</u> : No	Neurologic outcomes similar
al. 2016 (99)	amiodarone,	or older with OHCA and	amiodarone or	difference in survival to	More amiodarone patients
• <u>27043165</u>	lidocaine, placebo in	shock refractory VF or	lidocaine; repeated	hospital discharge:	required temporary pacing;
	OHCA with shock-	pulseless VT. IV access	once if VF/VT	amiodarone (24.4%),	otherwise, no difference in
	refractory VF or		persisted after initial	lidocaine (23.7%),	drug related adverse events
	pulseless VT	Exclusion criteria:	dose and repeat	placebo (21.0%).	 Trial may have been
		Already received	shocks	Amiodarone vs. placebo	underpowered to show
	Study type: RCT	lidocaine or		3.2% points (95% CI: -0.4–	amiodarone benefit over
	double-blind,	amiodarone,	Comparator: IV	7.0; p=0.08); lidocaine vs.	placebo
	placebo controlled	hypersensitivity to	normal saline	placebo 2.6% points (95%	
		these drugs	repeated once if	Cl: -1.0–6.3; p=0.16);	Note: An editorial (100)
	Size: 3,026 patients		VF/VT persisted after	Amiodarone vs. lidocaine	suggesting use of amiodarone

			initial dose and	0.7% points (95% CI: -3.2-	or lidocaine for witnessed
			repeat shocks	4.7: p=0.70)	arrest as there was a significant
				, I ,	reduction in shocks and fewer
				In witnessed arrest.	CPR events in hospital.
				survival to hospital	
				discharge with	
				amiodarone and lidocaine	
				was higher than with	
				nlacebo. The absolute risk	
				difference for	
				amiodarone vs. placebo	
				was $(5.0\% \text{ points } n=0.04)$	
				and for lidocaine vs	
				placebo was (E.2.%	
				placebo was (3.2%)	
	Aim: Compare	Inclusion critoria, Ago	Intervention, 1 ml	19 and a state Communication	Eninophring improved return
	<u>Aim</u> : Compare	Age	<u>intervention</u> : 1 mi	<u>1° endpoint</u> : Survival to	• Epinepinine improved return
2011 (101)	epinephrine with	S18 y with OHCA, CPR	allquots of	nospital discharge not	to spontaneous circulation but
• <u>21/45533</u>	normal saline during	started by paramedics	epinephrine 1:1000	different: 1.9% for	not survival to hospital
	OHCA treated		following current	placebo and 4% for	discharge
	following ACLS	Exclusion criteria:	ACLS guidelines	epinephrine (OR: 2.2; 95%	Limitations: Inadequate
	guidelines	Traumatic OHCA		Cl: 0.7–6.3). Return of	sample size to access hospital
			Comparator: 1 ml	spontaneous circulation	survival.
	Study type: RCT		aliquots of 0.9%	8.4% for placebo and	 Quality of ACLS not
	double blind,		sodium chloride	23.5% for epinephrine	evaluated
	placebo controlled		following current	(OR: 3.4; 95% CI: 2.0–5.6)	 Adverse events not listed
			ACLS guidelines		
	Size: 601 patients				

 Piccini et al. 2008 (102) <u>19026290</u> 	Aim: Compare outcomes in patients with MI and sustained VT/VF treated or not treated with BB Study type: Prospective, multicenter registry of patients with acute MI Size: 306 patients with sustained VT/VF	Inclusion criteria: acute MI with sustained VT/VF and/or high Killip classification Exclusion criteria: N/A	Intervention: BB within 24 h of MI Comparator: No BB	<u>1° endpoint</u> : BB therapy within 24 h was associated with decreased in-hospital mortality in patients with sustained VT/VF (RR: 0.28; 95% CI: 0.10–0.75, p=0.013) without evidence of worsening HF • 55.2% of patients with sustained VT/VF were treated with BB within 24 h of MI	• Sustained VT/VF was a major predictor of in-hospital death (RR: 4.18; 95% CI: 2.91–5.93)
 Dorian et al. 2002 (103) <u>11907287</u> 	Aim: Compare IV lidocaine with IV amiodarone as adjunct to defibrillation in OHCA <u>Study type</u> : RCT placebo controlled <u>Size</u> : 347 patients	Inclusion criteria: Age ≤18 y with OHCA due to VF. Exclusion criteria: traumatic, or OHCA	Intervention: Patients randomized to IV amiodarone plus IV lidocaine placebo or IV lidocaine plus IV amiodarone placebo to treat VF resistant to 3 shocks, at least 1 dose of IV epinephrine, and then 4 th shock. Or, recurrent VF after successful initial shock. <u>Comparator</u> : 1 ml aliquots of 0.9% sodium chloride following current ACLS guidelines	<u>1° endpoint</u> : Amiodarone had higher survival to hospital admission than lidocaine: 28% with amiodarone vs. 12% with lidocaine (OR: 2.17; 95% CI: 1.21–3.83; p=0.009). Of 42 patients surviving to hospital admission, 9 (5%) survived to hospital discharge in the amiodarone group and of 20 initial survivors in the lidocaine group, 5 (3%) were discharged (p=0.34).	 Increased survival with shorter interval from dispatch to receiving study drugs. Patients with VF had better survival than those with asystole or PEA. Amiodarone did not improve survival to hospital discharge Limitation: not powered to show amiodarone improved survival to discharge. No adverse events noted.

• Hassan et al.	Aim: IV magnesium	Inclusion criteria:	Intervention:	1° endpoint: IV	No benefit from magnesium
2002 (104)	given early during	Patients ≥18 y with	Patients received 2–4	magnesium did not	 Limitations: Possible
• <u>11777881</u>	CPR for VF will	OHCA and refractory or	g of magnesium	improve survival to	inadequate magnesium dose
	improve survival.	recurrent VF		hospital admission: 17%	 No adverse effects listed
			Comparator:	for magnesium and 13%	
	Study type: RCT,	Exclusion criteria:	Placebo	for placebo (OR: 1.69;	
	double blind,	Traumatic OHCA		95% CI: -10%–18%)	
	placebo controlled				
	Size: 105 patients				
MAGIC	Aim: Determine if	Inclusion criteria:	Intervention: IV	1° endpoint: Magnesium	• No benefit of magnesium for
• Thel et al. 1997	IV magnesium	Adult patients with CA	magnesium bolus	did not improve return to	survival to 24 h or hospital
(105)	improves return to	in the ICU or hospital	followed by a 24 h	spontaneous circulation:	discharge
• <u>9357406</u>	spontaneous	wards	infusion	54% with magnesium and	 No adverse effects
	circulation			60% with placebo (95%	
	(measurable BP and	Exclusion criteria:	Comparator: Normal	CI: 0.41–0.47; p=0.44)	
	pulse) for 1 h after	Patients in emergency	saline		
	in-hospital CA	department. Advanced			
		heart block, chronic			
	Study type: RCT,	renal failure, already on			
	placebo controlled	magnesium			
	Size: 156 patients				
 Somberg et al. 	Aim: Establish the	Inclusion criteria:	Intervention: IV	<u>1° endpoint</u> :	 Amiodarone was more
2002 (106)	effectiveness of IV	Patients with incessant	amiodarone (or IV	Amiodarone was more	effective than lidocaine for
• <u>12372573</u>	amiodarone for	(shock resistant) VT not	lidocaine) followed	effective than lidocaine:	terminating VT with improved
	shock resistant VT.	treated with prior	by a 24 h infusion. If	amiodarone terminated	24 h survival.
		antiarrhythmics	the first medication	VT in 78% and lidocaine	 Limitations: Drug related
	Study type: RCT,		failed to terminate	27% (p<0.01). OR and CI	hypotension with amiodarone
	double-blinded,	Exclusion criteria:	VT, patients were	not listed. 24 h survival	less frequent than with
	parallel design	Already on AAD	crossed over to the	39% on amiodarone and	lidocaine.
			alternative	9% on lidocaine (p<0.01).	
	Size: 29 patients		medication.	More hypotension with	
				lidocaine than	
			Comparator:	amiodarone (28% vs. 7%,	
			Lidocaine		

• Kudenchuk et al. 1999 (107) • <u>10486418</u>	<u>Aim</u> : Determine if amiodarone improves the rate of successful resuscitation after OHCA <u>Study type</u> : RCT, double blinded,	Inclusion criteria: Patients <18 with OHCA due to VF or pulseless VT that remained present after ≥3 shocks, with IV access Exclusion criteria: Absence of IV access,	Intervention: IV amiodarone (single dose) after receiving 1 mg epinephrine Comparator: Placebo (polysorbate 80, dilutant, single dose) after receiving	p=0.06). Bradycardia equal <u>1° endpoint</u> : Amiodarone improved survival to hospital admission: 44% on amiodarone and 34% on placebo (OR: 1.6; 95% Cl: 1.1–2.4; p=0.02)	 Amiodarone improved survival to hospital with no difference in duration of resuscitation, number of shocks, need for other antiarrhythmics Limitations: lack for power to detect treatment effect on survival to hospital discharge
	placebo controlled <u>Size</u> : 504 patients	VF, or pulseless VT	1 mg epinephrine		• More hypotension with amiodarone (59% vs. 48%, p=0.04)
 Callaham et al. 1992 (108) <u>1433686</u> 	Aim: To determine the relative efficacy of high vs. standard dose catecholamines in initial treatment of OHCA Study type: RCT, double blind Size: 816 patients	Inclusion criteria: Adults with OHCA who would receive epinephrine by AHA ACLS guidelines Exclusion criteria: None listed	Intervention: High dose epinephrine (15 mg), high dose norepinephrine (11 mg), or standard dose epinephrine blindly substituted for ACLS doses of epinephrine Comparator: standard dose epinephrine (no placebo)	<u>1° endpoint:</u> High dose epinephrine significantly improved the rate of return of spontaneous circulation: 13% for high dose epinephrine, 8% receiving standard dose epinephrine (p=0.01). 18% of high dose epinephrine and 10% of standard dose epinephrine patients admitted to hospital (p=0.02)	 High dose epinephrine improved admission to hospital but no difference in dismissal from hospital Trends for norepinephrine were not different Limitations: low hospital dismissal rate No adverse effects

 Gueugniaud et al. 1998 (109) <u>9828247</u> 	Aim: compare repeated low dose vs high dose epinephrine in OHCA Study type: Prospective, multicenter, randomized Size: 3327 patients	Inclusion criteria: OHCA patients with VF/VT despite defibrillation shocks, or asystole /hypotensive VT Exclusion criteria: Inadequate data	Intervention: High dose epinephrine, 5 mg, up to 15 doses Comparator: standard dose epinephrine, 1 mg, following ACLS protocol	<u>1° endpoint:</u> 40.4% of 1677 patients in the high dose group had a return of spontaneous circulation compared to 36.4% of 1650 patients in the standard dose group (p=0.02). There was no difference in survival to hospital discharge (2.3% vs 2.8%. p=0.34).	• Long-term survival after OHCA was no better with repeated high doses of epinephrine than with repeated standard doses.
 Gorgels et al. 1996 (110) 8712116 	Aim: Determine the relative efficacy of procainamide and lidocaine for treating spontaneous monomorphic VT <u>Study type</u> : Randomized, open label, parallel study Size: 29 patients	Inclusion criteria: Adult patients with spontaneous monomorphic VT Exclusion criteria: Patients with AMI and those with poor hemodynamic tolerance	Intervention: IV procainamide (10 mg/kg at 100 mg/min) or lidocaine (1.5 mg/kg over 2 min) Comparator: Procainamide or lidocaine (no placebo)	<u>1° endpoint:</u> Procainamide was more effective than lidocaine: 27% of VT episodes responded to lidocaine and 77% to procainamide (p<0.01)	 Procainamide was superior to lidocaine for terminating VT Limitations: No patients with AMI or ischemia Significant lengthening of QRS and QT on procainamide
 Ho et al. 1994 (111) <u>7912296</u> 	Aim: Determine the relative efficacy of lidocaine and sotalol for terminating spontaneous VT not causing CA Study type: RCT, double blind Size: 33 patients	Inclusion criteria: Adult patients with sustained VT Exclusion criteria: Already on an antiarrhythmic, hypotension requiring immediate cardioversion, known adverse reaction to either medicantion	Intervention: IV sotalol (100 mg) <u>Comparator</u> : IV lidocaine (100 mg) Cross-over to second drug if VT persisted after 15 min	<u>1° endpoint</u> : Sotalol was more effective than lidocaine for terminating VT: 69% with sotalol and 18% with lidocaine (95% CI: 22%–80%; p=0.003)	 No 2° endpoints Limitations: no placebo control; small number of patients 1 death in each drug group after the first drug and 1 death in each group after both drugs

 Levine et al., 1996 (112) <u>8522712</u> 	Aim: Response rate and safety of intravenous amiodarone in patients with VT refractory to standard therapies	Inclusion criteria: Patients with recurrent hypotensive VT refractory to lidocaine, procainamide and bretylium.	Intervention: Patients were randomized to receive 1 of 3 doses of intravenous amiodarone: 525, 1 050 or 2 100 mg/24	1° endpoint: 110 patients (40.3%) survived 24 h without another hypotensive VT episode Safety endpoint: Adverse	 Significantly longer time to first recurrence in the 2 higher dose groups Hypotension required vasopressor therapy in 38 patients (14%) and led to death in 6 (2%)
	Standard therapies. Study type: prospective, controlled Size: 273 patients	Exclusion criteria: Cardiogenic shock; significant hepatic dysfunction or pulmonary disease; Hx of TdP; congenital QT prolongation; bradyarrhythmias or AV block (unless pacemaker present).	h by continuous infusion over 24 h. <u>Comparator:</u> As above	discontinuation	111 0 (276).
 Teo et al. 1993 (113) <u>8371471</u> 	Aim: Assess the effectiveness of AAD on mortality in patients with AMI Study type: Metanalysis Size: 138 randomized trials, 98,000 patients	Inclusion criteria: Patients with AMI randomized to AAD therapy Exclusion criteria: Inadequate study design	Intervention: AAD Comparator: Placebo, standard agents	<u>1° endpoint:</u> 660 deaths in 11,712 patients receiving Class I agents and 571 deaths in 11,517 controls (OR: 1.14; 95% CI: 1.01–1.28; p=0.03). 778 patients received amiodarone and 77 died, compared with 101 deaths in 779 control patients (OR, 0.71; 95% CI, 0.51–0.97, p=0.03). 26,973 patients received BB and 1,464 died compared with 1,727 deaths in 26,295 controls (OR: 0.81; 95% CI, 0.75– 0.87, p=0.00001)	 The routine use of Class I agents (lidocaine, procainamide) was associated with increased mortality after MI. BB reduced morality The amiodarone data was limited "but promising"

• Elzari et al.	Aim: Assess the	Inclusion criteria:	Intervention: IV or	1° endpoint: The study	• Amiodarone given by IV and
2000 (114)	mortality associated	Acute MI, no	PO amiodarone	was modified after the	PO to a total of 2,700 mg in the
• <u>10639301</u>	with amiodarone in	contraindications to		first 516 patients showed	first 48 h after MI was
	patients with AMI	study drug	Comparator: Placebo	higher mortality on	associated with increased
				amiodarone than placebo	mortality.
	Study type: Single			(16.30% vs. 10.16%;	 Reducing the dose by half
	center, randomized			p=0.04).	showed amiodarone and
		Exclusion criteria:			placebo mortality were similar
	Size: 1,073 patients	Contraindication to		Safety endpoint:	
		amiodarone		Increased mortality on	
				high dose amiodarone	

Data Supplement 16. Nonrandomized Trials, Observational Studies, and/or Registries Comparing Acute Management of Specific Arrythmias – (Section 6)

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Year Published	Study Size		(P values; OR or RR; & 95% CI)	Comment(s)
 Piccini et al. 2008 (102) <u>19026290</u> 	Study type: Registry of patients in the VALsartan In Acute myocardial iNfarcTion trial (VALIANT) Size: 306 patients	Inclusion criteria: Patients with AMI who experienced sustained VT/VF Exclusion criteria: inadequate data	<u>1° endpoint:</u> death <u>Results</u> 306 of 5,391 patients (5.7%) in the VALIANT registry had sustained VT/VF with a mortality of 20.3%. 55.2% were treated with IV or oral BB which were associated with decreased in-hospital mortality (RR: 0.28; 95% CI: 0.10–0.75, p=0.013)	 Sustained VT/VF was common with AMI In patients with sustained VT/VF, BB therapy in the first 24 h after AMI was associated with decreased early mortality without worsening HF.
 Link et al 2015 (115) <u>26472995</u> 	<u>Study type</u> : Guidelines	Inclusion criteria: Acute treatment of patients with VA	Expert developed guidelines Reviews role of direct current cardioversion, epinephrine, magnesium, and AAD therapy for the treatment of acute VA	 Electrical cardioversion is recommended for the initial treatment of VF, poorly tolerated VT, and polymorphic VT. The appropriate use of AAD, epinephrine, and magnesium for the treatment of acute VA is discussed

 Herlitz et al.1997 (116) <u>9044490</u> 	Study type: Retrospective, observational study of patients with OHCA due to VF Size: 1,212 cases; 405 receiving lidocaine	Inclusion criteria: All patients with OHCA due to VF. CPR by single center emergency department Exclusion criteria: Traumatic cause of OHCA	<u>1° endpoint</u> : Survival to hospital discharge <u>Results</u> : Patients receiving lidocaine had a higher return of spontaneous circulation (p<0.001) and hospitalized alive (38% vs. 18%; p<0.01). Survival to discharge did not differ	 Lidocaine improved the return to spontaneous circulation and hospitalization Lidocaine did not improve rate of discharge from hospital
 Markel et al. 2010 (117) <u>20624142</u> 	Study type: Retrospective, observational, cohort Size: 665 patients, 176 received procainamide	Inclusion criteria: Witnesses, OHCA due to VF or pulseless VT treated by King County, WA, emergency services. Exclusion criteria: Traumatic cause of OHCA, asystolic OHCA	1° endpoint: The association between procainamide and survival <u>Results:</u> Procainamide associated with a lower survival to hospital discharge (OR: 0.52; 95% CI: 0.36–0.75)	 Procainamide associated with more shocks, pharmacologic interventions, and longer resuscitations. Procainamide did not improve survival
 Stiell et al. 2004 (118) <u>15306666</u> 	Study type: Multicenter, controlled prospective trial Size: 5638 patients; 1391 enrolled in the rapid defibrillation phase and 4247 in the ACLS phase	Inclusion criteria: OHCA Exclusion criteria: traumatic cause of SCD	<u>1° endpoint</u> : survival to hospital admission and discharge <u>Results:</u> The rate of hospital admission increased from the defibrillation phase to the ACLS phase (10.9% vs 14.6%, p<0.001). Survival after rapid defibrillation (OR: 3.4; 95% CI: 1.4–8.4) was better than ACLS (OR: 1.1; 95% CI: 0.8–1.5) and bystander CPR (OR: 3.7; 95% CI: 2.5–5.4)	• The addition of ACLS did not improve the rate of survival over the use of rapid defibrillation in OHCA.
 Haqihara et al. 2012 (119) <u>22436956</u> 	Study type: Prospective, observational	Inclusion criteria: Age ≥18 y with OHCA treated by emergence medical service personnel	<u>1° endpoint:</u> Return of spontaneous circulation, survival at 1 mo, neurologic outcome	• Pre-hospital epinephrine for OHCA was associated with improved return to spontaneous circulation.

	Size: 417,188 patients	Exclusion criteria: Traumatic cause of OHCA	<u>Results:</u> Epinephrine improved return of spontaneous circulation (OR: 2.36; 95% CI: 2.22–2.50; p<0.001); but had an adverse effect on long term outcome	• Pre-hospital epinephrine for OHCA was associated with worse 1 mo survival and neurologic outcomes.
			measures (1 mo survival, OR: 0.46; 95% CI: 0.42–0.51; and neurologic, OR: 0.31; 95% CI: 0.26–0.36)	
 Donnino et al. 2014 (120) <u>24846323</u> 	Study type: Prospective data collection, observational Size: 25,095 patients	Inclusion criteria: Adults with CA in hospital with asystole or pulseless VT as the initial rhythm Exclusion criteria: Cardiac arrest in emergency department, ICU, missing data, received vasopressin	<u>1° endpoint</u> : Survival to hospital discharge <u>Results:</u> Survival was increased by early administration of epinephrine: 1–3 min (reference group) (OR: 1.0); 4–6 min (OR: 0.91; 95% CI: 0.82–1.0; p=0.055); 7–9 min (OR: 0.63; 95% CI: 0.52–0.76; p<0.001).	• Patients with non-shockable CA in hospital had improved return of spontaneous circulation, survival in hospital, and neurologically intact survival with earlier administration of epinephrine
 Koscik et al. 2013 (121) <u>23523823</u> 	Study type: Retrospective database analysis <u>Size</u> : 686 patients	Inclusion criteria: Adults with OHCA Exclusion criteria: Traumatic cause of OHCA	<u>1° endpoint</u> : Does timing of epinephrine administration improve outcome <u>Results:</u> Early epinephrine was more likely to have return of spontaneous circulation (32% vs. 23.4%; OR: 1.59; 95% Cl: 1.07–2.38)	 Early administration of epinephrine improved return of spontaneous circulation Early administration of epinephrine did not increase survival to admission or discharge Similar results were reported with PEA
 Spaulding et al. 1997 (122) <u>9171064</u> 	Study type: Retrospective, observational, consecutive patients	Inclusion criteria: OHCA survival Exclusion criteria: Non- cardiac cause of arrest	<u>1° endpoint:</u> Incidence of acute coronary occlusion and role of reperfusion therapy	 Acute coronary occlusion is frequent in survivors of OHCA and is predicted poorly by clinical and ECG findings Coronary angioplasty may improve survival

	Size: 84 patients		Results: 71% had significant	
	—		CAD and 48% had coronary	
			artery occlusion. In-hospital	
			survival 38%. Successful	
			angioplasty predicted survival	
			(OR: 5.2: 95% CI: 1.1–24.5:	
			p=0.04)	
• Cronier et al. 2011	Study type:	Inclusion criteria: OHCA	1° endpoint: Prognostic	 Routine coronary angiography with
(123)	Retrospective.	survivor, age < 80 v.	impact of routine PCI	percutaneous intervention may improve
• 21569361	observational.	treated with mild		survival following OHCA in patients
	consecutive patients	hypothermia.	Results: 73% had CAD. Time	treated with mild hypothermia who are
		hemodynamically stable	from collapse to return of	hemodynamically stable
	Size: 111 patients		spontaneous circulation	
	<u>•</u>	Exclusion criteria: Non-	associated with mortality (OR:	
		cardiac cause of arrest	1 05: 25 th –75 ^{tth} percentile	
			range 1 03 -1 08: n<0 001):	
			Percutaneous intervention	
			associated with survival (OR:	
			0 30: 25 th –75 th percentile	
			range 0 11-0 79: n=0 01)	
• Zanuttini et al. 2012	Study type:	Inclusion criteria: OHCA	1° endnoint: Independent	• Emergency coronary angiography and
(124)	Retrospective.	survival, remained	determinants of in-hospital	PCL if indicated, appeared to improve
• 22975468	observational.	unconscious soon after	survival	survival
	consecutive patients	recovery of spontaneous		• The study has significant limitations: no
		circulation	Results: Coronary	control group: and unconscious patients
	Size: 93 patients		angiography performed in 66	who had delayed procedures 18 d after
	<u></u> , b. b	Exclusion criteria: Non-	natients (71%): 48 emergent	OHCA is a poor comparative group.
		cardiac cause of OHCA	and 18 at 13+10 d. PCI in	erren en beer een berren e Greek.
			52%: in hospital survival 54%.	
			Emergency angiography (HR:	
			2.32: 95% CI: 1.23–4.38:	
			p=0.009) and PCI (HR: 2.54:	
			95% CI: 1.35–4.8: p=0.004)	
			related to in hospital survival	
• Dumas et al. 2016	Study type:	Inclusion criteria: OHCA	1° endpoint: Favorable	• 1/3 of OHCA patients without ST
(81)	Observational,	survivor without an ST-	neurologic outcome	elevation had a culprit lesion and had a
• 27131438	multicenter registry	elevation MI		

	Size: 695 patients	Exclusion criteria: Inadequate data	<u>Results:</u> 199 patients (29%) had a PCI. 43% with PCI had a favorable outcome and 33% without PCI. (OR: 1.80; 95% CI: 1.09–2.97; p=0.02).	 nearly 2-fold increase in favorable neurologic outcome. A favorable outcome was also predicted by a shockable rhythm, lower epinephrine dose, and shorter resuscitation.
 Kudenchuk et al. 2013 (125) <u>23743237</u> 	Study type: retrospective, cohort of patients with OHCA who did or did not receive prophylactic lidocaine Size: 1721 patients with OHCA due to VF or VT	Inclusion criteria: OHCA due to VF or VT. Age ≥18 y Exclusion criteria: Missing data points, no chance of survival when paramedics arrived	<u>1° endpoint</u> : re-arrest, hospital admission, survival <u>Results:</u> 1296 patients received prophylactic lidocaine and 425 did not. Prophylactic lidocaine reduced re-arrest from VF/VT (OR: 0.34; 95% CI: 0.26–0.44); non-shockable arrhythmias (OR: 0.47;95% CI: 0.29–0.78); higher hospital admission (OR: 1.88;95% CI, 1.28–2.76); and improved survival to discharge (OR, 1.49;95% CI: 1.15–1.95)	 Patients receiving lidocaine had a shorter time to a return of spontaneous circulation and higher BP Use of prophylactic lidocaine upon return to a spontaneous circulation after OHCA was associated with less recurrent VF/VT and higher rates of admission to hospital and survival to discharge.
 Nademanee et al., 2000 (126) <u>10942741</u> 	Study type: retrospective, observational Size: 49 patients	Inclusion criteria: ES with recent (72 h–3 mo) MI Exclusion criteria: MI <72 h	 <u>1° endpoint</u>: Effect of beta blockade (left stellate ganglion blockade, esmolol, propranolol) on outcome (survival) <u>Results:</u> 1-wk mortality rate was higher in group not treated with beta blockade: 18 (82%) of the 22 patients died, all of refractory VF, compared to 6 (22%) of the 27 patients with beta blockade, 3 of refractory VF 	• Sympathetic blockade is superior to standard ACLS therapy in treating ES patients.

			(p<0.0001). Patients who	
			survived the initial FS event	
			did well over the 1 v followup	
			neriod: Overall survival was	
			67% with beta blockade	
			compared with 5% without it	
			(p<0.0001)	
a Cassan at al. 2010	Chudu tura a Mata		(p<0.0001).	a With accord OUCA and amost due to
• Sasson et al. 2010	Study type: Meta-	Inclusion criteria: OHCA	<u>1° endpoint</u> : survival	• Witnessed OHCA and arrest due to
				vr/vi treated with delibrination had
• <u>20123673</u>	studies		Results: Survival to hospital	Improved survival.
			discharge was more likely	
	<u>Size</u> : 79 studies		among OHCA patients	
	reporting 142,740		witnessed by a bystander	
	patients		(6.4% to 13.5%); witnessed by	
			EMS (4.9% to 18.2%),	
			received bystander CPR (3.9%	
			to 16.1%), or were found in	
			VF/VT (14.8% to 23%).	
• Buxton et al 1987	Study type: single	Inclusion criteria:	1° endpoint: adverse	IV verapamil should not be used in
(128)	center, observational	Sustained VT treated	hemodynamics	patients with sustained VT
• <u>3578051</u>		with IV verapamil		
			Results: 44% of 25 patients	
			with sustained VT receiving IV	
	Size: 25 patients		verapamil had severe	
			hypotension of loss of	
			consciousness.	
• Pellis et al. 2009	Study type:	Inclusion criteria: OHCA	1° endpoint: return of	A pre-cordial thump did not delay other
(129)	prospective		spontaneous circulation and	aspects of CPR and had no adverse
• 19010581	observational	Exclusion criteria:	hospital discharge	effects: but efficacy was lacking
		Inadequate data		
	Size: 144 natients		Results: Precordial thump	
			had no effect on heart	
			rhythm in 0.6% of patients	
			with roturn of coontanceurs	
			with return of spontaneous	
			circulation in only 3 patients.	

• Volkman et al. 1990	Study type: single	Inclusion criteria:	1° endpoint: VT conversion	A pre-cordial thump converted VT in 77%
(130)	center, observational,	patients with VT	following a pre-cordial thump	of patients with a rate ≤160 bpm but only
• <u>2087859</u>	consecutive patients			20% if the rate was faster. VF and VFL
			Results: VT with a heart rate	did not convert.
			≤160 BPM converted in 17 of	
			22 cases, and VT >160 bpm	
	Size: 47 patients		converted in 3 of 15 cases. 3	
			cases of VF and 7 cases of VFL	
			failed to convert.	

Data Supplement 17. RCTs Secondary Prevention Sudden Death in Ischemic Heart Disease – (Section 7.1.1)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint and Results	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
• AVID • The AVID Investigators 1997 (131) • <u>9411221</u>	Aim: To examine the effect on overall survival of initial therapy with an ICD as compared with amiodarone or sotalol in patients resuscitated from VF or symptomatic, sustained VT with	Inclusion criteria: patients who were resuscitated from near-fatal VF; sustained VT with syncope; or sustained VT with an LVEF ≤0.40 and symptoms suggesting severe hemodynamic compromise.	Intervention: Therapy with ICD Comparator: Antiarrhythmic drugs - amiodarone or sotalol, (only 2.6% received sotalol)	<u>1° endpoint</u> : Overall survival was greater with the ICD, with unadjusted estimates of 89.3% as compared with 82.3% in the antiarrhythmic-drug group at 1 y, 81.6% vs. 74.7% at 2 y, and 75.4% vs. 64.1% at 3 y (p<0.02). The corresponding	 Study terminated early after 1016 of 1200 patients enrolled 81% of patients had CAD Conclusion: Among survivors of VF or sustained VT causing severe symptoms, ICD is superior to AAD therapy for reducing overall mortality.
	hemodynamic compromise. <u>Study type</u> : RCT <u>Size</u> : 1016 patients	Exclusion criteria: arrhythmia was judged to have a transient or correctable cause, excessively high risk (life expectancy <1 y, class IV HF, awaiting a heart transplant, or		reductions in mortality (with 95% CI) with the ICD were 39±20%, 27±21%, and 31±21%	

		neguining a ballaan			
		requiring a balloon			
		pump, otner			
		mechanical means, or			
		inotropic drug			
		administration for			
		hemodynamic			
		support)			
		or excessively low risk			
		(event occurring			
		within 5 d of cardiac			
		surgery or			
		angioplasty, or			
		occurring in-hospital			
		<5 d after MI),			
		previous			
		ICD implant (or			
		attempted implant),			
		chronic serious			
		bacterial infection, or			
		were unable to give			
		verbal			
		assent due to			
		neurologic			
		impairment, or a			
		contraindication to			
		amiodarone			
• CIDS	Aim: To compare	Inclusion criteria: in	Intervention: ICD	1° endpoint: Death from	 82% had ischemic etiology
 Conolly et al. 	the efficacy of the	the absence of either		any cause.	• Conclusions: CIDS provides
2000 (132)	ICD and	recent AMI or	Comparator:	A nonsignificant reduction	further support for the superiority
• 10725290	amiodarone for the	electrolyte imbalance,	Amiodarone	in the risk of death was	of the ICD over amiodarone in the
	prevention of	they manifested any		observed with the ICD,	treatment of patients with
	death in patients	of the following: (1)		from 10.2%/y to 8.3%/y	symptomatic sustained VT or
	with previous	documented VF; (2)		(RRR 19.7%; 95% CI: -	resuscitated CA.
	sustained VA	OHCA requiring		7.7%–40%; p=0.142). A	
		defibrillation or		nonsignificant reduction	
	Study type: RCT	cardioversion; (3)		in the risk of arrhythmic	
		documented,		death was observed, from	

<u>Size</u> :	659 patients	sustained VT causing	4.5%/y to 3.0%/y (RRR	
		syncope; (4) other	32.8%; 95% Cl, -7.2%–	
		documented,	57.8%; p=0.094).	
		sustained VT at a rate		
		≥150 beats/min,		
		causing presyncope or		
		angina in a patient		
		with a LVEF ≤35%; or		
		(5) unmonitored		
		syncope with		
		subsequent		
		documentation of		
		either spontaneous		
		VT≥10 s or sustained		
		(≥30 s) monomorphic		
		VT induced by		
		programmed		
		ventricular		
		stimulation.		
		Exclusion criteria: (1)		
		ICD or amiodarone		
		not considered		
		appropriate, (2)		
		excessive		
		perioperative risk for		
		ICD implantation; (3)		
		previous amiodarone		
		therapy for ≥6 wk; (4)		
		nonarrhythmic		
		medical condition		
		making 1y survival		
		unlikely, and (5) long-		
		QT syndrome.		

• CASH • Kuck et al. 2000 (133) • <u>10942742</u> • Connolly et al. 2000 (134) • <u>11102258</u>	Aim: to study the impact on overall survival of initial therapy with an ICD as compared with that with 3 AAD Study type: RCT Size: 288 patients Size: 288 patients Aim: To obtain the most precise estimate of the efficacy of the ICD, compared to amiodarone, for survival in patients with malignant VA. Study type: Meta-	Inclusion criteria: patients resuscitated from CA 2° to documented sustained VA Exclusion criteria: If CA occurred within 72 h of an AMI, cardiac surgery, electrolyte abnormalities, or proarrhythmic drug effect.	Intervention: ICD therapy Comparator: amiodarone, metoprolol, or propafenone. Assignment to propafenone was in March 1992, after an interim analysis showed a 61% higher all-cause mortality rate than in 61 ICD patients during a followup of 11.3 mo. Intervention: ICD (934 patients) <u>Comparator</u> : Amiodarone (932 patients)	1° endpoint: The 1° end point was all-cause mortality. Over a mean followup of 57±34 mo, the death rates were 36.4% (95% Cl 26.9% to 46.6%) in the ICD and 44.4% (95% Cl 37.2% to 51.8%) in the amiodarone/metoprolol arm. Overall survival was higher, though not significantly, in patients assigned to ICD than in those assigned to drug therapy (1-sided p=0.081, HR: 0.766; 97.5% Cl upper bound 1.112) <u>1° endpoint</u> : Reduction in death from any cause with the ICD, HR 0.72; 95% Cl 0.60-0.87; p=0.0006).	 In ICD patients, the percent reductions in all-cause mortality were 41.9%, 39.3%, 28.4%, 27.7%, 22.8%, 11.4%, 9.1%, 10.6%, and 24.7% at y 1 to 9 of followup. Coronary disease was etiology in 73%. A much larger reduction of 61%, for SCD was observed 61%, for SCD was observed Arrhythmic death, HR 0.50 (95% CI 0.37-0.67; p<0.0001). Survival was extended by a mean of 4.4 mo by the ICD over a followup period of 6 y. P heterogeneity=0.306 Patients with LVEF ≤35% derived more benefit from ICD therapy than those with more preserved
	analysis of RCTs				left ventricular function.
	<u>Δim</u> : to test the	Inclusion criteria:	Intervention: FP-	1º endnoint: Of the 109	• 61% of natients had prior MI
Lau et al 2004	nossibility of	survivors of sustained	guided interventions	EP arm natients 31 (20%)	EPS has a minimal impact on the
(135)	nrospectively	VT VF or SCD in the	(AAD coronary	received an ICD 16 (12%)	diagnosis of natients presented
• 15172649	identifying nationts	absence of an AML in	revacularization	received AAD only (mainly	with VT_VE or SCD
■ <u>13172040</u>	who would honofit	the last 49 h	and ICD) (106	amindarana ar catalal	The trial does not support a role for
		the last 48 h.		amiodarone or sotalol)	The trial does not support a role for
	most ICD by EPS in			and 18 (17%) received	EP testing in risk stratification.

	the context of 2° prevention. <u>Study type</u> : RCT <u>Size</u> : 214 patients	Exclusion criteria: life expectancy of <6 mo from a non- arrhythmic cause or child-bearing age	patients assigned to this arm) <u>Comparator</u> : therapy with amiodarone (108 patients assigned to	coronary revascularization but no ICD. No significant differences in survival or arrhythmia recurrence existed between the two treatment arms after 6 y.	
			this arm)	However, ICD recipients had a lower mortality than non-ICD recipients, regardless of allocated treatment (HR=0.54, p=0.0391).	
 Claro et al. 2015 (136) 26646017 	Aim: To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD compared with placebo or no intervention or any other antiarrhythmic. Study type: meta- analyses using a random-effects model Size: 24 studies (9,997 participants) with 6 studies identified as 2° prevention trials.	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD.	Intervention: Amiodarone Comparator: placebo, no intervention, ICD or other antiarrhythmics	<u>1° endpoint</u> : For 2° prevention, amiodarone compared to placebo or no intervention (two studies, 440 participants) appeared to increase the risk of SCD (RR: 4.32; 95% CI: 0.87–21.49) and all- cause mortality (RR: 3.05;95% CI: 1.33–7.01). Compared to other AAD (four studies, 839 participants) amiodarone appeared to increase the risk of SCD (RR: 1.40; 95% CI: 0.56–3.52; very low quality of evidence), but there was no effect in all- cause mortality (RR: 1.03; 95% CI: 0.75–1.42; low quality evidence).	 Conclusions: With very low quality evidence, amiodarone leads to a statistically non-significant increase in the risk of SCD and all- cause mortality (by 33% to 600%) when compared to placebo or no intervention. This meta-analysis did not effectively rule out benefit or harm for 2° prevention with amiodarone. Side effects: Amiodarone was associated with an increase in pulmonary and thyroid adverse events. Limitations: For 2° prevention, the evidence is inconsistent and the quality of the evidence was very low, so the authors concluded that there is uncertainty on the findings. There are some methodological issues that warrant certain caution when interpreting these results.

Data Supplement 18. Nonrandomized Trials, Observational Studies, and/or Registries for Secondary Prevention Sudden Death in Ischemic
Heart Disease – (Section 7.1.1)

Study Acronym;	Aim of Study;	Patient Population	Endpoint and Results	Relevant 2° Endpoint (if any);
Author;	Study Type;			Study Limitations;
Year Published	Study Size (N)			Adverse Events
• Raitt et al. 2001	Aim: To determine	Inclusion criteria:	1° endpoint: Mortality	 Sustained VT without serious
(137)	prognostic implications of	Patients with stable VT		symptoms or hemodynamic
• <u>11208684</u>	stable VT	that were not enrolled in	Results: The mortality in 440	compromise is associated with a
		AVID, were included in a	patients with stable VT tended to	high mortality rate and may be a
	Study type: Observational,	registry of patients	be greater than that observed in	marker for a substrate capable of
	registry of patients with	screened for the study.	1029 patients presenting with	producing a more malignant
	hemodynamically stable		unstable VT (33.6% vs. 27.6% at 3	arrhythmia.
	VT	Exclusion criteria:	y; RR:1.22; p=0.07). After	
		Patients who had an	adjustment for baseline and	
	Size: The study population	arrhythmia within 5 d of a	treatment differences, the RR was	
	consisted of 440 patients	MI, cardiac surgery, or	little changed (RR: 1.25, p=0.06).	
	with stable VT and 1029	coronary intervention		
	patients with unstable VT.	were excluded, as were		
	Of the 1029 patients with	patients with class IV HF		
	unstable VT, 330 had	or those who were on a		
	therapy determined by	heart transplant list, had		
	randomization in the AVID	a prior ICD implant or		
	trial: 52% received an ICD,	attempted implant, or		
	47% amiodarone, and 2%	had a life expectancy of		
	sotalol. Therapy for the	<1 y.		
	remaining 699 patients			
	with unstable VT and the			
	440 patients with stable VT			
	was determined at the			
	discretion of the attending			
	physician.			

• Bass EB et al.	Study type: retrospective	Inclusion: unexplained	Results:	• Conclusion: patients with
1988 (138)	cohort	syncope EP study	EP study had positive results in 37	electrophysiologically positive
• <u>3195480</u>		between April 1981 and	patients31 with VT, 3 with SVT	results had high rates of SCD and
	Size: 70 patients	April 1986.	and 3 with abnormal conduction.	total mortality
		Exclusion: N/A		
			No difference in the 3 y recurrence	
			rate between the ± studies (32 vs	
			24%, respectively).	
			At 3 y, patients + had higher rates	
			of SCD than patients with - results	
			(48% vs 9%, respectively,	
			p<0.002).	
			3 y total mortality rate was also	
			higher with + results than among	
			those with - (61% vs 15%,	
			respectively, p<0.001).	
 Owens DK et al. 	Aim: Evaluated whether	Markov model to	Results: cost-effectiveness	• The cost-effectiveness of ICD use
2002 (139)	risk stratification based on	evaluate the cost-	becomes unfavorable at both low	relative to amiodarone depends on
• <u>12228780</u>	risk ofSCD alone was	effectiveness of ICD	and high total cardiac mortality	total cardiac mortality rates as well
	sufficient to predict the	implantation compared	rates.	as the ratio of sudden to
	effectiveness and cost-	with empiric amiodarone	If the annual total cardiac	nonsudden cardiac death.
	effectiveness of the ICD.	treatment. The model	mortality rate is 12%, the cost-	
		incorporated mortality	effectiveness of the ICD varies	
		rates from sudden and	from \$36,000 per quality-adjusted	
		nonsudden cardiac death,	life-year (QALY) gained when the	
		noncardiac death and	ratio of sudden cardiac death to	
		costs for each treatment	nonsudden cardiac death is 4 to	
		strategy. Model assumed	\$116,000 per QALY gained when	
		that the ICD reduced total	the ratio is 0.25.	
		mortality rates by 25%,		
		relative to use of		
		amiodarone.		

Author;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Year Published	Study Size		(P values; OR or RR;	Comment(s)
			& 95% CI)	
 Ahn et al. 2016 	<u>Study type</u> :	188 patients with variant	<u>1° endpoint:</u> The 1° end point cardiac	• Conclusions: The prognosis of
(140)	retrospective	angina with aborted SCD	death	patients with variant angina with
• <u>27386766</u>	multicenter cohort	and 1,844 patients with		ASCD was worse than other
		variant angina without	Cardiac death was significantly higher	patients with variant angina. In
	Size: 188 patients with	aborted SCD from 13 heart	in aborted SCD patients (24.1 /1,000	addition, our findings supported
	aborted SCD	centers in South Korea.	patient-y vs. 2.7/ 1,000 patient-y (HR:	ICDs in these high-risk patients as a
			7.26; 95% CI: 4.21-12.5; p<0.001)	2° prevention because current
	Median followup of 7.5			multiple vasodilator therapy
	У		Predictors included family Hx of SCD	appeared to be less optimal.
			(OR: 3.67; 95% CI: 1.27-10.6; p=0.016),	• Limitations: Retrospective study
			multivessel spasm (OR: 2.06; 95% CI:	and no accurate information for
			1.33-3.19; p=0.001), and LAD artery	response to medical therapy of
			spasm (UR: 1.40; 95% CI: 1.02-1.92;	bomogonous group roising
			p=0.04)	questions about extrapolation to
			A total of 24 aborted SCD nationts	other ethnicities. It is unknown
			received ICD	what factors might have led
				physicians to implant an ICD
			6 ICD natients experienced VF and 1	
			died due to intractable VE	
			In the aborted SCD patients who	
			received an ICD, mortality was 4.3%	
			compared with 19.3% of those that did	
			not receive an ICD (trend but	
			nonsignificant p=0.15)	
 Yamashina et 	Study type:	Resuscitated from CA with	1° endpoint: recurrent VT/VF	Conclusions: Medical therapy
al. 2014 (141)	retrospective single	1) documented VF/VT or		associated with favorable long-
• <u>23906527</u>	center cohort	PEA and 2) the absence of	Results: No recurrent VA, syncope, or	term outcomes for patients with
		significant narrowing due	CA during a mean followup of 67 mo	vasospastic angina associated with
	Size: 18 patients in	to coronary	(1 of 18 died during the initial	CA.
	Japan between 1992	atherosclerosis or any	hospitalization and another cancer).	
	and 2012	structural cardiac	All are treated with long-acting	

Data Supplement 19. Nonrandomized Trials, Observational Studies, and/or Registries for Coronary Artery Spasm – (Section 7.1.	.1.1)
--	-------

		abnormalities possibly causing CA; 3) absence of identifiable or reversible causes of lethal VA 4) documented ST elevation during chest pain or	CCBs/nitrates and successfully quit smoking. 6 received ICD – none received therapies	• Limitations: small, retrospective, and non-randomized study in a single Japanese center.
• Eschalier et al. 2014 (142) • <u>24373622</u>	Study type: case reports Size: 3 patients.	positive provocation test Patients with CA related to coronary artery vasospasm	<u>Results:</u> 2/3 patients underwent ICD implantation because of recurrent VT despite medical therapy. None had ICD shocks in follow-up.	Conclusions: Very small case series demonstrating ICD use in patients with coronary vasospasm.
 Matsue et al. 2012 (143) 22840527 	Study type: retrospective observational cohort <u>Size:</u> 23 patients. from 3 Japanese hospitals Mean followup period of 2.9 y	23 patients with aborted SCD receiving a 2° prevention ICD in the absence of SHD or CAD who had spasm of a major epicardial coronary artery induced with acetylcholine challenge	Endpoints: Appropriate ICD therapy, sudden CA, or death from all causes 26% of patients experienced event 4 patients had an episode of VF appropriately treated by their ICD and survived (all but 1 patient was compliant with vasodilator therapy). After the first episode of appropriate ICD therapy in these 4 patients, none received recurrent therapy during the limited follow-up. 1 additional patient survived CA 2° to pulseless electrical activity	 Results: The average time for appropriate ICD therapy from ICD insertion was about 1 y and only 2/5 patients with recurrent lethal arrhythmia had symptoms of chest pain prior to ICD therapy. Conclusions: These data support the use of ICD therapy in patients with coronary artery vasospasm who have survived an episode of life-threatening VT/VF Limitations: Non-randomized and relatively small number of Japanese patients in only 3 cardiovascular centers. The cohort in the present study included only patients with coronary vasospasm who had SCD, and thus the data shown here cannot be extrapolated to the whole coronary vasospasm population. Medication compliance was evaluated only by medical interview with patients, and that
 Takagi et al. 2011 (144) 21406685 	Study type: nationwide registry of patients with vasospastic angina Size: 35 patients with OHCA.	30 men and 5 women had OHCA within a registry of 1429 patients in Japan with vasospastic angina (definition: an angina attack at rest and/or on effort, accompanied by a transient ECG ST segment	<u>1° endpoint</u> : The 1° end point MACE included cardiac death, nonfatal MI, hospitalization for unstable angina pectoris and HF, and appropriate ICD shocks during the follow-up period, which began at the date of original VSA diagnosis.	 may have caused over-estimation of compliance. Results (continued): In the 35 OHCA survivors, 14 patients underwent ICD implantation while intensively treated with calcium channel blockers. Appropriate ICD shocks for VF in 2 of 14 patients despite intensive medical treatment. SCD occurred
---	--	--	--	--
		elevation or depression of >0.1mV or a newly appearance of negative U wave in at least 2 related leads, and/or a total or subtotal coronary artery narrowing during the provocation test of coronary spasm, accompanied by chest pain and/or ischemic ECG changes mentioned above)	2° endpoint: The 2° end point was all- cause mortality. <u>Results:</u> Survival rate free from MACE was significantly lower in the OHCA survivors compared with the non- OHCA patients (72% vs. 92% at 5 y, p<0.001). There was no difference in all-cause mortality between the groups.	 in 1 patient without an ICD who self-discontinued medication prior to the fatal event. Rate of cardiac death and nonfatal MI in patients in whom medications were reduced or discontinued (8%, 2 of 25 patients) was 10-fold higher than that in the patients with continued medications (0.7%, 10 of 1404 patients, p=0.017). Limitations: Appropriate ICD therapy is used as surrogate for sudden death. Retrospective observational study and there the association found in the present study is not necessarily causal and follow-up duration was variable possible many arrhythmic events were missed.
• Meisel et al.	Study type:	Inclusion criteria: (1)	Results: All patients were treated with	• Conclusions: VF complicating
2002 (145)	Retrospective case	typical chest pain at rest	maximum tolerated calcium channel	variant angina is a higher risk
■ <u>11988204</u>		ST-segment elevations not	antagonists.	some natients such as those
	Survey	present on the baseline	Ventricular arrhythmia reoccurred	remaining symptomatic despite
		ECG and disappearing with	after discharge in all patients. Median	medical therapy should be
		relief of pain; (2)	time to the first arrhythmia recurrence	considered for an ICD.

	Size: 8 patients with vasospastic angina complicated by VF	documented VF immediately after the ischemic episode; (3) survival of the index episode of VF; (4) angiographically normal coronary arteries defined as patent arteries with no irregularities; (5) angiographic evidence of coronary spasm defined as transient narrowing of arterial lumen or recurrent episodes of ECG documented ischemia especially if occurring in different coronary territories; and (6) recurrent angina despite medical therapy	 was 15 mo (range 2-112). An ICD was subsequently implanted in 7 patients. After ICD implantation, 4 patients received appropriate ICD shocks for VT/VF. 1 patient died with ICD and recurrent chest pain with EMD. 1 patient with recurrent VF and no ICD had recurrent VF out of hospital and subsequent brain damage and died several years later. 	
 Chevalier et al. 1998 (146) <u>9426018</u> 	Study type: retrospective case review Size: 7 patients	Inclusion criteria: survivors of CA with positive ergonovine provocation test Mean age was 44 y; 3 were male and 4 females. All of them were habitual cigarette smokers.	<u>Results:</u> At a mean follow-up 58 mo, 6 patients remained free of symptoms. 1 patient who continued smoking had a new CA despite 10 y after and was discovered to have a new LAD and RCA stenosis and underwent CABG and ICD placement.	• Conclusions: medical treatment with calcium channel antagonists appears to be associated with an event-free clinical course. Stopping smoking is important.
 Myerburg et al. 1992 (147) <u>1574091</u> 	Study type: retrospective cohort Size: 5 patients	Exclusion criteria: N/A Inclusion: From 356 patients, included were 5 survivors of OHCA between 1980 and 1991	Results: Titration of calcium channel blocking drugs (verapamil, diltiazem, or nifedipine) against the ability of ergonovine to provoke spasm was	• Conclusions: Silent MI due to coronary artery spasm can initiate potentially fatal

without epicar with induced o spontaneous fo coronary arten both) <u>Exclusion crite</u>	rdial CADsuccessful in preventing recurrent arrhythmias in all 4 patients.ocal	arrhythmias in patients without flow-limiting CAD. In patients with OHCA due to coronary vasospasm, treatment with calcium channel blocking agents appears to prevent recurrent arrhythmias.
---	---	--

Data Supplement 20. Nonrandomized Trials, Observational Studies, and/or Registries for Post CABG VT/VF – (Section 7.1.1.2)

Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR;	Summary/Conclusion Comment(s)
			& 95% CI)	
 Saxon et al. 1995 (148) <u>7856540</u> 	Study type: retrospective single center cohort	17 patients UCLA medical center with new-onset sustatined	VT/VF patients had lower LVEF, more likely to have had MI <2 w before CABG, graft to chronically occluded	 Conclusions: New onset MMVT is usually associated with old infarct/scarring (and many
	Size: 17 patients	VT/VF within 30 d of CABG between 1981- 1993 compared to 119 control patients 1992-1993 without VT/VF post-CABG	vessel Sustained MMVT 11/17 patients (65%) and most (64%) had no evidence of peri-op MI. Those with MMVT, 80% inducible at EPS Polymorphic VT/VF 6/17 patients (35%) and most had peri-op MI (67%) and only 2/6 (33%) had inducible VT at EPS	 inducible at EPS) Polymorphic VT/VF usually associated with ischemia. Polymorphic VT/VF occurring after CABG warrants a therapeutic approach targeting treatment of MI.
 Ascione et al. 2004 (149) <u>15120824</u> 	Study type: retrospective single center cohort Size: 4411 patients undergoing CABG	Cases CABG patients 4/1996-9/2001 with VT/VF post-op compared to controls without. Assessed	Factors associated with VT/VF age <65 y, female, low BMI, unstable angina, reduced LVEF, and need for inotrope or IABP	• Results (cont.): 5/12 (42%) intraoperative VT/VF died in the hospital, as compared with 10/55 (18%) with VT/VF in post-op period (p=0.08). Those with post-op VT/VF, 27

	including 69 patients	factors associated	Off-pump CABG associated with	(47.4%) had the event within the first 24
	with post op VF/VI	with post-op VI/VF	protective effect (OR: 0.53; 95% CI:	n.
		Nana of the V/T/V/F	0.25-1.13)	Conclusion: Incluence of VI/VF Is low in patients undergoing CAPC but associated
		None of the VI/VF		patients undergoing CABG but associated
		patients underwent	Long term survival was similar	with high in-nospital mortality. The late
		ICD placement.	between groups (2 y 98.2% V I/VF	survival of those discharged is similar to
			surviving to discharge vs. 97% for	controis.
• Chaimh ann an al		Dationt with avatain ad	Control (HR: 0.96; 95% CI: 0.4–2.3)	• Desults (see the). Detients with)/Twees
• Steinberg et al.	Study type: conort	Patient with sustained	Results: 12 patients (3.1%)	• Results (cont.): Patients with VI were
1999 (150)	study	post-op vi ≥24 nrs	experienced ≥1 episode of sustained	more likely to have prior IVII (92% vs.
• <u>10027813</u>		but <30 d after CABG	VI 4.1±4.8 d after CABG	50%, p<0.01), severe CHF (56% vs. 21%,
	Size: 12 patients	among consecutive		p<0.01), and LVEF <0.40 (70% vs. 29%,
		patients 382 patients	In 11/12 patients, no postoperative	p<0.01).
		undergoing CABG at a	complication explained the VI. 1	By multivariate analysis, the number of
		single institution	patient had a perioperative wil.	bypass grafts across a noncollateralized
		Maniah las associated	The in here its has a shellow and a surger	occluded vessel to an infarct zone was
		variables associated	The in-nospital mortality rate was	the only independent factor predicting
		with the occurrence	25%. Among the 9 survivors, 5 had	
		of VI was performed	EPS with all inducible sustained	• Conclusions: (1) Patients who
			monomorphic VI (matching clinical	developed VI had a high in-hospital
			VI). 3/9 patients received an ICD	mortality rate of 25% (2) However, long-
			before hospital discharge. Other 6/9	term outcome was good (possibly related
			patients received chronic therapy	to antiarrhythmic or ICD). (3) predictors
			with AAD (primarily amiodarone).	are MMVI previous MI scar and
				associated severe LV dysfunction. (4)
			All 9 patients are alive, with a mean	Relationship was found between the
			followup of 2.5 y.	development of VI and the placement of
				a bypass graft across a noncollateralized
			2 patients (1 with an ICD and 1 on	occiuded coronary vessel to a chronic
			amodarone) nad recurrent vi during	Infarct zone. (5) The development of
			tollow-up.	iviivivi i was typically not due to a
				detectable postoperative complication or
				iscnemia.

Study	Aim of Study;	Patient Population	Randomized Subjects	Endpoint and	Conclusion:
Acronym;	Study Type;			Results	
Author;	Study Size (N)				
Year Published					
MADIT-I	Aim: To evaluate	Inclusion: Previous MI, LVEF ≤35%,	Comparator:	All-cause mortality:	• In patients with a prior
 Moss et 	whether	NSVT, inducible VT at EPS that was	Control (101 patients)	Control 32% vs. ICD	MI, low EF who are at
al.1996 (42)	prophylactic ICD,	non-suppressed with IV procainamide		13%	high risk for VT,
• <u>8960472</u>	as compared with	or equivalent AAD	Intervention:	(RRR -59% ARR -	prophylactic therapy
	conventional		ICD (95 patients)	19%)	with an ICD leads to
	medical therapy,	Exclusion: previous CA or VT causing			improved survival as
	would improve	syncope that was not associated with			compared with
	survival in a high-	an AMI; symptomatic hypotension			conventional medical
	risk group of	while in a stable rhythm; and MI <3			therapy.
	patients with	wk, prior CABG <2 mo or PCI <3 mo,			
	NSVT, reduced	as were women of childbearing age			
	LVEF and previous	who were not using medically			
	MI.	prescribed contraceptives, patients			
		with advanced cerebrovascular			
	Study type:	disease, patients with any condition			
	prospective	other than cardiac disease that was			
	multicenter RCT	associated with a reduced likelihood			
		of survival for the duration of the trial,			
	Size: 196 patients	and patients who were participating			
		in other clinical trials			
 CABG-Patch 	Aim: To evaluate	Inclusion: Coronary artery bypass	Comparator:	All-cause mortality:	 No evidence of
 Bigger et 	the role of ICD in	surgery, EF <36, SAECG positive	Control (454 patients)	Control 18% vs. ICD	improved survival among
al.1997 (151)	patients after			18%	patients with CAD,
• <u>9371853</u>	CABG with high	Exclusion: sustained VT/VF, diabetes	Intervention:		reduced LVEF, and
	risk of SCD	mellitus with poor blood glucose	ICD (446 patients)		abnormal SAECG
		control or recurrent infections,			receiving prophylactic
	Study type: RCT	previous or concomitant aortic- or			ICD after CABG
		mitral-valve surgery, concomitant			
	Size: 900 patients	cerebrovascular surgery, a serum			
		creatinine concentration greater than			
		3 mg/dl, emergency CABG, a			

Data Supplement 21. RCTs and Nonrandomized Trials, Observational Studies, and/or Registries of ICDs Primary Prevention Ventricular Arrhythmias and Sudden Death in Patients with Ischemic Cardiomyopathy – (Section 7.1.2)

		noncardiovascular condition with expected survival of less than 2 y, or an inability to attend followup visits			
• MUSTT • Buxton et al. 2000 (41) • <u>10874061</u>	Aim: To evaluate the usefulness of EPS for risk stratification among patients with CAD, abnormal ventricular function, and NSVT <u>Study type</u> : RCT <u>Size</u> : 704 patients	Inclusion: CAD, LVEF ≤40%, NSVT, inducible at EPS Exclusion: H/o of syncope or had sustained VT/VF >48 h after the onset of AMI, NSVT that occurred only in the setting of drug-induced LQTS or AMI or that was attributable to acute metabolic disorders or drug toxicity, or if they had symptomatic NSVT	If sustained VT/VF were induced by EPS, patients were randomized to antiarrhythmic therapy, including AAD and possible ICD, as indicated by the results of EP testing, or no antiarrhythmic therapy. <u>Comparator</u> : Control (353 patients) Inducible but no antiarrhythmic <u>Intervention</u> : Inducible and failed suppression with AAD and given ICD (161 patients)	Risk of CA or death from arrhythmia among the patients who received treatment with ICDs was lower than that among the patients discharged without (HR: 0.24; 95% CI: 0.13–0.45; p<0.001) All-cause mortality : Control 55% vs. ICD 24% (RRR -58% and ARR - 31%)	 Patients with CAD, left ventricular dysfunction, and asymptomatic, NSVT in whom sustained VAs cannot be induced have a significantly lower risk of SCD and lower overall mortality than similar patients with inducible sustained tachyarrhythmias. Important to point out that receipt of an ICD was not randomized treatment.
 MADIT-II Moss et al. 2002 (44) <u>11907286</u> 	Aim: To evaluate the benefit of ICD in patients with prior MI and reduced LVEF Study type: RCT	Inclusion: Prior MI (>1 mo), EF ≤30% Exclusion: existing indication for ICD; NYHA class IV at enrollment; had undergone coronary revascularization <3 mo; MI <30 d, advanced cerebrovascular disease, childbearing age and not using contraceptive,	Comparator: Control (490 patients) Intervention: ICD (742 patients)	All-cause mortality: control 22% vs. ICD 16% (RRR -28% and ARR - 6%)	• In patients with a prior MI and advanced left ventricular dysfunction, prophylactic ICD improves survival and should be considered as a recommended therapy.
	Size: 1232 patients	presence of any condition other than cardiac disease that was associated with a high likelihood of death during			

		the trial, or unwilling to provide			
		consent			
• DINAMIT	<u>Aim</u> :	Inclusion: Recent MI (6-40 d), EF	Comparator:	All-cause mortality:	Prophylactic ICD
 Hohnloser et 	To assess the	≤35%, standard deviation of normal-	Control (342 patients)	control 17% vs. ICD	therapy does not reduce
al. 2004 (152)	benefit of ICD in	to-normal RR intervals of 70 msec or		19%	overall mortality in high-
• <u>15590950</u>	patients with	less or a mean RR interval of 750 msec	Intervention:		risk patients who have
	recent MI and	or less, mean heart rate ≥80	ICD (332 patients)		recently had a MI.
	reduced LVEF	beats/min		2° outcome:	 Although ICD therapy
	Study type: RCT			arrhythmic death:	was associated with a
		Exclusion: CHF class IV; noncardiac		12 ICD group vs. 29	reduction in the rate of
	Size: 674 patients	disease that limited life expectancy;		in the control group	death due to arrhythmia,
		CABG performed since the qualifying		(HR ICD group, 0.42;	that was offset by an
		infarction or planned to be performed		95 95% CI 0.22 to	increase in the rate of
		within 4 wks after randomization;		0.83; p=0.009)	death from
		three-vessel PCI performed since the			nonarrhythmic causes.
		qualifying infarction; name on a			
		waiting list for a heart transplant;			
		current, ongoing ICD therapy; prior			
		implantation of a permanent			
		pacemaker; requirement for an ICD			
		(i.e., sustained VT or fibrillation more			
		than 48 h after the qualifying			
		infarction); low probability that the			
		study ICD could be implanted within 7			
		d after randomization; and expected			
		poor compliance with the protocol			
• SCD-HeFT	Aim: Evaluate	Inclusion: NYHA class I-III HF, LVEF	Intervention 1:	All-cause mortality:	• In patients with NYHA
• Baruy et al.	whether	≥33%	notionts)		
2005 (43)	amiodarone or a	Fuchasiana Ana (10 a anabla ta siya	patients)	29%	LVEFS35%, amiodarone
• 15059722	conservatively	Exclusion: Age < 18 y, unable to give	Intervention 2:	(KKK: -23% and AKK:	
	programmed	Consent	CDMT plus	- / 70)	single load sheek only
	load ICD would		amiodarona (945		Single-lead, Shock-only
	docrosco the rick		annoudrone (845		overall mortality. This
	of death from any		patients		was the longest and
			Comparator 1		largest ICD trial
	cause in a proad		<u>comparator 1</u> :		largest ICD trial.

	population of patients with mild- to-moderate HF <u>Study type</u> : prospective multicenter RCT		GDMT plus Placebo (847 patients)		
	Size: 2521 patients				
 IRIS Steinbeck et al. 2009 (153) <u>19812399</u> 	Aim: Test whether patients at increased risk who are treated early with an ICD will live longer than those who receive GDMT alone Study type: prospective RCT Size: 898 patients	Inclusion: Recent MI (5-31 d) plus HR >90 bpm and LVEF ≤40% or NSVT Exclusion: VAs that occurred before the index MI or >48 h after the MI and that required treatment, NYHA class IV drug-refractory HF, an interval of >31 d between MI and presentation, no ECG documentation within <48 h after the onset of chest pain, an indication for CABG before study entry, a psychiatric disorder, severe concomitant disease, a Hx of poor compliance with treatment, either the inability to participate in this trial or current participation in another trial, and an unstable clinical condition	<u>Comparator</u> : Control (453 patients) <u>Intervention</u> : ICD (445 patients)	All-cause mortality: control 23% vs. 22%	• Prophylactic ICD therapy did not reduce overall mortality among patients with AMI and clinical features that placed them at increased risk.
• Piccini et al.	Aim: To evaluate	Inclusion criteria: Studies in which	1° endpoint: SCD,	Amiodarone	Conclusions:
2009 (154)	the cumulative	patients were randomized to	CVD, all-cause	reduces the risk of	Amiodarone reduced the
• <u>19336434</u>	evidence	amiodarone and placebo or inactive	mortality, and the	SCD by 29% and	risk of SCD but is neutral
	safety and efficacy	inclusion criteria included: treatment	toxicities	however	mortality.
	of amiodarone in	for >30 d, followup >6 mo, and		amiodarone therapy	
	prevention of SCD	availability of all-cause mortality as an	Results: Amiodarone	is neutral with	 Authors suggested
		endpoint	decreased the	respect to all-cause	amiodarone as a viable
	Study type: Meta-		incidence of SCD	mortality	alternative in patients
	analysis of all RCT	Exclusion criteria: Studies	(7.1% vs. 9.7% [OR:		who are not eligible for
	examining the use		0.71; 95% CI: 0.61–		or who do not have

	of amiodarone vs.	of patients with shock-refractory VA,	0.84, p<0.001]) and	Adverse events:	access to ICD therapy for
	placebo/control	OHCA, patients <18 y, randomization	cardiovascular death	associated with a 2-	the prevention of SCD.
	for the prevention	to amiodarone vs. a class Ic or class III	(14.0% vs.16.3% [OR:	and 5-fold increased	
	of SCD	AAD (without a placebo or standard of	0.82;0.71–0.94,	risk of pulmonary	
		care arm). Studies of patients with	p=0.004]). There was	and thyroid toxicity.	
	Size: 15 trials,	ICDs were excluded unless used on	a 1.5% absolute risk		
	which randomized	both arms.	reduction in all-cause		
	8,522 patients		mortality which did		
			not meet statistical		
			significance (p=0.093).		
			Amiodarone therapy		
			increased the risk of		
			pulmonary (2.9% vs.		
			1.5% [OR: 1.97;95%		
			CI:1.27–3.04,		
			p=0.002]), and thyroid		
			(3.6% vs. 0.4%; [OR:		
			5.68; 95% Cl :2.94–		
			10.98, p<0.001])		
			10.98, p<0.001]) toxicity.		
• Claro et al.	Aim: To evaluate	Inclusion criteria: Randomized	10.98, p<0.001]) toxicity. Intervention:	1° endpoint: There	• Conclusions: There is
• Claro et al. 2015 (136)	Aim: To evaluate the effectiveness	Inclusion criteria: Randomized assessing the efficacy of amiodarone	10.98, p<0.001]) toxicity. Intervention: Amiodarone	<u>1° endpoint</u> : There was a beneficial	• Conclusions: There is low quality evidence that
 Claro et al. 2015 (136) 26646017 	Aim: To evaluate the effectiveness of amiodarone for	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other	10.98, p<0.001]) toxicity. Intervention: Amiodarone	<u>1° endpoint</u> : There was a beneficial effect with	• Conclusions: There is low quality evidence that amiodarone reduces the
 Claro et al. 2015 (136) <u>26646017</u> 	<u>Aim</u> : To evaluate the effectiveness of amiodarone for 1° or 2°	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1°	10.98, p<0.001]) toxicity. Intervention: Amiodarone Comparator: placebo,	<u>1° endpoint</u> : There was a beneficial effect with amiodarone	• Conclusions: There is low quality evidence that amiodarone reduces the risk of SCD and may
 Claro et al. 2015 (136) <u>26646017</u> 	<u>Aim</u> : To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD.	10.98, p<0.001]) toxicity. Intervention: Amiodarone <u>Comparator</u> : placebo, no intervention, ICD	<u>1° endpoint</u> : There was a beneficial effect with amiodarone reducing the risk of	• Conclusions: There is low quality evidence that amiodarone reduces the risk of SCD and may reduce the risk of all-
 Claro et al. 2015 (136) <u>26646017</u> 	<u>Aim</u> : To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD compared with	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD.	10.98, p<0.001]) toxicity. Intervention: Amiodarone Comparator: placebo, no intervention, ICD or other	<u>1° endpoint</u> : There was a beneficial effect with amiodarone reducing the risk of SCD by 12%-34%	• Conclusions: There is low quality evidence that amiodarone reduces the risk of SCD and may reduce the risk of all- cause mortality when
 Claro et al. 2015 (136) 26646017 	Aim: To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD compared with placebo or no	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD.	10.98, p<0.001]) toxicity. Intervention: Amiodarone Comparator: placebo, no intervention, ICD or other antiarrhythmics	<u>1° endpoint</u> : There was a beneficial effect with amiodarone reducing the risk of SCD by 12%-34% and may reduce the	• Conclusions: There is low quality evidence that amiodarone reduces the risk of SCD and may reduce the risk of all- cause mortality when compared with placebo
 Claro et al. 2015 (136) <u>26646017</u> 	<u>Aim</u> : To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD compared with placebo or no intervention or	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD.	10.98, p<0.001]) toxicity. Intervention: Amiodarone Comparator: placebo, no intervention, ICD or other antiarrhythmics	<u>1° endpoint</u> : There was a beneficial effect with amiodarone reducing the risk of SCD by 12%-34% and may reduce the risk of all-cause	• Conclusions: There is low quality evidence that amiodarone reduces the risk of SCD and may reduce the risk of all- cause mortality when compared with placebo or no intervention in a 1°
 Claro et al. 2015 (136) 26646017 	<u>Aim</u> : To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD compared with placebo or no intervention or any other	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD.	10.98, p<0.001]) toxicity. Intervention: Amiodarone Comparator: placebo, no intervention, ICD or other antiarrhythmics	<u>1° endpoint</u> : There was a beneficial effect with amiodarone reducing the risk of SCD by 12%-34% and may reduce the risk of all-cause mortality by up to	• Conclusions: There is low quality evidence that amiodarone reduces the risk of SCD and may reduce the risk of all- cause mortality when compared with placebo or no intervention in a 1° prevention setting.
 Claro et al. 2015 (136) <u>26646017</u> 	<u>Aim</u> : To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD compared with placebo or no intervention or any other antiarrhythmic.	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD.	10.98, p<0.001]) toxicity. Intervention: Amiodarone Comparator: placebo, no intervention, ICD or other antiarrhythmics	<u>1° endpoint</u> : There was a beneficial effect with amiodarone reducing the risk of SCD by 12%-34% and may reduce the risk of all-cause mortality by up to 22% when	• Conclusions: There is low quality evidence that amiodarone reduces the risk of SCD and may reduce the risk of all- cause mortality when compared with placebo or no intervention in a 1° prevention setting.
 Claro et al. 2015 (136) 26646017 	Aim: To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD compared with placebo or no intervention or any other antiarrhythmic.	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD.	10.98, p<0.001]) toxicity. Intervention: Amiodarone <u>Comparator</u> : placebo, no intervention, ICD or other antiarrhythmics	<u>1° endpoint</u> : There was a beneficial effect with amiodarone reducing the risk of SCD by 12%-34% and may reduce the risk of all-cause mortality by up to 22% when compared with	 Conclusions: There is low quality evidence that amiodarone reduces the risk of SCD and may reduce the risk of all- cause mortality when compared with placebo or no intervention in a 1° prevention setting. The evidence regarding
 Claro et al. 2015 (136) <u>26646017</u> 	Aim: To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD compared with placebo or no intervention or any other antiarrhythmic.	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD.	10.98, p<0.001]) toxicity. Intervention: Amiodarone Comparator: placebo, no intervention, ICD or other antiarrhythmics	<u>1° endpoint</u> : There was a beneficial effect with amiodarone reducing the risk of SCD by 12%-34% and may reduce the risk of all-cause mortality by up to 22% when compared with placebo or no	 Conclusions: There is low quality evidence that amiodarone reduces the risk of SCD and may reduce the risk of all- cause mortality when compared with placebo or no intervention in a 1° prevention setting. The evidence regarding the comparison with
 Claro et al. 2015 (136) <u>26646017</u> 	Aim: To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD compared with placebo or no intervention or any other antiarrhythmic. Study type: meta-analyses	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD.	10.98, p<0.001]) toxicity. Intervention: Amiodarone Comparator: placebo, no intervention, ICD or other antiarrhythmics	<u>1° endpoint</u> : There was a beneficial effect with amiodarone reducing the risk of SCD by 12%-34% and may reduce the risk of all-cause mortality by up to 22% when compared with placebo or no intervention in a 1°	 Conclusions: There is low quality evidence that amiodarone reduces the risk of SCD and may reduce the risk of all- cause mortality when compared with placebo or no intervention in a 1° prevention setting. The evidence regarding the comparison with other antiarrhythmics is
 Claro et al. 2015 (136) 26646017 	Aim: To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD compared with placebo or no intervention or any other antiarrhythmic. Study type: meta-analyses using a random-	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD.	10.98, p<0.001]) toxicity. Intervention: Amiodarone Comparator: placebo, no intervention, ICD or other antiarrhythmics	<u>1° endpoint</u> : There was a beneficial effect with amiodarone reducing the risk of SCD by 12%-34% and may reduce the risk of all-cause mortality by up to 22% when compared with placebo or no intervention in a 1° prevention setting.	 Conclusions: There is low quality evidence that amiodarone reduces the risk of SCD and may reduce the risk of all- cause mortality when compared with placebo or no intervention in a 1° prevention setting. The evidence regarding the comparison with other antiarrhythmics is of moderate quality and
 Claro et al. 2015 (136) 26646017 	Aim: To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD compared with placebo or no intervention or any other antiarrhythmic. Study type: meta-analyses using a random- effects model	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD.	10.98, p<0.001]) toxicity. Intervention: Amiodarone Comparator: placebo, no intervention, ICD or other antiarrhythmics	1° endpoint : There was a beneficial effect with amiodarone reducing the risk of SCD by 12%-34% and may reduce the risk of all-cause mortality by up to 22% when compared with placebo or no intervention in a 1° prevention setting.	 Conclusions: There is low quality evidence that amiodarone reduces the risk of SCD and may reduce the risk of all- cause mortality when compared with placebo or no intervention in a 1° prevention setting. The evidence regarding the comparison with other antiarrhythmics is of moderate quality and goes in the same
 Claro et al. 2015 (136) 26646017 	<u>Aim</u> : To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD compared with placebo or no intervention or any other antiarrhythmic. <u>Study type</u> : meta-analyses using a random- effects model	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD.	10.98, p<0.001]) toxicity. Intervention: Amiodarone Comparator: placebo, no intervention, ICD or other antiarrhythmics	<u>1° endpoint</u> : There was a beneficial effect with amiodarone reducing the risk of SCD by 12%-34% and may reduce the risk of all-cause mortality by up to 22% when compared with placebo or no intervention in a 1° prevention setting.	 Conclusions: There is low quality evidence that amiodarone reduces the risk of SCD and may reduce the risk of all- cause mortality when compared with placebo or no intervention in a 1° prevention setting. The evidence regarding the comparison with other antiarrhythmics is of moderate quality and goes in the same direction.

	Size : 24 studies (9,997 participants) with 17 studies with 8383 patients identified as relevant 1° prevention trials.			Adverse events: Amiodarone was associated with increased adverse effects, both thyroid and pulmonary (based on 12 studies), and increased risk of discontinuation (based on 13 studies) when compared with	• Stresses the importance for people in low-income countries, where an ICD may not be available.
 Owens DK et al. 2002 (139) <u>12228780</u> 	Aim: Evaluated whether risk stratification based on risk ofSCD alone was sufficient to predict the effectiveness and cost-effectiveness of the ICD.	Markov model to evaluate the cost- effectiveness of ICD implantation compared with empiric amiodarone treatment. The model incorporated mortality rates from sudden and nonsudden cardiac death, noncardiac death and costs for each treatment strategy. Model assumed that the ICD reduced total mortality rates by 25%, relative to use of amiodarone.	<u>Results:</u> cost-effectiven unfavorable at both low cardiac mortality rates. If the annual total cardia 12%, the cost-effectiver from \$36,000 per qualit (QALY) gained when the cardiac death to nonsuc 4 to \$116,000 per QALY ratio is 0.25.	placebo. ess becomes and high total ac mortality rate is ness of the ICD varies y-adjusted life-year e ratio of sudden dden cardiac death is gained when the	• The cost-effectiveness of ICD use relative to amiodarone depends on total cardiac mortality rates as well as the ratio of sudden to nonsudden cardiac death.
 Cantero- Pérez EM, et al. 2013 (155) <u>24314988</u> 	Aim: To evaluate the effectiveness of ICDs for primary prevention in patients with LVEF ≤30% included on the heart transplantation list Size: Patients who received ICDs for primary prevention (N=28)	Inclusion criteria: Records from patients accepted for heart transplantation from January 1, 2006, to July 30, 2012, and whose LVEF was <31% were reviewed	Results: Median follow-up of 77 overall mortality in the (2/28) and in the non-IC (9/51; p=0.062). Cause of death in patier Sudden death (5/9, 55.6 HF (4/9, 44.4%). Cause of death in patier	d ICD group was 7.1% ID group was 17.6% hts without ICDs: 5%), hts with ICDs: HFheart	• Appropriate ICD therapies were recorded in 42.9% (12/28) in this population.

		-		
	were compared with patients without ICDs (N=51)			
• Fröhlich GM,	Aim: To delineate	Inclusion criteria:	Results:	ICDs appear to be
et al. 2013 (156)	the role of ICD	Patients listed for heart transplantation in 2 tertiany heart	Median time on the waiting list = 8 mo	associated with a
• 23813845	primary and	transplant centres were enrolled. Of	67±3%; p=0.0001).	mortality in patients
	secondary	550 patients (51%) on the transplant	An independent beneficial effect of ICDs that	implanted with the
	prevention of SCD	list with an ICD:	was most pronounced in patients who had	device for primary and
	in patients listed	primary prevention ICD: N=216	received an ICD for primary prevention (HR:	secondary prevention
	for heart	secondary prevention ICD: N=334	0.4, 95% Cl: 0.19–0.85; p=0.016).	compared to those
	transplantation			without an ICD.
	<u>Size:</u> N=1089			
 Gandjbakhch 	Aim: To evaluate	Inclusion criteria:	Results:	 Need for mechanical
E, et al. 2016	the ICD benefit on	Patients with end-stage HF receiving	15.6% of patients died while awaiting heart	circulatory support
(157)	mortality in	an ICD before or within 3 mo after	transplantation.	(p<0.001), low EF
• <u>27344378</u>	stage HE listed for	being isted for heart transplantation	haemodynamic compromise	(p=0.001) and
	heart		ICD did not remain an independent predictor	regular list (p=0.008)
	transplantation		of death.	were the only
			Death by haemodynamic compromise (76.3%	independent predictors
	<u>Size:</u> N=380		of deaths), which occurred more frequently	of death.
	consecutive		in the non-ICD group (14.7% vs. 5.8%; log-	ICD-related
	patients listed for		rank p=0.002).	complications occurred
	heart		Unknown/arrhythmic deaths did not differ	mainly as a result of
	between 2005 and		significantly between the two groups (3.9%	nostoperative worsening
	2009 in A tertiary		vs. 1.7%; log-rank p=0.21).	of HF (11.9%).
	heart transplant			
	centre			
• Vakil K, et al.	Aim: To assess the	Inclusion criteria:	Results:	• In the subgroup of
2016 (158)	impact of ICD on	Adults (age ≥18 y) listed for first-time	Median follow-up of 154 days,	patients with LVAD (N=
	in patients listed	heart transplantation in the US	3,038 patients (11%) alea on the waitlist (9%	9,478), naving an ICD was
		Sentember 30, 2014, were		adjusted 19% relative
L	1			

for heart	retrospectively identified from the	p<0.0001), whereas 63% underwent heart	reduction in mortality
transplantation	United Network for Organ Sharing	transplantation.	(HR: 0.81; 95% CI: 0.70–
	registry.	An ICD at listing was associated with an	0.94).
<u>Size:</u> N=32,599		adjusted 13% relative reduction in mortality	
		(HR: 0.87; 95% CI: 0.80–0.94).	

Data Supplement 22. RCTs Evaluating Treatment and Prevention of Recurrent Ventricular Arrhythmias in Patients with Ischemic Heart Disease – (Section 7.1.3)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
OPTIC	Aim: Determine	Inclusion criteria: Patients	Intervention:	1° endpoint: ICD	 Amiodarone plus BB
 Connolly et 	whether	who had received an ICD	amiodarone plus BB	shock for any reason.	significantly reduced the risk of
al. 2006 (159)	amiodarone plus BB	within 21 d for inducible or	or sotalol	Shocks occurred in 41	shock compared with BB alone
• <u>16403928</u>	or sotalol are better	spontaneous VT/VF		patients (38.5%)	(HR: 0.27; 95% CI: 0.14–0.52;
	than BB alone for		Comparator: BB alone	assigned to BB alone,	p<0.001) and sotalol (HR: 0.43;
	prevention of ICD	Exclusion criteria: Long QT		26 (24.3%) assigned	95% CI: 0.22–0.85; p=0.02).
	shocks.	syndrome, corrected QT		to sotalol, and 12	There was a trend for sotalol to
		interval of more than 450		(10.3%) assigned to	reduce shocks compared with
	Study type: RCT	ms, already receiving or		amiodarone plus BB	BB alone (HR: 0.61; 95% CI:
		recent treatment with a		(HR: 0.44; 95% CI:	0.37–1.01; p=0.055).
	Size: 412 patients	class I or class III		0.28–0.68; p<0.001).	 Adverse pulmonary and
		antiarrhythmic agent,			thyroid events and
		creatinine clearance less		Safety endpoint: NA	symptomatic bradycardia were
		than 30 mL/min, AF likely to			more common among patients
		require use of a class I or			randomized to amiodarone.
		class III antiarrhythmic			
		agent, absence of SHD,			 Conclusions: Despite use of
		NYHA class IV HF			advanced ICD technology and
					treatment with a BB, shocks
					occur commonly in the first
					year after ICD implant.
					Amiodarone plus BB is effective

					for preventing these shocks
					and is more effective than
					sotalol but has an increased
					risk of drug-related adverse
					effects.
• Pacifico et al.	Aim: Efficacy and	Inclusion criteria: age >18 y,	Intervention: 160 to	<u>1° endpoint:</u>	 First inappropriate shock for
1999 (160)	safety of sotalol to	life-threatening VT that were	320 mg of sotalol per	Treatment with	a SVT or death from any cause
• <u>10369848</u>	prevent shocks from	not due to a reversible	day	sotalol was	was reduced with sotalol
	ICDs	cause; had received their		associated with a	(reduction in risk, 64%;
		first or a replacement ICD	Comparator:	lower risk of death	p=0.004).
	Study type:	within 3 mo before	matching placebo	from any cause or the	 Sotalol also reduced the
	prospective, RCT	enrollment (patients with		delivery of a first	mean frequency of shocks due
	double-blind	replacement defibrillators		shock for any reason	to any cause (1.43±3.53
		had to have received at least		(reduction in risk	shocks/y, as compared with
	Size: 302 patients	one shock during the		48%; p<0.001; first	3.89±10.65 in the placebo
		preceding 6 mo); had a ICD		appropriate shock for	group; p=0.008).
		that provided tiered therapy		a va or death from	
		with EGM and separate		any cause was also	 Conclusions: Oral sotalol was
		logging of shocks		reduced (reduction in	safe and efficacious in reducing
				risk, 44%; p=0.007),	the risk of death or the delivery
		Exclusion criteria: incessant			of a first defibrillator shock
		VT; had received AAD		Safety endpoint:	whether or not ventricular
		therapy <5 half-lives of the		Bradycardia was	function was depressed.
		drug before randomization		more common in	
		in the case of class I and III		sotalol group, but	
		agents (and <3 mo before		only 2 patients	
		randomization in the case of		discontinued therapy	
		amiodarone); had a QT		because of it; 3	
		interval of more than 450		patients in each	
		msec (or a JT interval of		group had HF.	
		more than 360 msec) in the			
		absence of drug therapy;			
		had a LQTS, including			
		prolongation of the QT			
		interval in response to			
		specific drugs; had unstable			
		coronary syndromes or had			

• Kettering et al. 2002 (161) • <u>12494613</u>	Aim: Efficacy of metoprolol vs. sotalol in preventing recurrent VT in patients with ICDs <u>Study type:</u> prospective, RCT <u>Size:</u> 100 patients	had an AMI less than two weeks before screening; had intractable HF (NYHA class IV); were candidates for heart transplantation; or had a medical condition that was likely to be fatal in less than 2 y. Inclusion criteria: ICD implanted for sustained VT or VF Exclusion criteria: Contraindications for metoprolol or sotalol; AMI within the last 4 wk; unstable angina; severe concomitant diseases	Intervention: 40-480 mg sotalol daily Comparator: 25-200 mg daily metoprolol tartrate	1° endpoint: VT/VF recurrence requiring ICD intervention; 33 events in patients treated with metoprolol vs. 30 in patients receiving sotalol (p=0.68) <u>Adverse Events:</u> 5 metoprolol and 6 sotalol patients required dose reduction for fatigue, dizziness HE	• Conclusions: No significant difference in freedom from ICD therapies between metoprolol and sotalol group (p=0.68)
 Echt et al. 1991 (162) <u>1900101</u> 	Aim: Examine the mortality and morbidity after randomization to encainide or flecainide or their respective placebo. <u>Study type:</u> RCT <u>Size:</u> 1498 patients	Inclusion: 6 d - 2 y after MI if they had an average of ≥6 PVCs/h on ambulatory electrocardiographic monitoring of at least 18 h duration, and no runs of VT of ≥15 beats at a rate of ≥120 beats/mim. EF ≤0.55 if recruited within 90 d of the MI, or EF ≤0.40s if recruited 90 d or more after the MI. <u>Exclusion:</u> as above	Intervention: encainide or flecainide Comparator: placebo	<u>1° endpoint:</u> arrhythmic death or cardiac arrest After a mean followup of 10 mo, 89 patients had died: 59 of arrhythmia (43 receiving drug vs. 16 receiving placebo; p=0.0004)	• Conclusions: Excess of deaths due to arrhythmia and deaths due to shock after acute recurrent MI in patients treated with encainide or flecainide. Nonlethal events, however, were equally distributed between the active- drug and placebo groups.

 Seidl et al.1998 (163) <u>9761084</u> 	<u>Aim:</u> efficacy of d,l- sotalol and metoprolol in preventing recurrence of arrhythmic events after ICD	Inclusion criteria: Patients with ICD and Hx of VT/VF Exclusion criteria: AMI within 1 wk; contraindications for BB; Hx of proarrhythmia	Intervention: metoprolol (mean dosage 104 <u>+</u> 37 mg/d) Comparator: d,l- sotalol (mean dosage 242± 109 mg/d)	1° endpoint: Actuarial rates for absence of VT recurrence at 1 and 2 y were significantly higher in the metoprolol group	• Conclusions: The recurrence rate of VT in patients treated with metoprolol was lower than in patients treated by d,l- sotalol. No difference in overall survival
	implantation. <u>Study type:</u> prospective, RCT <u>Size:</u> 70 patients	caused by d,I-sotalol		compared with the d,l-sotalol group (83% and 80% vs 57% and 51%, respectively, p=0.016).	
				Safety endpoint: HF led to drug discontinuation in 9% in each group. • 2 episodes of proarrhythmia in sotalol group.	
 Kuhlkamp et al. 1999 (164) <u>9935007</u> 	Aim: Evaluate efficacy of sotalol in preventing recurrences of VT <u>Study type:</u> prospective, RCT <u>Size:</u> 146 patients	Inclusion criteria: Patients with inducible sustained VT or VF Exclusion criteria: non- syncopal sustained VT; contraindications to BB; limited projected survival due to comorbid disease	Intervention: Patients whose VT was suppressed on sotalol were treated with it; patients whose VT was not suppressed on sotalol received an ICD and were randomized to treatment with sotalol or no antiarrhythmic therapy	1° endpoint: 25 patients (53.2%) in the ICD-only group had a VT/VF recurrence in comparison to 15 patients (28.3%) in the sotalol group and 15 patients (32.6%) in the ICD/sotalol group (p 5 0.0013).	No difference in total mortality among the 3 groups Conclusion: Sotalol significantly reduces the incidence of recurrences of sustained VT in comparison to no AAD treatment
			Comparator: no antiarrhythmic	Safety endpoint: Intolerance to treatment with d,lsotalol (overt	

				cardiac failure, symptomatic hypotension or Bradycardia)	
• MADIT-II substudy • Brodine et al. 2005 (165) • <u>16125497</u>	Study type: Retrospective, observational Size: 720 patients who received ICDs	Inclusion criteria: ischemic cardiomyopathy, EF≤30%, randomized to ICD arm Exclusion criteria: Patients who were not randomized to ICD therapy	<u>1° endpoint</u>: Appropriate ICD therapy for VT/VF; survival <u>Results:</u> Patients in the top quartile of BB doses had a significant reduction in the risk of VT or VF requiring ICD therapy compared with patients not receiving BB (HR: 0.48; p=0.02). BB use was also associated with significant improvement in survival compared with the nonuse of BB (HB: 0.4: pc0.01)	The frequency of inappropriate ICD therapy for SVT was not significantly different among the 3 treatment groups (p=0.32).	• Conclusion: Beta blockers reduce the risk for VT or VF and improve survival in ICD-treated patients with ischemic cardiomyopathy.
• SMASH VT • Reddy et al. 2007 (166) • <u>18160685</u>	Aim: To determine whether prophylactic substrate based catheter ablation in sinus rhythm decreases ICD therapies after MI <u>Study type</u> : RCT prospective <u>Size</u> : 128 patients	Inclusion criteria: age ≥18 y with MI at least 1 mo previously and a Hx of VF, Hemodynamically unstable VT, or Syncope with inducible VT and ICD implantation Exclusion criteria: Treatment with AAD, ischemia induced VT/VF, or incessant VT or VF	Intervention: Substrate based catheter ablation of arrhythmogenic myocardium during sinus rhythm (N=64) Comparator: Standard ICD follow-up (N=64)	<u>1° endpoint</u> After 2 y of follow-up, ICD therapies occurred in 12% of patients randomized to catheter ablation and 33% in the control group (HR 0.35; CI 0.15–0.78, p=0.007)	 Trend towards reduced mortality after 2 y in the ablation group (9% vs 17%, p=0.06) No difference in left ventricular function or NYHA functional class during follow- up.

• VANISH • Sapp J. et al. 2016 (167) • <u>27149033</u>	Aim: To determine whether catheter ablation decreases ICD therapies in patients with ischemic cardiomyopathy with a Hx of VT or VF despite the use of AAD Study type: randomized, prospective Size: 259 patients	Inclusion criteria: Prior MI, ICD implantation, at least 1 episode of VT during treatment with amiodarone or another class I or class III AAD within the previous 6 mo <u>Exclusion criteria:</u> Failure to give informed consent	Intervention: Randomized 1:1 to catheter ablation or escalated AAD therapy (escalated- therapy group), (N=132) Comparator: Escalated drug therapy: Amiodarone loading then amio 200 mg/d (if on Sotalol) or Amiodarone reloading then 300 mg/d if on amiodarone <300 mg/d, Or addition of mexiletine 200 mg TID to amiodarone 300 mg/d if on amiodarone 300 mg/d if on	<u>1° endpoint</u> The 1° outcome occurred in 78 of 132 patients (59.1%) in the ablation group and in 87 of 127 patients (68.5%) in the escalated-therapy group. The rate of the 1° outcome was significantly lower in the ablation group than in the escalated- therapy group (HR:0.72; 95% CI:0.53–0.98; p=0.04) This difference was driven by trends toward reductions in rates of appropriate shocks and episodes	 VT storm occurred in 32 patients (24.2%) in the ablation group and 42 patients (33.1%) in the escalated-therapy group (HR: 0.66; 95% CI: 0.42–0.05 p=0.08). Appropriate ICD shocks occurred in 50 patients (37.9%) and 54 patients (42.5%), respectively (HR: 0.77; 95% CI: 0.53–1.14; p=0.19). 36 patients (27.3%) in the ablation group and 35 (27.6%) in the escalated-therapy group died (HR: 0.96; 95% CI: 0.60– 1.53; p=0.86).
 VTACH Trial Kuck KH, et al. 2010 (168) 20109864 	To determine whether catheter ablation reduces the risk of VT recurrence in patients with Ischemic Cardiomyopathy, stable VT, and an ICD compared with ICD and continued medical Rx alone <u>Study Type</u> RCT	Inclusion Criteria: Patients age 18-80 y with prior MI, CAD, clinically hemodynamically stable VT, reduced LVEF <0.50, ICD indication Exclusion Criteria MI or Cardiac Surgery within 1 mo, LV thrombus, artificial heart valve, incessant VT, impaired renal function, life expectancy <1 y.	(N=127) <u>Study Intervention</u> ICD plus catheter ablation of all inducible VTs or elimination of substrate for non- inducible VT (N=52) <u>Comparator</u> ICD and continued medical therapy (N=55)	of VT storm After 24 mo, 47% of patients in the ablation group and 29% of controls were free of recurrent VT (HR: 0.61;95% CI 0.37–0.99, p=0.044).	 Patients with LVEF >0.30 had greater reduction of VT with catheter ablation than did patients with more severe LV dysfunction (freedom from VT in 48% with ablation vs 27% of controls, (HR:0.47; 95% CI 0.24–0.88, p=0.016). No difference in VT storm, syncope, or death between ablation and controls.

	<u>Study Size</u> 107 patients				
• CALYPSO	Aim Dilot study to	Inclusion Criteria	Intervention	<u>1° Endpoint</u>	• Of 243 screened patients, 27
• Al-Kildlib 5.	determine	had received >1 ICD shock or		recurrent VT was 75 d	Presently on AAD (88, 41%)
(169)	feasibility of BCT of	>3 ATP therapies for VT		in ablation arm and	VT due to reversible cause (23
• 25332150	catheter ablation of		Comparator	57 d in AAD arm.	11%), and incessant VT (20.
	VT vs. AAD when	Exclusion Criteria	AAD(N=14)		9%).
	used early in the	Present AAD, Incessant VT,		There were 2 deaths	
	course of patients	VT due to reversible cause		in both arms of the	
	with CAD who			study	
	experience ICD				
	therapies.				
	Study Type				
	Pilot RCT				
	Study size				
	27 patients				

Data Supplement 23. Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Recurrent Arrhythmias in IHD – (Section 7.1.3)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% Cl)	Conclusions
 Blanck et al. 	Study type:	Inclusion criteria:	Results:	 BBRVT typically occurs in patients
1993 (170)	Single Center Review	All patients at single center	45 of 48 patients had SHD	with SHD from a variety of causes in
• <u>8269297</u>		with BBRVT diagnosed at EPS	SHD was NICM in 16 patients,	patients with prolonged HV
	Size: 48 patients	between 1980-1992	ischemic cardiomyopathyin 23	conduction intervals.
		Criteria:	patients, V HD in 2 patients	
		1) Typical RBBB or LBBB		BBRVT is associated with aborted
		QRS morphology	Mean LVEF 23.2%	SCD, Syncope, and Palpitations
		during VT		

		2) 3)	QRS preceded by His and appropriate bundle branch potential Stable HV, RB-V, or	Clinical Presentation Aborted SCD in 26% Syncope in 51% Sustained palpitations in 10%	• BBRVT is most commonly associated with a LBBB QRS morphology, and less commonly with RBBB or Interfascicular QRS morphologies
		4) 5) 6)	Induction dependent on HV delay Termination by block in HPS Noninducibility after	ORS morphology in VT LBBB in 46 patients RBBB in 5 patients	• Catheter ablation targeting the RBB or LBB is highly effective and associated with a low risk of serious complications.
				Catheter Ablation Performed in 28 patients targeting the RBB in 26 patients and LBB in 2 patients Successful ablation of VT in 100% No Complications observed.	
• Brugada J et al.	Study type:	Inclusio	n: prior MI,	Results: 61 patients were inducible	• In patients with VA in the chronic
2001 (171)	prospective	spontar	neous VA not related to	into sustained VA.	phase of MI, probability of
• <u>11216974</u>	Size, 61 patients	an acut	e ischemic event and	After revecularization 52 of 50	recurrence is high despite coronary
	Size: 61 patients	coronar	y lesions requiring	After revascularization, 52 of 59	mortality is low if combined with
		Tevascu	10112011011	still inducible (group A) and 10	appropriate AAD
		Exclusio	on: n/a	patients were noninducible (group	
				B).	• Recurrences: lower EF predicted
		Protoco	ol: EP performed before		higher recurrence rate but not
		and afte	er revascularization	No differences were found in	ischemia before revascularization,
				clinical, hemodynamic, therapeutic	amiodarone or BB therapy or EP
				and electrophysiological	study after revascularization. An EF
				characteristics between both	<30% predicted recurrent
				groups.	arrnythmic events (p=0.02), but not
				During 22 +/ 26 mo follow/up	ischamia before revescularization
				28/52 patients in group A (54%)	(p=0.42) amindarone $(p=0.62)$ or
				20/32 patients in group A (34%)	(p=0.42), annouarone (p=0.09) of

 Sears et al. 1999 (172) 10410293 	Study type: literature review	<u>Inclusion:</u> studies assessing psychological impact of ICD and shocks	and 4/10 patients in group B (40%) had arrhythmic events (p =0.46). Total mortality was 10% in both groups. <u>Results:</u> 13-38% of recipients experiencing diagnosable levels of anxiety. Specific ICD-related concerns such as fear of shock, fear of device malfunction, fear of death, and fear of embarrassment have been identified.	 beta-adrenergic blocking agent therapy (p=0.53). <u>Conclusions:</u> Psychosocial adjustment risk profiles indicate that young ICD recipients and those with high discharge rates may experience the most adjustment difficulties
 Lopera et al. 2004 (173) <u>15028072</u> 	Single Center Review Size: 20 patients	 Inclusion criteria: His Bundle, LBB, or RBB potential closely associated with QRS with any of the following: H-H interval variation preceding similar V-V interval variation; Anterograde activation of the bundle branches during tachycardia; or, Abolition of VT by bundle branch ablation. 	Results:HPS VT induced in 20 of 234consecutive patients referred forVT ablationNICM: 9 of 81 patients (11%) hadHPS VTICM: 11 of 153 patients (7.1%) hadHPS VTMean LVEF 29±17%2 of 20 patients had normal LVEFClinical PresentationICD Shocks in 10 patientsSyncope in 3 patientsOther symptoms in 7 patientsTypical BBRVTin 16 of 20 patients(all had LBBB QRS morphology)13 of 16 patients BBRVTsuccessfully ablated by RBB	 BBRVT occurs in patients with both NICM and ischemic cardiomyopathy, usually with impaired LVEF. BBRVT is most commonly associated with a LBBB QRS morphology, and less commonly with RBBB or Interfascicular QRS morphologies Catheter ablation targeting the RBB or LBB is highly effective and associated with a low risk of serious complications if only one BB is targeted and a higher risk of AV block if both BBs are targeted for ablation.

• Mehdirad et al.1995 (174) • <u>8771124</u>	Study type: Single Center Review Size: 16 patients	Inclusion criteria: All patients undergoing RF catheter ablation of the RBB for BBRVT	ablation and 3 of 16 by LBB ablation. HV interval prolonged from 70 <u>+</u> 5.9 msec to 83 <u>+</u> 17 msec after ablation. Typical BBRVT and Interfascicular VT in 2 of 20 patients. Ablation of both the RBB and portion of LBB eliminated VT in both patients, complicated by AV block in 1 pt. Focal Mechanism from BBs in 2 patients, one in RBB, one in LBB. Ablation eliminated focal VT in both patients, complicated by AV block in 1 pt. Results: HV interval 68 <u>+</u> 8 msec at baseline LVEF mean 31 <u>+</u> 15% RBBB developed in 15/16 patients after RBB ablation AV block occurred in 1 pt	 Catheter ablation of the RBB is effective for the treatment of BBRVT BBRVT is associated with prolonged HV conduction intervals. The medium term followup after
			After mean of 19±10 mo, one patient died suddenly, 2 received cardiac transplantation, and 1 died of CHF.	catheter ablation of the RBB is overall quite good.
• HELP-VT	Aim:	Inclusion criteria:	1° endpoint: At 1 y follow-up, VT	Complications
• Dinov B, et al.	To determine the	Patients with SHD referred for	free survival was 57% for ischemic	Complications occurred in 11.1% of
2014 (175)	outcome of VT	catheter ablation of VT with	cardiomyopathyand 40.5% for	NICM and 11.1% of ischemic
• <u>24211823</u>	catheter ablation in	either NICM (N=63) or	NICM patients (HR: 1.62; 95% CI	cardiomyopathypatients, including
	patients with NICM to	ischemic	1.12–2.34, p=0.01). ischemic	death in 4.8% of NICM and 3.7% of
	those with ICIVI	cardiomyopatny(N=164)	cardiomyopathyrequired epicardial	ischemic cardiomyopathy
	Prospective non-	Exclusion criteria:	whereas NICM required enicardial	
	randomized	Failure of informed consent	ablation in 30.8% ($n=0.0001$)	
	Size: 227 patients		(p=0.0001).	

		Intervention:		
		with NICM		
		Comparator:		
		Catheter ablation in patients		
		with ICM		
• Euro-VT Study	Aim T	Inclusion Criteria	<u>1° endpoint</u> :	Complications
• Tanner H 2010	To determine the	Drug and device refractory,	Acute success with ablation was	Major complications occurred in
(1/6)	safety and efficacy of	recurrent sustained VI after	achieved in 83% of mappable VTs	1.5% and minor complications in 5%
• <u>19656251</u>	electroanatomic		and 40% of non-mappable VTs	of patients, particularly groin
	mapping and irrigated	\geq 4 episodes of sustained VI in	(p<0.0001).	hematomas, with no procedural
	RF catheter ablation	prior 6 mo.		deaths.
	for VI after MI		During 12mo follow-up, VT	
	Church Transa	Exclusion Criteria	recurred in 49% of patients.	
	Study Type:	Age <18 y		
	Multicenter, non-	IVII WITNIN 2 mo	The mean number of therapies	
	randomized	LV Inrombus	dropped from 60±70 prior to	
	Church Class		ablation to 14±15 in the same	
	Study Size	Severe AS OF IVIR	period of time (6 mo) after ablation	
	63 patients	Unwiningness to participate	(p= 0.02).	
		Intervention		
		Electroanatomic mapping and		
		ablation with open-tip		
		irrigated catheter.		
Post-approval	<u>Aim</u>	Inclusion Criteria	<u>1° endpoint</u> :	<u>Comments</u>
Thermocool Trial	To evaluate long-term	Patient with coronary disease,	At 6 mo: 62% without VT	 Reduction in amiodarone usage
 Marchlinski F 	safety and	age ≥18 y and LVEF ≥10% with	recurrence, proportion of patients	and hospitalization
2016 (177)	effectiveness of RF	recurrent VT (either ≥4	with ICD shock reduced from 81.2	 Improvement in QoL
• <u>26868693</u>	catheter ablation for	episode documented by ICD,	(pre) to 26.8% and ≥50% reduction	
	VT in patients with	≥2 episode documented by	in VT episodes in 63.8% of patients.	
	CAD	ECG in patients without ICD,		
		incessant VT or symptomatic	Safety Endpoint	
	Study Type:	VT despite AAD treatment	CV specific AE in 3.9% with no	
	Multicenter, non-		stroke	
	randomized	Exclusion Criteria		

 International VT Collaborative Group Study Tung R 2015 (178) 26031376 	Study Size 249 patients Aim: to determine the association of VT recurrence after ablation and survival in scar related VT Study type: Multicenter observational Size: 2061	Mobile LV thrombus, MI within 3 mo, idiopathic VT, class IV HF, creatinine ≥2.5, recent cardiac surgery, unstable angina, severe AS or MR. Intervention Electroanatomic mapping and ablation with open-tip irrigated catheter. Inclusion criteria: SHD with ischemic and non-ischemic cardiomyopathies with monomorphic VT and myocardial scar by electroanatomic mapping Exclusion criteria: absence of scar on electroanatomical mapping Intervention: Catheter ablation, either endocardial or epicardial, guided by EAM. End point of ablation with elimination of all induced VTs	<u>1° endpoint:</u> Freedom from VT recurrence, Heart Transplant, or death was 70% at 1 y follow-up. VT recurred in 55% of patients who died vs. 22% of patients who survived. Transplant free survival was 90% for patients without VT recurrence and 71% for those with VT recurrence (HR: 6.9; 95% CI: 5.3– 9.0, p<0.001).	• Procedural complications occurred in 6%, including 2 deaths (0.1%), hemopericardium in 1.7%, and vascular access complications in 1.6%
 Meta-Analysis Meta-Analysis of Randomized and Non- Randomized Trials of Catheter Ablation for VT Mallidi J 2011 (179) <u>21147263</u> 	Aim: To determine the relative risk of VT recurrence in patients undergoing catheter ablation compared with medical therapy Study type: Meta-Analysis of 5 Trials of VT Ablation	PubMed, Embase, Cochrane searches of both randomized and nonrandomized clinical trials of catheter ablation of VT compared with a control group receiving AAD treatment alone <u>Intervention:</u> Catheter ablation with or without AAD	1° endpoint:VT recurred in 93 of 266 patients(35%) after Catheter Ablationcompared with 105 of 191 (55%) onAAD (HR: 0.62; 95% CI: 0.51–0.76,p<0.001)Safety endpoint:Complications occurred in 6.3%after ablation, including death	 Electrical Storm occurred in 17 of 116 (15%) after catheter ablation and 29 of 119 (25%) on AAD therapy (HR: 0.61; 95% CI: 0.36–1.03, p<0.066). Mortality occurred in 12% of patients treated with ablation and 14% on AAD.

	<u>Size</u> : 457 patients	<u>Comparator</u> : AAD alone.	(1%), tamponade (1%) and AV block (1.6%)	
Cooled Tip Ablation of VT Calkins 2000	Aim: To determine the safety and efficacy of	Inclusion criteria: >2 episodes of hemodynamically stable VT in	<u>1° endpoint:</u> Acute success with elimination of all mappable VTs in 75%.	• <u>Complications</u> Complications occurred in 8% including death in 2.7%
(180) • <u>10841242</u>	an internally cooled RF ablation catheter used for VT in SHD in	previous 2 mo, CAD, ICD implantation, failure of ≥ 2	At a mean of 243 <u>+</u> 153 d of follow-	
	patients with ≥ 2		up, virrecurred in 40% or patients	
	prior 2 mo despite \geq 2 AAD	Exclusion criteria: Failure to give informed consent	Acute success defined by noninduciblity of VT after ablation did not predict VT recurrence	
	Study type: Non-Randomized trial of Cooled Tip ablation catheter for VT	Intervention: Catheter ablation using the Cooled RF catheter system <u>Comparator</u> : VT recurrence Hx prior to		
	Size: 147 patients	ablation		
Multicenter	<u>Aim</u> :	Inclusion criteria:	<u>1° endpoint</u> :	• 1 y mortality was 18%
ThermoCool	To determine the	≥4 episodes of sustained VT	Freedom from recurrent VT at 6 mo	
Ventricular	outcome after	for termination in past 6 mg	follow-up in 123/231 patients	
Ablation Trial	VT	despite ICD or AAD THERAPY	(55%).	
• Stevenson WG,		age >18 y.	VT ablation reduced the median	
et al. 2008 (181)	Study type:		number of VT episodes in 6 mo	
• <u>19064682</u>	Non-randomized	Exclusion criteria:	before ablation from 11.5 to 0 after	
		LVEF <0.10, LV thrombus,	ablation (p<0.0001)	
	Size:	Creatinine >2.5, NYHA Class IV		
	231 patients	CHF, severe AS, unstable	Safety endpoint:	
			including 7 patients (2%) who died	
		Intervention:	within 3 d of ablation, and groin	
			complications in 4.7%.	

96

© 2017 by the American College of Cardiology Foundation, American Heart Association, Inc., and Heart Rhythm Society

		Catheter ablation with the BioSense ThermoCool ablation catheter <u>Comparator</u> : Prior Hx of VT recurrences		
• Steinberg et al.	Study type: cohort	Patient with sustained post-	<u>1° endpoint</u> : 12 patients (3.1%)	• Results (cont.): Patients with VT
• 10027813	study	after CABG among consecutive	sustained VT 4 1+4 8 d after CABG	(92% vs. 50% p < 0.01), severe CHF
1002/015	Size: 12 patients	patients 382 patients		(56% vs. 21%, p<0.01), and LVEF
		undergoing CABG at a single	In 11 /12 patients, no	<0.40 (70% vs. 29%, p<0.01).
		institution	postoperative complication	 By multivariate analysis, the
			explained the VT. 1 patient had a	number of bypass grafts across a
		Variables associated with the occurrence of VT was	perioperative MI.	an infarct zone was the only
		performed	The in-hospital mortality rate was	independent factor predicting VT.
			25%. Among the 9 survivors, 5 had	 Conclusions: (1) Patients who
			EPS with all inducible sustained	developed VT had a high in-hospital
			monomorphic VT (matching clinical	mortality rate of 25% (2) However,
			v1). 3/9 patients received an ICD	long-term outcome was good
			6/9 patients received chronic	or ICD). (3) predictors are MMVT
			therapy with AAD (primarily	previous MI scar and associated
			amiodarone).	severe LV dysfunction. (4)
				Relationship was found between the
			All 9 patients are alive, with a mean	development of VT and the
			follow-up of 2.5 y.	placement of a bypass graft across a
			2 patients (1 with an ICD and 1 on	vessel to a chronic infarct zone. (5)
			amiodarone) had recurrent VT	The development of MMVT was
			during followup.	typically not due to a detectable
				postoperative complication or
				ischemia.

Study Type/Design,	Patient Population	1° Endpoint and Results	Summary/Conclusion
Study Size		(P values; OR or RR;	Comment(s)
		& 95% CI)	· •
Study type: HRS/EHRA	Expert consensus	General: Class I: 1) sound clinical	LQTS: Note difference between
consensus statement.	statement on the state of	suspicion when positive	Class I if QTc >480 or 500 ms, and
	genetic testing for the	predictive value > 40%,	Class IIb if QTc >460/480 ms
	channelopathies and	signal/noise ratio >10; 2) AND/OR	
	cardiomyopathies	genetic test result provides either	
		diagnostic or prognostic info, or	
	Panel: geneticists,	influences therapeutic choices.	
	arrhythmia specialists	Screening of family members:	
	Agreement ≥ 84%	when genetic testing leads to the	
		adoption of therapy/protective	
		measures/ lifestyle adaptations.	
		LQTS: Class I: 1) any pt with	
		strong clinical index of suspicion	
		for LQTS; 2) any asymptomatic pt	
		with QT prolongation on serial	
		ECGs: QTc >480 ms prepuberty;	
		>500 ms, adult; 3) Mutation	
		specific genetic testing for family	
		members and other appropriate	
		relatives	
		Class IIb: any asymptomatic pt	
		with otherwise idiopathic QTc	
		values >460 ms (puberty) or 480	
		ms (183) on serial ECGs	
		. ,	
		CPVT: Class I: 1) any pt w strong	
		clinical index of suspicion of	
		CPVT:	
	Study Size <u>Study type</u> : HRS/EHRA consensus statement.	Study Size Expert consensus Study type: HRS/EHRA Expert consensus consensus statement. Expert consensus genetic testing for the channelopathies and cardiomyopathies Panel: geneticists, arrhythmia specialists Agreement ≥ 84%	Study Size (P values; OR or RR; & 95% Cl) Study type: HRS/EHRA consensus statement. Expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies General: Class I: 1) sound clinical suspicion when positive predictive value > 40%, signal/noise ratio >10; 2) AND/OR genetic test result provides either diagnostic or prognostic info, or influences therapeutic choices. Panel: genenticitss, arrhythmia specialists Agreement ≥ 84% Screening of family members: when genetic testing leads to the adoption of therapy/protective measures/ lifestyle adaptations. LQTS: Class I: 1) any pt with strong clinical index of suspicion for LQTS; 2) any asymptomatic pt with QT prolongation on serial ECGs: CQT C >480 ms prepuberty; >500 ms, adult; 3) Mutation specific genetic testing for family members and other appropriate relatives Class II: any asymptomatic pt with otherwise idiopathic QTc values >460 ms (puberty) or 480 ms (183) on serial ECGs CPVT: Class I: 1) any pt w strong clinical index of suspicion of CPVT;

Data Supplement 24. Nonrandomized Trials, Observational Studies, and/or Registries of NICM – (Section 7.2)

· · · · · · · · · · · · · · · · · · ·	
	2) Mutation specific genetic
	testing is recommended for
	family members and appropriate
	relatives
	Brugada: Class I: Mutation
	specific genetic testing is
	recommended for family
	members and appropriate
	Clease they are under a clinical
	Class lia: any pt w strong clinical
	index of suspicion of BrS,
	including with procainamide
	challenge
	Class III: not indicated in the
	setting of an isolated type 2 or 3
	Brugada ECG pattern
	Short QTS: Class I: Mutation
	specific genetic testing is
	recommended for family
	members and appropriate
	relatives
	Class III: any nt with strong
	clinical index of suspicion
	ARVC: Class I: Mutation specific
	genetic testing is recommended
	for family members and
	annronriate relatives
	Class lla: can be useful for
	class lid. Call be useful for
	patients satisfying task force
	Class lib: may be considered for
	patients with possible ACM/ARVC
	Class III: not recommended for

		criterion according to the 2010	
		task force criteria	
		lask force criteria	
		SCD/SIDS: Class I: 1) Collection of	
		tissue cample recommended	
		(blood or heart/liver/spleen	
		tissue); 2) Mutation specific	
		genetic testing is recommended	
		genetic testing is recommended	
		for family members and	
		appropriate relatives	
		Class IIb: testing may be	
		considered if circumstantial	
		evidence suggests LQTS or CPVT	
		specifically	
		specifically	
		ACA/resuscitated: Class I:	
		Genetic testing should be guided	
		by the results of medical	
		by the results of medical	
		evaluation and is used for the 1°	
		purpose of screening at-risk	
		family mombars for sub-clinical	
		disease	
		Class III: Routine genetic testing,	
		in the absence of a clinical index	
		of evenision for a energific	
		of suspicion for a specific	
		cardiomyopathy or	
		channelopathy, is not indicated	
		for the survivor of upovalained	
		for the survivor of unexplained	
		OHCA	
		HCM: Class I: 1) any nt in whom	
		the clinical dx of HCM is	
		established. 2) Mutation specific	
		genetic testing is recommended	
		for family members and	
		appropriate relatives	
		· · ·	
1	1		

			DCM: Class I: 1) DCM and significant cardiac conduction disease and/or family Hx of premature unexpected sudden death. 2) Mutation specific genetic testing is recommended for family members and appropriate relatives	
			LVNC: Class I: Mutation specific genetic testing is recommended for family members and appropriate relatives Class IIa: can be useful if clinical dx of LVNC is established	
			PCCD: Class I: Mutation specific genetic testing is recommended for family members and appropriate relatives Class IIb: may be considered as part of diagnostic evaluation for patients with either isolated CCD or CCD with concomitant congenital heart disease, especially w post family Hx of CCD.	
 Hershberger RE et al. 2010 (184) 20864896 	Study type: This is a review on clinical and genetic issues in DCM	N/A	N/A	• Idiopathic DCM, has been shown to have a familial basis in 20-35% of cases. Genetic studies in familial dilated cardiomyopathy have shown dramatic locus heterogeneity with mutations identified in >30 mostly autosomal genes showing primarily dominant transmission.

• Piers et al 2013 (185)	Study type: single center,	Inclusion criteria:	<u>1° endpoint</u> : VT recurrence over	• VT recurrence is high in NICM
• <u>24036134</u>	observational	Patients with NICM and	mean follow up of 25±15 mo	patients, but significant reduction in
		VT treated with catheter		the frequency of VT episodes is
	<u>Size</u> : 45	ablation	Results: VT occurred in 24	observed in the majority of patients
			patients (53%), but the 6 mo VT	following ablation.
		Exclusion criteria: N/A	burden was reduced by ≥75% in	
			79%.	• There was a suggestion that
			Recurrence rates were low after	patients treated with ablation early
			complete procedural success	(first VT or VT ICD therapy) had better
			(18%), but high after both partial	outcome than those treated late.
			success (77%) and failure (73%).	
• Greulich et al. 2013	Aim: study aimed to	Inclusion criteria: 155	1° endpoint: 1° endpoints were	 Could not tell on additional LGE
(186)	demonstrate that the	consecutive patients with	death, aborted SCD, and	parameters due to low numbers.
• <u>23498675</u>	presence of late	systemic sarcoidosis who	appropriate ICD discharge.	
	gadolinium enhancement	underwent CMR for		
	is a predictor of death	workup of suspected	Results: LGE was present in 39	
	and other adverse events	cardiac sarcoid	patients (25.5%). The presence of	
	in patients with	involvement. The median	LGE yields a HR of 31.6 for death,	
	suspected CS	follow-up time was 2.6 y.	aborted SCD, or appropriate ICD	
			discharge, and of 33.9 for any	
	Study type: Multicenter	Exclusion criteria: N/A	event. This is superior to	
	prospective		functional or clinical parameters	
			such as left LVEF, LV end-diastolic	
	Size: 155 patients		volume, or presentation as HF,	
			yielding HRs between 0.99 (per %	
			increase LVEF) and 1.004	
			(presentation as HF), and	
			between 0.94 and 1.2 for	
			potentially lethal or other	
			adverse events, respectively.	
• Kuruvilla et al. 2014	Aim: To assess the	Inclusion criteria: NICM	<u>1° endpoint</u> : Patients with LGE	Patients with LGE had increased
(187)	relation between CMR		had an increased risk of SCA	overall mortality (OR: 3.27;
• <u>24363358</u>	LGE and cardiovascular	Exclusion criteria:	events (OR: 5.32; p<0.00001)	p<0.00001) and increased HF
	outcomes in NICM	Ischemic cardiomyopathy,	compared with those without	hospitalization (OR: 2.91; p=0.02),
	patients	НСМ	LGE.	• The annualized event rates for SCA
		Intervention: CMR-LGE		was 6.0% in LGE detected patients vs.
		findings and subsequent		1.2% for those without LGE (p<0.001).

	Study type: Meta-	clinical outcomes in		
	Analysis	patients with NICM		
	Size: 9 studies and 1,488 patients	Comparator: N/A		
HELP-VT	Study type: single center,	Inclusion criteria:	1° endpoint: VT free survival at 1	 VT free survival worse in NICM
• Dinov B et al. 2014	observational	Patients with SHD	У	compared to ICM.
(175)		referred for catheter		
• <u>24211823</u>	<u>Size</u> : 227 (63 NICM)	ablation of VT with either	Results: VT free survival 40.5% in	 Complete noninducibility after
		NICM (N=63) or ischemic	NICM vs. 57% in ICM	index procedure predicted better
		cardiomyopathy (N=164)		outcome
			HR for VT recurrence for NICM	
		Exclusion criteria:	1.62 (p=0.01)	
		Failure of informed		
		consent		
 Tokuda et al 2012 	Study type: single	Inclusion criteria:	1° endpoint: All cause death or	 Outcomes of ablation differ in
(188)	center, observational	Patients with NICM and	heart transplantation following	individual etiologies of NICM. ARVC
• <u>22942218</u>		sustained monomorphic	ablation; 2° endpoint: composite	had better outcomes than DCM for 1°
	<u>Size</u> : 226	VT referred for catheter	of death, heart transplantation	(p=0.002) and 2° end points (p=0.004).
		ablation	and admission for VT recurrence	Sarcoidosis had worse outcome than
				DCM for 2° end point (p=0.002).
		Exclusion criteria: N/A	Results: After a mean of 1.4	
			ablation procedures	
			1° endpoint (4.4±3.3 y follow-up)	
			reached in 66 (29%) patients	
			reached the 1° end point: death	
			in 50 (21%) and transplant in 16	
			(7%)	
			2° endpoint (12 mo): death 10%,	
			transplant 3%, VT admission 18%	
• Cantero-Pérez FM et	Aim: To evaluate the	Inclusion criteria:	Results:	Appropriate ICD therapies were
al 2013 (155)	effectiveness of ICDs for	Records from natients	Median follow-up of 77 d	recorded in 42.9% $(12/28)$ in this
• 24314988	primary prevention in	accepted for heart	overall mortality in the ICD group	population.
<u></u>	patients with LVEF <30%	transplantation from	was 7.1% (2/28) and in the non-	Population .
		January 1, 2006, to July		
		[,,,]		

	included on the heart	30, 2012, and whose LVEF	ICD group was 17.6% (9/51;	
	transplantation list	was <31% were reviewed	p=0.062).	
			Cause of death in patients	
	Size: Patients who		without ICDs:	
	received ICDs for primary		Sudden death (5/9, 55.6%),	
	prevention (N=28) were		HF (4/9, 44.4%).	
	compared with patients		Cause of death in patients with	
	without ICDs (N=51)		ICDs: HFheart	
• Fröhlich GM, et al.	Aim: To delineate the	Inclusion criteria:	Results:	• ICDs appear to be associated with a
2013 (156)	role of ICD therapy for	Patients listed for heart	Median time on the waiting list =	reduction in all-cause mortality in
• <u>23813845</u>	the primary and	transplantation in 2	8 mo (estimated 1-year: 88±3%	patients implanted with the device for
	secondary prevention of	tertiary heart transplant	vs. 77±3% vs. 67±3%; p=0.0001).	primary and secondary prevention
	SCD in patients listed for	centres were enrolled. Of	An independent beneficial effect	compared to those without an ICD.
	heart transplantation	550 patients (51%) on the	of ICDs that was most	
		transplant list with an	pronounced in patients who had	
	<u>Size:</u> N=1089	ICD:	received an ICD for primary	
		primary prevention ICD:	prevention (HR: 0.4, 95% CI:	
		N=216	0.19–0.85; p=0.016).	
		secondary prevention		
		ICD: N=334		
• Gandjbakhch E, et al.	Aim: To evaluate the ICD	Inclusion criteria:	Results:	 Need for mechanical circulatory
2016 (157)	benefit on mortality in	Patients with end-stage	15.6% of patients died while	support (p<0.001), low EF (p=0.001)
• <u>27344378</u>	patients with end-stage	HF receiving an ICD	awaiting heart transplantation.	and registration on the regular list
	HF listed for heart	before or within 3 mo	Non-ICD patients presented more	(p=0.008) were the only independent
	transplantation	after being listed for	often haemodynamic	predictors of death.
		heart transplantation	compromise.	 ICD-related complications occurred
	Size: N=380 consecutive		ICD did not remain an	in 21.4% of patients, mainly as a result
	patients listed for heart		independent predictor of death.	of postoperative worsening of HF
	transplantation between		Death by haemodynamic	(11.9%).
	2005 and 2009 in A		compromise (76.3% of deaths),	
	tertiary heart transplant		which occurred more frequently	
	centre		in the non-ICD group (14.7% vs.	
			5.8%; log-rank p=0.002).	
			Unknown/arrhythmic deaths did	
			not differ significantly between	

			the two groups (3.9% vs. 1.7%; log-rank p=0.21).	
• Vakil K, et al. 2016 (158)	Aim: To assess the impact of ICD on waitlist mortality in patients listed for heart transplantation Size: N=32,599	Inclusion criteria: Adults (age ≥18 y) listed for first-time heart transplantation in the US between January 1, 1999, and September 30, 2014, were retrospectively identified from the United Network for Organ Sharing registry.	Results: Median follow-up of 154 days, 3,638 patients (11%) died on the waitlist (9% in ICD group vs. 15% in no-ICD group; p<0.0001), whereas 63% underwent heart transplantation. An ICD at listing was associated with an adjusted 13% relative reduction in mortality (HR: 0.87; 95% CI: 0.80–0.94).	• In the subgroup of patients with LVAD (N= 9,478), having an ICD was associated with an adjusted 19% relative reduction in mortality (HR: 0.81; 95% CI: 0.70–0.94).
 Oloriz et al 2014 (189) <u>24785410</u> 	Study type: single center, observational Size: 87	Inclusion criteria: Patients with NICM and drug refractory VT treated with ablation Exclusion criteria: N/A	 <u>1° endpoint</u>: VT recurrence, stratified to scar location (anteroseptal vs. basal lateral) determined by unipolar voltage mapping <u>Results</u>: Over a mean 1.5 y follow up, VT recurred in 44 patients (51%) during a median follow-up of 1.5 y. Anteroseptal scar was associated with higher VT recurrence (74% vs. 25%; log- rank p<0.001) Death occurred in 15% 	• Multivariate predictors of VT recurrence included electrical storm (HR: 3.211; p=0.001) and NHYA class (HR: 1.608; p=0.018), anteroseptal scar pattern (HR: 5.547; p<0.001)
 Proietti et al 2015 (190) <u>25488957</u> 	Study type: single center, observational Size: 142 (55 NICM)	Inclusion criteria: Patients with ischemic cardiomyopathyand NICM referred for catheter ablation for VT Exclusion criteria: N/A	 <u>1° endpoint</u>: VT recurrence, determined by ICD interrogations over 641±301 d. <u>Results</u>: Recurrent VT occurred more frequently in the NICM group 51% than in the ischemic 	• Results of substrate guided ablation less favorable in NICM than ischemic cardiomyopathy patients

			cardiomyopathy group 26% (p=0.03)	
			Acute results (defined by response to PES) correlated with likelihood of recurrence: for the NICM group, recurrence was observed in 7, 75 and 100% of successful, partially successful and failed ablations	
• Haqqani et al 2011	Study type: single center,	Inclusion criteria:	1° endpoint: VT recurrence over	 Isolated septal substrate in NICM
(191)	observational	Patients with NICM and	mean followup of 20±28 mo	portended a poor outcome, both in
• <u>21392586</u>		VT treated with catheter		terms of VT recurrence and transplant
	<u>Size</u> : 31	ablation who had isolated	<u>Results</u> : Following a mean of 1.6	free survival in followup
		intra-septal scar (11.65%	ablation procedures, VT	
		of total)	recurrence was observed in 32%;	
			death and heart transplant	
		Exclusion criteria: N/A	occurred in 26% and 16%	
			respectively	
• Kuhne et al 2010	Study type: single center,	Inclusion criteria:	<u>1° endpoint</u> : VT recurrence over	
(192)	observational	Patients with NICM and	mean followup of 18±13 mo	
• <u>20384656</u>	C	VI treated with catheter		
	<u>Size</u> : 35	ablation	Results: Recurrence was	
		Evolution critoria, N/A	observed in 57%. In patients who	
		Exclusion criteria. N/A	(targeted for ablation) freedom	
			from VT and major arrhythmia	
			related adverse events was	
			improved compared to those	
			without identified isolated late	
			potentials	
• Cano et al 2009 (193)	Study type: single center,	Inclusion criteria:	1° endpoint: VT recurrence over	• The VT substrate in NICM is often
• <u>19695457</u>	observational	Patients with NICM and	mean follow up of 18±7 mo	more prominent on the epicardial
		VT suspected to be	following endocardial and	than the endocardial surface.
	<u>Size</u> : 22	epicardial in origin (Prior	epicardial ablation	Epicardial ablation may improve
		failed endocardial		outcome in selected patients with VT
				in the setting of NICM.

106

		ablation or ECG	Results: Freedom from VT	
		characteristics during VT)	recurrence was observed in 15 of	
			21 patients in whom any ablation	
		Exclusion criteria: N/A	was performed, and 14 of 18 with	
			epicardial ablation	
• Delacretaz et al 2000	Study type: single center,	Inclusion criteria:	1° endpoint: VT recurrence over	Recurrent monomorphic VT in NICM
(194)	observational	Patients with NICM and	mean followup of 15±12 mo	can be focal or reentrant; reentrant
• <u>10695454</u>		VT treated with catheter		causes can be scar related or 2° to
	<u>Size</u> : 26	ablation	Results: VT recurrence was	bundle branch reentry.
			observed in 23%, but differed	
		Exclusion criteria: N/A	depending on VT mechanism: 40,	
			0 and 14% in scar related VT,	
			focal VT and bundle branch	
			reentry, respectively.	

Data Supplement 25. RCTs Secondary Prevention SCD in NICM – (Section 7.2.1)

Study Acronym; Author;	Aim of Study; Study Type;	Patient Population	Endpoint Results (Absolute Event Rates,	Relevant 2° Endpoint (if any);
Year Published	Study Size (N)		P values; OR or RR; &	Study Limitations;
			95% CI)	Adverse Events
AVID	Aim: To examine	Inclusion criteria: patients who were	1° endpoint: Survival	 Study terminated
 The AVID 	the effect on overall	resuscitated from near-fatal VF; sustained		early after 1016 of 1200
Investigators	survival of initial	VT with syncope; or sustained VT with an	Results: Overall survival was greater	patients enrolled
1997 (131)	therapy with an ICD	LVEF ≤0.40 and symptoms suggesting	with the ICD, with unadjusted	 81% of patients had
• <u>9411221</u>	as compared with	severe hemodynamic compromise.	estimates of 89.3 percent, as	CAD
	amiodarone or		compared with 82.3% in the AAD	
	sotalol in patients	Exclusion criteria: arrhythmia was judged	group at 1 y, 81.6% vs 74.7% at 2 y,	
	resuscitated from VF	to have a transient or correctable cause,	and 75.4% vs 64.1% at 3 y (p<0.02).	
	or symptomatic,	excessively high risk (life expectancy <l th="" y,<=""><th>The corresponding reductions in</th><th></th></l>	The corresponding reductions in	
	sustained VT with	class IV CHF, awaiting a heart transplant, or	mortality (with 95% confidence	
	hemodynamic	requiring a balloon pump, other mechanical	limits) with the ICD were 39±20%,	
	compromise.	means, or inotropic drug administration for	27±21%, and 31±21%.	
		hemodynamic support)		
	Study type: RCT	or excessively low risk (event occurring		
		within 5 d of cardiac surgery or angioplasty,		

		 implant), chronic serious bacterial infection, or were unable to give verbal assent due to neurologic impairment. Contraindications to amiodarone. Intervention: Therapy with ICD Comparator: AAD amiodarone or sotalol, but only 2.6% received sotalol, most received amiodarone 		
• CIDS Ai • Conolly et al. th 2000 (132) IC • 10725290 fo of w su ve ar <u>St</u>	im: To compare he efficacy of the CD and amiodarone or the prevention if death in patients vith previous ustained entricular rrhythmia tudy type: RCT ize: 659 patients	Inclusion criteria: in the absence of either recent AMI or electrolyte imbalance, they manifested any of the following: (1) documented VF; (2) OHCA requiring defibrillation or cardioversion; (3) documented, sustained VT causing syncope; (4) other documented, sustained VT at a rate ≥150 beats/min, causing presyncope or angina in a patient with a LVEF ≤35%; or (5) unmonitored syncope with subsequent documentation of either spontaneous VT ≥10 s or sustained (≥30 s) monomorphic VT induced by programmed ventricular stimulation. Exclusion criteria: (1) ICD or amiodarone not considered appropriate, (2) excessive perioperative risk for ICD implantation; (3) previous amiodarone therapy for ≥6 wk; (4) nonarrhythmic medical condition making 1 y survival unlikely, and (5) LQTS. Intervention: ICD	<u>1° endpoint</u> : Death from any cause. <u>Results:</u> A nonsignificant reduction in the risk of death was observed with the ICD, from 10.2%/y to 8.3%/y (RRR: 19.7; 95% CI: -7.7%– 40%; p=0.142). A nonsignificant reduction in the risk of arrhythmic death was observed, from 4.5%/y to 3.0%/y (RRR :32.8%; 95% CI: -7.2%– 57.8%; p=0.094).	• 82% had ischemic etiology
• CASH • Kuck et al. 2000 (133) • <u>10942742</u> • Desai et al. 2004 (195) • <u>15598919</u>	Aim: to study the impact on overall survival of initial therapy with an ICD as compared with that with 3 AAD. Study type: RCT Size: 288 patients Aim: To determine whether ICD therapy reduces all-cause mortality in patients with NICM. Study type: meta- analysis of RCT Size: 8 randomized trials enrolling a total of 2146 patients with NICM	Inclusion criteria: patients resuscitated from CA 2° to documented sustained VA Exclusion criteria: If CA occurred within 72 h of an AMI, cardiac surgery, electrolyte abnormalities, or proarrhythmic drug effect. Intervention: ICD therapy Comparator: amiodarone, metoprolol, or propafenone. Assignment to propafenone was in March 1992, after an interim analysis showed a 61% higher all-cause mortality rate than in 61 ICD patients during a followup of 11.3 mo. Inclusion criteria: prospective RCT of ICD or combined CRT defibrillator vs medical therapy enrolling at least some individuals with NICM and reporting all-cause mortality as an outcome. Intervention: ICD Comparator: Medical therapy.	 <u>1° endpoint</u>: The 1° end point was all-cause mortality. <u>Results:</u> Over a mean follow-up of 57±34 mo, the death rates were 36.4% (95% CI: 26.9%–46.6%) in the ICD and 44.4% (95% CI: 37.2%–51.8%) in the amiodarone/metoprolol arm. Overall survival was higher, though not significantly, in patients assigned to ICD than in those assigned to drug therapy (HR: 0.766, 97.5% CI:1.112, p=0.081). <u>1° endpoint</u>: Two of the 3 2° prevention trials presented subgroup estimates for ICD efficacy in NICM. Pooled analysis of these 2° prevention trials (N=256 patients with NICM) indicated an equivalent to 1 y prevention but nonsignificant mortality reduction with ICD therapy (RR: 0.69; 95% CI: 0.39–1.24; p=0.22). 	 In ICD patients, the percent reductions in all-cause mortality were 41.9%, 39.3%, 28.4%, 27.7%, 22.8%, 11.4%, 9.1%, 10.6%, and 24.7% at 1 y to 9 of follow-up. CAD was etiology in 73% A much larger reduction of 61%, for SCD was observed Analysis of all 7 trials (1° and 2° prevention) combined demonstrated a statistically significant 31% overall reduction in mortality with ICD therapy (RR: 0.69; 95% CI: 0.56–0.86; p=0.002).
---	--	--	---	--
	were included.	Inclusion exiteria: suprivers of sustained	19 and no inter Community and	• 61% of patients had
 • MAVERIC • Lau et al. 2004 (135) • <u>15172648</u> 	<u>Aim</u> : to test the possibility of prospectively identifying patients	VT, VF or sudden cardiac death in the absence of an AMI in the last 48 h.	<u>1- endpoint</u> : Survival and arrhythmia recurrence <u>Results:</u> Of the 108 EP arm patients, 21 (20%) received on ICD_46 (42%)	 61% of patients had prior MI EPS has a minimal impact on the diagnosis of patients presented
	most ICD by EPS in	from a non-arrhythmic cause or child- bearing age	amiodarone or sotalol) and 18 (17%)	with VT, VF or SCD.

	the context of 2° prevention. <u>Study type</u> : RCT	Intervention: EP-guided interventions (AAD, coronary revascularization, and ICD) (106 patients assigned to this arm) Comparator: therapy with amiodarone (108	received coronary revascularization but no ICD. No significant differences in survival or arrhythmia recurrence existed between the 2 treatment arms after 6 y. However,	• The trial does not support a role for EP testing in risk stratification.
	Size: 214 patients	patients assigned to this arm)	ICD recipients had a lower mortality than non-ICD recipients, regardless of allocated treatment (HR:0.54, p=0.0391).	
 Claro et al. 2015 (136) <u>26646017</u> 	Aim: To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD compared with placebo or no intervention or any other antiarrhythmic. Study type: meta- analyses using a random-effects model Size: 24 studies (9,997 participants)	 Inclusion criteria: Randomised and quasi- randomised trials assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD. Exclusion criteria: NA Intervention: Amiodarone Comparator: placebo, no intervention, or other antiarrhythmics 	<u>1° endpoint</u> : SCD and overall mortality <u>Results:</u> For 2° prevention, amiodarone compared to placebo or no intervention (2 studies, 440 participants) appeared to increase the risk of SCD (RR: 4.32; 95% CI: 0.87–21.49) and all-cause mortality (RR:3.05;95% CI 1.33–7.01). However, the quality of the evidence was very low. Compared to other antiarrhythmics (4 studies, 839 participants) amiodarone appeared to increase the risk of SCD (RR:1.40; 95% CI: 0.56–3.52; very low quality of evidence), but there was no effect in all-cause mortality (RR: 1.03; 95% CI: 0.75–1.42; low	 For 2° prevention, the quality of the evidence was very low, so the authors concluded that there was uncertainty on the findings. Amiodarone was associated with an increase in pulmonary and thyroid adverse events.
OPTIC Study	Aim: To determine	Inclusion criteria: Patients were eligible if	1° endpoint: ICD shock for any	• Amiodarone plus BB is
• Connolly et al.	whether	they had received an ICD within 21 d for	reason.	effective for preventing
2006 (159)	amiodarone plus BB	inducible or spontaneously occurring VT or		these shocks and is
• <u>16403928</u>	or sotalol are better	VF.	Results: Shocks occurred in 41	more effective than
	than BB alone for		patients (38.5%) assigned to BB	sotalol but has an
	prevention of ICD	Exclusion criteria: Patients were excluded if	alone, 26 (24.3%) assigned to	increased risk of drug-
	shocks.	they had LQTS, corrected QT interval of	sotalol, and 12 (10.3%) assigned to	related adverse effects
		more than 450 millisec, were receiving a	amiodarone plus BB. A reduction in	

	Study type:	class I or class III antiarrhythmic agent, had	the risk of shock was observed with	 Adverse pulmonary
	multicenter RCT	received amiodarone or sotalol for more	use of either amiodarone plus BB or	and thyroid events and
		than 20 consecutive d at anytime (patients	sotalol vs BB alone (HR: 0.44; 95%	symptomatic
	Size: 412 patients	who had received >10 d of amiodarone had	CI: 0.28–0.68; p<0.001). Amiodarone	bradycardia were more
		to be taken off amiodarone for 10 d before	plus BB significantly reduced the risk	common among
		randomization), a calculated creatinine	of shock compared with BB alone	patients randomized to
		clearance of less than 30 mL/min (<0.50	(HR: 0.27; 95% CI: 0.14–0.52;	amiodarone.
		mL/s), symptomatic AF likely to require use	p<0.001) and sotalol (HR: 0.43; 95%	
		of a class I or class III antiarrhythmic agent,	CI: 0.22–0.85; p=0.02). There was a	
		absence of SHD, contraindications to	trend for sotalol to reduce shocks	
		amiodarone or a β -blocker, or NYHA class IV	compared with BB alone (HR:	
		symptoms of HF.	0.61;95% Cl, 0.37–1.01; p=0.055).	
		Intervention: amiodarone plus BB, sotalol	The rates of study drug	
		alone	discontinuation at 1y were 18.2% for	
			amiodarone, 23.5% for sotalol, and	
		Comparator: BB alone.	5.3% for BB alone.	
• Piccini et al.	Aim: To evaluate	Inclusion criteria: Studies in which patients	1° endpoint: SCD, CVD, all-cause	 Amiodarone reduces
2009 (154)	the cumulative	were randomized to amiodarone and	mortality, and the incidences of drug	the risk of SCD by 29%
• <u>19336434</u>	evidence	placebo or inactive control. Additional	toxicities.	and CVD by 18%,
	regarding the safety	inclusion criteria included: treatment for		however, amiodarone
	and efficacy of	>30 d, follow-up >6 mo, and availability of	Results: Amiodarone decreased the	therapy is neutral with
	amiodarone in	all-cause mortality as an endpoint	incidence of SCD (7.1 vs. 9.7%; OR:	respect to all-cause
	prevention of SCD		0.71; 95% CI: 0.61–0.84; p<0.001)	mortality and was
		Exclusion criteria: Studies	and cardiovascular death (14.0%	associated with a two-
	Study type: Meta-	of patients with shock-refractory VA, OHCA,	vs.16.3%; OR: 0.82; 95% CI: 0.71–	and five-fold increased
	analysis of all RCT	patients <18 y, randomization to	0.94, p=0.004). There was a 1.5%	risk of pulmonary and
	examining the use of	amiodarone vs. a class Ic or class III AAD	absolute risk reduction in all-cause	thyroid toxicity.
	amiodarone vs.	(without a placebo or standard of care	mortality which did not meet	 Authors suggested
	placebo/control for	arm). Studies of patients with ICDs were	statistical significance (p=0.093).	amiodarone as a viable
	the prevention of	excluded unless used on both arms.	Amiodarone therapy increased the	alternative in patients
	SCD		risk of pulmonary (2.9% vs. 1.5%;	who are not eligible for
			OR: 1.97; 95% CI: 1.27–3.04,	or who do not have
	Size: 15 trials, which		p=0.002), and thyroid (3.6% vs.	access to ICD therapy
	randomized 8,522		0.4%; OR: 5.68; 95% CI: 2.94–10.98,	for the prevention of
	patients		p<0.001) toxicity.	SCD.
1				

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
• Raitt et al. 2001	Aim: To determine	Inclusion criteria:	1° endpoint: Mortality	 Sustained VT without serious
(137)	prognostic implications of	Patients with stable VT		symptoms or hemodynamic
• <u>11208684</u>	stable VT	that were not enrolled	Results: The mortality in 440	compromise is associated with a
		in AVID, were included	patients with stable VT tended to	high mortality rate and may be a
	Study type: Observational,	in a registry of patients	be greater than that observed in	marker for a substrate capable of
	registry of patients with	screened for the study.	1029 patients presenting with	producing a more malignant
	hemodynamically stable VT		unstable VT (33.6% vs 27.6% at 3	arrhythmia
		Exclusion criteria:	y; RR:1.22; p=0.07). After	
	Size: The study population	Patients who had an	adjustment for baseline and	
	consisted of 440 patients	arrhythmia within 5 d of	treatment differences, the RR was	
	with stable VT and 1029	MI, cardiac surgery, or	little changed (RR:1.25, p=0.06).	
	patients with unstable VT. Of	coronary intervention		
	the 1029 patients with	were excluded, as were		
	unstable VT, 330 had	patients with NYHA class		
	therapy determined by	IV HF or those who were		
	randomization in the AVID	on a heart transplant		
	trial: 52% received an ICD,	list, had a prior ICD		
	47% amiodarone, and 2%	implant or attempted		
	sotalol. Therapy for the	implant, or had a life		
	remaining 699 patients with	expectancy of <1y.		
	unstable VT and the 440			
	patients with stable VT was			
	determined at the discretion			
	of the attending physician.			
• Ruwald et al.	Aim: to evaluate (1) the	Inclusion criteria: 1500	<u>1º endpoint</u> : Syncope was a	• 21 syncopal events (33%) were
2014 (196)	effects of innovative ICD	patients from 98	prespecified safety end point that	classified as caused by VI or VF and
• <u>24201303</u>	programming with either a	nospital centers with a	was adjudicated independently.	4 (6%) as caused by other or
	nign-rate cutoff VI zone or	1° prevention guideline	Multivariable Cox models were	unspecified arrhythmias, whereas a
	delayed therapy on risk of	indication to receive an	used to identify risk factors	total of 39 events (61%) were
	syncope compared with	ICD OF CKI-D.	associated with syncope and to	classified as nonarrhythmogenic.
	(2) the independent		analyze subsequent risk of	• Syncope in HF patients (with a
	(2) the independent	Exclusion criteria:	mortality.	defibriliator) is primarily vasovagal,
	prognostic factors associated	Patients were excluded		orthostatic, or otherwise

Data Supplement 26. Nonrandomized Trials, Observational Studies, and/or Registries of Secondary Prevention SCD in NICM – (Section 7.2.1)

	with syncope; and (3) the	if they had experienced	Results: Prognostic factors for all-	nonarrhythmogenic in mechanism
	association between	AF within 1 mo before	cause syncope included the	and underscores the fact that the
	syncope, the cause of	implantation; if they	presence of ischemic	presence of heart disease (in this
	syncope, and the risk of	previously had been	cardiomyopathy (HR: 2.48; 95% Cl	case, ischemic or nonischemic HF)
	death in patients enrolled in	implanted with a	1.42–4.34; p=0.002), previous VA	does not dictate that syncope has a
	MADIT-RIT	pacemaker, ICD, or CRT-	(HR: 2.99; 95% CI 1.18–7.59;	cardiac cause
		D; or if they had a recent	p=0.021), LVEF ≤25% (HR: 1.65;	• Syncope in HF patients is related
	Study type: Subgroup	MI or revascularization	95% CI 0.98–2.77; p=0.059), and	to an increased cardiovascular risk
	analysis of MADIT-RIT.	procedure (within 3	younger age (by 10 y; HR: 1.25;	profile and is associated with an
		mo).	95% Cl1.00–1.52; p=0.046).	increased risk of death regardless
	Size: 64 of 1500 patients		Syncope was associated with	of its cause
	(4.3%) had syncope		increased risk of death regardless	
			of its cause (arrhythmogenic	
			syncope: HR: 4.51; 95% CI 1.39–	
			14.64, p=0.012;	
			nonarrhythmogenic syncope: HR	
			2.97; 95% Cl 1.07–8.28, p=0.038).	
 Middlekauff et 	Study type: Retrospective	Inclusion criteria: 491	1° endpoint: Mortality	 Authors concluded that patients
al.1993 (3)	cohort	consecutive patients		with advanced HF and syncope are
• <u>8417050</u>		with advanced CHF	Results: The actuarial incidence	at especially high risk for sudden
	Size: 491 patients with CHF,	(NYHA functional class III	of sudden death by 1 y was	death regardless of the etiology of
	of which 60 had a Hx of	or IV), no Hx of CA and a	significantly greater in patients	syncope.
	syncope; the condition had a	mean LVEF of 0.20 ±	with (45%) than in those without	
	cardiac origin in 29 (48%)	0.07.	(12%, p<0.00001) syncope. In the	
	and was due to other causes		Cox proportional hazards model,	
	in 31 (52%).		syncope predicted sudden death	
		Exclusion criteria: N/A	independent of AF, serum sodium,	
			cardiac index, angiotensin-	
			converting enzyme inhibition and	
			patient age. The actuarial risk of	
			sudden death by 1 y was similarly	
			high in patients with either cardiac	
			syncope or syncope from other	
			causes (49% vs. 39%, p=NS).	
• Knight et al.1999	Study type: Observational	Inclusion criteria	<u>1° endpoint</u> : Mortality	• The authors conclude that the
(197)		consecutive patients		nign incidence of appropriate ICD
• <u>10362200</u>	Size: 14 patients	who had a NICM,		shocks and the association of

		unexplained syncope and a negative electrophysiology test and who underwent defibrillator implantation (Syncope Group).19 consecutive patients with a NICM and a CA who were treated with a ICD (Arrest Group) served as a control group.	<u>Results:</u> Seven of 14 patients (50%) in the Syncope Group received appropriate shocks for VA during a mean follow-up of 24±13 mo, compared with 8 of 19 patients (42%) in the Arrest Group during a mean follow-up of 45±40 mo (p=0.1).	recurrent syncope with VA support the treatment of patients with NICM unexplained syncope and a negative electrophysiology test with ICD.
		Exclusion criteria: N/A		
• Brilakis et al.	Study type: Observational	Inclusion criteria:	Results: An EPS was done in 37 of	• The authors conclude that
2001 (198)		Between 1990 and	the 54 patients. In the 17 patients	programmed ventricular
• <u>11816631</u>	Size: 54 patients	1998, 54 (mean age	who received an ICD, incidence of	stimulation is not useful in risk
		67±11 y, 76% men)	appropriate shocks at 1 and 3 y	stratification of patients with IDCM
		patients presented with	was 47% and 74%, respectively, in	and syncope and may delay
		IDCM and syncope.	the inducible sustained	necessary ICD implantation.
			monomorphic VT group, and 40%	
		Exclusion criteria: N/A	and 40%, respectively, in the	
			group without inducible sustained	
			monomorphic VT (p=0.29, log-	
			rank test)	
• Fonarow et al.	Study type: Observational	Inclusion criteria: 147	Results: During a mean follow-up	• The authors conclude in patients
2000 (199)		patients with Hx of	of 22 mo, there were 31 deaths,	with nonischemic cardiomyopathy
• <u>10760339</u>	Size: 147 patients	syncope and no prior Hx	18 sudden, in patients treated	and syncope, therapy with an ICD is
		of sustained VT or CA	with conventional therapy,	associated with a reduction in
		were identified.	whereas there were 2 deaths,	sudden death and an improvement
		Outcomes were	none sudden, in patients treated	in overall survival.
		compared for the 25	with an ICD. An appropriate shock	
		patients managed with	occurred in 40% of the ICD	
		an ICD and 122 patients	patients. Actuarial survival at 2 y	
		managed with	was 84.9% with ICD therapy and	

		conventional medical	66.9% with conventional therapy	
		therapy.	(p=0.04).	
		Exclusion criteria: N/A		
 Olshansky et al. 	Study type: Subgroup	Inclusion criteria:	<u>1° endpoint</u> : Outcomes, including	 Syncope was common in the
2008 (200)	analysis of SCD-HeFT trial.	Patients in the SCD-HeFT	mortality, ICD discharges and SCD.	SCD-HeFT population. Post-
• <u>18371559</u>		trial who reported		randomization syncope was
	Size: 472 patients	syncope prior of after	Results: In SCD-HeFT, 162 (6%)	associated with increased risk of
		randomization.	patients had syncope before	all-cause mortality, cardiovascular
			randomization, 356 (14%) had	mortality, and SCD (despite
		Exclusion criteria: N/A	syncope after randomization	randomization to an ICD). Those
			(similar incidence in each	patients randomized to an ICD,
			randomized arm), and 46 (2%) had	who had syncope, were more likely
			syncope before and after	to receive appropriate ICD shocks
			randomization. In the ICD arm,	than those without syncope; yet,
			syncope, before and after	did not protect patients against
			randomization, was associated	recurrent syncope and did not
			with appropriate ICD discharges	protect against the risk of death.
			(HR: 1.75;95% CI: 1.10–2.80,	
			p=0.019 and HR: 2.91;95% CI:	
			1.89–4.47, p=0.001, respectively).	
			Post-randomization syncope	
			predicted total and cardiovascular	
			death (HR: 1.41; 95% CI: 1.13–	
			1.76, p=0.002 and HR: 1.55; 95%	
			Cl: 1.19–2.02, p=0.001,	
			respectively). The elevated	
			relative risk of mortality for	
			syncope vs. nonsyncope patients	
			did not vary significantly across	
			treatment arms (ICD, HR: 1.54;	
			95% CI: 1.04–2.27; amiodarone,	
			HR: 1.33; 95% CI: 0.91–1.93; and	
			placebo, HR: 1.39; 95% Cl: 0.96-	
			2.02, test for difference p=0.86).	

Study Acronym;	Aim of Study;	Patient Population	Study Intervention	Endpoint Results	Relevant 2° Endpoint (if any);
Author;	Study Type;		(# patients) /	(Absolute Event Rates,	Study Limitations;
Year Published	Study Size (N)		Study Comparator	P values; OR or RR; &	Adverse Events
			(# patients)	95% CI)	
• CAT	Aim: Multicenter	Inclusion criteria:	Intervention: ICD	1° endpoint: The 1° end	 Enrollment was terminated
 Bänsch D et al. 	RCT of ICD vs.	Recent onset of DCM	(N=50)	point of the trial was all-	early because the interim
2002 (201)	conventional	(≤9 mo) and an EF ≤30%		cause mortality at 1 y.	analysis showed that the
• <u>11914254</u>	Therapy in NIDCM	and class II-III	Comparator:		overall1 y mortality rate for all
			Conventional therapy	 Cumulative survival was 	patients was only 5.6%, well
	Study type: RCT	Exclusion criteria: CAD,	(N=54)	92%, 86%, and 73% in the	below the assumed value of
		excessive alcohol		ICD treatment group	30%.
	Size: 104 patients	intake, prior MI or		vs. 93%, 80%, and 68% in	 Because the overall
		myocarditis.		the control group after 2,	mortality rate was too low, the
				4, and 6 y, respectively	study was stopped for futility
				(log rank p=0.554)	after the pilot phase. Even if
					1,348 patients had been
					included, as initially planned,
					the trial would have been
					underpowered.
	Aim: Multicontor	Inclusion critoria: EE	Intervention: ICD	19 and a sint. Tatal	• Trial terminated early for
• Strickharger et	RCT of ICD vs	<u>c0.35</u> asymptomatic	(N=51)	<u>I eliupoint</u> . Total	• Inal terminated early for
● 3(1)(K))erger et	amiodarone	NSVT NVHA class I to		Wortanty	expected mortality
● 12767651	Therany in NIDCM		Comparator:		With the observed mortality
• 12/0/051	and NSVT		Amiodarone (N=52)	-5000000000000000000000000000000000000	rates approximately 12 000
		Exclusion criteria:		87%) was similar in the	natients would have been
	Study type: RCT	Syncope, pregnancy a		amiodarone and ICD	required to achieve a power of
		contraindication to		groups respectively	80%.
	Size: 103 patients	amiodarone or		(n=0.8).	
		ICD or concomitant			
		therapy with a Class I			
		AAD			

Data Supplement 27. RCTs Primary Prevention SCD in NICM – (Section 7.2.2)

 DEFINITE Kadish A, et al. 2004 (203) <u>15152060</u> 	Aim: Multicenter RCT of ICD vs. standard medical therapy in NIDCM and ambient VA <u>Study type</u> : RCT <u>Size</u> : 458 patients	Inclusion criteria: EF ≤35%, and >10 PVCs/h or NSVT. Exclusion criteria: NYHA class IV HF, familial cardiomyopathy associated with sudden death, acute myocarditis or congenital heart disease.	Intervention: ICD (N=229) Comparator: Conventional therapy (N=229)	<u>1° endpoint</u> : Total Mortality Fewer patients died in the ICD group than in the Control group (28 vs. 40), but the difference in survival was NS (p=0.08)	 There were 3 sudden deaths from arrhythmia in the ICD group, as compared with 14 deaths in the Control group (HR: 0.20; 95 % CI: 0.06–0.71; p=0.006)
• SCD-HeFT • Bardy et al. 2005 (43) • <u>15659722</u>	Aim: Multicenter RCT of ICD vs amiodarone vs. optimal medical therapy Study type: RCT Size: 2,521 patients	Inclusion criteria: Ischemic or non ischemic DCM, NYHA class II or III HF and LVEF ≤35% Exclusion criteria: N/A	Intervention: Amiodarone (N=845) ICD therapy (N= 829) Comparator: Optimal medical therapy (N=847)	<u>1° endpoint</u>: After a median follow-up of 4 y, the mortality rate was 22% in the ICD group, 28% in the amiodarone group, and 29% in the control group. This resulted in a 22% RR reduction and a 7.2% absolute risk reduction in the all-cause mortality in the ICD group as compared with optimized medical therapy alone (p=0.007)	 Amiodarone showed no benefit in survival Non-ischemic DCM 48% of cohort. Similar benefit ischemic vs. non-ischemic.
• COMPANION • Bristow et al. 2004 (204) • <u>15152059</u>	Aim: Multicenter RCT of CRT vs. CRT- D vs. optimized medical therapy Study type: RCT Size: 1,520 patients	Inclusion criteria: 1,520 Ischemic or non ischemic DCM, NYHA class III or IV, LVEF ≤35% and QRS >120 msec Exclusion criteria: N/A	Intervention: CRT-D (N=595) CRT Pacer (N=617) <u>Comparator</u> : Optimal medical therapy (N=308)	<u>1° endpoint</u> : The 1° end point was a composite of death or hospitalization for any cause. CRT-P decreased the risk of the 1° end point (HR: 0.81; p=0.014), as did CT- D (HR: 0.80; p=0.01).	 A CRT pacemaker reduced the risk of the 2° end point of death from any cause by 24% (p=0.059), and a CRT pacemaker-defibrillator reduced the risk by 36% (p=0.003) Non ischemic 44% of cohort

• Desai et al.	Aim: To determine	Inclusion criteria:	Intervention: ICD	1° endpoint: Five 1°	Analysis of all 7 trials
2004 (195)	whether ICD	prospective RCTs of ICD		prevention trials enrolling	combined demonstrated a
• <u>15598919</u>	therapy reduces all-	or combined cardiac	Comparator:	1854 patients with NICM	statistically significant 31%
	cause mortality in	resynchronization	Medical therapy	were identified; pooled	overall reduction in mortality
	patients with NICM.	therapy and		analysis suggested a	with ICD therapy (RR: 0.69;
		defibrillator (CRT-D) vs		significant reduction in	95% CI: 0.56–0.86; p=0.002).
	Study type: meta-	medical therapy		total mortality among	
	analysis of RCTs	enrolling at least some		patients randomized to	
		individuals with NICM		ICD or CRT-D vs medical	
	Size: 8 RCTs	and reporting all-cause		therapy (RR: 0.69; 95% CI:	
	enrolling a total of	mortality as an		0.55–0.87; p=0.002).	
	2146 patients with	outcome		Mortality reduction	
	NICM were			remained significant even	
	included. 7 trials			after elimination of CRT-D	
	reported subgroup			trials.	
	estimates for ICD				
	efficacy in NICM				
DANISH	Aim: To evaluate	Inclusion criteria:	Intervention: ICD	1° endpoint: Death from	 SCD (a 2° outcome) occurred
• Kober L, et al.	the benefit of	Symptomatic patients	(N=556)	any cause.	in 24 patients (4.3%) in the ICD
2016 (205)	prophylactic ICDs in	(NYHA class II or III, or			group and in 46 patients
• <u>27571011</u>	patients with	NYHA class IV if CRT	Comparator: Usual	After a median follow-up	(8.2%) in the control group
	systolic HF that is	was planned) with	care for CHF (N=560)	period of 67.6 mo, the 1°	(HR: 0.50; 95% CI: 0.31–0.82;
	not due to CAD	nonischemic		outcome had occurred in	p=0.005)
		systolic HF (LVEF ≤35%)		120 patients (21.6%) in	• 58% of patients received CRT
	Study type: RCT	and an increased level		the ICD group and in 131	system, which could have
		(>200 pg/mL) of N-		patients (23.4%) in the	influenced overall results.
	Size: 1116 patients	terminal pro-brain		control group (HR: 0.87;	Younger patients did show
		natriuretic peptide (NT-		95% CI: 0.68–1.12;	survival benefit.
		proBNP).		p=0.28).	
		Exclusion criteria:			
		Patients who had			
		nermanent atrial			
		fibrillation with a			
		resting heart rate			
		higher than			

	100 beats per minute or renal failure that was being treated with dialysis.		

Study Acronym; Study Type/Design; Patient Population		Patient Population	1° Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
 Marburg 	Aim: To determine	Inclusion criteria: Men and	1° endpoint: During 52±21 mo	 Non invasive tests such as signal-
Cardiomyopathy	the	women with IDC between 16	of follow-up, major arrhythmic	averaged ECG, baroreflex
Study	clinical value of	and 70 y of age and LVEF <45%	events were observed in 46	sensitivity, heart rate variability,
• Grimm et al. 2003	potential noninvasive	and a LV end-diastolic diameter	patients (13%), including sudden	and T-wave alternans did not seem
(206)	arrhythmia risk	>56 mm by echocardiography.	cardiac death in 23 patients and	to be helpful for arrhythmia risk
• <u>14623812</u>	predictors in a large		sustained VT or VF in another 23	stratification.
	patient cohort with	Exclusion criteria: CHF	patients	
	IDC	NYHA functional class IV; a Hx of		
		sustained VT or VF); an episode	Results: On multivariate	
		of unexplained syncope within	analysis, LVEF was the only	
	Study type:	the previous 12 mo; class I or	significant arrhythmia risk	
	Prospective	class III AAD therapy that could	predictor in patients with sinus	
	observational	not be withdrawn for at least 5	rhythm, with a relative risk of 2.3	
	monocenter study	drug half-lives; amiodarone	per 10% decrease of LVEF (95%	
		therapy within the previous 6	CI: 1.5–3.3; p=0.0001). NSVT on	
	Size: 343 patients	mo; pacemaker dependency;	Holter was associated with a	
		CAD diagnosed by evidence of	trend toward higher arrhythmia	
		any coronary artery stenosis	risk (RR: 1.7; 95% CI: 0.9–3.3;	
		>50% by angiography; or a Hx of	p=0.11), whereas BB therapy was	
		MI, systemic arterial	associated with a trend toward	
		hypertension, active	lower arrhythmia risk (RR: 0.6;	
		myocarditis, alcohol abuse, drug	95% CI: 0.3–1.2; p=0.13).	
		dependency, severe liver or		
		kidney disease, thyroid disease,		
		malignancies, or systemic		
		diseases.		

Data Supplement 28. Nonrandomized Trials, Observational Studies, and/or Registries of Primary Prevention of SCD in NICM – (Section 7.2.2)

• Goldberger et al.	Aim: To estimate	Inclusion criteria: 45 studies	Results: Test sensitivities ranged	 Techniques incorporating
2014 (207)	performance of 12	involving human subjects of the	from 28.8% to 91.0%,	functional parameters,
• <u>24445228</u>	common risk	following tests: baroreflex	specificities from 36.2% to	depolarization abnormalities,
	stratification test as	sensitivity, heart rate	87.1%, and odds ratios from 1.5	repolarization abnormalities, and
	predictors of	turbulence, heart rate	to 6.7. Odds ratio was highest for	arrhythmic markers provide only
	arrhythmic events in	variability, LV end-diastolic	fragmented QRS and TWA (OR:	modest risk stratification for
	patients with DNICM	dimension, LVEF,	6.73 and 4.66; 95% CI: 3.85–	sudden cardiac death in patients
		electrophysiologic study, NSVT,	11.76 and 2.55–8.53,	with NICM.
	Study type: meta-	LBBB, signal-averaged	respectively) and lowest for QRS	 At best, the OR for any 1
	analysis of 12	electrocardiogram, fragmented	duration (OR: 1.51; 95% CI: 1.13-	predictor is generally in the range
	commonly reported	QRS, QRS-T angle, and T-wave	2.01). None of the autonomic	of 2 to 4, precluding their
	risk stratification	alternans	tests (heart rate variability, heart	usefulness in isolation for
	tests as predictors of		rate turbulence, baroreflex	individual patient decisions
	arrhythmic events	Exclusion criteria: N/A	sensitivity) were significant	
			predictors of arrhythmic	
	Size: 45 studies		outcomes.	
	enrolling 6,088			
	patients			
 Anselme et al. 	Aim: To evaluate a	Inclusion criteria ICD implant at	1° endpoint: Malignant VA	 Life-threatening VAs are
2013 (208)	strategy of	any time during follow-up when		common in patients with LMNA
• <u>23811080</u>	prophylactic ICD in	any of the following	Results: ICD was implanted in 21	mutations and significant cardiac
	LMNA mutation	prespecified significant	out of the 47 patients. Among	conduction disorders, even if LVEF
	carriers with	conduction disorders was	ICD recipients, no patient died	is preserved
	significant cardiac	encountered: (1) requirement	suddenly and 11 (52%) patients	
	conduction disorders	for permanent ventricular	required appropriate ICD therapy	
		pacing for bradycardia; (2) PR	during a median follow-up of 62	
	Study type:	interval >0.24 s and either	mo. LVEF was ≥45% in 9 patients	
	Prospective single	complete LBBB (LBBB) or NSVT;	at the time of the event. Among	
	center observational	(3) patients already implanted	the 10 patients without	
		with a pacemaker at	malignant VA, device memory	
	Size: 47 patients	presentation to our center.	recorded NSVT in 8 (80%). The	
	with LMNA		presence of significant	
	mutations	Exclusion criteria: N/A	conduction disorders was the	
			only factor related to the	
			occurrence of malignant VA (HR:	
			5.20; 95% CI: 1.14–23.53;	
			p=0.03).	

• van Rijsingen et al.	Aim: The purpose of	Inclusion criteria: Mutation	1° endpoint: First occurring	• Carriers of LMNA mutations with
2012 (209)	this study was to	carriers older than 15 y of age	MVA. MVA were defined as	a high risk of MVA can be identified
• <u>22281253</u>	determine risk	with a previously published	appropriate ICD treatment, CPR,	using these risk factors.
	factors that predict	pathogenic LMNA mutation	or SCD	 Conduction disturbances were
	malignant VA in	with cardiac involvement and		not a risk factor in this study.
	Lamin A/C mutation	persons with a newly identified	Results: At median follow-up	 The 4 independent risk factors
	carriers	LMNA mutation with clinical or	period of 43 mo (interquartile	were NSVT, LVEF <45% at the first
		family evidence of a	range: 17–101 mo), 48 (18%)	clinical contact, male sex, and non-
	Study type:	laminopathy with possible	persons experienced a first	missense mutations (ins-del/
	Multicenter,	cardiac involvement.	episode of MVA. Independent	truncating or mutations affecting
	retrospective		risk factors for MVA were NSVT,	splicing).
	analysis	Exclusion criteria: N/A	LVEF <45% at the first clinical	
			contact, male sex, and non-	
	Size: 269 patients		missense mutations (ins-	
			del/truncating or mutations	
			affecting splicing). MVA occurred	
			only in persons with at least 2 of	
			these risk factors. There was a	
			cumulative risk for MVA per	
			additional risk factor.	
• Pasotti et al. 2008	Aim: The aim of this	Inclusion criteria: 27	1° endpoint: Events were death	 Authors concluded that dilated
(210)	study was to analyze	consecutive families in which	from any cause, death from HF,	cardiomyopathies caused by LMNA
• <u>18926329</u>	the long-term follow-	LMNA gene defects were	heart transplantation, and SCD,	gene defects are highly penetrant,
	up of dilated	identified in the probands, all	including appropriate ICD	adult onset, malignant diseases
	cardiolaminopathies	sharing the DCM phenotype. Of	interventions	characterized by a high rate HF and
	in patients with	the 164 family members, 94 had		life-threatening arrhythmias.
	LAMIN gene	LMNA gene mutations	Results:	 Neither AVB nor pacemaker
	mutations		• 60 of 94 (64%) were	implantation turned out to be
		Exclusion criteria: N/A	phenotypically affected whereas	predictors of events.
	Study type:		34 were only genotypically	 NYHA class III to IV and highly
	Retrospective		affected.	dynamic
	observational		• Of the 60 patients, 40 had DCM	 Competitive sports for 10 y were
	longitudinal study		with AVB, 12 had DCM with	independent predictors of total
			VT/VF, 6 had DCM with AVB and	events.
	Size: 94 patients		EDMD2, and 2 had AVB plus	
			EDMD2.	

• van Berlo et al. 2005 (211) • <u>15551023</u>	Aim: To evaluate common clinical characteristics of patients with lamin A/C gene mutations that cause either isolated DCM or DCM in association with skeletal muscular dystrophy. Study type: Meta- analysis (pooled data) Size: 299 carriers of	Inclusion criteria: 21 publications between March 1999 and March 2002 reporting lamin A/C gene mutations Exclusion criteria: Patients with familial partial lipodystrophy, progeria, axonal neuropathy and mandibuloacral dysplasia caused by mutations in the lamin A/C gene were excluded	 During a median of 57 mo there were 49 events in 43 DCM patients. The events were related to HF (15 heart transplants, 1 death from end-stage HF) and VA (15 SCDs and 12 appropriate ICD interventions). <u>1° endpoint</u>: Arrhythmias and sudden death <u>Results:</u> Cardiac dysrhythmias were reported in 92% of patients after the age of 30 y; HF was reported in 64% after the age of 50. 76 of the reported 299 patients (25%) died at a mean age of 46 y. Sudden death was the most frequently reported mode of death (46%) in both the cardiac and the neuromuscular phenotype. 	 Authors conclude that carriers of lamin A/C mutations carry a high risk of sudden death. Presence of pacemaker did not protect against sudden death.
• Piccini et al. 2009	Aim: To evaluate the	Inclusion criteria: Studies in	1° endpoint: SCD, CVD, all-cause	• Amiodarone reduces the risk of
(154)	cumulative evidence	which patients were	mortality, and the incidences of	SCD by 29% and CVD by 18%,
• <u>19336434</u>	regarding the safety	randomized to amiodarone and	drug toxicities.	however, amiodarone therapy is
	and efficacy of	placebo or inactive control.		neutral with respect to all-cause
	amiodarone in	Additional	Results: Amiodarone decreased	mortality and was associated with
	prevention of SCD	inclusion criteria included:	the incidence of SCD [7.1 vs.	a 2- and 5-fold increased risk of
		treatment for >30 d, follow-up	9.7%; OR: 0.71; 95% CI 0.61-	pulmonary and thyroid toxicity.
	Study type: Meta-	>6 mo, and availability of all-	0.84; p<0.001] and	 Authors suggested amiodarone
	analysis of all RCT	cause mortality as an endpoint	cardiovascular death (CVD)	as a viable alternative in patients
	examining the use of		[14.0% vs.16.3%; OR: 0.82; 95%	who are not eligible for or who do
	amiodarone vs.	Exclusion criteria: Studies	CI 0.71–0.94, p=0.004]. There	not have access to ICD therapy for
	placebo/control for		was a 1.5% absolute risk	the prevention of SCD.

	the prevention of SCD <u>Size</u> : 15 trials, which randomized 8,522 patients	of patients with shock- refractory VA, OHCA, patients <18 y, randomization to amiodarone vs. a class Ic or class III AAD (without a placebo or standard of care arm). Studies of patients with ICDs were excluded unless used on both arms.	reduction in all-cause mortality which did not meet statistical significance (p=0.093). Amiodarone therapy increased the risk of pulmonary [2.9% vs. 1.5%; OR: 1.97; 95% Cl 1.27– 3.04, p=0.002], and thyroid [3.6% vs. 0.4%; OR: 5.68; 95% Cl 2.94– 10.98, p<0.001] toxicity.	
• WEARIT-II • Kutyifa et al. 2015 (212) • <u>26316618</u>	Study type: Observational Size: 2000	Inclusion criteria: All patients with LifeVest offered patients with LVEF and a high risk for SCD after MI, following coronary revascularization, with a new-onset dilated NICM, with high risk for SCD until stabilization, or with inherited or congenital heart disease Exclusion criteria: refused consent	1° endpoint: <u>Results:</u> 805 patients (40%) had ischemic cardiomyopathy, 927 patients (46%) had nonischemic cardiomyopathy, and 268 (14%) patients were diagnosed with congenital or inherited heart disease The median age was 62 y; the median LVEF was 25%. The median WCD wear time was 90 d, with median daily use of 22.5 h.	 There was a total of 120 sustained ventricular tachyarrhythmias in 41 patients, of whom 54% received appropriate WCD shock. Only 10 patients (0.5%) received inappropriate WCD therapy. The rate of sustained ventricular tachyarrhythmias by 3 mo was 3% among patients with ischemic cardiomyopathy and congenital/inherited heart disease, and 1% among nonischemic patients (p=0.02). 90 sustained VT events in 22 patients were withheld from therapy, whereas 30 events in 22 patients required WCD shock therapy owing to hemodynamic instability (corresponding to 5 events per 100 patient y). All patients who required shock delivery had their VT/VF episodes successfully terminated with the first shock. 10 patients (0.5%, 2 per 100 patient-y) had inappropriate WCD

				therapy during the follow-up
				because of ECG artifacts.
				Inappropriate shocks did not
			-	Induce VI or VF.
• Singh et al. 2015	Study type:	Inclusion criteria: All	<u>1° endpoint</u> : Appropriate WCD	 Single center study
(213)	observational single	consecutive patients prescribed	therapy	
• <u>26670060</u>	center	a WCD between June 1, 2004	_	
		and May 30, 2015 at the	Results: During 56.7 patient-y, 0	
	<u>Size</u> : 691 (254 new	hospitals comprising the	NICM patients received an	
	NICM and 271 new	University of Pittsburgh Medical	appropriate WCD shock	
	ICM	Center to which access to		
		clinical data was available.	During 46.7 patient-y, 6 (2.2%) ischemic	
		Exclusion criteria:	cardiomyopathypatients received	
		Patients with an explanted ICD	an appropriate shock; 5	
		awaiting reimplantation, prior	survived the episode, and 4	
		cardiac arrest unrelated to AMI,	survived to hospital discharge	
		or elevated risk of SCD for		
		reasons other than ICM or		
		NICM.		
• Uyei et al. 2014	Study type:	N/A	<u>1° endpoint</u> : N/A	 The quality of evidence was low
(214)	Systematic review			to very low quality, such that our
• <u>24893969</u>			Results: It appears that	confidence in the reported
			wearable defibrillator use	estimates is weak.
	<u>Size:</u>		compared with no	
			defibrillator use reduces the	
			chance of VT/VF associated	
			deaths by an absolute risk	
			reduction of approximately 1%,	
			achieved by averting	
			approximately 4/5th of all VT/VF	
			associated deaths.	
• Al-Khatib et al.	Study type: meta-	Inclusion criteria: 1°	<u>1° endpoint</u> : all-cause mortality	• 1° prevention ICDs are efficacious
JAMA Cardiology	analysis of RCTs	prevention ICDs in patients with		at reducing all-cause mortality in
2017 (215)		NICM	Results:	patients with NICM
• <u>28355432</u>	<u>Size:</u> N=1,874		Pooling data with fixed and RE	
		Exclusion criteria:	models from these 4 studies	

CRT Antiarrhythmic medication arm	showed a significant reduction in all-cause mortality with an ICD
	(HR: 0.75; 95% Cl 0.61-0.93, p=
	heterogeneity=0.873)

Data Supplement 29. RCTs and Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Recurrent VA in Patients With NICM – (Section 7.2.3)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
OPTIC Study	Aim: To determine	Inclusion criteria: Patients	1° endpoint: ICD shock for any	 Amiodarone plus BB is effective
 Connolly et al. 	whether amiodarone	were eligible if they had	reason.	for preventing these shocks and is
2006 (159)	plus BB or sotalol are	received an ICD within 21 d		more effective than sotalol but has
• <u>16403928</u>	better than BB alone	for inducible or	Results: Shocks occurred in 41	an increased risk of drug-related
	for prevention of ICD	spontaneously occurring VT	patients (38.5%) assigned to BB	adverse effects
	shocks.	or VF.	alone, 26 (24.3%) assigned to	 Adverse pulmonary and thyroid
			sotalol, and 12 (10.3%) assigned to	events and symptomatic
	Study type:	Exclusion criteria: Patients	amiodarone plus BB. A reduction in	bradycardia were more common
	multicenter RCT	were excluded if they had	the risk of shock was observed with	among patients randomized to
		LQTS, corrected QT interval of	use of either amiodarone plus BB	amiodarone.
	Size: 412 patients	more than 450 millisec, were	or sotalol vs BB alone (HR: 0.44;	
		receiving a class I or class III	95% CI: 0.28–0.68; p<0.001).	
		antiarrhythmic agent, had	Amiodarone plus BB significantly	
		received amiodarone or	reduced the risk of shock	
	sotalol for more than 20		compared with BB alone (HR: 0.27;	
	consecutive days at an		95% CI: 0.14–0.52; p<0.001) and	
	(patients who had received		sotalol (HR: 0.43; 95% CI: 0.22–	
		>10 d of amiodarone had to	0.85; p=0.02). There was a trend	
		be taken off amiodarone for	for sotalol to reduce shocks	
		10d before randomization), a	compared with BB alone (HR:	
		calculated creatinine	0.61;95% Cl, 0.37–1.01; p=0.055).	
		clearance of less than 30	The rates of study drug	
		mL/min (<0.50 mL/s),	discontinuation at 1y were 18.2%	
		symptomatic AF likely to	for amiodarone, 23.5% for sotalol,	
		require use of a class I or	and 5.3% for BB alone.	

• International VT Collaborative Group Study • Tung R 2015 (178)	Aim: to determine the association of VT recurrence after ablation and survival in scar related VT Study type: Multicenter observational Size: 2061	class III antiarrhythmic agent, absence of SHD, contraindications to amiodarone or a β-blocker, or NYHA class IV symptoms of HF. <u>Intervention</u> : amiodarone plus BB, sotalol alone <u>Comparator</u> : BB alone. <u>Inclusion criteria</u> : SHD with Ischemic and Non-Ischemic cardiomyopathies with monomorphic VT and myocardial scar by electroanatomic mapping <u>Exclusion criteria</u> : absence of scar on electroanatomical mapping <u>Intervention</u> : Catheter ablation, either endocardial or epicardial, guided by EAM. End point of ablation with elimination of all induced VTs	1° endpoint:Freedom from VT recurrence,Heart Transplant, or death was70% at 1 y follow-up.VT recurred in 55% of patients whodied vs. 22% of patients whosurvived.Transplant free survival was 90%for patients without VT recurrenceand 71% for those with VTrecurrence (HR 6.9; 95% CI 5.3–9.0,p<0.001).	• Procedural complications occurred in 6%, including 2 deaths (0.1%), hemopericardium in 1.7%, and vascular access complications in 1.6%
 HELP-VT Dinov 2014 (175) <u>24211823</u> 	Aim: To determine the outcome of VT catheter ablation in patients with NICM to those with Ischemic Cardiomyopathy (ICM) <u>Study type</u> : Prospective, non- randomized	Inclusion criteria: Patients with SHD referred for catheter ablation of VT with either NICM (N=63) or ischemic cardiomyopathy(N=164) <u>Exclusion criteria</u> : Failure of informed consent Intervention:	<u>1° endpoint</u>: At 1y follow-up, VT free survival was 57% for ischemic cardiomyopathyand 40.5% for NICM patients (HR: 1.62; 95% CI: 1.12–2.34, p=0.01). ischemic cardiomyopathyrequired epicardial ablation in only 2 of 164 (1.2%) whereas NICM required epicardial ablation in 30.8% (p=0.0001).	• <u>Complications</u> Complications occurred in 11.1% of NICM and 11.1% of ischemic cardiomyopathypatients, including death in 4.8% of NICM and 3.7% of ischemic cardiomyopathy

Size: 227 patients	Catheter ablation for
	patients with NICM
	<u>Comparator</u> :
	Catheter ablation in patients
	with ischemic
	cardiomyopathy

Data Supplement 30. Nonrandomized Trials, Observational Studies, and/or Registries of Arrhythmogenic Right Ventricular Cardiomyopathy – (Section 7.3)

Study Acronym; Author;	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR;	Summary/Conclusion Comment(s)
Year Published			& 95% CI)	
• Quarta G, et al.	Study type:	Inclusion criteria:	<u>1° endpoint</u> : Familial evaluation for ARVC;	 >50% probands died suddenly
Circ 2011 (216)	national cohort	100 families with	followup 3.4±1.6 y. Deceased proband in 51	 Desmosomal gene complexity in
• <u>21606390</u>		ARVC evaluated	families	10% of relatives, assoc with 5-fold
	<u>Size</u> : 255	2003-2009		increased risk of disease expression
			Results: in 88% of deceased: dx of ARVC made	
		first degree: 210	at autopsy	
		second degree: 45	SCD most common in young: 31% died	
			between 14-20 y	
		Exclusion criteria:	Definite or probable gene mutations; 58% of	
		N/A	families, 73% of living probands	
			42% of first degree relatives had disease	
			expression	
			62% of gene carriers had phenotypic	
			expression	
			Progressive disease expression beyond age 40	
			in 50%	
 Kapplinger JD 	Study type: Multi-	Inclusion criteria:	1° endpoint: Determine prevalence of	 Radical mutations are high-
JACC 2011 (217)	center Netherlands,	ARVC patients and	background "noise" in ARVC genetic testing	probablility ARVC associated
• <u>21636032</u>	retrospective	427 unrelated		mutations
		healthy controls	Results: Mutations present in 58% of ARVC	 R Missense mutation should be
	Size: 93 probands		and 16% of controls	interpreted in context of race,
	and 427 controls		Radical mutations: 43% of ARVC, vs 0.5%	ethnicity, mutation location,
			controls	sequence conservation; more likely

		Tested for PKP2,	Missense mutations: 21% of ARVC, 16% of	positive if Caucasian, within DSP and
		DSP, DSG2, DSC2,	controls	DSG2 hotspot, and conserved in
		TEIVIE45		• R Background mutation rate = 16%
		Added data from 82		(vs 5% for LQT1-3)
		patients in ARVD/C		,
		Registry in USA		
		Exclusion criteria:		
		N/A		
• Bhonsale A, et al.	<u>Study type</u> :	Inclusion criteria:	1° endpoint: Risk stratification in ARVC	 ARVC desmosomal mutation
CAE 2013 (218)		ARVC patients with	genotype positive: sustained VT, SCD/ADA,	carriers risk stratification:
• <u>23671136</u>	<u>Size</u> : 215	positive genotype:	appropriate ICD shock	 High risk: ECG ≥3 T wave
		desmosomal	Mean followup 7 y	inversions, Holter, proband status
		mutation carriers		 Increasing PVC's on holter c/w
		PKP2 85%	Results: 40% ACE	arrhythmic events, > 760 PVC'
		53% males, mean	ECG: high risk ≥3 inverted precordial T waves;	 "Benign" ECG conferred low
		age 32 ±18 y	intermediate risk = T wave inversion in leads	arrhythmic risk
		Presentation VT/VF	V1, V2 + late depol; low risk = 02 T wave	
		23%	inversion without depol changes	
			PVC count on holter higher in arrhythmic	
		Exclusion criteria:	outcomes, p<0.0001	
		N/A	Event free survival lowest among probands	
			p<0.001, and symptomatic patients p<0.001	
			Incremental risk: Proband, HR: 7.7; ≥3 T wave	
			inversions, HR: 4.2; male gender, HR: 1.8	
• Marcus FI, et al.	Review paper for phy	sicians summarizing	<u>ARVC:</u> aut dominant, Desmosomes: cardiac,	 Proband may not benefit from
JACC 2013 (219)	genetics of ARVC		skin, hair	gene testing, does not alter therapy.
• <u>23500315</u>			30-50% of patients with ARVC have abnormal	Patients with >1 gene abnormality
	5 genes:		gene, range 26-58%, highest in clinical familial	may have more severe course;
	Plakophilin- 2	73-78%	disease. 20-30% family Hx sudden death	earlier ICD.
	Desmoglein -2	10-13%		Benefits genetic testing ARVC:
	Desmocollin-2	4-6%	Negative genetic tesing \neq no disease, as >50%	understand cause of disease, identify
	Desmoplakin	3-8%	gene negative to date.	Tamily members at risk, family
	Junctional	1-4%	Abnormal gene = risk, but not disease;	planning, limited prognostic
	plakoglobin		modified by additional gene modifiers, virus,	information.
			athietics	

128

	Cost ~\$5400		PKP2 may require a second mutation to cause disease. The second mutation may not be tested in relatives, leading to false negative. ~48% of patients with ARVC have at least 2 different mutations; these patients have more severe disease. Truly abnormal gene should not be present in >1:400 controls; However, 1:200 Finnish have desmosomal mutation of ARVC; 6% of Asians carry PKP2 mutations. "the interpretation of genetic results for ARVC is not an exact science and is more complex than for other heart disorders caused by only a single gene and for which most patients will have an abnormal gene identified".	 For gene carriers: Recommend cardiac eval beginning at 10-12 y: ECG, SAECG, echo, holter, ± CMR Evaluate q 2 y between 10-20 y; then every 5 y, may stop at age 50-60 y.
 Bhonsale A et al. Eur Heart J 2015 (220) 25616645 	Study type: Retrospective multicenter, Dutch, US Size: 577	Inclusion criteria: Genotype positive desmosomal and non-desmosomal mutations in ARVC. PKP2 80% Males 55%, mean age 35±17 y. 541 presenting alive: Presentation SCD= 6% 41% probands. Exclusion criteria: non-genotyped ARVD	 <u>1° endpoint</u>: Impact of genotype on clinical course in ARVC mutation carriers. Mean followup 6±7 y. <u>Results:</u> Presentation with SCD were younger (median 23 y) than those presenting with VT (36 y) (p<0.001). Death 2%, transplant 2%; Sustained VT/VF 30%, LVEF < 55 14%; CHF 5%. Compound mutations: earlier onset of symptoms, higher incidence VT/VF. PKP2 least ventricular dysfunction, 9%; Desmoplakin (DSP) mutations had more ventricular dysfunction/HF than PKP2 carriers: 40% ventricular dysfunction; more likely to present with SCD (11% of SCD) Male gender higher arrhythmic outcome, 53% 	 Among ARVC patients with known genotype: specific genotype affects clinical course and disease expression. Gene specific variation in SCD, LV dysfunction, HF. Males worse outcome: more likely to be probands, symptomatic earlier and more severe arrhythmic expression. Phenotypic variability—modifier genes/environmental influences.

• Rigato I et al. Circ	Study type:	Inclusion criteria:	1° endpoint: ARVC gene carriers risk of	 Multiple DS gene mutation status
CV Genetics 2013	Prospective	Desmosomal gene	arrhythmic outcome	was powerful predictor for major
(221)	Observational	mutations carriers		arrhythmic events.
• <u>24070718</u>		Desmoplakin 39%,	Results: Median observation 39 y (22-52)	
	<u>Size</u>: 134	plakophilin 2 34%,	16% major arrhythmic events.	
		desmoglein 2 26%,	Independent predictors:	
		desmocolliln 2 1%	Multiple desmosomal gene mutations HR:	
		16% complex	3.71; 95 CI:1.54–8.92, p=0.003.	
		genotype:	Male gender HR: 2.76; 95% CI: 1.19–6.41,	
		compound or	p=0.02.	
		dignenic		
		heterozygosity		
		Exclusion criteria:		
		N/A		
• Groeneweg JA et	Study type:	Inclusion criteria:	1° endpoint: outcomes of ARVC patients	• ARVC: 10% death/heart
al. Circ CV Genetics	retrospective	ARVC patients	median followup 7 y	transplantation during median
2015 (222)	multicenter, Europe	Probands 44%,		followup 7y.
• <u>25820315</u>	and USA	family members	Results: Sustained VT developed in 72% of	 Probands: Mutations altered age of
		56%.	probands.	disease expression but not
	<u>Size</u> : 1001	Probands: 416/439	Probands with positive mutations presented	outcomes.
		presented alive (5%	at younger age.	 Family members: mutation
		presented SCD).	Mortality 6%, transplantation 4%, not	carriers had more VA and increased
			different based on mutation status in	cardiac mortality.
		Overall 63%	probands.	
		mutation positive:	Family members: 1/3 developed ARVC.	
		PKP2 46%.	Sustained VT 8%, cardiac mortality 2%.	
		Family members:		
		73% mutation	Mutations in family members modified	
		carriers.	course: 8x increase in VT, increased cardiac	
		Fuch stars with st	mortality.	
		Exclusion criteria:	ICD improved survival in index patients: SCD	
		N/A	0.6% vs 16% without ICD.	

• te Riele AS, et al.	Study type:	Inclusion criteria:	1° endpoint: ARVC first degree relatives: risk	• ARVC first degree relatives' with
EHJ 2016 (223)	Multicenter	First degree	of ARVC dx and outcomes	increased likelihood of dx:
• <u>26314686</u>	retrospective	relatives of ARVC	Mean followup 6.7±3.7 y	symptoms, sibling, pathogenic
		proband		mutation, female gender.
	<u>Size</u> : 274	46% male, age	Results: 35% developed ARVC	 Malignant family Hx was not
		36±19 y	Risk of ARVC dx: sibling, HR: 3.11; p<0 .001,	associated with arrhythmic events
			symptoms, p<0.001, pathogenic mutation	
		Exclusion criteria:	p<0.001, female, p=0.01.	
		N/A	8% developed sustained VA: neither	
			relatedness to proband nor malignant family	
			Hx were predictive of arrhythmic events.	
• Kamath GS, et al.,	Study type:	Inclusion criteria:	1° endpoint: SAECG abnormalities in ARVC	 SAECG: using 1/3 criteria increased
HR 2011 (224)	retrospective single	ARVC probands	Abnormal: fQRSD ≥114 ms, LASD >38 ms,	sensitivity and maintained specificity
• <u>20933608</u>	center	compared with 103	RMS-40 <20 μV	 SAECG correlated with disease
		controls		severity on CMR, but not VT
	<u>Size</u> : 87		Results:	
		Mean age 37 y, 54%	SAECG sensitivity/specificity: 1-criteria 69%/	
		male	92%; 2-criteria 47%/95%; 3-criteria 33%/100%	
		Exclusion criteria:		
		N/A		
• Marcus FI, et al.,	Study type: Single	Inclusion criteria:	<u>1° endpoint</u> : right ventricular abnormalities in	• Characterize RV pathology in LBBB
Circ 1982 (225)	center	22 adults with	ARVC	
• <u>7053899</u>	<i>c</i> :	recurrent VI w/		• Consider dx in patients with VI of
	<u>Size</u> : 22	LBBB 21/22	<u>Results:</u> inverted T waves right precordium,	unknown cause, particularly if LBBB
		Mean age 39 y,	cardiac enlargement, delayed ventricular	pattern
		Males 2.7:1	potentials	
			RV dyspiasia– inferior, apical or	
		Exclusion criteria:	diaphragmatic-diagnosed with angiography. 1	
• Corrado Distal	Chudu tura a	N/A	deall.	• 1) (involvement in 76% of ADVC)
	<u>study type</u> :	Dathologic dy of	<u>1⁻ enapoint</u> : AKVC clinic-pathologic	• LV INVOIVEMENT IN 76% OF ARVC:
ACC 1997 (220)	multicenter		mannestations	 age dependent, more severe cardiomorphy
- 3302410	mullicenter	heart transplant	Posults: 80% diad suddanly: 17% of SCD diad	
	Size: 12	Mean are $20.6+10.0$	during evertion	Prior syncone in 26%
	<u>5126</u> , 42	(9_65 v)	SCD first symptom in 25%	• SCD evercise related in 47%
		(3-03 y)		
			UNF 24%	

		Exclusion criteria:	Syncope 26%	
		N/A	Exercise related in 64%	
			LV fibrofatty involvement 76%	
			Isolated RV involvement 24%	
• Link MS ert al.	Study type:	Inclusion criteria:	1° endpoint: Sustained VA in ARVC during	 ARVC predictors of VT: sustained
JACC 2014 (227)	Prospective multi-	ARVC patients	followup 3.3±1.7 y	VT prior to ICD, inferior T wave
• <u>25011714</u>	center	enrolled in registry		inversion, younger age at enrollment
	North American		Results: 44% (48 patients) had 502 episodes	 48% received ICD therapy
	ARVC Registry	79% (108 patients)	of sustained VT: 97% monomorphic VT.	 Recommend programming ATP for
		received ICD's	Inapprop shocks 17%.	termination of VT: successful 92%
	<u>Size</u> : 137		Independent predictors sust VT: prior	 Syncope, family Hx SCD did not
		Mean age	spontaneous VT, inferior T wave inversion.	predict ICD therapy
		enrollment 40±14 y.	Independent predictor life threatening VT	
		Prior symptoms,	(rate ≥240bpm or VF): younger age at	
		sustained VT or CA	enrollment.	
		41%	ATP successfully terminated 92% of VT	
			Patients without ICD implantation: no SCD or	
			SVT -followup 2.4 y	
		Exclusion criteria:		
		N/A		
• Corrado D et al.	International Task For	rce	No competitive or endurance sports; AAD's as	• ICD implantation:
Circ 2015 (228)	Treatment of ADV/C. I	atomotional Tael	adjunct in patients with request AICD shocks;	Hemodynamically unstable sust VI,
• 20210213	Fores Decommondation	nternational Task	BB for patients with recurrent v1, appropriate	or VF; severe systemic dystunction RV
	Force Recommendati	ons	ICD rx, or ICD therapy for SVI; epicardial	OF LVEF \leq 35%;
			ablation for patients who fall endocardial	Hemodynamically stable sustained
			upstable sustained VT/VE	ducfunction BV EE= 26.40% or LVEE=
				aysiulication RV EF- 30-40% of LVEF-
			EPS for suspected ABVC: restrict athletics to	Minor risk factors
			low intensity: BB for all ARVC natients	Pronhylactic ICD in asymptomatic
			irrespective of arrhythmias: cath ablation for	patients with no risk factors of
			recurrent VT fail meds other than amio	healthy gene carriers
			Vstim for risk stratification asymptomatic:	
			endocardial voltage mapping; restrict comp	
			sports in phenotype neg patients; cath	
			ablation without ICD for selected patients	

			with drug refractory hemo stable single	
			morphology VT.	
			No BB for healthy gene carriers; cath ablation	
			as alternative to ICD for prevention of SCD.	
• Corrado D et al.	Study type:	Inclusion criteria:	<u>1° endpoint</u> : ARVC appropriate ICD shocks	• 48% approp ICD shocks
Circ 2003 (229)	multicenter	ARVC patients with	Mean followup 39 mo	• Predictors: ACA, unstable VI,
• <u>14038540</u>	retrospective	ICD	Beautre Annual she she 400/ servers 440/	younger age, lower LVEF
	Size: 122	70% malos	<u>Results:</u> Approp shocks 48%, comps 14%,	Syncono not statictically important
	<u>3128</u> . 152	10% Indication: ACA	RAW underwort DES: 60% inducible cust VT:	• Syncope not statistically important
		10% sustained VT	poither consitive nor specific: 51% no appropr	analysis
		62% syncone 16%	shock 54% of pon-inducible had appropriate	• 4 natients implanted due to family
		nonsust VT 9%	Syncone: 21 natients: none died one	Hx SCD: no approp shocks
		family Hx 3%	underwent OHT: 38% approp shocks:	
			multivariate analysis $p=0.07$ for approp shock	
		83% on AA drugs	Independent predictors of VF: ACA. VT with	
		prior to ICD	hemodynamic compromise, younger age, LV	
			involvement	
		Exclusion criteria:		
		N/A		
• Piccini JP et al.	Study type: single	Inclusion criteria:	1° endpoint: ARVC clinical + EP	 Multivariate predictor approp
Heart Rhythm 2005	center retrospective	Patients with	characteristics that predict appropriate ICD	shock: sustained VT/VF, OR:11.4;
(230)		definite or probable	shocks.	p=0.015;
• <u>16253908</u>	<u>Size</u> : 67	ARVC with ICD's	Mean followup 4.4±2.9 y	• NSVT, OR: 6.29, p=0.051
		Mean age 36±14 y;		 EPS did not predict ICD shocks in
		52% male	Results: Appropriate shocks in 94% of 2°	patients with 1° prevention ICD
		1° prevention 42%,	prevention, 39% of 1° prevention (p=0.001),	• Further research to identify low
		2° 58%	overall 66%	risk patients who do not need ICD
		Sustained VT: 52%,	approp shocks: Definite ARVC: 73%;	placement
		syncope 36%, ACA	probable:33%	• Syncope not statistically significant
		58/5	Overall 21% received snock for life	
			threatening VI/VF >240 ppm; no difference in	
		Exclusion critoria:	I or 2 prevention patients	
			with 1° provention	
		IN/A	All patients with VE had inducible VT/VE	
			All patients with VF had inducible VI/VF	

			Syncope: 43% approp shocks, 22% no rx, p=0.08	
 Bhonsale A et al. 	Study type:	Inclusion criteria:	1° endpoint: Incidence and predictors of	 48% ARVC patients undergoing 1°
JACC 2011 (231)	Retrospective single	Definite or probable	appropriate ICD shocks for ARVC undergoing	prevention ICD received appropr
• <u>21939834</u>	center	ARVC with ICD	ICD for 1° prevention	shocks
		implantation for 1°	Mean followup 4.7±3.4 y.	Approp shocks: proband, inducible at
	<u>Size</u> : 84	prevention		EPS, clinical nonsust VT, PVCs
		63 patients	Results: 48% approp ICD shocks.	>1000/24 hrs
		genotyped: 43% +	Predictors: Multivariable analysis: Positive VI	a Sumaana NG anadiatan UR: 0.01
		mutations	nducibility at PES, HR: 4.5; 95% CI: 1.4–15, p=0.012) clinical populat VT_HP:10.5: 95% CI:	• Syncope NS predictor, HR: 0.91
		Indiations	2 4-46 2 n=0.002) PVC's >1000/24 h HR:	• Non-inducible: 1/20 appropr ICD
		76% symptomatic, 63% >1000 PVC's	3.48; proband, HR:1.62.	shock
		on holter	Syncope: approp shocks 9%/y. 25% approp shocks, vs 30% no approp shocks	
		Syncope: 27%	Recent syncope <6 mo: 63% appropr shocks	
		Exclusion criteria: N/A	vs 20% remote, p=0.046	
 Dalal D et al. JACC 	<u>Study type</u> :	Inclusion criteria:	<u>1° endpoint:</u> Efficacy of ablation for ARVC.	 High rate of recurrent VT after
2007 (232)	retrospective single	ARVC patients	Mean followup 32 mo.	ablation for ARVC
• <u>17662396</u>	center	undergoing ablation		• "diffuse cardiomyopathy with
	Size: 24	at Hopkins.	<u>Results:</u> 48 procedures. 46% eliminated all	evolving electrical substrate"
	<u>512e</u> : 24	Mean age 36+9 v	Recurrence: overall 85%. One procedural	
		46% males	death 4%. VT recurrence free survival. 50% at	
			5 mos. 25% at 14 mo. Did not vary by	
		Exclusion criteria:	procedural success, mapping, repeat	
		N/A	procedures.	

 Garcia FC et al. Circ 2009 (233) <u>19620503</u> 	Study type: retrospective single center Size: 13	Inclusion criteria: ARVC patients undergoing epicardial ablation after failed endocardial ablation VT	 <u>1° endpoint</u>: Endocardial vs epicardial ablation in ARVC <u>Results</u>: 27 VT's in 13 patients 85% epi ablation opposite endocardial ablation sites 77% no VT with 18±13 mo followup 	• Epicardial ablation in ARVC after failed endocardial ablation results in VT control
		Exclusion criteria: N/A		
 Philips B et al. Circ AE 2012 (234) <u>22492430</u> 	Study type: Retrospective multicenter Size: 87	Inclusion criteria: ARVC patients undergoing ablation 1992-2011 at 80 centers. Mean age 33±11 y, 53% male 50% failed endocardial ablation Exclusion criteria: N/A	 <u>1° endpoint</u>: ARVC Efficacy of epicardial ablation of VT. <u>Results:</u> 175 ablations in 87 patients: 53% repeat procedures. 27% recurrent VT; VT reduction Freedom from VT at 1, 5, 10y: 47%, 21%, 15%. Epicardial ablation: freedom from VT at 1, 5 y: 64%, 45% Burden of VT reduced irrespective of ablation strategy: p<0.001 Complications: 2.3% major: death; delayed MI/occlusion RCA. Related to pericardial access. 	 Epicardial ablation of VT in ARVC associated with high recurrence rate, but reduces VT burden. Majority of VT circuits were epicardial.
 Bai R, et al. CAE 2011 (235) <u>21665983</u> 	Study type: Multicenter prospective Size: 49	Inclusion criteria: Consecutive ARVC patients undergoing ablation All sust monomorphic VT; all with AICD's Exclusion criteria: N/A	<u>1° endpoint</u> : Comparison of outcomes for ARVC ablation, endocardial vs endo- epicardial: non-inducibility of VT with isuprel. Followup 3 y <u>Results:</u> Freedom from VA or ICD therapies: Endocardial: 52%, endo-epi 85%, p=0.029	 Combined endocardial-epicardial ablation approach in ARVC achieves longer term freedom from VA or shocks. Patients with frequent PVC's more likely to have recurrences
 Berruezo A et al. Circ AE 2012 (236) <u>22205683</u> 	Study type: retrospective single center	Inclusion criteria: ARVC patients undergoing endo +	<u>1° endpoint</u> : ARVC patients: recurrence of VT after ablation endo + epicardial	 ARVC combined endo + epi ablation reveals wider substrate, with good short/mid-term success

	<u>Size</u> : 11	epicardial ablation of VT <u>Exclusion criteria</u> : N/A	Results:ablation eliminated all clinical andinduced VT64% continued on sotalol9% VT recurrence with median 11 mofollowup	
 Philips B Heart Rhythm 2015(237) 25530221 	Study type: retrospective single center Size: 30	Inclusion criteria: ARVC undergoing epicardial ablation at tertiary center Exclusion criteria: N/A	<u>1° endpoint</u> : Safety and efficacy of epicardial ablation at tertiary center for ARVC <u>Results:</u> VT circuits: 69% on epicardial surface, most sub-tricuspid. VT recurrence: 27%. Reduced VT burden (p<0.001) VT free survival at 1,2 y: 76%, 70% Complications: 3.3%, pericarditis. Fluoro 82 min (40-135)	 Epicardial ablation for VT in ARVC safe in tertiary center Freedom from VT 70% at 2 y. Reduces VT burden
 Santangeli P et al. Circ AE 2015 (238) <u>26546346</u> 	Study type: Retrospective single center Size: 62	Inclusion criteria: ARVC patients undergoing ablation Endo + epi: 63% Exclusion criteria: N/A	 <u>1° endpoint</u>: ARVC ablation outcomes, followup 56±44 mos Epicardial ablation if failed endocardial ablation <u>Results:</u> VT recurrence: 29%; VT free survival 71% 64% on BB or no rx 	 ARVC VT ablation outcomes 'good'; most have VT control
 James CA et al. JACC 2013 (239) <u>23871885</u> 	Study type: Single center retrospective Size: 87	Inclusion criteria: ARVC patients interviewed about exercise from 10 y of age. Mean age 44±18 y Exclusion criteria: N/A	<u>1° endpoint</u> : ARVC exercise and VT/VF <u>Results</u> : Endurance athletes developed symptoms at younger age (30±13 y) vs 40 y, p=0.05; Increasing exercise Lower lifetime survival free of VT/VF p=0.013	• Endurance and frequent exercise increase the risk of VT/VF, HF in ARVC patients.
 Sawant AC et al. JAHA 2014 (240) <u>25516436</u> 	Study type: single center retrospective Size: 82	Inclusion criteria: ARVC patients interviewed re exercise	1° endpoint: ARVC: exercise and impact on desmosomal and gene-elusive patients	 Gene-elusive non-familial ARVC is assoc with very high intensity exercise Recommend exercise restriction

		Desmosomal	Results: all gene-elusive patients were	
		mutations: 39	endurance athletes: more intense exerscie.	
		Gene-elusive 43	p<0.001	
			Family Hx more often neg in gene-elusive	
		Exclusion criteria:	Gene-elusive patients with most intense	
		N/A	exercise had younger age at presentation.	
			p=0.025, shorter survival free of VFA, p=0.002	
Ruwald AC et al	Study type: North	Inclusion: ARVC	1° endpoint: ABVC exercise and VT/VE/SCD	 Competitive sports associated with
FHI 2015 (241)	Americal ARVC	Registry probands	followup 3 v	HR: 2 05 for VTA/death and earlier
• 25896080	registry 18 centers	hegistry prosunds.	Results: Patients in competitive sports:	presentation of symptoms c/w
2 <u>23030000</u>	IIS Canada	Exclusion criteria:	Younger at age of Dy, 71% inducible VT/VE	recreational sports or inactive
		$\Delta \sigma \rho < 12 \text{ y} \cdot CD > 2 \text{ y}$	increased risk death //T	
	Size: 108 probands	hefore enrollment	increased fisk deatily v1.	
	<u>5126.</u> 100 probands	unknown evercise		
		level before dy		
Sawant AC Heart	Study type: Single	Inclusion criteria:	1° and noint: ABVC and outcomes with	 Recommend restricting unaffected
Bhythm 2016 (242)	center retrospective	ABVC first degree	<u>aversise intensity</u> (MET HP(y)	desmosomal mutation carriers from
▲ 26221001	center retrospective	rolatives of	exercise intensity (MET-HK/y)	and uran co and high intensity
• 20321031	Size: 28	nrobands with DKD2	Populto: After adjusting for ago, say, family	athletics but not from AHA
	<u>5126</u> . 20	mutation interview	<u>Results</u> . After aujusting for age, sex, failing,	recommended minimum levels of
		ro ovorcico cinco	participation in endurance athletics, (OR: 7.4, $p=0.02$), higher intensity everyise (OR: 4.2)	eversion for beatly adults
		age 10 vi eversise	p=0.03), fingher intensity exercise (OR: 4.2,	
		vs AHA	p=0.004) were associated with dx of ARVCD.	
		recommendations	Family members restricting exercise to ≤650	
		to restrict to 390-	MET-Hr/yr (AHA upper limits) were sig less	
		650 MET-HR/y	likely to have ARVC dx (OR: 0.07, p=0.002); no	
			VT/VF	
		Exclusion criteria:		
		N/A	(AHA/AC Sports Med recommend healthy	
			adults participate in minimum, 450-750 MET-	
			min weekly =390–650 MET-Hr/y)	
• Saberniak J et al.	Study type: single	Inclusion criteria:	1° endpoint: ARVC assess exercise ventricular	 ARVC athletes showed reduced
Eur J Heart F 2014	center	ARVC probands and	function with echo, CMR	biventricular function compared with
(243)		mutation positive	Athlete: intensity ≥6 METS, duration ≥4 h/wk	non-athletes and mutation-positive
• 25319773	<u>Size</u> : 110	family members	Results: Function reduced in athletes' vs non-	family members
			athletes by echo and MRI, all p<0.01.	

		Genotyping in 100	METs x min/wk correlated with reduced RV	• Amount and intensity of exercise
		patients	and LV function p<0.01	was assoc with impaired LV and RV
		75% mutation	LVEF by MRI reduced in athletes, index and	function
		positive, PKP 91%,	family members	• Exercise aggravates, accelerates
		Syncope 44%, ICD	Exercise induced VA in 37% of patients, more	myocardial dysfunction in ARVC
		47%	likely in athletes p<0.001 and in those w	
			increased duration exercise \geq 2.5 h/wk x 6 y	
		Exclusion criteria:		
		N/A		
 Sen-Chowdry S et 	Study type:	Inclusion criteria:	<u>1° endpoint</u> : ARVC presenting as LV	• LV dominant ARVC subtype under-
al. JACC 2008 (244)	observational	ARVC patients w	dominant arrhythmogenic cardiomyopathy	recognized
• <u>19095136</u>	cohort	clinical suggestion	(LDAC): CMR & clinical	 Unexplained T wave inversion V5,
		of LV involvement:		V6± V4, I, aVL
	<u>Size</u> : 42	one or more: RBBB	Results: Desmosomal mutations present in	 VT of RBBB morphology,
		morphology	45% of probands, 33% of families	 LV aneurysms
		arrhythmia, isolated	Arrhythmia of RBBB morphology exceeding	 LV dilation and/or systolic
		(infero) lateral T	degree of ventricular dysfunction	impairment with arrhythmic
		wave inversion,	distinguished ARVC from dilated	presentation
		proven family dx LV	cardiomyopathy	 Extensive LGE of LV myocardium
		ARVC or idiopathic		 "inflammatory myocarditis part of
		myocardial fibrosis	CMR: 88% RV segmental dil and/or wall	nat Hx of ARVC"
			motion abnormality; 27% low RVEF; LV	
		Clinical eval:	involvement 34% dilation or decreased EF.	
		includes CMR (41		
		patients):	LV late gadolinium enhancement	
		consensus >2	Inflammatory myocarditis on genetic basis:	
		readers; echo,	10% prior "myocarditis"	
		holter, exercise		
		test, mutation		
		screening		
		Exclusion criteria:		
		HCM, ischemia,		
		other structural		
		heart/lung/systemic		
		disease		

 Vermes E et al. JACC CV Imaging 2011 (245) 21414577 	Study type: retrospective cohort, single center Size: 294	Inclusion criteria: Patients referred for ARVC evaluation by CMR 2005–2010 Exclusion criteria: N/A	1° endpoint:Compare ARVC CMR criteriafrom 1994–2010; also, assessed 134 patientswith full diagnostic evaluation for ARVC <u>Results:</u> original CMR criteria: 23.5% major;using 2010: 6.5% majorOf 69 patients with major criteria 1994, only23% had major criteria 2010Of 172 with minoronly 1.1% minor criteria2010	 2010 criteria reduced major + minor CMR criteria: from 23.5% to 6.5% new TFC for CMR improved specificity, but may have reduced sensitivity
			Also, assessed 10 patients with proven ARVC on complete evaluation: 4/10 met major criteria, none met minor Specificity for major/minor criteria: 1994- 78/39%; 2010: 94/96%	
• te Riele AS et al. JCE 2013(246) • <u>23889974</u>	Study type: multicenter retrospective: international registry ARVC Size: 80	Inclusion criteria: ARVC mutation positive patients undergoing CMR, EPS. CMR 74, EPS in 11 patients PKP2 83% Exclusion criteria: N/A	 <u>1° endpoint</u>: ARVC electro-anatomical correlates CMR, EPS Mean followup 6 y <u>Results:</u> CMR: abnl RV 96%, biventricular: 52%, LV only: 4%. ACE 41%: VT 67%, approp ICD shock 23%, ACA 10%. Arrhythmia free survival lower in patients with more abnormal RV segments 24 patients with advanced structural abnormalities: 1,5, 10 y arrhythmia free survival= 57%, 42%, 35% EPS: scar more extensive in epicardium vs endocardium, p<0.0001; scar map correlated with CMR locations: RV epicardial scar subtricuspid 100%, RV basal anterior wall 64% 	 CMR: basal inferior (94%) and basal anterior RV (87%) and posterolateral LV involvement (80% subepicardial fat infiltration). RV apex involved only in advanced disease. Epicardial delayed activation particularly in perivalvar RV area and LV posterolat wall. RVOT involved late in disease.

			Ablation successful in 18/19 VT: 84% were	
			from RV; no VT from RV apex	
• te Riele AS et al.	Study type:	Inclusion criteria:	1° endpoint: ARVC mutation carriers	 Presence of mutation alone did not
JACC 2013 (247)	prospective registry	ARVC mutation	undergoing risk stratification: incremental	confer arrhythmia risk.
• <u>23810894</u>	based	carriers without	value of ECG, Holter, CMR.	 ECG & holter abnormalities
		sustained VA	Mean followup 6 y	preceded detectable CMR
	<u>Size</u> : 69			abnormalities in ARVC mutation
		78%: first degree	Results: 78% holter; ECG, CMR in all	carriers
		relatives	68% asymptomatic at presentation	 ECG PLUS CMR abnormalities
		83% PKP2	Abnormal ECG: 57%, abnormal Holter 26%	identify high risk group;
		mutations	(PVC's >500/24 h, or nonsust VT >100 bpm	 ICD for 1° prevention
			Abnormal CMR 30% patients with abnormal	 "Evaluation of cardiac structure
		Mean age 27±15 y	ECG/Holter: 48% had abnormal CMR, vs 4% in	and function using CMR is probably
			patients with normal ECG/Holter, p<0.0001	not necessary in the absence of
		Exclusion criteria:	Only 1 pt with normal ECG/holter had	baseline electrical abnormalities"
		ARVC with prior	abnormal CMR.	
		sustained VA	Development of sust VA: 16% mean time to	
			arrhythmia 4.5 y	
			All patients with sust VA presented with	
			electrical abnormalities; all had abnormal	
			CMR.	
			Patients with both electrical and CMP	
			abnormalities: higher $VA_n < 0.0001$:	
			arrhythmia free survival at 1510 y : 89% 54%	
			36%	
			3070.	
● Liu T et al. J	Study type:	Inclusion criteria:	1° endpoint: ARVC: effect of revised TFC on	• 2010 criteria reduced number of
Cardiovasc magn	retrospective cohort	patients referred	CMR criteria vs 1994 criteria.	total patients meeting diagnostic
Reson 2014 (248)		1995-2010 for CMR		CMR criteria
• <u>24996808</u>	<u>Size</u> : 968	with clinical	Results: 2010 criteria reduced no. of total	 Only 2.6% met diagnostic criteria
		suspicion of ARVC	patients meeting diagnostic CMR criteria from	on CMR
		If quantitative RV	~23% to 2.6%: 2.2% met major criteria, 0.4%	 More objective, quantified criteria
		measures not avail,	met minor	in ARVC dx by CMR
		repeat CMR	CMR identified alternatic dx in 9.2% of	
		performed	patients, and 4.4% of dx were "potential	
		Mean age 42 y		

		Males 52%	mimics" af ARVC-sarcoidosis, other	
		Exclusion criteria:	cardiomyopathies.	
		N/A		
• Marcus FI et al.	Modifications of Task	Force criteria for	1° endpoint: Quantification, specificity of	Major criteria
Circ 2010 (249)	ARVC		ARVC diagnostic criteria.	 Dysfunction: echo, MRI, angio
• <u>20172911</u>				regional dyskinesia, akinesia,
			Structural, ECG, arrhythmic and genetic	dyssynchrony AND dilation; echo FAC
			features as major and minor, with	≤33%,
			quantitative criteria.	● CMR RVEF ≤40%; RVEDVI ≥100-
				110 ml/m ² (Female/male); localized
			SAECG: fQRS fQRSD >114 ms, LASD ≥38 ms,	RV aneurysms or severe segmental
			RMS-40 \leq 20 μ V, terminal activation duration	dilatiom
			QRS ≥55 ms V1,2, or 3	 Tissue bx: residual myocytes
			See major criteria at right	<60%• ECG Repol: age >14 y: Twave
			Dx: 2 major, or 1 major plus 2 minor, or 4	inversion V1, V2, and V3;
			minor from different groups	 Depolarization: epsilon V1-3;
				 Arrhythmia: nonsust/sust VT of
			RV fat not part of CMR criteria	LBBB, superior axis
				• Family hx: ARVC confirmed in first
			Added mutation status in proband	degree relative by TFC, surgery or
				autopsy; or pathogenic mutation in
		T		proband
• Corrado D et al.	Study type:	Inclusion criteria:	<u>1° endpoint</u> : ARVC appropr ICD shocks in 1°	 Overall group had high arrhythmic
Circ 2010	Multicenter	consecutive ARVC	prevention	risk:
• <u>20823389</u>	retrospective	patients with ICD	Mean followup 58 mo	
		implanted for 1°		Univariate analysis: approp shocks:
	<u>Size</u> : 106	prevention	Results: approp shocks: 24%; inapprop	younger, syncope, NSVT, LV
		Mean age 36 y	shocks 19%; comps 17%	dysfunction
		Males 67%	PES: performed in 60% of patients: 40	
		Syncope 39%	patients (60%) inducible. 65% did not receive	Multivar analysis: syncope only
		NSVT 53%, family	approp therapy; of non-inducible 30%	predictor, HR: 3.16, p=0.005
		Hx SCD 46%	received approp rx. PES PPV 35%, neg PV 70%	
		_	Syncope: 43% approp shocks, 4 had recurrent	• No pt with ICD implanted for
		Exclusion criteria:	syncope without arrhythmia	tamily Hx only had appropriate
		Prior sust VI/VF		SNOCKS
• Marcus GM et al.	Study type:	Inclusion criteria:	<u>1° endpoint</u> : Suppression of VEA on AA meds	• Overall BB not associated with
JACC 2009	Retrospective multi-	ARVC patients in	in ARVC	increase or decrease in VEA;

 <u>19660690</u> 	center North American ARVC Registry <u>Size</u> : 95	Registry treatment with ICD and AA drugs <u>Exclusion criteria</u> : N/A	Results: BB: used in 61%, (58 patients): no increase or decrease in VEA; atenolol (20 patients) assoc with decreased risk VEA, HR: 0.25; 95% CI: 0.08–0.80, p=0.018. Sotalol 38 patients: increased risk ICD shock; in high dose 320 mg (6 patients) VEA HR: 14.0; 95%CI: 1.6–125, p=0.018. Amio (10 patients) lower risk VEA, HR: 0.25; 95% CI: 0.07–0.95.	Atenolol associated with decreased risk VEA • Sotalol increased risk ICD shock Amio lower risk VEA
• Hershberger RE J Card Fail 2009 (250) • <u>19254666</u>	Genetic evaluation of Cardiomyopathy		Guideline restricts the indication for genetic testing to that of facilitation of family screening and management. Ie, Testing is used for risk stratification of family members who have little or no clinical evidence of disease. Recommendations: Careful family Hx for ≥3 generations, for all patients. Clinical screening recommended at intervals for asymptomatic at-risk relatives who are mutation carriers; Clinical screening for asymptomatic first degree relatives when genetic testing has not been performed/or mutation not identified. Genetic screening for Fabry disease in all men w unexplained cardiac disease. Referral to centers expert in genetic evaluation and family based management.	 Details of clinical screening & intervals given: SAECG in ARVC only CMR in ARVC Childhood: screening intervals specified relative to ages and mutation status Especially LMNA mutations

• Marcus FI et al. HR 2009Study Lype: North American ARVC/D Registry probandsInclusion criteria: 1 or adpoint: Study ARV C clinical eval and diagnostic utility of 7 tests: ECG, SAECG, holter, echo, MRI, RV angio, biopsy in 108 probands referred to core center. Followup mean 27 mo.• Biopsy and CMR least helpful • Diagnostic eval favors: ECG, SAECG, echo, RV angio• 19560083Size: 108S7% male y affected after evaluation athletes Symptom: * all Symptom: * all Symtom: * a				Genetic testing for the one most clearly	
• Marcus Fl et al. HR 2009Study type: Inclusion criteria: MulticenterInclusion criteria: Inclusion criteria: North American ARVC/D Registry probands referred to core center. Followpy mean 27 mo.• Biopsy and CMR least helpful • Diagnostic cval favors: ECG, SAECG, holter, echo, MRI, RV angi, Diopsy in 108 Size: 108• Biopsy and CMR least helpful • Diagnostic cval favors: ECG, SAECG, holter, echo, MRI, RV angi, Diopsy in 108 affected after evaluation affected after evaluation affected after evaluation affected after evaluation affected after evaluation is yncope 21% system of sub should target RV free wall; Systamed V 35% opstive: PKP2 present in 22%• Biopsy performed in 59%: should not target septum but should target RV free wall; Systamed V 35% in function: Parvovirus 4; enterovirus not found: ARVC may predispose to viral mosoratitis and accelerate disease progression• Nor major gender differences in outcomes ARVC by gender Mean age 31.40 y AVC remains; 23% did not meet TFC; reclassified as present in 22% Among 86 patients referred with diagnosis, 23% did not meet TFC; reclassified as bootdreline, or not ARVC (2 patients)-mainly due to CMR interpretation at referring vis core lab-only 63% confirmed Mean followup 37 mo ARVC Registry Males 55% Mean followup 37 mo ARVC females: increased PVC's on Holter, 2200 vs 1088, peol.016 • ARVC fremales: increased PVC's on Holter, 2200 vs 1088, peol.016 • ARVC fremales: main and ARVC Registry Males 55% Mean followup 37 mo ARVC Registry Males 55% Mean followup 37 mo ARVC Re				affected person in a family to facilitate family	
ICD may be considered before the LVEF fails below 35% in patients with CM and significant arrhythmia or known risk of arrhythmia.Sellopsy and CMR least helpful• Marcus Fi et al. HR 2009Study type: Multicenter retrospectiveInclusion criteria: North American ARVC/D Registry probands referred to core center. Followup mean 27 mo.• Biopsy and CMR least helpful • Diagnostic eval favors: ECG, SAECG, holter, echo, NBI, RV angio, biopsy in 108 probands referred to core center. Followup mean 27 mo.• Biopsy and CMR least helpful • Diagnostic eval favors: ECG, SAECG, holter, echo, RV angio• 19550088Size: 10897% male y 34% competitive athletes Symptoms: ~ all Sustained VT 35% Genotype: 100 patients: 33% positive: PKP2 present in 22% Results: 78% of probands classified as affected after evaluation is sarcoidosis found in 3 patients vorarditis and accelerate disease progerssionDiagnostic performance of CMR and biopsy was less than with other tests progerssion• Choudhary N et al. JCE 2016Study type: MulticenterInclusion criteria: ARVC probands in ARVC Registry Males 56%Inclusion criteria: ARVC Registry Males 56%• No major gender differences in outcomes ARVC Registry Males 56%• Choudhary N et al. JCE 2016Size: 125Inclusion criteria: ARVC probands in ARVC Registry Males 56%Inclusion criteria: ARVC Registry Males 56%• No major gender differences in outcomes Mean followup 37 mo ARVC females: increased PVC's on Holter, 2200 vs 1089, pe-0.016 • Size: 125Inclusion criteria: ARVC Registry Males 56%Inclusion criteria: ARVC Proferine" ICD VT/VF or SCD: no difference				screening and management.	
 Marcus Fl et al. HR 2009 19550088 19550088 19550088 19550088 108 Size: 108 Size: 125 Size				ICD may be considered before the LVEE falls	
• Marcus Fl et al. HR 2009Study type: Multicenter retrospectiveInclusion criteria: ARVC/D Registry probands 57% male Mean age at dx 38 y 34% competitive athletes symptoms: ~ all Symptoms: ~ all Sympto				helow 25% in patients with CM and significant	
 Marcus FI et al. HR 2009 19550088 19550088 Size: 108 Size: 125 Marcus All Size: 125 Size: 125				arrhythmia or known risk of arrhythmia	
• Marcus Fl et al. HR 2009 Study type: Multicenter Inclusion criteria: North American 1º endpoint: Morth American 1º endpoint: Morth American 1º endpoint: Morth American 9 Biopsy and CMR least helpful • 19560088 retrospective ARVC/D Registry probands holter, echo, MRI, Rv angio, biopsy in 108 • Biopsy and CMR least helpful • 19560088 Size: 108 57% male probands referred to core center. Followup mean 27 mo. • Biopsy performed in 59%: should not target sarcoidosis found in 3 patients • Recommend minimum diagnostic eval: • Y 34% competitive athletes Symptoms: " all Symptoms: " all Symptoms: " all Symptoms: " all Syncipe 2100 Results: 78% of probands classified as affected after evaluation Diagnostic performance of CMR and biopsy was less than with other tests • Choudhary N et al. JCE 2016 Study type: Inclusion criteria: N/A Among 86 patients referred with diagnosis, 23% did not meet TFC, reclassified as borderline, or not ARVC (2 patients)-mainly due to CMR interpretation at referring vs core tab-only 63% confirmed • No major gender differences in outcomes • Z6840461 Study type: Nales 56% 109 genotype testing Inclusion criteria: N/A ARVC Registry Males 56% 10° endpoint: N/A • No major gender differences in outcomes • Women highest risk age: 31-40 y • ARVC females: increased PVC's on Holter, 2200 vs 1089, p=0.016 • SAECG					
2009 Multicenter retrospective North American ARVC/D Registry probands diagnostic utility of 7 tests: ECG, SAECG, holter, echo, MRI, RV anjo, biopsy in 108 probands referred to core center. Followup mean 27 mo. Diagnostic eval favors: ECG, SAECG, holter, echo, MRI, RV anjo, biopsy in 108 probands classified as affected after evaluation Biopsy performed in 5%: should not target sarcoidosis found in 3 patients Syncope 21% Syncope 21% Sudy type; Choudhary N et al. 2E Choudhary N et al. 2E 2016 Choudhary N et al. 2Estudy type; ARVC probands Zes 125 Multicenter ARV C probands ARV C probands Pasufts; ACE more likely in "affected" vs "borderline" ARV C probands Diagnostic eval favors: ECG, SAECG, holter, echo, RV angio Results; 78% of probands classified as borderline, or not ARVC (2 patients)-mainly due to CMR interpretation, outcomes ARVC by gender ARV C probands in North American ARV C Registry ARV C Registry ARV C Registry ARV C Registry Matticenter ARV C Registry Multicenter ARV C Registry ARV C Registry ARV C Registry ARV C Registry ARV C Probands in N/A ARV C Roban in North or reschantion, outcomes ARVC "borderline" ARV C fromales: increased PVC's on "borderline" ARV C robands in N/A ARV C robands in North American N/A ARV C robands in North American N/A ARV C robands in "borderl	• Marcus FI et al. HR	Study type:	Inclusion criteria:	1° endpoint: Study ARVC clinical eval and	 Biopsy and CMR least helpful
 19560038 retrospective ARVC/D Registry probands Size: 108 Size: 125 Size: 125	2009	Multicenter	North American	diagnostic utility of 7 tests: ECG, SAECG,	• Diagnostic eval favors: ECG, SAECG,
Size: 108probands 57% male Mean age at dx 38 V 34% competitive athletes Symptoms: ~ all Syncope 21% VA 70%probands referred to core center. Followup mean 27 mo.• Recommend minimum diagnostic eval: ECG, SAECG, Holter, echo, RV angio Diagnostic performance of CMR and biopsy was less than with other tests• Choudhary N et al. JCE 2016Study type: N/AResults: ARVC probands in ARVC Registry Males 56%Probands referred to core center. Followup mean 27 mo.• Recommend minimum diagnostic eval: ECG, SAECG, Holter, echo, RV angio Diagnostic performance of CMR and biopsy was less than with other tests septimum to should target RV free wall; 	• <u>19560088</u>	retrospective	ARVC/D Registry	holter, echo, MRI, RV angio, biopsy in 108	echo, RV angio
Size: 10857% male Mean age at dx 38 ymean 27 mo.eval:Mean age at dx 38 yMean age at dx 38 yResults: 78% of probands classified as affected after evaluation Biopsy performed in 59%: should not target septum but should target RV free wall; sarcoidosis found in 3 patients 15% viral infection: Parvovirus 4; enterovirus not found: ARVC may predispose to viral myocarditis and accelerate disease progressionDiagnostic performance of CMR and biopsy was less than with other tests• Choudhary N et al. JCE 2016 • 2.5840461Study type: MulticenterInclusion criteria: ARVC probands in N/AMean g8 b patients referred with diagnosis, 23% did not meet TFC, reclassified as borderline, or not ARVC (2 patients)-mainly due to CMR interpretation at referring vs core tab-only 63% confirmed• No major gender differences in outcomes ARVC by gender• Choudhary N et al. JCE 2016 • 2.5840461Study type: MulticenterInclusion criteria: ARVC probands in North American ARVC Registry Males 56%12 Genotype: 100 Mean followup 37 mo• No major gender differences in outcomes• USD genotype testing N/AInclusion criteria: N/A100 genotype "borderline" "borderline"12 Genotype: 100 moment testing "borderline" "borderline" "borderline" "borderline"• No major gender differences in outcomes• USD matrice (D1 genotype testing N/AResults: ACE more likely in "affected" vs "borderline" "borderline" "borderline"• No major gender differences in outcomes• USD matrice (D2 genotype testingN/AResults: ACE more likely in "affected" vs "borderline" <b< td=""><td></td><td></td><td>probands</td><td>probands referred to core center. Followup</td><td> Recommend minimum diagnostic </td></b<>			probands	probands referred to core center. Followup	 Recommend minimum diagnostic
Mean age at dx 38Mean age at dx 38ECG, SAECG, Holter, echo, RV angioy34% competitive athletesaffected after evaluation Biopsy performed in 59%: should not target septum but should target RV free wall; sarcoidosis found in 3 patients vA 70%Diagnostic performance of CMR and biopsy was less than with other testsVA 70%15% viral infection: Parvovirus 4; enterovirus NA 70%Diagnostic performance of CMR and biopsy was less than with other testsSustained VT 35% Genotype: 100 patients: 33% positive: PKP2 present in 22%not found: ARVC may predispose to viral mycarditis and accelerate disease progression positive: PKP2 present in 22%Among 86 patients referred with diagnosis, 23% did not meet TFC, reclassified as borderline, or not ARVC (2 patients)-mainly due to CMR interpretation at referring vs core lab-only G3% confirmed• No major gender differences in outcomes• Choudhary N et al. JCE 2016Study type: Multicenter N/AInclusion criteria: North American ARVC Probands in Dig genotype# Parsent tin 20% Proderline"• No major gender differences in outcomes • Women highest risk age: 31-40 y • ARVC freades: increased PVC's on Holter, 2200 vs 1089, p=0.016• Norte American • ARVC freades: increased PVC's on Holter, 2200 vs 1089, p=0.016• Z6840461Size: 125North American N/AResults: ACE more likely in "affected" vs "borderline"• Norte American • Dirderline"• Choudhary N et al. JCE 2016Size: 125Inclusion criteria: North American NAResults: ACE more likely in "affected" vs "borderline"• No major gender differences in outcomes• Ch		<u>Size</u> : 108	57% male	mean 27 mo.	eval:
YResults: Affected after evaluation affected after evaluation Biopsy performed in 59%: Should not target Symptoms: ~ all Symptoms: ~ all<			Mean age at dx 38		ECG, SAECG, Holter, echo, RV angio
Add Section34% competitive athletesaffected after evaluation Biopsy performed in 59%: should not target Symtops: ``all Sproop 21% VA 70%Diagnostic performance of CMR and biopsy was less than with other testsSymtops: ``all Syntope 21% VA 70%Septum but should target RV free wall; sprciolisis found in 3 patients UA 70%Diagnostic performance of CMR and biopsy was less than with other testsVA 70%15% viral infection: Parvovirus 4; enterovirus Genotype: 100 patients: 33% progressionDiagnostic performance of CMR and biopsy was less than with other testsPresent in 22%Among 86 patients referred with diagnosis, 23% did not meet TFC, reclassified as borderline, or not ARVC (2 patients)-mainly due to CMR interpretation at referring vs core N/A• No major gender differences in outcomes• Choudhary N et al. JCE 2016Study type:Inclusion criteria: ARVC probands North American ARVC Registry Males 56%12° endpoint: Present in 21° endpoint: Present ine" Males 56%• No major gender differences in outcomes• 26840461Size: 125North American ARVC Registry Males 56%Results: ACE more likely in "affected" vs "borderline"• No major gender differences in outcomes• ARVC females: increased PVC's on Holter, 2200 vs 1089, p=0.016 • SAECG: ACE in females-equal in patients wor w/out abnl SAEC • In males, ACE more likely if abnl SAECG• Norta American • In andes, ACE more likely if abnl SAECG			У	Results: 78% of probands classified as	
AthletesBiopsy performed in 59%: should not target septum but should target RV free wall; sarcoidosis found in 3 patients VA 70%biopsy was less than with other testsSyncope 21%sarcoidosis found in 3 patients VA 70%15% viral infection: Parvovirus 4; enterovirus Sustained VT 35% Genotype: 100 patients: 33%biopsy was less than with other testsSustained VT 35%not found: ARVC may predispose to viral myocarditis and accelerate disease progressionbiopsy was less than with other testsPresent in 22%Among 86 patients referred with diagnosis, 23% did not meet TFC, reclassified as borderline, or not ARVC (2 patients)-mainly due to CMR interpretation at referring vs core• Choudhary N et al.Study type: MulticenterInclusion criteria: ARVC probands in by gender1° endpoint: Presentation, outcomes ARVC by gender• No major gender differences in outcomes• 26840461Size: 125North American ARVC Registry Males 56%Results: ACE more likely in "affected" vs "borderline"• No major gender differences in outcomes• ARVC Feralesting testingICD VT//F or SCD: no difference Fast VT/VF or death in women trend to lower N/A• Norta and sAECG			34% competitive	affected after evaluation	Diagnostic performance of CMR and
Symptoms: ~ all Syncope 21%septum but should target RV free wall; sarcoidosis found in 3 patientsVA 70%15% viral infection: Parvovirus 4; enterovirus Sustained VT 35%Genotype: 100 patients: 33% positive: RKP2 present in 22%myocarditis and accelerate disease progression• Choudhary N et al. JCE 2016Study type: NulticenterAmong 86 patients referred with diagnosis, 23% did not meet TFC, reclassified as borderline, or not ARVC (2 patients)-mainly due to CMR interpretation at referring vs core lab-only 63% confirmed• No major gender differences in outcomes• Choudhary N et al. JCE 2016Study type: MulticenterInclusion criteria: ARVC probands in ARVC Registry Males 56%1º endpoint: Presentation, outcomes ARVC by gender• No major gender differences in outcomes• 26840461Size: 125North American ARVC Registry Males 56%Pesults: ACE more likely in "affected" vs "borderline" (CD VT/VF or SCD: no difference Fast VT/VF or SCD: no difference Fast VT/VF or death in women trend to lower N/A• No major gender likely if abnl SAECG			athletes	Biopsy performed in 59%: should not target	biopsy was less than with other tests
Syncope 21% VA 70%sarcoidosis found in 3 patients 15% viral infection: Parvovirus 4; enterovirus not found: ARVC may predispose to viral myocarditis and accelerate disease progressionsarcoidosis found in 3 patients 15% viral infection: Parvovirus 4; enterovirus myocarditis and accelerate disease progression• Choudhary N et al. JCE 2016Study type: N/AAmong 86 patients referred with diagnosis, 23% did not meet TFC, reclassified as borderline, or not ARVC (2 patients)-mainly due to CMR interpretation at referring vs core lab-only 63% confirmed• No major gender differences in outcomes• Choudhary N et al. JCE 2016Study type: MulticenterInclusion criteria: ARVC probands in ARVC probands in ARVC Registry Males 56%• No major gender differences in outcomes• No major gender differences in outcomes• 26840461Size: 125North American ARVC Registry Males 56%• Results: ACE more likely in "affected" vs "borderline" in 100 genotype "borderline" Fast VT/VF or death in women trend to lower in wales ACE more likely in sake SAECG• No males, ACE more likely if abnl SAECG			Symptoms: ~ all	septum but should target RV free wall;	
VA 70%15% viral infection: Parvovirus 4; enterovirus ont found: ARVC may predispose to viral myocarditis and accelerate disease progression progression• Choudhary N et al. JCE 2016Study type: N/AAmong 86 patients referred with diagnosis, 23% did not meet TFC, reclassified as borderline, or not ARVC (2 patients)-mainly due to CMR interpretation at referring vs core lab-only 63% confirmed• No major gender differences in outcomes ARVC by gender• Choudhary N et al. JCE 2016Study type: Multicenter Size: 125Inclusion criteria: ARVC probands in ARVC Registry Males 56% 109 genotype testing1° endpoint: Presentation, outcomes ARVC by gender• No major gender differences in outcomes • Women highest risk age: 31-40 y • ARVC females: increased PVC's on Holter, 2200 vs 1089, p=0.016 • SAECG: ACE in females-equal in patients wor w/out abnl SAEC • In males, ACE more likely in "affected" vs misk, HR: 0.41• No major gender dikely if abnl SAECG			Syncope 21%	sarcoidosis found in 3 patients	
Sustained VT 35% Genotype: 100 patients: 33% positive: PKP2 present in 22%not found: ARVC may predispose to viral myocarditis and accelerate disease progression• Choudhary N et al. JCE 2016Study type: N/AAmong 86 patients referred with diagnosis, 23% did not meet TFC, reclassified as borderline, or not ARVC (2 patients)-mainly due to CMR interpretation at referring vs core lab-only 63% confirmed• No major gender differences in outcomes ARVC by gender• Choudhary N et al. JCE 2016Study type: MulticenterInclusion criteria: ARVC probands in North American ARVC Registry Males 56%1° endpoint: Present in 22%• No major gender differences in outcomes ARVC by gender• Choudhary N et al. JCE 2016Study type: MulticenterInclusion criteria: ARVC probands in North American ARVC Registry Males 56%1° endpoint: Presentation, outcomes ARVC by gender• No major gender differences in outcomes • Women highest risk age: 31-40 y • ARVC females: increased PVC's on Holter, 2200 vs 1089, p=0.016• Di genotype testingICD VT/VF or SCD: no difference Fast VT/VF or death in women trend to lower N/A• Nates: ACE more likely in "affected" vs "borderline"• Nates: ACE more likely if abnl SAECG			VA 70%	15% viral infection: Parvovirus 4; enterovirus	
Genotype: 100 patients: 33% positive: PKP2 present in 22%myocarditis and accelerate disease progressionmyocarditis and accelerate disease progressionMulticenterZ3% did not meet TFC, reclassified as borderline, or not ARVC (2 patients)-mainly due to CMR interpretation at referring vs core lab-only 63% confirmed• No major gender differences in outcomes• Choudhary N et al. JCE 2016Study type: MulticenterInclusion criteria: ARVC probands in ARVC Registry Males 56%1° endpoint: Mean followup 37 mo ARVC Registry Males 56%• No major gender differences in outcomes• 26840461Size: 125North American ARVC Registry Males 56%Mean followup 37 mo "borderline"• No major gender differences in outcomes• 109 genotype testingICD VT/VF or SCD: no difference Fast VT/VF or death in women trend to lower risk, HR: 0.41• No major, SAECG• In males, ACE more likely if abnl SAECG			Sustained VT 35%	not found: ARVC may predispose to viral	
patients: 33% positive: PKP2 present in 22%progressionAmong 86 patients referred with diagnosis, 23% did not meet TFC, reclassified as borderline, or not ARVC (2 patients)-mainly due to CMR interpretation at referring vs core lab-only 63% confirmed			Genotype: 100	myocarditis and accelerate disease	
positive: PKP2 present in 22%Among 86 patients referred with diagnosis, 23% did not meet TFC, reclassified as borderline, or not ARVC (2 patients)-mainlyExclusion criteria: N/Adue to CMR interpretation at referring vs core lab-only 63% confirmed• No major gender differences in outcomes• Choudhary N et al. JCE 2016Study type: MulticenterInclusion criteria: ARVC probands in ARVC probands in Males 56%1º endpoint: Presentation, outcomes ARVC by gender• No major gender differences in outcomes• 25840461Size: 125North American North American 109 genotype testingMean followup 37 mo "borderline"• No major gender differences in outcomes• Males 56% 109 genotype testingResults: NCV For SCD: no difference Fast VT/VF or death in women trend to lower N/A• No major gender differences in outcomes• N/AiCD VT/VF or SCD: no difference Fast VT/VF or death in women trend to lower N/A• No major gender difference outcomes			patients: 33%	progression	
 Among 86 patients referred with diagnosis, 23% did not meet TFC, reclassified as borderline, or not ARVC (2 patients)-mainly due to CMR interpretation at referring vs core lab-only 63% confirmed Choudhary N et al. JCE 2016 Multicenter <u>1 relusion criteria</u>: Multicenter <u>1 endpoint</u>: Presentation, outcomes ARVC by gender Morth American ARVC probands in ARVC Registry Males 56% <u>109 genotype</u> testing <u>1 CD VT/VF or SCD</u>: no difference fast VT/VF or death in women trend to lower N/A Males, ACE more likely if abnl SAECG Males, ACE more likely if abnl SAECG 			positive: PKP2		
• Choudhary N et al. JCE 2016Study type: N/AInclusion criteria: N/A1° endpoint: Presentation, outcomes ARVC by gender• No major gender differences in outcomes• Choudhary N et al. JCE 2016Study type: MulticenterInclusion criteria: ARVC probands in North American ARVC Registry Males 56%1° endpoint: Presentation, outcomes ARVC by gender• No major gender differences in outcomes• 26840461Size: 125North American ARVC Registry Males 56%Mean followup 37 mo "borderline"• No major gender differences in outcomes• 109 genotype testingICD VT/VF or SCD: no difference Fast VT/VF or death in women trend to lower risk, HR: 0.41• No major gender differences in outcomes• N/AN/Aicd not meet TFC, reclassified as borderline, or not ARVC (2 patients)-mainly due to CMR interpretation at referring vs core lab-only 63% confirmed• No major gender differences in outcomes• LowNorth American ARVC Registry Males 56%Mean followup 37 mo "Borderline"• North American • ARVC females: increased PVC's on Holter, 2200 vs 1089, p=0.016 • SAECG: ACE in females-equal in patients w or w/out abnl SAEC • In males, ACE more likely if abnl SAECG			present in 22%	Among 86 patients referred with diagnosis,	
Exclusion criteria: N/Aborderline, or not ARVC (2 patients)-mainly due to CMR interpretation at referring vs core lab-only 63% confirmedMulticenter• Choudhary N et al. JCE 2016Study type: MulticenterInclusion criteria: ARVC probands in North American1° endpoint: Presentation, outcomes ARVC by gender• No major gender differences in outcomes• 26840461Size: 125North American ARVC RegistryMean followup 37 mo Males 56%• Women highest risk age: 31-40 y • ARVC females: increased PVC's on Holter, 2200 vs 1089, p=0.016• 109 genotype testing''borderline'' Fast VT/VF or SCD: no difference risk, HR: 0.41• SAECGACE more likely if abnl SAECG				23% did not meet TFC, reclassified as	
Exclusion criteria: N/Adue to CMR interpretation at referring vs core lab-only 63% confirmedOutcomes• Choudhary N et al. JCE 2016Study type: MulticenterInclusion criteria: ARVC probands in ARVC probands in ARVC Registry1° endpoint: Presentation, outcomes ARVC by gender• No major gender differences in outcomes• 26840461Size: 125125North American ARVC RegistryMean followup 37 mo ARVC Registry• Women highest risk age: 31-40 y • ARVC females: increased PVC's on Holter, 2200 vs 1089, p=0.016• 09 genotype testing"borderline" ICD VT/VF or SCD: no difference Fast VT/VF or death in women trend to lower N/A• Nales, ACE more likely if abnl sAECG				borderline, or not ARVC (2 patients)-mainly	
• Choudhary N et al. JCE 2016Study type: MulticenterInclusion criteria: ARVC probands in North American ARVC Registry1° endpoint: Presentation, outcomes ARVC by gender• No major gender differences in outcomes• 26840461Size:125North American ARVC RegistryMean followup 37 mo Males 56%• Women highest risk age: 31-40 y • ARVC females: increased PVC's on Holter, 2200 vs 1089, p=0.016• Males 56% 109 genotype testingResults: borderline" (DD VT/VF or SCD: no difference Fast VT/VF or death in women trend to lower N/A• SAECG: ACE in females-equal in patients w or w/out abnl SAEC • In males, ACE more likely if abnl SAECG			Exclusion criteria:	due to CMR interpretation at referring vs core	
• Choudhary N et al. Study type: Inclusion criteria: 1° endpoint: Presentation, outcomes ARVC • No major gender differences in outcomes JCE 2016 Multicenter ARVC probands in by gender outcomes • 26840461 Size: 125 North American Mean followup 37 mo • Women highest risk age: 31-40 y • ARVC Registry Males 56% Results: ACE more likely in "affected" vs • Notter, 2200 vs 1089, p=0.016 109 genotype "borderline" ICD VT/VF or SCD: no difference • SAECG: ACE in females-equal in patients w or w/out abnl SAEC • Exclusion criteria: N/A risk, HR: 0.41 SAECG			N/A	lab-only 63% confirmed	
JCE 2016 Multicenter ARVC probands in North American by gender outcomes • <u>26840461</u> Size: 125 North American Mean followup 37 mo • Women highest risk age: 31-40 y ARVC Registry ARVC Registry Males 56% Results: ACE more likely in "affected" vs • ARVC females: increased PVC's on 109 genotype "borderline" • SAECG: ACE in females-equal in testing ICD VT/VF or SCD: no difference patients w or w/out abnl SAEC Exclusion criteria: Fast VT/VF or death in women trend to lower • In males, ACE more likely if abnl N/A risk, HR: 0.41 SAECG	• Choudhary N et al.	Study type:	Inclusion criteria:	<u>1° endpoint</u> : Presentation, outcomes ARVC	No major gender differences in
• <u>26840461</u> Size: 125 North American ARVC Registry Males 56% 109 genotype testing <u>Exclusion criteria</u> : N/A North American ARVC Registry Maen followup 37 mo • Women highest risk age: 31-40 y • ARVC females: increased PVC's on Holter, 2200 vs 1089, p=0.016 • SAECG: ACE in females-equal in patients w or w/out abnl SAEC • In males, ACE more likely if abnl SAECG	JCE 2016	Multicenter	ARVC probands in	by gender	outcomes
ARVC Registry• ARVC temales: increased PVC's onMales 56%Results: ACE more likely in "affected" vsHolter, 2200 vs 1089, p=0.016109 genotype"borderline"• SAECG: ACE in females-equal intestingICD VT/VF or SCD: no differencepatients w or w/out abnl SAECExclusion criteria:Fast VT/VF or death in women trend to lower• In males, ACE more likely if abnlN/Arisk, HR: 0.41SAECG	• <u>26840461</u>	<u>Size</u>: 125	North American	Mean followup 37 mo	• women nignest risk age: 31-40 y
Males 56% Results: ACE more likely in "affected" vs Holter, 2200 vs 1089, p=0.016 109 genotype "borderline" • SAECG: ACE in females-equal in testing ICD VT/VF or SCD: no difference patients w or w/out abnl SAEC Exclusion criteria: Fast VT/VF or death in women trend to lower • In males, ACE more likely if abnl N/A risk, HR: 0.41 SAECG			ARVC Registry		ARVC females: Increased PVC's on
109 genotype "borderline" • SAECG: ACE in females-equal in patients w or w/out abnl SAEC testing ICD VT/VF or SCD: no difference patients w or w/out abnl SAEC Exclusion criteria: Fast VT/VF or death in women trend to lower • In males, ACE more likely if abnl N/A risk, HR: 0.41 SAECG				Results: ACE more likely in "affected" vs	Holter, 2200 VS 1089, p=0.016
Exclusion criteria: Fast VT/VF or ScD: no difference patients w or w/out abni SAEC N/A Fast VT/VF or death in women trend to lower • In males, ACE more likely if abni SAECG SAECG			TOA BenotAbe	Dorderline"	SAELG: ALE IN IEMales-equal IN
N/A risk, HR: 0.41 SAECG			Evolucion critorio:	ICD VI/VF OF SCD: NO difference	Patients w or w/out abni SAEC
4.40			IN/A	ПSK, ПК: U.41 142	JAELU

			Males: Increase in Abnormal SAECG 81% vs 48%, p<0.001, inducible VT/VF 60% vs 40%, p=0.026 Overall VT/VF shocks: 27% women, 41% men Genotype positive: 38%, of positive: PKP-2 71%; genotype = gender ≥2 mutations: 8%	• cardiac events not different in genotype positive vs negative
• Saguner AM AJC 2013 • <u>23103200</u>	Study type: Prospective single center <u>Size</u> : 62	Inclusion criteria:ARVC patientsundergoing EPSNOTE prior tostudy39% had clinicalhemodynamicallycompromised VTor VF; 32% sust VTstable; 50%syncope;NYHA Class II-III31%;LVEF <50% in 24%	<u>1° endpoint</u> : ARVC utility of V-stim to predict outcomes: positive EP = sustained monomorphic VT only, triple VEST, =/- isuprel <u>Results:</u> 55% sustained monomorphic VT inducible at PES correlated with increased risk adverse outcome Inducibility of sust monomorphic VT (HR: 2.52; 95% CI:1.03–6.16, p=0.043) and nonadherence to meds and activity restrictions (HR: 2.34; 95% CI: 1.1–4.99, p=0.028) PPV 65%, NPV 71% Anti-tach pacing successfully terminated VT > 90% of cases	 study included symptomatic patients with clinical VT/VF/syncope and ventricular dysfunction Cannot identify how many patients were asymptomatic with normal ventricular function
Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
--	----------------------------	---------------------------	------------------------------	--
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
• Maron et al. 2000	Study type: Retrospective,	Inclusion criteria: HCM	1° endpoint: ICD shock	 VT or VF are the principal
(251)	multicenter, observational	patients at high risk for	from VT or VF	mechanisms of SCD in HCM
• <u>10666426</u>		SCD treated with ICD		 ICDs are highly effective in high risk
	Size: 128 patients		Results: At 3.1 y follow up,	patients
		Exclusion criteria:	the ICD delivered	
		Inadequate data	appropriate therapy in 23%	
			of patients (7%/y). 25% of	
			patients had an	
			inappropriate shock.	
			Therapy for 1° prevention	
			patients was 5%/y; and for	
			2° prevention 11%/y.	
 Christiaans et al. 	Study type: observational,	Inclusion criteria:	1° endpoint: satisfaction	 The majority of genetic carriers of
2009 (252)	single center	Predictively tested HCM	with genetic counseling	HCM gene(s) were satisfied with
• <u>19533783</u>		mutation carriers		genetic counseling
	Size: 143 patients	followed by	Results: Genetic counseling	 Receiving information by mail was
		questionnaire	was valued positively and	satisfactory
			only 4 carriers would rather	
		Exclusion criteria:	not have known that they	
		inadequate data	were a mutation carrier.	
 Hamang et al 2012 	Study type: Prospective,	Inclusion criteria:	1° endpoint: Development	 Patients with a clinical diagnosis of
(253)	multi-center observational	Norwegian patients	of heart-focused anxiety	HCM receiving genetic counseling
• <u>21773878</u>	study	with a clinical diagnosis		continue to experience anxiety.
		or genetic risk of HCM	Results: 1 y of follow-up	• Patients with a genetic risk for HCM
	Size: 126 patients	attending genetic	questionnaires after genetic	had less anxiety if they experienced
		counseling	counseling. Patients with a	satisfaction with genetic counseling
			clinical diagnosis of HCM	
		Exclusion criteria:	compared to genetic risk	
		inadequate data	had higher avoidance	
			(p<0.002), attention	
			(p<0.005) and fear	
			(p<0.007).	

Data Supplement 31.	Nonrandomized Trials.	Observational Studies.	and/or Registries o	of Hypertrophi	c Cardiomyopathy	- (Section 7.4)
						1

●Bos JM et al	Study type: Single center,	Inclusion criteria:	1° endpoint: Genetic	 Predictors of a positive genetic test
2014 (254)	observational data registry	Established clinical HCM	testing for HCM	were reverse curve morphological
• 24793961		diagnosis		subtype, age <45 y, LV wall thickness
	Size: 1053 patients	-	Results: 1053 patients with	≥20 mm, family history of HCM, and
		Exclusion criteria:	clinical HCM (mean age	family history of SCD. Hypertension
		Inadequate data	44.4±19 y) had genetic	was not predictive.
		-	testing evaluating 9 HCM-	• A positive genetic test was predicted
			associated myofilament	in 6% of patients with only
			genes. 34% were positive or	hypertension and 80% with all 5
			a HCM mutation.	predictor markers.
• O'Mahony et al.	Study type: Prognostic	Inclusion criteria: HCM	1° endpoint: SCD or	• Risk modifiers for SCD used in the
2014 (255)	model derived from a	patients	appropriate ICD shock	model were age, maximal LV wall
• 24126876	retrospective, multicenter			thickness, left atrial diameter, LV
	longitudinal cohort study	Exclusion criteria:	Results: Median follow-up	outflow tract gradient, family Hx of
	Clinical risk prediction	inadequate data	5.7 y; 5% of patients had	SCD, non-sustained VT, and
	model for SCD in HCM		SCD/ICD shock. 8 pre-	unexplained syncope
			specified predictors were	 This is the first validated SCD risk
	Size: 3,675 patients		associated with SCD/ICD	prediction model for patients with
			shock at 15% significance	HCM and provides accurate
			level. Model developed to	individualized estimates for the
			estimate probability of SCD	probability of SCD using clinical
			at 5 y. For every 16 ICDs	parameters.
			implanted in patients with a	
			≥4% 5-y SCD risk, potentially	
			1 pt will be saved.	
• Elliott et al. 1999	Study type: single center,	Inclusion criteria: HCM	1° endpoint: Survival free	 ICD therapy was better than
(256)	observational	patients surviving	from SCD or appropriate ICD	amiodarone at preventing recurrent
• <u>10334430</u>	Survival after SCD or	resuscitated VF or	shock	SCD
	sustained VT in HCM:	syncopal sustained VT		 Small numbers and purely
	treated with amiodarone		Results: 8 patients on	observational without controls
	or ICD	Exclusion criteria:	amiodarone and 6 received	reported.
		inadequate data	an ICD. Mean follow-up	
	Size: 16 patients		6.1±4 y 2 patients on	
			amiodarone with SCD and 3	
			patients had appropriate	
			ICD shock.	

• Maron et al. 2007	Study type:	Inclusion criteria: HCM	1° endpoint: ICD shock	• ICDs are highly effective in high risk
(257)	Retrospective, multicenter,	patients at high risk for	from VT or VF	patients
• <u>17652294</u>	registry	SCD treated with ICD		 One death due to VT/VF when ICD
	ICD to prevent SCD in HCM		Results: 20% had	failed to function
	Size: 506 patients	Exclusion criteria:	appropriate treatment of	 Inappropriate shocks in 27% of
		Inadequate data	VT/VF: 10.6% per y for 2°	patients
			prevention and 3.6%/y for	• A single modifier of high risk for SCD
			1° prevention. Time to 1 st	may be sufficient to justify ICD
			appropriate shock was 10 y.	placement
			Appropriate discharge was	
			similar in patients with 1, 2,	
			or 3 risk factors (p=0.77)	
• Lin G et al. 2009	Study type: Retrospective,	Inclusion criteria:	1° endpoint: Inappropriate	 Inappropriate shocks and device
(258)	single center, registry	Patients with HCM	shocks and device	complications are significant in HCM
• <u>19282314</u>	Complications and	receiving ICD	complications	patients receiving an ICD
	inappropriate ICD shocks			 Younger patients and those with AF
	in HCM patients	Exclusion criteria:	Results: Mean follow up	more likely to have problems
		Inadequate data	4.92 y. 36% of patients had	
	Size: 181 patients		complications and 23%	
			inappropriate shocks (5.3%	
			per y). Appropriate shocks	
			4%/y.	
 Syska et al. 2010 	Study type: Retrospective,	Inclusion criteria: HCM	1° endpoint: ICD therapy	 ICD therapy is effective in HCM,
(259)	observational, single	patients at high risk for	and relation to clinical risk	although the complication rate is
• <u>20132378</u>	center	VT/VF treated with ICD	profile	significant.
	Efficacy and complications			• 1, 2, or more risk modifiers did not
	of ICD therapy in HCM	Exclusion criteria:	Results: Average follow up	predict appropriate ICD therapies
		Inadequate data	4.6 y. 53.8% of 2°	
	Size: 104 patients		prevention patients	
			received an appropriate	
			therapy and 16.7% of 1°	
			prevention patients.	
			Complications:	
			inappropriate shocks	
			(33.7%), lead dysfunction	
			(12.5%), and infections	
			(4.8%).	

 O'Mahony et al. 	Study type:	Inclusion criteria: HCM	1° endpoint: ICD therapy	HCM patients with an ICD are
2012 (260)	Retrospective,	patients at high risk for	and complications	exposed to frequent inappropriate
• <u>21757459</u>	observational, single	VT/VF treated with ICD		shocks and implant complications
	center, cohort		Results: 8% of patients	
	Efficacy and complications	Exclusion criteria:	received appropriate shocks	
	of ICD therapy in HCM	Inadequate data	(2.3%/y). 16% of patients	
			received inappropriate	
	Size: 334 patients		shocks (4.6%/y). 18% had	
			implant complications	
			(5.1%/y) and 30% had	
			inappropriate shocks	
			(8.6%/y).	
• Melacini et al. 2007	Study type: Retrospective,	Inclusion criteria: HCM	1° endpoint: Risk of sudden	 Medical treatment is not absolutely
(261)	single center,	patients on AAD	death	protective against risk of SCD in HCM.
• <u>17502652</u>	observational			
	Pharmacological treatment	Exclusion criteria:	Results: 10% of patients	
	to prevent SCD in HCM	Inadequate data	had SCD over an average of	
			62 mo: 20% on amiodarone	
	Size: 173 patients		(6/30), 9% on verapamil	
			(4/46) and BB (7/76), and	
			0% on sotalol (0/21)	
McKenna et al. 1985	Study type: single center,	Inclusion criteria: HCM	<u>1° endpoint</u> : SCD, recurrent	 Amiodarone was better than
(262)	observational	patients with NSVT on	VT	conventional medications for
• <u>4039188</u>	Improved survival with	Holter		preventing SCD.
	amiodarone in HCM and		Results: 24 patients during	
	VT	Exclusion criteria:	1976-1977 had NSVT and	Study design was purely observational
		inadequate data	received conventional AAD:	
	Size: 86 patients		7 patients had SCD during 3	
			y follow-up. 21 patients	
			from 1978-1979 with NSVT	
			received amiodarone: no	
			SCD on amiodarone during 3	
			y tollow-up.	
• Olivotto et al.1999	Study type: Prospective,	Inclusion criteria:	<u>1° endpoint</u> : Mortality	An abnormal BP response during
(263)	single center observational	Patients with HCM who		exercise in HCM was associated with
• <u>10362212</u>		underwent exercise	Results: 22% had an	CV mortality
		testing	abnormal BP response (9	

	Prognostic value of BP		with hypotension, 19 with	• However, the positive predictive
	response during exercise in	Exclusion criteria:	failed BP rise). 4.7±3.7 y	value was only 14%. Negative
	нсм	Inadequate data	follow up. 7% died (3 SCD. 6	predictive value 95%
			HF). An abnormal BP	
	Size: 128 patients		response predicted	
			increased risk for CV	
			mortality (OR: 4.5: 95% CI:	
			1.1–20.1).	
• Sadoul et al.1997	Study type: Prospective,	Inclusion criteria:	1° endpoint: Mortality	• A normal BP response during
(264)	single center observational	Patients with HCM who		exercise identifies low risk young
• <u>9386166</u>	Prognostic value of BP	underwent exercise	Results: 37% had an	patients with HCM.
	response during exercise in	testing	abnormal BP response.	 An abnormal response had a low
	НСМ		During 44±22 mo follow up,	(15%) positive predictive value and a
		Exclusion criteria:	SCD occurred in 12 patients:	high (97%) predictive value.
	Size: 161 patients	Inadequate data	3% in normal BP group and	
			15% in abnormal BP	
			response group.	
• Sorajja et al. 2006	Study type: Single center,	Inclusion criteria: HCM	1° endpoint: Survival	 Patients with HCM and massive LVH
(265)	retrospective, longitudinal	patients with LVH \geq 30		are at increased risk of SCD, especially
• <u>16762758</u>	data base.	mm	Results: 10-y outcome	in the young.
			assessed. Survival less than	
	Clinical implications of	Exclusion criteria:	general population (77% vs	
	massive hypertrophy in	inadequate data	95%, p<0.001). SCD most	
	НСМ		common cause of mortality	
			in younger patients (overall	
	Size: 107 patients		survival 80%)	
• Maki et al. 1998	Study type: single center,	Inclusion criteria:	1° endpoint: SCD	 Patients with exercise-related SCD
(266)	retrospective, data base	Patients with HCM		were younger and had smaller
• <u>9761089</u>	analysis		Results: Mean follow-up 9.4	increases in SBP during exercise.
	Hemodynamic predictors	Exclusion criteria:	y; SCD in 9%. Independent	
	of SCD in HCM	Inadequate data	predictors of SCD were a	
			smaller difference between	
	Size: 309 patients		peak and rest SBP during	
			exercise (p=0.006), and	
			higher LV outflow tract	
			pressure gradient at rest	
			(p=0.003). Exercise-related	

			SCD in 8 patients and	
			exercise-unrelated SCD in 20	
			patients (mean age 28 vs 47	
			y, p<0.05).	
• Elliott et al. 2006	Study type: Single center,	Inclusion criteria: HCM	1° endpoint: SCD	 LV outflow tract gradient ≥ 30 mmHg
(267)	retrospective, data base	patients with LV		was an independent risk modifier for
• <u>16754630</u>	LV outflow track	outflow tract gradient	Results: 31.4% had LV	SCD/ICD shock with a 2.4-fold
	obstruction and SCD risk in	measured	outflow tract gradient ≥ 30	(p=0.003) increase in the risk of
	НСМ		mmHg, followed median of	SCD/ICD shock that is increased if other
		Exclusion criteria:	61 mo, 5.9% had SCD, VF, or	risk modifiers are present.
	Size: 917 patients	inadequate data	appropriate ICD shock. LV	
			outflow tract gradient ≥30	 Risk of SCD/ICD shock low (0.37%)
			mmHg associated with	annual risk) if the only risk modifier is
			reduced survival free from	an increased LV outflow tract gradient
			SCD and ICD shock (91.4% vs	
			95.7%. p=0.004)	
• Monserrat et al.	Study type: Retrospective,	Inclusion criteria: HCM	1° endpoint: Sudden	NSVT was associates with a
2003 (268)	single center,	with Holter monitoring	cardiac death	substantial increased risk of SCD in
• <u>12957435</u>	observational			young patients with HCM
	NSVT and risk for SCD in	Exclusion criteria:	Results: 19.6% had NSVT.	No relationship between duration,
	young HCM patients	Inadequate data	Mean follow up 70±40 mo.	frequency and rate of NSVT runs and
			32 died from SCD, 21 had an	adverse events.
	Size: 531 patients		ICD placed with 4	
			appropriate shocks. The OR	
			of SCD in HCM 30 y or	
			younger was 4.35 (95% CI:	
			1.54–12.28; p=0.006);	
			compared with 2.16 (95% CI:	
			0.82–5.96; p=0.1) in patients	
			older than 30 y.	
• Spirito et al. 2000	Study type: Retrospective,	Inclusion criteria: HCM	1° endpoint: SCD	 The cumulative risk of SCD was
(269)	single center,	patients		nearly 0 for a wall thickness of 19 mm
• <u>10853000</u>	observational		Results: 23 patients (4.8%)	or less; and was 40% The sudden death
	LVH and risk of SCD in	Exclusion criteria:	had SCD with a mean follow	risk in HCM was increased for a left
	НСМ	Inadequate data	up of 6.5 y. The risk of SCD	ventricular wall thickness of 30 mm or
			increased with wall	more.
	Size: 480 patients		thickness: 0 per 1,000 pt y if	

			15 mm or less to 18.2 per	
			1 000 nt v if 30 mm or more	
			(05% CI: 7 3_37 6)	
Ellight at al. 2001	Study type: Potrospostivo	Inclusion critoria: HCM	19 and noint: Suddan	• A wall thickness in HCM of 20+ mm
• EIIIOLL EL al. 2001	single conter	notionto	<u>1 endpoint</u> : Sudden	• A wall tillckness in HCIVI of 50+ IIIII
(270)	single center,	patients	cardiac death	was associated with SCD.
• <u>112/3061</u>	observational			• Wost sudden deaths occur in patients
	Severe hypertrophy and	Exclusion criteria:	Results: 39 patients (6.2%)	with a thickness less than 30 mm so the
	SCD in HCM	Inadequate data	had SCD or appropriate ICD	presence of other risk factors is
			shock; 10 had a wall	important
	Size: 630 patients		thickness of 30 mm or more.	
			Wall thickness of 30 mm or	
			more had a higher	
			probability of SCD or shock:	
			(RR: 2.07; 95% CI: 1.0-4.25;	
			p=0.049)	
• Elliott et al. 2000	Study type: Retrospective,	Inclusion criteria: HCM	1° endpoint: Sudden	 Risk factors for SCD include NSVT,
(271)	single center,	patients	cardiac death	syncope, exercise BP response, family
• 11127463	observational			Hx of SCD. left ventricular wall
	Risk factors for SCD in HCM	Exclusion criteria:	Results: Follow up 3.6+2.5 v.	thickness
		Inadequate data	The SCD free survival was	• 2 or more risk factors had a high risk
	Size: 368 patients		95% with 0 risk factors 93%	for SCD
	<u></u>		for 1 82% for 2 and 36% for	
			3 Six v SCD risk was 72%	
			(95% CI: 56%-88%) for 2+	
			risk factors and 0.4% (0.5%)	
			(130, 130, 130, 130, 130, 130, 130, 130,	
• Ackorman at al	Study type: Constic	Inclusion criteria: UCM	19 and nointy Constin	There is profound beterogeneity in
- ACKEI IIIall et al.	analysis in unrolated UCM		abparmalities	
2002 (272)	analysis in unrelated HCIVI	ganatic analysis	abnormalities	Only 1% of uproloted individuals had
■ <u>12084000</u>	Patients Malignant mutations in	genetic analysis	Bassiltar Alberta musei	• Only 1% Of unrelated individuals had
	ivialignant mutations in	Fuchasian aritaria	Kesuits: 4 beta myosin	one of the 5 mailgnant" mutations.
		Exclusion criteria:	heavy chain and one	
	c 202 V V	inadequate data	troponin I gene mutation	
	Size: 293 patients		assessed. 3 of the 293	
			patients had one of the 5	
			mutations and all 3 <25 y.	
• Lopes et al. 2013	Study type: Meta-analysis	Inclusion criteria:	1° endpoint: Genetic	 HCM is a heterogeneous disease.
(273)		Studies evaluating	mutation	

• <u>23674365</u>	Meta-analysis of genetic	genetic mutations in		• The establishment of precise
	mutations in HCM	НСМ	Results: Sarcomere gene	genotype-phenotype relationships
			mutation associated with	could not be established
	Size: 18 publications,	Exclusion criteria: Poor	younger age (p<0.0005),	
	2,459 patients	study design	family Hx of HCM	
			(p<0.0005), family Hx of SCD	
			(p<0.0005) and greater wall	
			thickness (p=0.03).	
• Bos et al. 2010 (274)	Study type: Multicenter,	Inclusion criteria: HCM	1° endpoint: SCD or	 Patients receiving ICD for 1°
• <u>21059440</u>	consecutive patients,	patients with and	appropriate ICD discharge	prevention because of a family Hx of
	prospective data base,	without a family Hx of		SCD whether as an isolated risk factor
	observational	SCD in 1 st degree	Results: 4.6±3 y follow up,	or combined with other markers,
	Family Hx and SCD in HCM	relatives who received	25 patients (14%) had an	experience rates of appropriate ICD
		an ICD.	appropriate ICD therapy.	discharge comparable to that of other
	Size: 177 patients		Patients with a family Hx of	risk factors.
		Exclusion criteria:	SCD experience ICDs shocks	
		Inadequate data	at a rate (3.7/100 person-y)	
			similar to patients with	
			other risk factors (3.1/100	
			pt y).	
• Spirito et al. 2009	Study type:	Inclusion criteria: HCM	1° endpoint: Relationship	 Unexplained syncope was a risk
(275)	Observational, prospective	patients	between syncope and SCD	factor for SCD in HCM
• <u>19307481</u>	data base entry			 Patients ≤40 y with syncope
	Syncope and risk of SCD in	Exclusion criteria:	Results: 205 patients (14%)	occurring >5 y before evaluation did
	HCM	Inadequate data	had unexplained or neurally-	not show an increased risk of SCD.
			mediated syncope. 5.6±5.2	 Neurally mediated syncope was not
	Size: 1,511 patients		y follow up, 74 patients	predictive of SCD
			(4.9%) had SCD. Relative risk	
			of SCD was 1.78 (95% CI:	
			0.88–3.51; p=0.08) in	
			unexplained syncope and	
			0.91 (95% CI: 0.0– 3.83;	
			p=1.0) in neurally-mediated	
			syncope.	
• Maron et al. 2009	Study type: Retrospective,	Inclusion criteria	<u>1° endpoint</u> : cause of SCD	Athletes confined to United States
(276)	registry data	Athletes who died		• CVD was found in 54% of the deaths
▲ 10221222		l suddenly		

	Sudden deaths in young competitive athletes.	Exclusion criteria:	Results: Average age 19±6 y. The most common cardiovascular cause was	• HCM was the most common finding in young athletes experiencing SCD due to a cardiac cause.
	Size: 1,866 patients		HCM (36%)	
 Kuck et al. 1988 (277) <u>3280318</u> 	Study type: observational, single center, consecutive Role of PVS in HCM <u>Size</u> : 54 patients	Inclusion criteria: symptomatic and asymptomatic patients with HCM Exclusion criteria:	1° endpoint: results of PVS <u>Results</u> 11 symptomatic and 43 asymptomatic patients. 33% of had inducible rabid monomorphic or	• PVS induced VA in 33% of both symptomatic and asymptomatic HCM patients.
		inadequate data	polymorphic VT, VF.	
 Zhu et al. 1998 (278) <u>9474693</u> 	Study type: observational, single center, consecutive Role of PVS in HCM	Inclusion criteria: HCM patients with no Hx of SCD	<u>1° endpoint</u> : results of PVS and long term follow-up	• Sustained polymorphic VT/VFinducible in 1/3 of patients with HCM with a low subsequent event rate.
	<u>Size</u> : 53 patients	Exclusion criteria: inadequate data	Results: Sustained polymorphic VT or VF induced in 35%. Mean follow-up 47±31 mo: no events (VT, VF, or ICD shock) in 34 patients with a negative PVS, 3 events in 19 patients with positive PVS.	
 Christiaans et al. 	Study type: observational,	Inclusion criteria:	<u>1° endpoint</u> : diagnosis of	 At first cardiac evaluation 22.6% of
2010 (279)	single center, registry data	Asymptomatic carriers	HCM, long-term outcome	asymptomatic carriers were diagnosed
• <u>20019025</u>	The yield of risk stratification for SCD in HCM myosin-binding C gene mutation carriers; focus on predictive screening <u>Size</u> : 245 patients	of an MYBPC3 gene mutation <u>Exclusion criteria</u> : inadequate data	<u>Results:</u> Clinical HCM was diagnosed in 53 of 235 mutation carriers (22.6%). Women were affected less than men (15% and 32% respectively, p=0.003)25 carriers (11%) with one or more risk factors for SCD and manifect HCM could be	 With HCM Risk factors for SCD were frequently present and 11% of carriers could be at risk for SCD. Predictive genetic testing in HCM families and frequent cardiac evaluation for the presence of HCM and risk factors for SCD are justified until advanced age.
			at risk for SCD	
• Olivotto et al. 2008 (280)	Study type: Multicenter, prospective, cohort	Inclusion criteria: Unrelated patients with	<u>1° endpoint</u> : clinical outcomes related to HCM	 Screening for sarcomere protein gene mutations in HCM identifies a

• 18533079	Myofilament protein gene	HCM with genetic		broad subgroup of patients with
	mutation screening and	testing of the 8 HCM-	Results: Mean follow-up 4	increased propensity toward long-term
	outcome of patients with	susceptibility genes	y. 62% of patients had	impairment of LV function and adverse
	нсм		mutations (Myofilament-	outcome
		Exclusion criteria:	positive HCM) and 38%	• These findings were irrespective of
	Size: 203 patients	inadequate data	were myofilament-negative.	the myofilament (thick, intermediate,
			Myofilament-positive	or thin) involved.
			patients at increased risk for	
			CV death, stroke, Class III or	
			IV HF (25% vs 7% HR: 4.27;	
			p=0.008)	
 Ingles et al. 2013 	Study type: Multicenter,	Inclusion criteria:	1° endpoint: Identify clinical	• Family Hx is a key clinical predictor of
(281)	retrospective, data base	Probands with HCM and	variables that can predict	a positive genetic diagnosis and has
• <u>23598715</u>	analysis	genetic testing	probands with HCM in	direct clinical relevance, particularly in
	Clinical predictors of		whom a pathogenic	the pretest genetic counseling setting.
	genetic testing outcomes	Exclusion criteria:	mutation will be identified	 Multivariate analysis identified
	in HCM	inadequate data		female gender, increased LV wall
			<u>Results:</u> 52% of 265	thickness, family Hx of SCD as being
	Size: 265 patients		patients had at least one	associated with the greatest chance of
			mutation. Detection rate	identifying a gene mutation.
			was higher with positive	
			family Hx (72 vs 29%,	
			p<0.0001) and positive	
			family Hx of SCD (89 vs 59%,	
			p<0.0001).	
• Jensen et al 2013	Study type: single center,	Inclusion criteria: HCM	<u>1° endpoint</u> : Penetrance of	• The penetrance of HCM in
(282)	observational, data	patients and their	HCM of child relatives of	phenotype-negative child relatives at
• <u>23197161</u>	registry	relatives with clinical	patients with HCM	risk of developing HCM was 6% after 12
	Penetrance of HCM in	screening and		y of follow-up.
	children and adolescents: a	predictive genetic	Results: After a mean	Ihe finding of phenotype conversion
	12-y follow-up study of	testing	follow-up of 12 y, 2 of the	in the mid-20s warrants continued
	clinical screening and	Fuchasian addanta	36 (6%; 95% CI: 2-18) at-risk	screening into adulthood.
	predictive genetic testing	Exclusion criteria:	child relatives who were	• 42% of the child relatives were non-
	Cines 00 methods and 200	inadequate data	pnenotype negative at	carriers, and repeat clinical follow-up
	Size: 90 probands and 361		conclusion developed HCM	could be safely limited to the remaining
	relatives		pnenotype at 26 and 28 y of	children.
			age.	

• Bos JM et al 2013	Study type: Single center,	Inclusion criteria:	1° endpoint: Genetic	 Predictors of a positive genetic test
(274)	observational data registry	Established clinical HCM	testing for HCM	were reverse curve morphological
• 24793961	Characterization of a	diagnosis		subtype, age <45y, LV wall thickness
	phenotype-based genetic		Results: 1053 patients with	≥20mm, family Hx of HCM, and family
	test prediction score for	Exclusion criteria:	clinical HCM (mean age 44.4	Hx of SCD. Hypertension was not
	unrelated patients with	Inadequate data	± 19 y) had genetic testing	predictive.
	НСМ		evaluating 9 HCM-	• A positive genetic test was predicted
	Size: 1053 patients		associated myofilament	in 6% of patients with only
			genes. 34% were positive or	hypertension and 80% with all 5
			a HCM mutation	predictor markers.
• Girolami F et al 2010	Study type: Multicenter,	Inclusion criteria:	1° endpoint: The presence	 4 patients with HCM (0.8% of cohort)
(283)	observational data registry	Patients with clinical	of triple sarcomere gene	had triple sarcomere gene mutations
• 20359594	Clinical features and	HCM undergoing	mutations	• The clinical outcome in the 4 patients
	outcome of HCM	genetic testing		included resuscitated SCD in 1; ICD
	associated with triple		Results: Of 488 unrelated	implantation due to risk factors in all 4
	sarcomere protein gene	Exclusion criteria:	index HCM patients, 4	with appropriate shocks in 2; and 3
	mutations	Inadequate data	(0.8%) had triple mutations	progressed to end-stage HCM by 4 th
			and significant events during	decade with transplant in 1 and
	Size: 488 patients		follow up.	biventricular pacing in 2.
 Hershberger RE J 		Genetic evaluation of	Guideline restricts the	 Details of clinical screening &
Card Fail 2009 (250)		Cardiomyopathy	indication for genetic testing	intervals given:
• <u>19254666</u>			to that of facilitation of	SAECG in ARVC only
			family screening and	CMR in ARVC
			management. le, Testing is	
			used for risk stratification of	 Childhood: screening intervals
			family members who have	specified relative to ages and mutation
			little or no clinical evidence	status
			of disease.	
			Recommendations:	 Especially LMNA mutations
			Careful family Hx for ≥3	
			generations, for all patients.	
			Clinical screening	
			recommended at intervals	
			for asymptomatic at-risk	

			relatives who are mutation carriers;	
			Clinical screening for asymptomatic first degree relatives when genetic testing has not been performed/or mutation not identified.	
			Genetic screening for Fabry disease in all men w unexplained cardiac disease.	
			Referral to centers expert in genetic evaluation and family based management.	
			Genetic testing for the one most clearly affected person in a family to facilitate family screening and	
			management.	
			ICD may be considered before the LVEF falls below 35% in patients with CM and significant arrhythmia or known risk of arrhythmia.	
 Klues HG, et al. 1995 (284) <u>7594106</u> 	<u>Aim:</u> To achieve an understanding of the true structural heterogeneity of HCM <u>Size:</u> N=600 patients	Inclusion criteria: Patients with LV hypertrophy	Results: LV wall thickness = 15–52 mm (mean 22.3±5). Various patterns of asymmetric LV hypertrophy were identified Hypertrophy involved:	• In HCM the distribution ofLV hypertrophy is characteristically asymmetric and particularly heterogeneous, encompassing most possible patterns of wall thickening and with no single morphologic expression considered typical or classic.

			2 left ventricular segments (228 patients [38%]) or ≥3 segments (202 patients [34%]) 1 segment in a substantial number of patients (170 [28%]).	• A greater extent of LV hypertrophy was associated with younger age and more marked mitral valve systolic anterior motion and outflow obstruction but showed no relation to either magnitude of symptoms or gender.
			The anterior portion of the ventricular septum: most frequently showed thickening (573 patients [96%]), and the predominant site of hypertrophy in most patients (492 patients [83%]).	
• Adabag AS, et al.	Aim: To determine the	Inclusion criteria:	<u>1° endpoint</u> : Clincail trigger	Patients with extreme hypertrophy
(285) ● 17126660	clinical circumstances	HCM patients who	Results	(Wall thickness ≥30 mm) and those at high risk for sudden death were more
· <u>1/120000</u>	identified	echocardiography	HCM was initially suspected	often asymptomatic and identified by
			only after the onset of	routine or family screenings (p<0.0001
	<u>Size:</u> N=711		cardiac symptoms or acute	and p=0.004, respectively).
			cardiac events in 384	
			patients.	
			In 327 patients, HCM was	
			recognized while patients	
			were asymptomatic:	
			225 by routine medical	
			27 of whom HCM was	
			recognized during	
			preparticipation	
			examinations for	
			competitive sports or other	
			activities.	

		Woman older patients (age	
		women, older patients (age	
		\geq 50 years), and those with	
		outflow obstruction at rest	
		(gradient ≥30 mm Hg) were	
		more likely suspected to	
		have HCM by virtue of	
		cardiac symptoms or events	
		(p<0.0001).	
• Afonso LC, et al.	Aim: To profile the utility		• At the time of this paper, tissue
2008	and pitfalls of established		Doppler-derived strain and 2D strain or
• <u>19356516</u>	echocardiographic		speckle tracking imaging represent
	modalities and discuss the		robust and rapidly evolving
	evolving role of novel		technologies that have advanced our
	echocardiographic imaging		understanding of regional myocardial
	modalities such as tissue		mechanics in HCM.
	Doppler, Doppler-based		 Ongoing refinements and additional
	strain, 2-dimensional strain		research will define the incremental
	(speckle tracking imaging),		role and clinical utility of these
	and 3-dimensional imaging		promising techniques, including the
	in the assessment of HCM.		identification of preclinical disease in
			carriers of HCM mutations,
			improvement of diagnostic accuracy,
			risk stratification, planning therapeutic
			strategies, and monitoring treatment.

Author; Year PublishedStudy Size(P values; OR or RR; & Study type: observational, multicenter data base Natural Hx of giant-cell myocarditisInclusion criteria: cell myocarditisComment(s)• 3197214Study type: observational, multicenter data base Natural Hx of giant-cell myocarditisInclusion criteria: cardia transplantation1° endpoint: survival• Giant cell myocarditis is often fatal due to HF and VA• Kandolin et al. 2013 (287)Study type: observational, retrospective, single center Management of giant- cell myocarditis with immunosuppressionInclusion criteria: inadequate data, unable to use immunosuppression1° endpoint: survival survival f6% at 1, 58% at 2 y, 52% at 5y. 59% experienced sustained VA during follow up and 3 received ICD shocks for VT or VF.• 2/3 of patients with giant-cell myocarditis are free from severe HF or transplantation on immunosuppression . 59% experience life-threatening VT or VF.• Maleszewski et al. 2015 (288) • 25882774Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditisInclusion criteria: Patients with giant-cell myocarditis surviving 1y without heart transplantation1° endpoint: survival free survival f6% at 1, 528 kat 2 y, 52% at 5, 59% experienced sustained VA during follow up and 3 received ICD shocks for VT or VF.• The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression without heart transplantation myocarditis surviving 1y without heart transplantation1° endpoint: survival f6% at 1, 528 kat 2 y, follow up 5	Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Year Published& 95% (1)• Cooper et al.1997 (286)Study type: observational, multicenter data base Natural Hx of giant-cell myocarditisInclusion criteria: inadequate data1° endpoint: survival• Giant cell myocarditis is often fatal due to HF and VA• Stady type: (287)Study type: observational, myocarditisInclusion criteria: inadequate data1° endpoint: survival median survival from onset of symptoms 5.5 mo.• 2/3 of patients with giant-cell myocarditis are free from severe HF or transplant-free survival 69% at 1 y, 58% at 2 y, 52% at 5 y, 59% experienced sustained VA during follow up and 3 received ICD shocks for VT or VF.• 2/3 of patients with giant-cell myocarditis are free from severe HF or transplantation on immunosuppression size: 32 patients• Maleszewski et al. 2015 (288) • 25882774Study type: retrospective, observational, multicenter data base long-term risks in giant cell myocarditisInclusion criteria: nadequate data, unable to use immunosuppression1° endpoint: survival 69% at 1 y, 58% at 2 y, 52% at 5 y, 59% experienced sustained VA during follow up and 3 received ICD shocks for VT or VF.• The risk of disease recurrence and progression is high in giant-cell myocarditis surviving >1 y without heart transplantation• Maleszewski et al. 2015 (288) • 25882774Study type: retrospective, observational, multicenter data base long-term risks in giant cell myocarditisInclusion criteria: Patients with giant-cell myocarditis surviving >1 y without heart transplantation1° endpoint: survival free from death, transplant after diagnosis, 12% died; 1	Author;	Study Size		(P values; OR or RR;	Comment(s)
 Cooper et al. 1997 (286) 9197214 Study type: observational, multicenter data base Natural Hx of giant-cell myocarditis Size: 63 patients Kandolin et al. 2013 (287) 23149495 Kandolin et al. 2013 (287) 23149495 Management of giant- cell myocarditis with immunosuppression Size: 32 patients Maleszewski et al. 2015 (288) Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Maleszewski et al. 2015 (288) Study type: retrospective, size: 26 patients Maleszewski et al. 2015 (288) Study type: retrospective, size: 26 patients Maleszewski et al. 2015 (288) Study type: retrospective, solvervational, multicenter data base Long-term risks in giant cell myocarditis Maleszewski et al. 2015 (288) Maleszewski et al. 2015 (288) Size: 26 patients Multicenter data base Long-term risks in giant cell myocarditis Size: 26 patients Multicenter data base Long-term risks in giant cell myocarditis Size: 26 patients Multicenter data base Long-term risks in giant cell myocarditis Size: 26 patients Size: 26 pati	Year Published			& 95% CI)	
(286) observational, multicenter data base. Natural Hx of giant-cell myocarditis cell myocarditis Results: reclusion criteria: inadequate data Results: Results: median survival from onset of symptoms 5.5 mo. due to HF and VA • Kandolin et al. 2013 (287) Study type: observational, retrospective, single center Inclusion criteria: observational, retrospective, single center Inclusion criteria: inadequate data, unable to use 1° endpoint: survival 69% at 1 y, 58% at 2 y, 52% at 5 y, 59% • 2/3 of patients with giant-cell myocarditis are free from severe HF or transplantation on immunosuppression • Maleszewski et al. 2015 (288) Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Inclusion criteria: inadequate data, unable to use immunosuppression 1° endpoint: survival 69% at 1 y, 58% at 2 y, 52% at 5 y, 59% • The risk of disease recurrence and progression is high in giant-cell myocarditis survival 69% at 1 y, 58% at 2 y, 52% at 5 y, 59% • Maleszewski et al. 2015 (288) Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis survival size: 26 patients Inclusion criteria: inadequate data, need for transplantation 1° endpoint: survival free from death, transplant 19 einsoval free from death, transplant 19 episodes of VT or VF • The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression • MEADEL/(UPDADE Endedute data, need for transplantation 1° endpoint: survival 19 episodes of VT or VF • The un	 Cooper et al.1997 	<u>Study type</u> :	Inclusion criteria: Giant	1° endpoint: survival	 Giant cell myocarditis is often fatal
 9197214 multicenter data base Natural Hx of giant-cell myocarditis Kandolin et al. 2013 (287) 23149495 Kandolin et al. 2013 (287) 23149495 Maleszewski et al. 2015 (288) Maleszewski et al. 2015 (288) Maleszerwski et al. 2015 (274) Maleszerwski et al. 2016 (275 (274)) Maleszerwski et al. 2017 (174) Maleszerwski et al. 2018 (275 (274)) Maleszerwski et al. 2019 (275 (274)) Maleszerwski et al. 2016 (275 (274)) Maleszerwski et al. 2017 (174) Maleszerwski et al. 2018 (174 (174	(286)	observational,	cell myocarditis		due to HF and VA
Natural Hx of giant-cell myocarditisExclusion criteria: inadequate datacardiac transplantation 89%; median survival from onset of symptoms 5.5 mo.• Kandolin et al. 2013 (287) • 23149495Study type: observational, retrospective, single center Management of giant- cell myocarditis with immunosuppressionInclusion criteria: giant- cell myocarditis treated with immunosuppression1° endpoint: survival 69% at 1 y, 58% at 2 y, 52% at 5y. 59% experienced sustained VA during follow up and 3 received ICD shocks for VT or VF• 2/3 of patients with giant-cell myocarditis are free from severe HF or transplantation on immunosuppression size: 32 patients• Maleszewski et al. 2015 (288) • 258827774Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditisInclusion criteria: inadequate data, unable to use immunosuppression1° endpoint: survival free from death, transplant• The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression• Maleszewski et al. 2015 (288) • 258827774Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditisInclusion criteria: inadequate data, need for transplantation1° endpoint: survival free from death, transplant• The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression• Maleszewski et al. 2015 (288) • 258827774Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditisInclusion criteria: ransplant	• <u>9197214</u>	multicenter data base		Results: Rate of death or	
myocarditisinadequate datamedian survival from onset of symptoms 5.5 mo.• Kandolin et al. 2013 (287) • 23149495Study type: observational, retrospective, single center Management of giant- cell myocarditis with immunosuppressionInclusion criteria: inadequate data, unable to use immunosuppression1° endpoint: survival results: Transplant-free survival 69% at 1 y, 58% at 2 y, 52% at 5y. 59% experienced sustained VA during follow up and 3 received ICD shocks for VT or VF.• 2/3 of patients with giant-cell myocarditis are free from severe HF or transplantation on immunosuppression survival 69% at 1 y, 58% at 2 y, 52% at 5y. 59% experienced sustained VA during follow up and 3 received ICD shocks for VT or VF.• 2/3 of patients with giant-cell myocarditis are free from severe HF or transplantation on immunosuppression vF• Maleszewski et al. 2015 (288) • 25882774Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Size: 26 patientsInclusion criteria: myocarditis surviving >1 y without heart transplantation1° endpoint: Survival free from death, transplant• The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression• Maleszewski et al. 2015 (288) • 25882774Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditisInclusion criteria: inadequate data, need for transplantation1° endpoint: survival free from death, transplant transplanted; 23% had 19 episodes of VT or VF• The usen bit of fibrillate comparison of patients during long-t		Natural Hx of giant-cell	Exclusion criteria:	cardiac transplantation 89%;	
• Kandolin et al. 2013 Size: 63 patients Inclusion criteria: giant-cell myocarditis treated with immunosuppression 1° endpoint: survival • 2/3 of patients with giant-cell myocarditis treated with immunosuppression • 23149495 Size: 32 patients Inclusion criteria: inadequate data, unable to use immunosuppression 1° endpoint: survival • 2/3 of patients with giant-cell myocarditis treated with immunosuppression • Maleszewski et al. 2015 (288) Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Inclusion criteria: naglantation 1° endpoint: Survival 69% at 1 y, 58% at 2 y, 52% at 59.59% experience life-threatening VT or VF. • 59% experience life-threatening VT or VF • Maleszewski et al. 2015 (288) Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Inclusion criteria: nasplantation 1° endpoint: Survival free from death, transplant free from death, transplant free survival 5.5 ys experience life-threatening VT or VF • Maleszewski et al. 2015 (288) Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Inclusion criteria: naglantation 1° endpoint: Survival free from death, transplant free survival free from death, transplant free from death, transplanted; 23% had 19 episodes of VT or VF • The risk of disease recurrence and progression is high in giant-cell myocarditis uransplantation • 2/3 of patients with giant-cell myocarditis Inclusion criteria: inadequate data, need f		myocarditis	inadequate data	median survival from onset	
Size: 63 patients Inclusion criteria: giant- cell myocarditis treated with immunosuppression 1° endpoint: survival 2/3 of patients with giant-cell myocarditis are free from severe HF or transplantation on immunosuppression • 23149495 Study type: observational, retrospective, single center Inclusion criteria: ell myocarditis treated with immunosuppression 1° endpoint: survival • 2/3 of patients with giant-cell myocarditis are free from severe HF or transplantation on immunosuppression • Maleszewski et al. 2015 (288) Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Inclusion criteria: inadequate data, unable to use immunosuppression 1° endpoint: vF. • The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression • Maleszewski et al. 2015 (288) Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Inclusion criteria: Patients with giant-cell myocarditis surviving >1 y without heart transplantation 1° endpoint: Survival free from death, transplant transplantation • The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression • Zize: 26 patients Exclusion criteria: inadequate data, need for transplantation 1° endpoint: Survival free from death, transplant transplanted; 23% had 19 episodes of VT or VF • The usership define • WFADIT/RIDOAD Study type: transplantation 10 endpoint • The usership define				of symptoms 5.5 mo.	
 Kandolin et al. 2013 (287) 		Size: 63 patients			
(287) • 23149495observational, retrospective, single centercell myocarditis treated with immunosuppressioncell myocarditis treated with immunosuppressionmyocarditis are free from severe HF or transplant-free survival 69% at 1 y, 58% at 2 y, 52% at 5 y, 59% experienced sustained VA during follow up and 3 received ICD shocks for VT or VF.myocarditis are free from severe HF or transplantation on immunosuppression• Maleszewski et al. 2015 (288) • 25882774Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditisInclusion criteria: myocarditis survival giant-cell myocarditis survival survival survival survival survival survival free from death, transplant• The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression• Maleszewski et al. 2015 (288) • 25882774Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditisInclusion criteria: myocarditis1º endpoint: Survival free from death, transplant• The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression• Life-threatening VT or VF occurred in 23% of patients during long-term follow up• The unsuch during long-term follow up• WIF ADIT (PDOAD)Study type: retrospective, observational, multicenter data are entering• Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis• The unsuch during long-term follow up• WIF ADIT (PDOAD)Study type: retrospective, observational, <b< th=""><th>• Kandolin et al. 2013</th><th><u>Study type</u>:</th><th>Inclusion criteria: giant-</th><th>1° endpoint: survival</th><th> 2/3 of patients with giant-cell </th></b<>	• Kandolin et al. 2013	<u>Study type</u> :	Inclusion criteria: giant-	1° endpoint: survival	 2/3 of patients with giant-cell
• 23149495 retrospective, single center with immunosuppression Results: Transplant-free survival 69% at 1 y, 58% at 2 y, 52% at 5 y. 59% transplantation on immunosuppression • 59% experience life-threatening VT or VF • Maleszewski et al. 2015 (288) Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Inclusion criteria: Patients with giant-cell myocarditis 1º endpoint: Survival free from death, transplant • The risk of disease recurrence and progression immunosuppression • Maleszewski et al. 2015 (288) Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Inclusion criteria: Patients with giant-cell myocarditis 1º endpoint: Survival free from death, transplant • The risk of disease recurrence and progression is high in giant-cell myocarditis surviving >1 y without heart transplantation • Size: 26 patients Exclusion criteria: inadequate data, need for transplanted; 23% had 19 episodes of VT or VF 2% of patients during long-term follow up • WEADET (PIDDAD Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Exclusion criteria: inadequate data, need for transplanted; 23% had 19 episodes of VT or VF • The unearchie datibility interpretering VT or VF occurred in 23% of patients during long-term follow up	(287)	observational,	cell myocarditis treated		myocarditis are free from severe HF or
center Management of giant- cell myocarditis with immunosuppressionExclusion criteria: inadequate data, unable to use immunosuppressionsurvival 69% at 1 y, 58% at 2 y, 52% at 5y. 59% experienced sustained VA during follow up and 3 received ICD shocks for VT or VF.• 59% experience life-threatening VT or VF• Maleszewski et al. 2015 (288) • 25882774 Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Inclusion criteria: Patients with giant-cell myocarditis surviving >1 y without heart transplantation 1º endpoint: Survival free from death, transplant after diagnosis. 12% died; 19% transplanted; 23% had 19 episodes of VT or VF• The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression • Life-threatening VT or VF occurred in 23% of patients during long-term follow up	• <u>23149495</u>	retrospective, single	with immunosuppression	Results: Transplant-free	transplantation on immunosuppression
Management of giant- cell myocarditis with immunosuppressionExclusion criteria: inadequate data, unable to use immunosuppressiony, 52% at 5y. 59% experienced sustained VA during follow up and 3 received ICD shocks for VT or VF.VF• Maleszewski et al. 2015 (288) • 25882774Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditisInclusion criteria: Patients with giant-cell myocarditis surviving >1 y without heart transplantation1º endpoint: Survival free from death, transplant• The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression• Maleszewski et al. 2015 (288) • 25882774Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditisInclusion criteria: Patients with giant-cell myocarditis surviving >1 y without heart transplantation1º endpoint: Survival free from death, transplant• The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression• Life-threatening VT or VF occurred in 23% of patients during long-term follow up2% of patients during long-term follow up• Mif APIT (PUPOAD)Exclusion criteria: inadequate data, need for transplantion40 experienced sustained variation0• Mif APIT (PUPOAD)Exclusion criteria: inadequate data, need for transplantion40 experienced sustained variation0		center		survival 69% at 1 y, 58% at 2	• 59% experience life-threatening VT or
cell myocarditis with immunosuppressioninadequate data, unable to use immunosuppressionexperienced sustained VA during follow up and 3 received ICD shocks for VT or VF.• Maleszewski et al. 2015 (288) • 25882774Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditisInclusion criteria: Patients with giant-cell myocarditis surviving >1 y without heart transplantation1° endpoint: Survival free from death, transplant• The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression• Maleszewski et al. 2015 (288) • 25882774Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditisInclusion criteria: Patients with giant-cell myocarditis surviving >1 y without heart transplantation1° endpoint: Survival free from death, transplant• The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression• Life-threatening VT or VF occurred in 23% of patients during long-term follow up19 episodes of VT or VF• The userspla defibrilleteeuron		Management of giant-	Exclusion criteria:	y, 52% at 5y. 59%	VF
immunosuppressionto use immunosuppressionduring follow up and 3 received ICD shocks for VT or VF.• Maleszewski et al. 2015 (288) • 25882774Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditisInclusion criteria: Patients with giant-cell myocarditis surviving >1 y without heart transplantation1° endpoint: Survival free from death, transplant• The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression• Maleszewski et al. 2015 (288) • 25882774Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditisInclusion criteria: myocarditis surviving >1 y without heart transplantation1° endpoint: Survival free from death, transplant progression is high in giant-cell myocarditis treated with immunosuppression• The vise of disease recurrence and progression is high in giant-cell myocarditis• The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression • Life-threatening VT or VF occurred in 23% of patients during long-term follow up• MICAPUT (RIPOAD)Study type: transplantation18 endecisity successive transplantation• MICAPUT (RIPOAD)Study type: type: transplantation18 endecisity successive transplanted; 23% had 19 episodes of VT or VF• MICAPUT (RIPOAD)Study type: type: transplantation18 endecisity successive transplanted; 23% had 19 episodes of VT or VF		cell myocarditis with	inadequate data, unable	experienced sustained VA	
Size: 32 patients immunosuppression received ICD shocks for VT or VF. • Maleszewski et al. 2015 (288) Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Inclusion criteria: Patients with giant-cell myocarditis 1° endpoint: Survival free from death, transplant • The risk of disease recurrence and progression is high in giant-cell myocarditis treated with ulticenter data base Long-term risks in giant cell myocarditis without heart transplantation Patients with giant cell of the transplant transplant transplant transplantation • The risk of disease recurrence and progression is high in giant-cell myocarditis treated with Size: 26 patients Exclusion criteria: inadequate data, need for transplantation 9% transplanted; 23% had 19 episodes of VT or VF • The usearchile defibrillaterupe • WICARDET (PURDOAD Exclusion griteria: inadequate data, need for transplantation 10 endepint sequence • The usearchile defibrillaterupe		immunosuppression	to use	during follow up and 3	
Size: 32 patients VF. • Maleszewski et al. 2015 (288) Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Inclusion criteria: Patients with giant-cell myocarditis surviving >1 y without heart transplantation 1° endpoint: Survival free from death, transplant • The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression • Z5882774 Difference • The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression • Life-threatening VT or VF occurred in 23% of patients during long-term follow up • Life-threatening VT or VF occurred in 23% of patients during long-term follow up			immunosuppression	received ICD shocks for VT or	
• Maleszewski et al. Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Inclusion criteria: Patients with giant-cell myocarditis surviving >1 y without heart transplantation 1° endpoint: from death, transplant • The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression • 25882774 • Diservational, multicenter data base Long-term risks in giant cell myocarditis • Inclusion criteria: myocarditis surviving >1 y without heart transplantation • Results: mean age 54.6±13.9 y, follow up 5.5 y starting 1 y after diagnosis. 12% died; 19% transplanted; 23% had 19 episodes of VT or VF • Life-threatening VT or VF occurred in 23% of patients during long-term follow up		Size: 32 patients		VF.	
 Maleszewski et al. 2015 (288) <u>25882774</u> <u>Study type:</u> retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis <u>Size</u>: 26 patients <u>Size</u>: 26 patients <u>Inclusion criteria:</u> retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis <u>Exclusion criteria:</u> inadequate data, need for transplantation <u>Exclusion criteria:</u> inadequate data, need for transplantation <u>Patients with giant-cell</u> myocarditis surviving >1 y offer diagnosis. 12% died; 19% transplanted; 23% had 19 episodes of VT or VF <u>The wareachia defibrillate avec</u> 					
2015 (288) retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Patients with giant-cell myocarditis surviving >1 y without heart transplantation from death, transplant progression is high in giant-cell myocarditis treated with immunosuppression • 25882774 observational, multicenter data base Long-term risks in giant cell myocarditis myocarditis surviving >1 y transplantation from death, transplant progression is high in giant-cell myocarditis treated with immunosuppression • Zize: 26 patients Exclusion criteria: inadequate data, need for transplantation 19 episodes of VT or VF v • WEADIT/(DROAD Study typest Induction gibt comparison 19 episodes of VT or VF of The wasership defibrillate avec	• Maleszewski et al.	Study type:	Inclusion criteria:	<u>1° endpoint</u> : Survival free	• The risk of disease recurrence and
• 25882774 Observational, multicenter data base Long-term risks in giant cell myocarditis myocarditis surviving >1 y without heart transplantation Results: mean age 54.6±13.9 y, follow up 5.5 y starting 1 y after diagnosis. 12% died; myocarditis treated with immunosuppression Size: 26 patients Exclusion criteria: inadequate data, need for transplantation 19 episodes of VT or VF 23% of patients during long-term follow up	2015 (288)	retrospective,	Patients with giant-cell	from death, transplant	progression is high in giant-cell
Multicenter data base Long-term risks in giant cell myocarditiswithout heart transplantationResults: mean age 54.6±13.9Immunosuppression • Life-threatening VT or VF occurred in 23% of patients during long-term follow upSize: 26 patientsExclusion criteria: inadequate data, need for transplantation9 pisodes of VT or VF9 pisodes of VT or VF	• 25882774	observational,	myocarditis surviving >1 y		myocarditis treated with
Long-term risks in giant cell myocarditis transplantation y, follow up 5.5 y starting 1 y after diagnosis. 12% died; • Ele-threatening v1 of vF occurred in 23% of patients during long-term follow up Size: 26 patients Exclusion criteria: inadequate data, need for transplantation 19 episodes of VT or VF • The weership defibrilleterwee		Inullicenter uala base	transplantation	<u>Results:</u> mean age 54.6±13.9	• Life threatening VT or VE accurred in
Size: 26 patients Exclusion criteria: inadequate data, need for transplantation 19% transplanted; 23% of patients during long-term follow up		cong-term risks in	transplantation	y, follow up 5.5 y starting 1 y	• Life-threatening vi or vr occurred in
Size: 26 patients inadequate data, need for transplanted, 25% had up V/FARIT/RIPOAD Study type		giant cen myocaruitis	Exclusion critoria:	10% transplanted: 22% bad	23% of patients during long-term follow
Size 20 patients Inducquate data, need for transplantation 19 episodes of VT of VF • M/FABIT/DIDOAD Study type: Induction griteries 48 enduciety encountiety		Size: 26 nationts	inadequate data need for	19% transplanted, 25% had	μ
ANTADIT/DIDOAD Study type Inclusion exiterio		<u>5126</u> . 20 patients	transplantation		
		Study type:		1º and nainte appropriato	• The wearable defibrillator was
• Feldman et al. 2004 Prospective registries symptomatic HE and FE chock form the wearable successful in defibrillating 75% of events	Eeldman et al. 2004	Drospective registries	symptomatic HE and EE	<u>1</u> endpoint: appropriate	successful in defibrillating 75% of events
(289) were combined < <0.30 (WEARIT) or defibrillator = 24% of patients did not tolerate the	(289)	were combined	<0.30 (WFARIT) or	defibrillator	• 24% of natients did not tolerate the
• 14720148 Use of the wearable natients at high risk for device	• 14720148	Use of the wearable	natients at high risk for		device
defibrillator SCD after MI or bynass Results: 4 mo follow up 6 of		defibrillator	SCD after MI or hynass	Results: 4 mo follow up 6 of	
surgery (BIROAD) 8 defibrillation attempts			surgery (BIROAD)	8 defibrillation attempts	
Size: 289 patients successful: 6 inappropriate		Size: 289 patients		successful: 6 inappropriate	

Data Supplement 32. Nonrandomized Trials, Observational Studies, and/or Registries of Myocarditis – (Section 7.5)

		Exclusion criteria: inadequate data	shocks. 6 SCD during study: 5 not wearing and 1 incorrectly wearing device. 68 did not tolerate vest	
 Kao et al. 2012 (290) <u>23234574</u> 	Study type: multicenter, prospective registry Wearable defibrillator in HF Size: 82 patients	Inclusion criteria: HF patients awaiting transplantation, dilated cardiomyopathy, or receiving inotropic medicines Exclusion criteria: inadequate data	<u>1° endpoint</u> : sudden death <u>Results:</u> 75±58 d follow up. No episodes of sudden CA.	• The event rate was too low to allow assessment of the wearable defibrillator

Data Supplement 33. Nonrandomized Trials, Observational Studies, and/or Registries of Cardiac Sarcoidosis – (Section 7.6)

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
 Naruse et al. 	Aim: This study	Inclusion criteria: 37	1° endpoint: freedom from any VT	
2014 (291)	sought to describe	consecutive patients (11		
• <u>24837644</u>	both clinical and EP	men; age, 56±11 y) with a	Results: During a 39 mo follow-up, 23	
	characteristics and	diagnosis of sustained VT	(62%) patients were free from any VT	
	outcomes of	associated with CS. Clinical	episodes with medical therapy. Fourteen	
	systematic treatment	effects of a systematic	patients who experienced VT recurrences	
	approach to VT	treatment approach	even while on drug therapy underwent	
	associated with CS.	including medical therapy	radiofrequency catheter ablation. After a	
		(both steroid and	33 mo follow-up subsequent to the	
	Study type: Single	antiarrhythmic agents), in	radiofrequency catheter ablation, 6 of 14	
	center observational	association with	patients experienced VT recurrence. The	
		radiofrequency catheter	number of VTs sustained during EPS was	
	Size: 37 patients	ablation, were evaluated.	higher in the patients with VT recurrence	
			than in those without (3.7±1.4 vs 1.9±0.8;	
		Exclusion criteria: N/A	p<0.01).	

• Takaya Y, et al.	Aim: to assess	Inclusion criteria: Fifty-	1° endpoint: major adverse cardiac	• Positive myocardial uptake of 67
2015 (292)	outcomes in patients	three consecutive patients	events, including cardiac death, VF,	Ga or ¹⁸ F-FDG disappeared after
 Am J Cardiol. 	with AVB as an initial	with cardiac sarcoidosis,	sustained VT, and hospitalization for HF.	the initiation of steroid treatment
2015 Feb 15	manifestation of	who had high-degree AVB		in all patients, and high-degree
• <u>25529542</u>	cardiac sarcoidosis	(N=22) or VT and/or HF	Results: Over a median follow-up period	AVB recovered in some patients,
	compared with those	(N=31), were enrolled	of 34 mo, the outcomes of major adverse	indicating that steroid treatment
	in patients with VT		cardiac events were better in patients	was effective but might not be
	and/or HF.	Exclusion criteria: N/A	with high-degree AVB than in those with	sufficient for preventing the fatal
			VT and/or HF (log-rank test, p=0.046).	cardiac events in patients with
	Study type: single		However, this difference was due mainly	high-degree AVB.
	center observational		to HF hospitalization. The outcomes of	
			fatal cardiac events, including cardiac	
	Size: 53 pts		death, VF, and sustained VT, were	
			comparable between the 2 groups (log-	
			rank test, p=0.877	
• Kandolin et al.	Aim: assess the	Inclusion criteria: adult	1° endpoint: serious cardiovascular	 With current therapy, the
2015 (293)	epidemiology,	(>18y of age) patients	events	prognosis of CS appears better
• <u>25527698</u>	characteristics, and	diagnosed with		than generally considered, but
	outcome of CS in	histologically confirmed CS	Results: Altogether, 102 of the 110	patients presenting with HF still
	Finland	in Finland between 1988	patients received immunosuppressive	have poor long-term outcome.
		and 2012. A total of 110	therapy, and 56 received an ICD. Left	 Steroids appeared to stabilize
	Study type:	patients (71 women) 51±9 y	ventricular function was impaired (LVEF	disease but not reverse it. 10-y
	Retrospective	of age (mean±SD) were	<50%) in 65 patients (59%) at diagnosis	estimate of transplantation-free
		found and followed up for	and showed no overall change over 12	cardiac survival was as high as 91%
	Size: 110 patients	outcome events to the end	mo of steroid therapy. During follow-up	in patients who were diagnosed
		of 2013.	(median, 6.6 y), 10 patients died of a	clinically and received
			cardiac cause, 11 patients underwent	contemporary immunosuppressive
		Exclusion criteria: N/A	transplantation, and another 11 patients	and device therapy.
			suffered an aborted SCD. The KM	 EF <35% was most important
			estimates for 1-, 5-, and 10-y	predictor of outcomes
			transplantation-free cardiac survival were	
			97%, 90%, and 83%, respectively. HF at	
			presentation predicted poor outcome	
			(log-rank p=0.0001) with a 10 y	
			transplantation-free cardiac survival of	
			only 53%.	

 Yazaki et al. 2001 (294) <u>11703997</u> 	Aim: To determine the significant predictors of mortality and to assess the efficacy of corticosteroids Study type: retrospective multicenter in Japan Size: 95 patients	Inclusion criteria: 95 Japanese patients with CS. Twenty of the 95 patients had never received corticosteroid therapy because the sarcoidosis had not been diagnosed before their deaths; sarcoidosis was proved at autospy. The other 75 patients treated with corticosteroids were classified into 2 cohorts according to initial LVEF obtained by contrast left ventriculography or echocardiography: LVEF ≥50% (N=39) or LVEF <50% (36).	<u>1° endpoint:</u> predictors of mortality <u>Results:</u> During the mean follow-up of 68 mo, 29 patients (73%) died of CHF and 11 (27%) experienced sudden death. KM survival curves showed 5-y survival rates of 75% in the steroid-treated patients and of 89% in patients with a LVEF ≥ 50%, whereas there was only 10% 5 y survival rate in autopsy subjects. Multivariate analysis identified NYHA functional class HR: 7.72 per class I increase, p=0.0008), left ventricular end-diastolic diameter (HR: 2.60/10 mm increase, p=0.02), and sustained VT (HR: 7.20, p=0.03) as independent predictors of mortality.	• Authors concluded that the severity of HF was one of the most significant independent predictors of mortality for CS. Starting corticosteroids before the occurrence of systolic dysfunction resulted in an excellent clinical outcome
• Aizor A ot al	Aim: To ovaluate the	Exclusion criteria: N/A	19 and a sint appropriate ICD therapies or	• Most patients had supcone. NSV/T
• Alzer A, et al. 2005 (295) • Am J Cardiol. 2005 • <u>16018857</u>	utility of programmed ventricular stimulation to predict future arrhythmic events in patients with cardiac sarcoidosis <u>Study type:</u> Single center <u>Size:</u> 32 pts	Consecutive patients with cardiac sarcoidosis underwent programmed ventricular stimulation. Patients with spontaneous or inducible sustained ventricular arrhythmias (N=12) underwent ICD insertion Exclusion criteria: NA	<u>Results:</u> 5 of 6 patients (83%) with spontaneous sustained ventricular arrhythmias and 4 of 6 patients (67%) without spontaneous but with inducible sustained ventricular arrhythmias received appropriate ICD therapy. 2 of 20 patients (10%) with neither spontaneous nor inducible sustained ventricular arrhythmias experienced sustained ventricular arrhythmias or sudden death. Programmed ventricular stimulation predicted subsequent arrhythmic events in the entire population (relative HR: 4.47; 95% Cl: 1.30–15.39) and in patients	or presysncope and mean EF in the inducible was 33.2±17.0

			who presented without spontaneous	
			sustained ventricular arrhythmias	
			(relative HR: 6.97; 95% CI: 1.27–38.27).	
 Mehta D., et al. 	Aim: to assess the	Inclusion criteria: Patients	1° endpoint: survival and arrhythmic	 Authors mention that based on
2011 (296)	value of programmed	with biopsy-proven	events.	present clinical indications, a
 Circ Arrhythm 	electric stimulation of	systemic sarcoidosis but		significant proportion of patients
Electrophysiol.	the ventricle (PES) for	without cardiac symptoms	Results: Eight (11%) were inducible for	with CS and LVEF of <35% would
2011	risk stratification in	who had evidence of	sustained VA and received an ICD. None	qualify for ICD implantation. There
• <u>21193539</u>	patients with	cardiac sarcoidosis on PET	of the noninducible patients received a	are no data to guide management
	sarcoidosis	or CMR were included	defibrillator. LVEF was lower in patients	of patients with minimal or mild LV
	Study type: Single		with inducible VA (36.4±4.2% vs	dysfunction who lack evidence of
	center 1998-2008	Exclusion criteria: prior	55.8±1.5%, p<0.05). Over a median	VA or conduction system disease.
	Cinc. 70 mbs	nistory of ventricular	follow-up of 5 y, 6 of 8 patients in the	
	<u>Size:</u> 76 pts	arrnythmias or ICD	group with inducible VA had VA or died,	
			compared with 1 death in the negative	
	Alass This study			• This are built all arrests that the
• Coleman et al. $2016(207)$	AIM: This study	Inclusion criteria: Studies	<u>1° endpoint:</u> all-cause mortality and a	• This analysis shows that the
2010 (297)	sought to perform a	inclusion if	composite outcome of arrhythmogenic	presence of LGE in sarcoid patients
• 27450877	systematic review	CMP was used to assess for	events plus all-cause mortality.	with normal or near-normal LVEF is
	understand the	CIVIR was used to assess for	Decultor The everage FF was F7 810 1%	prognostically significant and
	nrognostic value of	hionsy-proven or clinically	Results: The average EF was 57.619.1%.	adverse events
	myocardial scarring	suspected sarcoidosis: in	cause mortality (ΩR : 2.06: p<0.02) and	auverse events.
	as evidenced by late	cohorts of >5 nationts: with	higher odds of the composite outcome	
	gadolinium	>1 v of prognostic	(OR: 10.74: p<0.00001) than those	
	enhancement (298)	follow-up data including	without LGE Patients with LGE had an	
	on CMR imaging in	event data for ventricular	increased annualized event rate of the	
	patients with known	arrhythmia. SCD, aborted	composite outcome (11 9% vs. 1 1%	
	or suspected CS.	cardiac death and/or	n<0.0001)	
		appropriate ICD discharge.		
	Study type: Meta	hospital admission for		
	analysis	congestive HF, cardiac		
	,	mortality, and allcause		
	Size: Ten studies	mortality.		
	were included,			
	involving a total of	Exclusion criteria: Studies		
	760 patients.	with populations known to		

		have CAD or		
		cardiomyopathies of		
		nonsarcoid etiology		
• Murtagh et al	Δim : The aim of this	Inclusion criteria: 205	1° endpoint: death or any VT	• The burden of LGE and the
2016 (299)	study was to	natients with LVEE >50%		severity of BV dysfunction further
• 26762290	octablich whother	and ovtracardiac carcoidosis		refine the rick of death Λ/T in
• 20703280	CMP with I CE	who underwort	Desults: Forth, one of 205 patients (20%)	nationts with CS
		wild under went	Results: Forty-one of 205 patients (20%)	patients with CS
	to rick stratify			
	to fisk stratily	resonance for LGE	during follow-up; of these, 10 (83%) were	
	patients with known	evaluation	in the LGE+ group. In the LGE+ group (1)	
	extracardiac		the rate of death/VI/y was >20× higher	
	sarcoidosis and	Exclusion criteria: N/A	than LGE- (4.9 vs. 0.2%, p<0.01); (2)	
	preserved LVEF		death/VT were associated with a greater	
	(>50%).		burden of LGE (14±11 vs. 5±5%, p<0.01)	
			and right ventricular dysfunction (right	
	Study type: Single		ventricular EF 45±12 vs. 53±28%, p=0.04).	
	center retrospective		LGE burden was the best predictor of	
			death/VT (area under the receiver-	
	Size: 205 patients		operating characteristics curve, 0.80); for	
			every 1% increase of LGE burden, the	
			hazard of death/VT increased by 8%.	
 Crawford et al. 	Aim: to assess	Inclusion criteria: Fifty-one	<u>1° endpoint</u> : death or VT/VF	 A cut-off value of ≥9 involved
2014 (300)	whether delayed	patients with CS and LVEF		segments separated patients with
• <u>25266311</u>	enhancement (DE) on	>35% underwent DE-MRI.		and without future VTs, suggesting
	MRI is associated	DE was assessed by visual	Results: Twenty-two of 51 patients (63%)	that a threshold effect may be
	with VT/VF or death	scoring and quantified with	had DE. Forty patients had no prior Hx of	present. Right ventricular
	in patients with CS	the full-width at half-	VT (1° prevention cohort). Among those,	involvement seems to be
	and LVEF>35%.	maximum method. The	3 patients developed VT and 2 patients	particularly important for
		patients were followed for	died. DE was associated with risk of	arrhythmogenesis; it was
	Study type:	48.0±20.2 mo.	VT/VF or death (p=0.0032 for any DE and	predictive of adverse events in 1°
	Retrospective		p<0.0001 for right ventricular DE). The	prevention patients and for the
	analysis from	Exclusion criteria: N/A	positive predictive values of the presence	group as a whole. Patients without
	multicenter registry		of any DE, multifocal DE. and right	DE on MRI have a low risk of VT.
			ventricular DE for death or VT/VF at	
	Size: 51 patients		mean follow-up of 48 mo were 22%. 48%.	
			and 100%, respectively.	
			and 100%, respectively.	

• Greulich et al.	Aim: study aimed to	Inclusion criteria: 155	1° endpoint: 1° endpoints were death,	Could not tell on additional LGE
2013 (186)	demonstrate that the	consecutive patients with	aborted SCD, and appropriate ICD	parameters due to low numbers.
• <u>23498675</u>	presence of late	systemic sarcoidosis who	discharge.	
	gadolinium	underwent CMR for workup		
	enhancement (298) is	of suspected cardiac	Results: LGE was present in 39 patients	
	a predictor of death	sarcoid involvement. The	(25.5%). The presence of LGE yields a Cox	
	and other adverse	median follow-up time was	HR: 31.6 for death, aborted SCD, or	
	events in patients	2.6 у.	appropriate ICD discharge, and of 33.9	
	with suspected CS		for any event. This is superior to	
		Exclusion criteria: N/A	functional or clinical parameters such as	
	Study type:		LVEF, LV end-diastolic volume, or	
	Multicenter		presentation as HF, yielding HRs between	
	prospective		0.99 (per % increase LVEF) and 1.004	
			(presentation as HF), and between 0.94	
	Size: 155 patients		and 1.2 for potentially lethal or other	
			adverse events, respectively.	
 Blankstein et al. 	Aim: to relate	Inclusion criteria:	1° endpoint: Death or VT	 Conclusion was that presence of
2014 (301)	imaging findings on	consecutive patients with		focal PD and FDG uptake on cardiac
• <u>24140661</u>	positron emission	no Hx of CAD, who were	Results: Among the 118 patients (age	PET identifies patients at higher
	tomography (PET) to	referred for PET, using	52±11 y; 57% males; mean EF: 47±16%),	risk of death or VT.
	adverse cardiac	(18)F-fluorodeoxyglucose to	47 (40%) had normal and 71 (60%) had	
	events in patients	assess for inflammation and	abnormal cardiac PET findings. Over a	
	referred for	rubidium-82 to evaluate for	median follow-up of 1.5 y, there were 31	
	evaluation of known	perfusion defects (PD),	(26%) adverse events (27 VT and 8	
	or suspected CS.	following a high-fat/low-	deaths). Cardiac PET findings were	
		carbohydrate diet to	predictive of AE, and the presence of	
	Study type: Single	suppress normal myocardial	both a PD and abnormal FDG (29% of	
	center observational	glucose uptake	patients) was associated with HR:3.9;	
			p<0.01 and remained significant after	
	Size: 118 patients	Exclusion criteria: N/A	adjusting for LVEF and clinical criteria.	
			Extra-cardiac FDG uptake (26% of	
			patients) was not associated with AE.	
• Kron et al. 2013	Aim: to evaluate the	Inclusion criteria:	1° endpoint: appropriate ICD therapy	 Patients receiving appropriate
(302)	efficacy and safety of	consecutive patients with		therapies were more likely to be
• <u>23002195</u>	ICDs in patients with	CS and an ICD at 13		male, have a Hx of syncope, have a
	CS	academic centers.	Results: Over a mean follow-up of	lower LVEF, a 2° prevention ICD
			4.2±4.0 y, 85 of 234 (36.2%) patients	indication

	Study type: multicentre retrospective data review Size: 235 patients from 13 institutions	147 patients (62.6%) had their devices implanted for 1° prevention while 88 patients (37.5%) were implanted for 2° prevention, including 7 for VF (3.0%), 63 for VT (26.8%), and 18 for syncope presumed to be due to an arrhythmia (7.7%).	received an appropriate ICD therapy (shocks and/or anti-tachycardia pacing) and 67 of 226 (29.7%) received an appropriate shock.	• Most patients receiving appropriate therapies had an LVEF >35%, suggesting that CS patients with mild or moderately reduced LVEF may be at risk for VA
• Mohsen et al.	Aim: to identify the	Inclusion criteria: Patients	<u>1° endpoint:</u> appropriate ICD therapy	• CS is strongly associated with
2014 (303)	predictors of life-	with biopsy-proven		malignant VA. No specific
• <u>24433308</u>	threatening VA in	systemic sarcoidosis but		predictors of such
	patients with CS and	without cardiac symptoms	Results: The mean LVEF was 41±18%.	tachyarrhythmias emerged, other
	to evaluate the role	who had evidence of CS on	Thirty patients received an ICD. Twelve	than young age and low LVEF.
	of the ICD in this	positron emission	patients (36.3%) had sustained VA.	• Over 2/3 received ICD for 2°
	patient population.	tomography (PET) or CMR	Eleven patients received appropriate	prevention
	Charles to man	were included	therapies and 9 patients received	
	Study type:	Fuchasian anitanian N/A	inappropriate shocks, representing 36.7%	
	multicentre	Exclusion criteria: N/A	and 30.0% of the ICD population,	
	retrospective data		respectively. Patients who received	
	review		appropriate ICD therapies were younger	
	Size: 22 patients		with mean age 47.4 ± 7.8 , and had a lower	
	<u>Size.</u> Sz patients.		whe did not receive ICD therapies	
	for symptoms		(p=0.0301 and 0.0341 respectively)	
• Schuller et al	Aim: identify the	Inclusion criteria: Patients	1° endpoint: Any ICD therapy	• Appropriate ICD therapies were
2012 (304)	incidence and	with CS and an ICD	<u>- chapoliti.</u> Ally leb therapy	higher than in historical control
• 22812589	characteristics of ICD	implanted for 1° or 2°	Results: Of the 112 CS subjects identified	
	therapies in patients	prevention of sudden	36 (32.1%) received appropriate	
	with CS	death. Additionally, authors	therapies VT over a mean follow-up	
		included a comparison with	period of 29.2 mo. VT storm (>3 episodes	
	Study type:	historical controls of ICD	in 24 h) occurred in 16 (14.2%) CS	
	multicentre	therapy rates reported in	subjects. Inappropriate therapies	
	observational	clinical trials evaluating the	occurred in 13 CS subjects (11.6%).	

	Size: 32 patients. 84% received the ICD for symptoms.	ICD for 1° and 2° prevention of sudden death. Exclusion criteria: N/A	Covariates associated with appropriate ICD therapies included LVEF <55% (OR 6.52; 95% CI: 2.43–17.5), right ventricular dysfunction (OR: 6.73; 95% CI: 2.69– 16.8), and symptomatic HF (OR: 4.33; 95% CI: 1.86–10.1).	
• Yodogawa et al. 2011 (305) • <u>21496164</u>	Aim: to evaluate the efficacy of corticosteroid therapy VA in CS <u>Study type:</u> Single center observational <u>Size:</u> 31 patients	Inclusion criteria: Patients presenting premature ventricular contractions (PVCs ≥300/d) were investigated. All were treated with steroids. Exclusion criteria: N/A	<u>1° endpoint:</u> PVCs and NSVT burden before and after steroid therapy. <u>Results:</u> The group with less advanced LV dysfunction patients (EF ≥35%, N=17) showed significant reduction in the number of PVCs (from 1820±2969 to 742±1425, p=0.048) and in the prevalence of NSVT (from 41 to 6%, p=0.039). Late potentials on SAECG were abolished in 3 patients. The less advanced LV dysfunction group showed a significantly higher prevalence of gallium- 67 uptake compared with the advanced LV dysfunction group (EF <35 %, N=14). In the advanced LV dysfunction patients, there were no significant differences in these parameters	• Steroid therapy may be effective for VA in the early stage, but less effective in the late stage
 Segawa et al.2016 (306) <u>27301264</u> 	Aim: to evaluate time course and factors correlating with VT after introduction of corticosteroid therapy in patients with CS remain to be elucidated. Study type: Single center observational	Inclusion criteria: Patients presenting with CS treated with steroids. Exclusion criteria: N/A	<u>1° endpoint</u> : Sustained VA. <u>Results:</u> During a mean follow-up of 5.5 y, 20 out of 68 patients (29%) experienced VTs after initiation of corticosteroid therapy, especially in the first 12 mo in 14 patients (70%). A multivariable analysis revealed that positive gallium scintigraphy had a significant correlation with VTs (HR: 11.33; 95% CI: 3.22–39.92; p<0.001), in addition to reduced LVEF (HR: 0.94; 95% CI: 0.90–0.97; p=0.001). Furthermore,	• These results indicate that VTs and electric storm frequently occur in the first 12mo after initiation of corticosteroid therapy, presumably because of inflammatory conditions, and that the positive gallium scintigraphy is a significant and independent predictor of VTs

Size: 68 patients	electrical storm was noted in 10 patients	
	(14.7%), 8 within the first 12mo of	
	treatment, whereas the recurrence of	
	electric storm was relatively less.	

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results (P values: OB or BB:	Summary/Conclusion
Year Published	Study Size		& 95% CI)	connient(s)
• Varr et al. 2014 (307)	Aim: To test whether	Inclusion criteria: The	1° endpoint: VA	 Of the 6 patients who received ICD
• <u>24121001</u>	there is a specific	Stanford Amyloid		therapies, 4 died within 18 mo and 3
	population of patients	Center's database to	Results: NSVT was common	received the ICD initially for 1°
	with cardiac	identify all patients with	and occurred in 23 of 31 (74%)	prevention.
	amyloidosis at risk of	AL or ATTR who had	patients. Sustained VT or VF	• The authors proposed criteria for ICD
	SCD owing to VA (vs	ambulatory cardiac	occurred in 6 of 31 (19%)	implant
	EMD) who would	monitoring. This included	patients over the study	 That included syncope, VT or NSVT.
	benefit from ICD	patients who had	period. Of the 6 patients with	
		undergone interrogation	VT/VF, 1 patient had	
	Study type:	of an ICD or pacemaker	spontaneous resolution of VT	
	Retrospective registry	and those who had	before the delivery of ICD	
	Database analysis	ambulatory monitoring in	therapy. The remaining 5	
		the outpatient setting	patients had ICD therapies	
	<u>Size</u> : 31	with either a Holter	used, either antitachycardia	
		monitor or Ziopatch	pacing (ATP) or defibrillation.	
		(iRhythm technologies,	All patients had had	
		San Francisco, CA).	documented NSVT before ICD	
			therapy for VT/VF.	
		Exclusion criteria:		
		patients who did not		
		have any form of		
		telemetry monitoring		
		available		
• Kristen et al. 2008	Aim: to test whether	Inclusion criteria:	1° endpoint: mortality	 Authors concluded that patients with
(308)	prophylactic placement	patients with		cardiac amyloidosis predominantly die as

Data Supplement 34. Nonrandomized Trials, Observational Studies, and/or Registries of Other Infiltrative Cardiomyopathies – (Section 7.6.1)

• <u>18242546</u>	of an ICD reduces SCD in patients with cardiac amyloidosis <u>Study type</u> : Single center observational <u>Size</u> : 19	histologically proven cardiac amyloidosis and risk of sudden death as demonstrated by a Hx of syncope and/or ventricular extra beats (Lown grade IVa or higher)	<u>Results:</u> During a mean follow-up of 811±151 d, 2 patients with sustained VT were successfully treated by the ICD. Two patients underwent heart transplantation, and 7 patients died due to	a result of electromechanical dissociation and other diagnoses not amenable to ICD therapy. Selected patients with cardiac amyloidosis may benefit from ICD placement.
		Exclusion criteria: N/A	dissociation (N=6) or glioblastoma (N=1).	
• Lubitz et al. 2008 (309) • <u>18634918</u>	Study type: Review Article on SCD in infiltrative cardiomyopathies: sarcoidosis, scleroderma, amyloidosis, hemachromatosis. Size: NA	Inclusion criteria: Review article on infiltrative cardiomyopathis and sudden death. Studies related to sudden death and sudden death prevention were discussed. Exclusion criteria: N/A	1° endpoint: NA Results: It is difficult to draw substantive conclusions regarding the appropriate risk stratification and therapy of patients with the infiltrative cardiomyopathies. Few studies are prospective, many use different diagnostic criteria, and therapies are rarely randomized. Furthermore, sample sizes are small, studies are typically single center, and the heterogeneity of disease manifestations may preclude the generalization of results. Patients in high-risk groups, especially those with significantly reduced left ventricular function may be best treated with prophylactic ICD.	• Data on sudden death prevention in diseases other than sarcoidosis is very scant

Data Supplement 35. Nonrandomized Trials, Observational Studies, and/or Registries of Use of ICD and WCD in Patients with HFrEF - (Section 7.8.1)

Study Acronym; Author;	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR;	Summary/Conclusion Comment(s)
Year Published			& 95% CI)	
 Gandjbakhch E, et al. 2016 (157) 27344378 	Study type: single center retrospective observational study Size: 380 patients (122 with ICD)	Inclusion criteria: consecutive patients listed for heart transplantation at 1 center. ICD patients characterized as having ICD before or within 3 mo after being listed for heart transplant Exclusion criteria: N/A	1° endpoint:all-causemortalityResults:Patients with ICD wereless likely to die on the waitinglist (8.3% ICD patients and 19.0%non-ICD, p=0.001).However, inmultivariable model, ICD did notremain an independentpredictor.ICD-related complications 21%of patients of which 11.9% waspost-op worsening of HF.	• Conclusion: Patients with ICD were less likely to die on the waiting list but this did not appear in the multivariable model to be independently associated with mortality.
 Frohlich GM, et al. Heart 2013 (156) <u>23813845</u> . 	Study type: retrospective observational study Size: 1089 consecutive patients listed for heart transplantation of which 550 (51%) with ICD (216 1° and 334 2° prevention indcations)	Inclusion criteria: consecutive patients listed for heart transplantation in two tertiary centers Exclusion criteria: N/A	 <u>1° endpoint</u>: all-cause mortality <u>Results</u>: estimated 1 y survival 88% ICD vs. 77% without ICD (p=0.0001). Model adjustment suggested ICD independently associated with survival most pronounced for those with 1° prevention indication (HR: 0.4; 95% CI: 0.19–0.85; p=0.016) 	• Conclusion: ICD appears to be associated with a reduction in all-cause mortality compared to those without an ICD on the waiting list

170

• Sandner SE, et al. 2001	Study type:	Inclusion criteria:	1° endpoint and results: Total	• Limitations: retrospective, older
(310)	Retrospective	Consecutive patients	mortality while waiting for	study with MADIT I and MUSTT type
• <u>11568051</u>	observational study	listed for heart	transplant was 13.2% with ICD	indications for ICD and ICD patients
		transplant 1/1992 and	and 25.8% without ICD (p=0.03).	were highly selected introducing
	Size: 854 patients on	3/2000		confounding and baseline clinical
	the waiting list for		Rate of 12 mo sudden death was	variables were not comparable. Low
	heart transplant (102	Exclusion criteria:	20% in the non-ICD group and	use of BB.
	patients with ICD,	N/A	0% in the ICD group.	 Conclusions: supports the use of ICD
	11.9%). All patients			for improving survival to transplant
	had ICD implanted	Patient demographics:	Cox proportional hazard model	
	before listing for	Indication for ICD was	showed absence of ICD	
	transplant	SCA (63%),	associated with increased	
			mortality and sudden death.	
		60% non-ischemic		
		etiology		
		Only 24% overall were		
		on BB		
	Charles have as			
• Kao AC, et al. 2012	Study type:	Inclusion: WCD	Device worn for 75±58 d. 4	• <u>Conclusions:</u> WCD monitored HF
• Kao AC, et al. 2012 (290)	Observational	prescribed for either	patients were on inotropes.	• <u>Conclusions:</u> WCD monitored HF patients until further assessment of
• Kao AC, et al. 2012 (290) • <u>23234574</u>	Observational multicenter cohort	prescribed for either listed for cardiac	patients were on inotropes. There were no sudden cardiac	• <u>Conclusions:</u> WCD monitored HF patients until further assessment of risk. The leading reasons for end of
• Kao AC, et al. 2012 (290) • <u>23234574</u>	Observational multicenter cohort study	prescribed for either listed for cardiac transplantation,	patients were on inotropes. There were no sudden cardiac arrests or deaths during the	• <u>Conclusions:</u> WCD monitored HF patients until further assessment of risk. The leading reasons for end of WCD use were improvement in LVEF or
• Kao AC, et al. 2012 (290) • <u>23234574</u>	Observational multicenter cohort study	prescribed for either listed for cardiac transplantation, diagnosed with dilated	patients were on inotropes. There were no sudden cardiac arrests or deaths during the study.	• <u>Conclusions:</u> WCD monitored HF patients until further assessment of risk. The leading reasons for end of WCD use were improvement in LVEF or ICD implantation if there was no
• Kao AC, et al. 2012 (290) • <u>23234574</u>	Study type: Observational multicenter cohort study Size: 82	prescribed for either listed for cardiac transplantation, diagnosed with dilated cardiomyopathy, or	patients were on inotropes. There were no sudden cardiac arrests or deaths during the study.	• <u>Conclusions:</u> WCD monitored HF patients until further assessment of risk. The leading reasons for end of WCD use were improvement in LVEF or ICD implantation if there was no significant improvement in LVEF.
• Kao AC, et al. 2012 (290) • <u>23234574</u>	Study type: Observational multicenter cohort study Size: 82	Inclusion: WCD prescribed for either listed for cardiac transplantation, diagnosed with dilated cardiomyopathy, or receiving inotropic	patients were on inotropes. There were no sudden cardiac arrests or deaths during the study. 41.5% of patients were much	• <u>Conclusions:</u> WCD monitored HF patients until further assessment of risk. The leading reasons for end of WCD use were improvement in LVEF or ICD implantation if there was no significant improvement in LVEF.
• Kao AC, et al. 2012 (290) • <u>23234574</u>	Study type: Observational multicenter cohort study Size: 82	Inclusion: WCD prescribed for either listed for cardiac transplantation, diagnosed with dilated cardiomyopathy, or receiving inotropic medications.	 Device worn for 75±58 d. 4 patients were on inotropes. There were no sudden cardiac arrests or deaths during the study. 41.5% of patients were much improved after WCD use, while 24.1% want on to receive an arrest. 	• <u>Conclusions:</u> WCD monitored HF patients until further assessment of risk. The leading reasons for end of WCD use were improvement in LVEF or ICD implantation if there was no significant improvement in LVEF.
• Kao AC, et al. 2012 (290) • <u>23234574</u>	Study type: Observational multicenter cohort study Size: 82	Inclusion: WCD prescribed for either listed for cardiac transplantation, diagnosed with dilated cardiomyopathy, or receiving inotropic medications.	 bevice worn for 75±58 d. 4 patients were on inotropes. There were no sudden cardiac arrests or deaths during the study. 41.5% of patients were much improved after WCD use, while 34.1% went on to receive an UCD 	• <u>Conclusions:</u> WCD monitored HF patients until further assessment of risk. The leading reasons for end of WCD use were improvement in LVEF or ICD implantation if there was no significant improvement in LVEF.
• Kao AC, et al. 2012 (290) • <u>23234574</u>	Study type: Observational multicenter cohort study Size: 82	Inclusion: WCD prescribed for either listed for cardiac transplantation, diagnosed with dilated cardiomyopathy, or receiving inotropic medications. Mean age 56.8±13.2,	 Device worn for 75±58 d. 4 patients were on inotropes. There were no sudden cardiac arrests or deaths during the study. 41.5% of patients were much improved after WCD use, while 34.1% went on to receive an ICD. 	• <u>Conclusions:</u> WCD monitored HF patients until further assessment of risk. The leading reasons for end of WCD use were improvement in LVEF or ICD implantation if there was no significant improvement in LVEF.
• Kao AC, et al. 2012 (290) • <u>23234574</u>	Study type: Observational multicenter cohort study Size: 82	Inclusion: WCD prescribed for either listed for cardiac transplantation, diagnosed with dilated cardiomyopathy, or receiving inotropic medications. Mean age 56.8±13.2, and 72% were male.	 Device worn for 75±58 d. 4 patients were on inotropes. There were no sudden cardiac arrests or deaths during the study. 41.5% of patients were much improved after WCD use, while 34.1% went on to receive an ICD. 	• <u>Conclusions:</u> WCD monitored HF patients until further assessment of risk. The leading reasons for end of WCD use were improvement in LVEF or ICD implantation if there was no significant improvement in LVEF.
• Kao AC, et al. 2012 (290) • <u>23234574</u>	Study type: Observational multicenter cohort study Size: 82	Inclusion: WCD prescribed for either listed for cardiac transplantation, diagnosed with dilated cardiomyopathy, or receiving inotropic medications. Mean age 56.8±13.2, and 72% were male. Most patients (98.8%)	 bevice worn for 75±58 d. 4 patients were on inotropes. There were no sudden cardiac arrests or deaths during the study. 41.5% of patients were much improved after WCD use, while 34.1% went on to receive an ICD. 	• <u>Conclusions:</u> WCD monitored HF patients until further assessment of risk. The leading reasons for end of WCD use were improvement in LVEF or ICD implantation if there was no significant improvement in LVEF.
• Kao AC, et al. 2012 (290) • <u>23234574</u>	Study type: Observational multicenter cohort study Size: 82	Inclusion: WCD prescribed for either listed for cardiac transplantation, diagnosed with dilated cardiomyopathy, or receiving inotropic medications. Mean age 56.8±13.2, and 72% were male. Most patients (98.8%) were diagnosed with	 bevice worn for 75±58 d. 4 patients were on inotropes. There were no sudden cardiac arrests or deaths during the study. 41.5% of patients were much improved after WCD use, while 34.1% went on to receive an ICD. 	• <u>Conclusions:</u> WCD monitored HF patients until further assessment of risk. The leading reasons for end of WCD use were improvement in LVEF or ICD implantation if there was no significant improvement in LVEF.
• Kao AC, et al. 2012 (290) • <u>23234574</u>	Study type: Observational multicenter cohort study Size: 82	Inclusion: WCD prescribed for either listed for cardiac transplantation, diagnosed with dilated cardiomyopathy, or receiving inotropic medications. Mean age 56.8±13.2, and 72% were male. Most patients (98.8%) were diagnosed with DCM with a low EF	 Device worn for 75±58 d. 4 patients were on inotropes. There were no sudden cardiac arrests or deaths during the study. 41.5% of patients were much improved after WCD use, while 34.1% went on to receive an ICD. 	• <u>Conclusions:</u> WCD monitored HF patients until further assessment of risk. The leading reasons for end of WCD use were improvement in LVEF or ICD implantation if there was no significant improvement in LVEF.
• Kao AC, et al. 2012 (290) • <u>23234574</u>	Study type: Observational multicenter cohort study Size: 82	Inclusion: WCD prescribed for either listed for cardiac transplantation, diagnosed with dilated cardiomyopathy, or receiving inotropic medications. Mean age 56.8±13.2, and 72% were male. Most patients (98.8%) were diagnosed with DCM with a low EF (<40%) and 12 were listed for cardiac	 Device worn for 75±58 d. 4 patients were on inotropes. There were no sudden cardiac arrests or deaths during the study. 41.5% of patients were much improved after WCD use, while 34.1% went on to receive an ICD. 	• <u>Conclusions:</u> WCD monitored HF patients until further assessment of risk. The leading reasons for end of WCD use were improvement in LVEF or ICD implantation if there was no significant improvement in LVEF.
• Kao AC, et al. 2012 (290) • <u>23234574</u>	Study type: Observational multicenter cohort study Size: 82	Inclusion: WCD prescribed for either listed for cardiac transplantation, diagnosed with dilated cardiomyopathy, or receiving inotropic medications. Mean age 56.8±13.2, and 72% were male. Most patients (98.8%) were diagnosed with DCM with a low EF (<40%) and 12 were listed for cardiac transplantation	 Device worn for 75±58 d. 4 patients were on inotropes. There were no sudden cardiac arrests or deaths during the study. 41.5% of patients were much improved after WCD use, while 34.1% went on to receive an ICD. 	• <u>Conclusions:</u> WCD monitored HF patients until further assessment of risk. The leading reasons for end of WCD use were improvement in LVEF or ICD implantation if there was no significant improvement in LVEF.
• Kao AC, et al. 2012 (290) • <u>23234574</u>	Study type: Observational multicenter cohort study Size: 82	Inclusion: WCD prescribed for either listed for cardiac transplantation, diagnosed with dilated cardiomyopathy, or receiving inotropic medications. Mean age 56.8±13.2, and 72% were male. Most patients (98.8%) were diagnosed with DCM with a low EF (<40%) and 12 were listed for cardiac transplantation.	 Device worn for 75±58 d. 4 patients were on inotropes. There were no sudden cardiac arrests or deaths during the study. 41.5% of patients were much improved after WCD use, while 34.1% went on to receive an ICD. 	• <u>Conclusions:</u> WCD monitored HF patients until further assessment of risk. The leading reasons for end of WCD use were improvement in LVEF or ICD implantation if there was no significant improvement in LVEF.

• Opreanu M et al. 2015	Study type: registry of	Inclusion: patients	The patients wore the WCD for	• Conclusions: A significant
(311)	patients awaiting	awaiting heart	an average of 127±392 d	proportion of patients on the heart
• <u>26094085</u>	heart transplant with	transplant with WCD	(median 39d) with average daily	transplant waiting list will have VA.
	WCD		use of 17±7 h (median 20h).	WCD use in this registry associated with
			Seven patients (6%) received	a high compliance and efficacy and a
	Size: 121 patients		appropriate WCD shocks. Fifty-	low complication rate, suggesting that
			one patients (42%) ended use	the WCD is a reasonable bridge therapy
	Patient Demographics:		after ICD implantation and 13	for preventing SCD in patients awaiting
	consisting of 83 (69%)		patients (11%) after HT. There	HT.
	men and 38 (31%)		were 11 deaths (9%).	
	women. The mean age			
	was 44±18 y. Mean EF			
	was 25 ± 15%. Non-			
	ischemic			
	cardiomyopathy (CMP)			
	was the underlying			
	diagnosis in 67 (55%)			
	patients, whereas 21			
	(17%) patients had			
	ischemic CMP and 33			
	(27%) had a mixed or			
	uncharacterized CMP.			
	NYHA Class III HF was			
	present in 32% and			
	34% were in Class IV.			

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator	Endpoint Results (Absolute Event Rates, P values; OR or RR; &
			(# patients)	95% CI)
 Vakil, et al. JACCCEP 	<u>Study type</u> :	Inclusion criteria: Adults	1° endpoint: all-cause waitlist	 Conclusion: ICD use was
2016 (312)	retrospective national	(age ≥18 y) listed for first-	mortality.	associated with improved survival
• <u>27395347</u>	registry	time HT in the United		on the HT waitlist in patients with
		States between January 1,	Results: 9% died on the wait	or without LVADs
	Size: 32,599 patients	1999, and September 30,	list in ICD group vs. 15% in	
		2014, were retrospectively	no-ICD group (p<0.0001),	
		identified from the United		
		Network for Organ Sharing	An ICD at listing was	
		registry.	associated reduction in	
			mortality (HR: 0.87; 95% CI:	
		Median follow-up of 154 d,	0.80–0.94).	
		3,638		
			In the subgroup of patients	
			with LVAD (N=9,478), having	
			an ICD was associated with	
			relative reduction in mortality	
			(HR: 0.81; 95% Cl 0.70–0.94).	

Data Supplement 36. Nonrandomized Trials, Observational Studies, and/or Registries Related to LVAD – (Section 7.8.3)

Data Supplement 37. Nonrandomized Trials, Observational Studies, and/or Registries Related to ICD Use After Heart Transplantation – (Section 7.8.4)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)
 Tsai et al. 2009 (313) <u>19808340</u> 	Study type: Retrospective cohort of Heart Tx. Patients with ICDs across 5 centers. 1995-2005	Inclusion criteria: Patients with heart transplants and ICDs Exclusion criteria: N/A	1° endpoint: Descriptive: Indications for ICDs and shocks (appropriate/inappropriate) Results: indications for ICD 1) severe allograft vasculopathy (N=12).	 Use of ICDs after heart transplantation may be appropriate in selected high-risk patients. Very small number, no control group, Pre-SCD-HeFT.

	Size: 36 (2612 patients with heart transplants, 36, with ICDs)		 unexplained syncope (N=9), Hx of CA (N=8), severe LV dysfunction (N=7). 	
			Shocks: 22 shocks in 10 patients (28%), <u>Appropriate:</u> 8 patients/12 shocks (100% - allograft vasculopathy) <u>Inappropriate</u> : 3 patients of whom 8 (80%) received 12 appropriate shocks for either rapid VT or VF. The shocks were effective in terminating the VA in all cases. Three (8%) patients	
 McDowell et al. 2009 (314) <u>19632584</u> 	Study type: Survey of transplant program directors. Asked about all transplant patients with an ICD Size: 44 patients with heart transplants with ICD	Inclusion criteria: Survey responses about heart transplant patients. With ICDs Exclusion criteria: N/A	 <u>1° endpoint</u>: Indication, <u>Results:</u> Indication for implant* 1° VT/VF arrest 6 (13.3) Unexplained syncope 3 (6.7) CAV with LV dysfunction 20 (44.4) CAV without LV dysfunction 3 (6.7) Non-specific graft dysfunction 5 (11.1) High-grade arrhythmia determined by Non-invasive monitor 3 (6.7) Patients with appropriate therapies 6 (13.6); Total 19 Patients with inappropriate therapies 3 (6.8) Total 15 	 Most common reason was allograft vasculopathy with LV dysfunction
 Neylon et al. 2016 (315) <u>26856670</u> 	Study type: Single center review of transplant patients with ICDs	Inclusion criteria:	<u>1° endpoint</u> : Descriptive <u>Results:</u>	 ICDs in transplant patients – inconclusive.

Size	e : 10 patients	Review of all transplant patients with ICDs between 1983 and 2012.	 Allograft vasculopathy in 8/10 1/10 shocked, 1/10 ATP 	
		Exclusion criteria: N/A		

Data Supplement 38. Nonrandomized Trials, Observational Studies, and/or Registries Evaluating the Risk of Sudden Death or Ventricular Arrhythmias in Patients with Neuromuscular Disorders – (Section 7.8)

Study Acronym;	Study Type/Design;	Study Size (N); Patient	1° Endpoint and Results	Summary/Conclusion
Author;	Study Size	Population	(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
 Tanawuttiwat 	Study type: Observational	Inclusion criteria: 136	<u>1° endpoint:</u> Conduction	 Prevalence of critically prognostic
T, et al. 2017	retrospective cohort referred	patients with DM1 and	abnormalities were defined as PR	conduction abnormalities >20% and LV
(316)	for risk stratification at a	28 patients with DM2	of at least 240 msec and QRS of	dysfunction > 10% (defined LVEF <55%)
• <u>27829084</u>	single referral center	with genetically	at least 120 msec	 Incident QRS prolongation > 10 ms is
		confirmed diagnosis		associated with decreased LV function
	Size: 155 patients	and baseline ECG	Results: In DM1, incidences of PR	the subsequent year.
		between January 1997	≥240 ms and QRS ≥120 ms during	 Supports serial ECG examinations and
		and August 2014.	a mean 5.54 y were 19.2% and	symptom / QRS prolongation-
			11.7%, respectively.	prompted evaluation of LV function.
		Exclusion criteria:		 Limitations include retrospective
		Exclusion of ECG's with	In contrast, DM2 patients there	design with potential for selection bias,
		paced or non-sinus	were no incident PR	differential clinical follow-up among
		rhythm	abnormalities, despite similar	subgroups.
			incidence of QRS abnormalities.	
			An incident 10 ms increase in	
			QRS duration was associated with	
			3.5% decrease in EF in the	
			subsequent year (-3.45; 95% CI:	
			-4.872.03; p<0.001).	
 Merino et al. 	Aim: To assess the	Inclusion: Consecutive	<u>1° endpoint</u> : N/A	 Summary – A high clinical suspicion
1998 (317)	mechanism of sustained VT in	patients with myotonic		for bundle-branch reentry tachycardia
• <u>9714111</u>	myotonic dystrophy	dystrophy and	Results: Clinical tachycardia was	is reasonable in patients with wide
			inducible in all patients and were	

	Study type: Case series Size: 6 patients	sustained VT referred for EPS <u>Exclusion:</u> N/A	bundle branch reentry. VT was no longer inducible after bundle branch ablation except for a nonclinically documented and NSVT in a patient with SHD	 complex tachycardia and myotonic dystrophy Limitations – small case series. Does not prove a link between bundle branch reentry and sudden death in this population
 Diegoli et al. 2011 (318) 21851881 	Aim: To describe the outcome of patients with dilated cardiomyopathy and DYS defects Study type: Cohort study Size: 34 patients with DYS defects	Inclusion: 1/1995 – 12/2009, screened DYS in 436 unrelated male probands diagnosed with DCM who were male sex Exclusion: females, families with male to male transmission	<u>1° endpoint</u> : N/A <u>Results:</u> Of the 34 affected patients, 8 patients underwent heart transplant and 8 patients received an ICD (indications depressed LVEF). There were no appropriate interventions during a median follow-up 14 mo (IQR 5=25 mo)	 DYS-related DCM is characterized by severe impairment of LV function, marked LV dilation, and low arrhythmogenic risk; the only factor that impacts survival seems to be end- stage HF. Limitations: relatively small number of patients and short follow-up, referral center.
 Anselme et al. 2013 (208) 23811080 	Aim: To evaluate a strategy of prophylactic ICD implantation in lamin A/C mutation carriers with significant cardiac conduction disorders Study type: Cohort study, single center Size: 47 patients	Inclusion criteria: • LMNA mutation carriers seen between 3/1999 and 4/2009 • 47 patients (mean age 38±11 y; 26 men) with LMNA mutation. • 21 (45%) had significant conduction disorders (defined as bradycardia requiring pacemaker or a PR interval of >240 ms and either complete LBBB or NSVT) and received a prophylactic ICD Exclusion criteria: N/A	1° endpoint: N/A <u>Results:</u> • In those with ICD, 11/21 (52%) had appropriate ICD therapy during a median follow-up of 62 mo • LVEF was ≥45% in 9/11 patients with appropriate therapy • The presence of significant conduction disorders is associated with malignant VA (HR: 5.20; 95% CI: 1.14–23.53; p=0.03)	 Life-threatening VAs are common in patients with lamin A/C mutations and significant cardiac conduction disorders, even if LVEF is preserved. ICD is an effective treatment and should be considered in this patient population.

 van Rijsingen et al. 2012 (209) <u>22281253</u> 	Aim: To identify risk factors that predict malignant VAs in lamin A/C mutation carriers Study type: Cohort, multicenter Size: 269 patients	Inclusion criteria: Pathogenic lamin A/C mutation carriers between 2000 and 2010 Exclusion criteria: • Patients ≤15 y of age • Median follow up of 43 mo	 <u>1° endpoint</u>: Occurrence of malignant VAs <u>Results:</u> 48 (18%) had malignant VAs (11 successful CPR, 25 appropriate ICD treatment, and 12 died suddenly) Risk factors for VAs were NSVT, LVEF <45%, male sex, and nonmissense mutations (insdel/truncating or mutations affecting splicing). VA occurred only in persons with at least 2 of these risk factors. 	• Patients with lamin A/C mutations with ≥2 risk factors may benefit from prophylactic ICD
 Meune et al. 2006 (319) <u>16407522</u> 	Aim: To assess whether ICD is beneficial for 1° prevention of SCD in patients with lamin A/C gene mutations with preserved LVEF referred for pacing due to presence of progressive conduction delay or SND Study type: Cohort study Size: 19 patients	Inclusion criteria: Lamin A/C mutations associated with cardiac conduction defects Exclusion criteria: • 19 patients received ICD (Muscular phenotype: 9 Emery- Dreifuss, 8 DCM plus conduction disease, 1 Limb-girdle, 1 shoulder-muscle amyotrophy) • Mean age 41.7±13.4 y • Sex: 73% Male • Mean LVEF 58%±12%	1° endpoint: Not specified Results: • 8/19 (42%) received appropriate ICD therapy • Follow up 33.9±21 mo • No factor (including LVEF, spontaneous or induced VA or drug therapy) predicted VA events • LVEF not reduced in patients receiving ICD therapies	 1 inappropriate shock Summary: ICD rather than pacemaker should be considered in patients with conduction disorders and lamin A/C mutation
 Pasotti et al. 2008 (210) <u>18926329</u> 	<u>Aim:</u> The aim of this study was to analyze the long-term follow-up of dilated cardiolaminopathies in	Inclusion criteria: 27 consecutive families in which <i>LMNA</i> gene defects were identified	<u>1° endpoint</u> : Events were death from any cause, death from HF, heart transplantation, and SCD,	• Authors concluded that dilated cardiomyopathies caused by <i>LMNA</i> gene defects are highly penetrant, adult onset, malignant diseases

	patients with Lamin A/C gene	in the probands, all	including appropriate ICD	characterized by a high rate of HF and
	mutations	sharing the DCM	interventions	life-threatening arrhythmias.
		phenotype. Of the 164		
	Study type: Retrospective	family members, 94	Results:	
	observational longitudinal	had LMNA gene	• 60 of 94 (64%) were	
	study	mutations	phenotypically affected whereas	
			34 were only genotypically	
	Size: 94 patients	Exclusion criteria: N/A	affected.	
			 Of the 60 patients, 40 had DCM 	
			with AVB, 12 had DCM with	
			VT/fibrillation, 6 had DCM with	
			AVB and EDMD2, and 2 had AVB	
			plus EDMD2.	
			 During a median of 57 mo there 	
			were 49 events in 43 DCM	
			patients.	
			 The events were related to HF 	
			(15 heart transplants, 1 death	
			from end-stage HF) and VA (15	
			SCDs and 12 appropriate ICD	
			interventions).	
• van Berlo et	Aim: To evaluate common	Inclusion criteria: 21	1° endpoint: Arrhythmias and	 Authors conclude that carriers of
al. 2005 (211)	clinical characteristics of	publications between	sudden death	lamin A/C mutations carry a high risk of
• <u>15551023</u>	patients with lamin A/C gene	March		sudden death.
	mutations that cause either	1999 and March 2002	Results:	 Presence of pacemaker did not
	isolated DCM or DCM in	reporting lamin A/C	 Cardiac dysrhythmias were 	protect against sudden death.
	association with skeletal	gene mutations	reported in 92% of patients after	
	muscular dystrophy.	Fundamenta antita da c	30 y of age; HF was reported in	
		Exclusion criteria:	64% after 50 y of age.	
	Study type: Meta-analysis	Patients with familial	• 76 of the reported 299 patients	
	(pooled data)	partial lipodystropny,	(25%) died at a mean of 46 y of	
	Size: 200 carriers of	piogena, axonal	age.	
	<u>Size</u> : 299 Calliers Of	mandibuloacral	• Sudden death was the most	
			trequently reported mode of	
		mutations in the lamin	death (46%) in both the cardiac	
			and the neuromuscular	
			phenotype.	

		A/C gene were		
• Lallemand et	Aim: To analyze the natural Hy	Inclusion criteria:	1° endpoint: N/A	In patients with normal initial EPS
al 2012 (320)	and predictors of change in	Patients with muscular		changes in the resting ECG and/or SA-
• 22038543	infra-Hisian conduction time	dystrophy of which 25	Besults: Mean HV interval	FCG on annual follow-up were
	in myotonic dystrophy	underwent a second	increased between the baseline	associated with change in infra-Hisian
	patients with normal baseline	EPS for new symptoms,	and follow-up EP	conduction
	EPS	new AV conduction	• Study – 52.1±1.6 ms to 61.4±2.2	
		abnormalities on ECG,	ms.	
	Study type: Cohort study	changes on SA-ECG,	 Predictors of increased HV 	
		ord asymptomatic	interval were change in resting	
	Size: 127 patients	patients >60 mo from	ECG and SA-ECG (QRSd ≥100 ms	
		first EPS	or low amplitude signal <40	
			microvolts)	
		Exclusion criteria: N/A	 5 patients with HV ≥70 ms 	
			received prophylactic pacemaker	
 Wahbi et al. 	Aim: To determine whether	Inclusion criteria:	1° endpoint: All-cause mortality	 In patients with myotonic dystrophy
2012 (321)	an invasive strategy based on	Genetically confirmed		type 1, an invasive strategy was
• <u>22453570</u>	EPS and prophylactic	myotonic dystrophy	<u>Results:</u>	associated with a higher rate of 9y
	pacemaker is associated with	type 1 with PR >200 ms	341 (70.2%) - EPS	survival than a noninvasive strategy
	longer survival in patients	and/or QRS >100 ms	compared to 145 (29.8%) -	
	presenting with myotonic	between 1/2000 to	noninvasive strategy	
	dystrophy type 1 and	12/2009		
	infranodal conduction delays		 Median follow-up 7.4 y (322) 	
	compared to a noninvasive	Exclusion criteria: N/A	 50 patients died in EPS strategy 	
	strategy using propensity		group	
	adjustments		30 died in the noninvasive	
	Study type: Cobort study		strategy group (HR: 0.74; 95% CI:	
	<u>Study type:</u> Conort study		0.47–1.16; p=0.19)	
	Size: 486 natients		Difference attributable to a	
	Size. 400 patients		notion to invisive strategy group	
			patients invasive strategy group	
			stratogy group HP: 0.24: 05% CI	
			$0.10-0.56 \cdot n-0.001$	
• Wahbi et al. 2012 (321) • <u>22453570</u>	EPS Study type: Cohort study Size: 127 patients Aim: To determine whether an invasive strategy based on EPS and prophylactic pacemaker is associated with longer survival in patients presenting with myotonic dystrophy type 1 and infranodal conduction delays compared to a noninvasive strategy using propensity adjustments Study type: Cohort study Size: 486 patients	new AV conduction abnormalities on ECG, changes on SA-ECG, ord asymptomatic patients >60 mo from first EPS Exclusion criteria: N/A Inclusion criteria: N/A Inclusion criteria: N/A Inclusion criteria: N/A Inclusion criteria: N/A Exclusion criteria: N/A	 Study – 52.1±1.6 ms to 61.4±2.2 ms. Predictors of increased HV interval were change in resting ECG and SA-ECG (QRSd ≥100 ms or low amplitude signal <40 microvolts) 5 patients with HV ≥70 ms received prophylactic pacemaker <u>1° endpoint</u>: All-cause mortality <u>Results:</u> 341 (70.2%) - EPS compared to 145 (29.8%) - noninvasive strategy Median follow-up 7.4 y (322) 50 patients died in EPS strategy group 30 died in the noninvasive strategy group (HR: 0.74; 95% CI: 0.47–1.16; p=0.19) Difference attributable to a lower incidence of SCD (10 patients invasive strategy group vs. 16 patients noninvasive strategy group, HR: 0.24; 95% CI: 0.10–0.56; p=0.001]) 	• In patients with myotonic dystrop type 1, an invasive strategy was associated with a higher rate of 9y survival than a noninvasive strategy

• Ha et al. 2012	Aim: To define predictors of	Inclusion criteria:	<u>1° endpoint</u> : N/A	• Despite identification of conduction
(323)	cardiac conduction disease in	Patients with DM1 and		disease and prophylactic pacing,
• <u>22385162</u>	myotonic dystrophy patients	25 DM2 after 2003	Results:	mortality remains high in patients with
			 Follow-up 57±46 mo 	a severe ECG abnormality (most deaths
	Study type: Cohort study,	Exclusion criteria: N/A		non-sudden, suggesting that a severe
	single-center		 A severe ECG abnormality was 	ECG abnormality is also general marker
			defined as a PR interval of ≥240	of risk for all-cause mortality.)
	Size: 211 patients		ms or QRS duration of ≥120 ms	 Of 3 patients who died suddenly, 2
				had pacemakers, suggesting that a
			 Severe ECG abnormality 	severe ECG abnormality does not
			present in 24% of DM1 patients	simply predict sudden death from AV
			and 17% of DM2 patients	block
			 Pacemaker or ICD implanted in 	
			14% of all patients, including 65%	
			of patients with severe ECG	
			abnormalities.	
			• 13 patients died (1.16%/y),	
			including 3 sudden (2 of whom	
			had pacemakers)	
• Laurent et al.	Aim: To determine whether	Inclusion criteria:	<u>1° endpoint</u> : All-cause mortality	 Implantation of a pacemaker when Implantation of a pacemaker when
2011(324)	Implantation of prophylactic	Genetically confirmed		HV Interval 270 seemed to identify a
• 2022/121	pacemaker in myotonic	wiD1 between 1994	Results:	population likely to progress to high
	aystrophy patients with HV	and 2008 at single	• 10 deaths (9 respiratory failure,	grade AV block. A higher rate of
	sudden death (due to	Institution	1 sudden). 1 SCD occurred in a	sudden dealin would have been
	sudden death (due to	Evolution critoria:	patient with pacemaker who had	expected based on previous studies of
	complete AV block)	e Infantila form of MD	no spontaneous vi suggesting a	prophylactic pacemaker implantation
	Study type: Cobort study	Infantile form of MD 100 patients eprelled	non-cardiac etiology for this	based on these criteria, may have
	<u>Study type.</u> conort study	• 100 patients enrolled	event.	prevented some deaths due to
	Size: 100 patients	nacemaker for HV	• 1/51 With HV Interval 0</th <th>asystole</th>	asystole
	<u>572C.</u> 100 patients	interval >70	a 10/40 patients with UV > 70	
		• Mean follow up	• 19/49 patients with HV 2 70	
		74+39 mo		
		• 46% had 1 or more		
		Groh criteria (rhythm		
		other than sinus. PR		
		≥240 ms, QRS ≥120 ms.		
		2 nd or 3 rd degree AV		
-------------------	-------------------------------	--	------------------------------------	--
		block)		
• Bhakta et al.	Aim: To assess implant rates	Inclusion criteria:	1° endpoint: N/A	 Adult DM1 patients commonly
2011 (325)	and indications for pacemaker	Genetically confirmed		receive pacemakers and ICDs.
• <u>22035077</u>	and ICDs and outcomes in	DM1	Results:	 The risk of SCD in patients with
	patients with DM1		Follow up 9.5±3.2 y	pacemakers suggests that the ICD may
		Exclusion criteria: N/A	46 (11.3%) received a pacemaker	warranted but SCD was still observed in
	Study type: Cohort study,		and 21 (5.2%) an ICD	ICD patients raising uncertainty benefit.
	multicenter		Devices were primarily implanted	 DM1 patients are at high risk of
			for asymptomatic conduction	respiratory failure. Therefore,
	Size: 406 patients		abnormalities or LV systolic	pacemaker or ICDs in asymptomatic
			dysfunction	patients moderate conduction disease
				and also severe skeletal muscle
			7 (15.2%) pacemakers were	involvement may not improve
			implanted for third-degree AV	outcomes.
			block and 6 (28.6%) ICDs were	
			implanted for VAs	
			5 (10.9%) pacemaker patients	
			underwent upgrade to an ICD (3	
			for LV systolic dysfunction, 1 for	
			vAs, and 1 for progressive	
			tonduction disease).	
			17 (27.4%) of the 62 patients	
			dependent at last follow-up	
			3 (14.3%) ICD nations had	
			annronriate theranies	
			24 (52 2%) pacemaker patients	
			died including 13 of respiratory	
			failure and 7 of sudden death	
			7 (33.3%) ICD patients died	
			including 2 of respiratory failure	
			and 3 of sudden death (1 death	
			was documented due to	
			inappropriate therapies)	

• Nazarian et al.	Aim: To characterize the	Inclusion criteria:	1° endpoint: Time dependent PR	• Patients with DM1 can develop rapid
2011 (326)	trends and predictors of time-	Patients with DM1	or QRS prolongation during	changes in cardiac conduction intervals.
• <u>20946286</u>	dependent ECG changes in	baseline ECG and then	follow-up	 AF or flutter, older age, and larger
	patients with DM1	routine follow-up		CTG expansions predict greater time-
			Results:	dependent PR and QRS interval
	Study type: Cohort study,	Exclusion criteria:	 Age, h/o AF or flutter, and 	prolongation and warrant particular
	single center	 History of second or 	number of cytosine-thymine-	attention in the arrhythmic evaluation
		third degree AV block,	guanine (CTG) repeats were	of this high-risk patient subset.
	Size: 70 patients	VAs, resuscitated SCD,	predictors of time-dependent PR	
		or persistent supraVA	and QRS prolongation	
		Mean follow-up 956	 Lower LVEF associated greater 	
		d	QRS progression	
		 Clinical predictors of 		
		conduction disease		
		progression were		
		assessed using		
		multivariate analysis		
 Bhakta et al. 	Aim: To assess the prevalence	Inclusion criteria:	<u>1° endpoint</u> : N/A	 There is a notable incidence of LV
2010 (327)	of conduction disease and	Patients with DM1 with		systolic dysfunction and HF exists in
• <u>21146669</u>	LVEF in population of patients	confirmed abnormal	Results:	patients with DM1.
	with DM1	CTG repeat sequence	Cardiac imaging was performed	 The presence of LVSD/HF in DM1 is
		(one or both alleles ≥	on 180 (44.3%)	significantly associated with all-cause
	Study type: cohort study,	38 repeats)		and cardiac death.
	multicenter		 Prevalence of LV systolic 	
		Exclusion criteria:	dysfunction and HF in 41 (10.1%)	
	Size: 406 patients	Patients <18 y or	of 406 (risk factors were	
		unconfirmed DM1	increasing age, male sex, ECG	
		diagnosis as above	conduction abnormalities,	
			presence of atrial and VA, and	
			implanted devices)	
			 Presence of decreased LVEF 	
			was associated with all-cause	
			death (RR: 3.9; 95% Cl: 2.3–6.4;	
			p<0.001) and cardiac death (RR:	
			5.7; 95% CI: 2.6–12.4; p<0.001).	

• Groh et al. 2008 (328) • <u>18565861</u>	Aim: To identify whether the ECG is useful for prediction of SCD risk in patients with DM1 <u>Study type:</u> Cohort study, multicenter <u>Size:</u> 406 patients	Inclusion criteria: Genetically confirmed DM1 (only patients with abnormal CTG repeat sequence ≥38 repeats) Exclusion criteria: N/A	 <u>1° endpoint</u>: N/A <u>Results:</u> Defined: Severe abnormality on ECG includes rhythm other than sinus, PR interval ≥ 240 ms, QRS ≥ 120 ms, or 2nd or 3rd degree AV block 96/406 had severe abnormality on ECG – 9 received ICD and 23 	 Patients with DM1 are at high risk for sudden death (up to 1/3 of deaths are sudden) Severe abnormality on ECG (RR: 3.3; 95% CI: 1.25–8.78) and diagnosis of atrial tachyarrhythmia (RR: 5.18; 95% CI: 2.28–11.77) predictive of sudden death in patients with DM1 Severe abnormality on ECG PPV 12.1% and NPV 97.1% for prediction of
			 pacemakers Follow-up 5.7 y during which 81/406 (20%) died (27 SCD, 32 respiratory failure, 5 non-sudden cardiac deaths, 17 deaths from other causes) Of the 27 SCD, 17 had post- collapse rhythm documented of which only 9 was VT/VF Severe abnormality on ECG (RR: 3.3; Cl: 1.25–8.78) and diagnosis of atrial tachyarrhythmia (RR: 5.18; Cl: 2.28–11.77) predictive of sudden death in patients with DM1 Rates of prophylactic pacing increased during the study period and we not associated with decreased rates of SCD 	SCD
• Laforêt P et al.	Aim: Evaluate the incidence of	Inclusion criteria:	<u>1° endpoint</u> : N/A	Patients with FSHMD may have arrdiag involvement
• <u>9818880</u>	facioscapulohumeral muscular dystrophy	clinical and molecular features of	<u>Results</u>: 5 patients had conduction defects or arrhythmia	 Significant clinical cardiac involvement is rather rare in this form
	<u>Study type:</u> Cohort, single center	facioscapulohumeral muscular dystrophy	(IVCD or AF/flutter induced by EPS), 1 case of AV block requiring	of muscular dystrophy, specific monitoring or treatment recommendations are not well defined.

		Exclusion criteria: N/A	pacemaker, 1 case of VT possibly	 Discussion of arrhythmia- related
	Size: 100 patients		related to co-existing ARVC	symptoms and yearly
				electrocardiograms has been
				recommended.
 Stevenson et 	Aim: Evaluate incidence of	Inclusion criteria:	1° endpoint: Evidence of cardiac	 Evidence supporting cardiac
al. 1990 (330)	cardiac involvement in	Patients with	involvement	involvement in this condition with
• <u>2299071</u>	fascioscapulohumeral	fascioscapulohumeral		minority of cases having abnormal
	muscular dystrophy	muscular dystrophy	Results:	sinus node function or AV conduction.
		(autosomal dominant	• 30/30 had 12-lead ECG, 22/30	
	Study type: cohort, single	inheritance,	had 24 hr Holter, 15 had	
	center	characteristic facial	echocardiogram, 10 patients had	
		involvement,	12 EP studies	
	Size: 30 patients	scapular/deltoid		
		muscle weakness >	• P wave abnormalities were	
		biceps/triceps,	common (60%)	
		myopathic changes on	• AF or Aflutter induced at EPS in	
		biopsy or EMG)	10/12	
			• Evidence of abnormal AV node	
		Exclusion criteria:	conduction or infranodal	
		Elbow contractures,	conduction present on EPS or	
		absence of scapular	ECG in 27% of patients	
		winging, and X-linked	• Sinus node function abnormal	
		heredity	in 3 patients	

Data Supplement 39. Nonrandomized Trials Related to Cardiac Channelopathies – (Section 7.9)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
• Costa J et al. HR	Study type:	Inclusion criteria: LQT1	1° endpoint: LQT1 gender and mutation	 Combined assessment of clinical
2012 (331)	multicenter	gentoype, age 0-40 y	specific risk stratification ACA/SCD	and mutation location can identify
• <u>22293141</u>				gender specific risk factors for life-
	<u>Size</u> : 1051	Exclusion criteria:	Results: Increased risk:	threatening events
			Age 0-13 y: males; >13, Males =females	
			Loop mutations: HR: 2.7 for females, not	
			males	

			Time-dependent syncope increased risk for males, HR: 4.73 QTc ≥500 ms: higher risk for women	
 Bai R, et al. CAE 2009 (332) <u>19808439</u> 	Study type: Sigle center retrospective Size: 1394	Inclusion criteria: consecutive probands referred with confirmed or suspected LQTS, BrS, or CPVT, or idiopathic VF/ACA Exclusion criteria: N/A	1° endpoint:Yield of genetic testing and costResults:Yield and cost in US \$ per diagnosis:LQTS:40%, \$13402Br S:8%, \$33,148CPVT:35%, \$9170Idiopathic VF:9%, \$71,430	 Yield in LQTS higher if confirmed dx present: 64% Yield in BrS increased if type 1 BrS ECG with AV block present Yield in CPVT increased in males, prior CA, or confirmed bidirectional VT present LQTS, CPVT reasonable cost if strong clinical suspicion BrS less cost effective Idionathic VE ineffective costly
 ● Gehi AK, et al. JCE 2006 (333) ● <u>16836701</u> 	Study type: Meta-analysis: retrieved 30 prospective studies on Brugada ECG <u>Size</u> : 1545	Inclusion: Publications 1/1990-3/2005 on prognosis of patients with a Brugada ECG: Prospective cohort studies, >10 subjects, primary data on syncope, SCD, ICD shocks; followup >6 mo and >90% followup Exclusions: non-English; presence of cardiac disease	1° endpoint:Identify risk predictors of adverse natural history in patients with Brugada ECGResults:Risk increased with prior hx syncope or ACA, spont type 1 Br ECG, and male genderNOT sig risk factors:Fam hx SCD SCN5A mutation, or inducibility by PES: (not a risk factor but heterogeneity of studies)	 BrS ACE risk increased with prior syncope or SCD, RR: 3.24 Males, RR: 3.47 Spont type 1 ECG RR: 4.65
 Kim JA et al. HR 2010 (334) 20850565 	Study type: multicenter retrospective Size: 634	Inclusion criteria: genotype + LQT2 Exclusion criteria: N/A	 <u>1° endpoint</u>: LQT2 genotype: trigger specific risk factors for SCD/ACA <u>Results:</u> arousal 44%, exercise 13%, non-exercie/non-arousal 43% Risk for arousal: female >13 y, pore-loop mutation 	 Pore-loop mutations assoc with arousal events; BB not significanty protective for this subset

			Non-pore loop assoc with exercise events.	
			HR·6 84	
			Beta-bl reduced risk for exercise events but	
			not arousal/non-exercise events	
Migdalovich D	Study type:	Inclusion criteria:	1° and point: 1072 genetype vs outcome	• Women w I OT2 much higher risk v
et al HR 2011	multicenter	LOT2 genotype	<u>1 enapoint</u> . LOTZ genotype vs outcome	men
(225)	rotrospostivo	LQ12 genotype	AcA/SCD by age 40 y	• Overall, nore lean mutations sig
• 21440677	retrospective	Exclusion criteria: N/A		increased risk ACA, SCD, greater risk
	Size: 1166		Results: women w LQT2 much higher risk:	for males vs females
			26% vs. men;	 Pore loop mutations LQT2 males,
			For women, no sig difference in mutation	HR:2.18 for ACA/SCD
			site	
			Risk similar at age <13 y;	
			Age >13 y, females HR: 2.23 ACA/SCD vs	
			males	
			Males: pore loop mutations >2-fold	
			increased risk	
			Increased risk: QTc ≥ 500 msec (males 2x,	
			females 4-fold increase)	
			Highest risk: 5.3/1000 patient-y: prior	
			syncope plus QTc \geq 500 ms, pore loop male,	
			or female >13 y old, HR: 17	
			BB: 61% reduced risk	
Ackerman MJ	Study type:	Expert consensus statement	General: Class I: 1) sound clinical suspicion	LQTS: Note difference between
2011 (182)	HRS/EHRA	on the state of genetic	when positive predictive value > 40%,	Class I if QTc >480 or 500 ms, and
• 21810866	consensus	testing for the	signal/noise ratio >10; 2) AND/OR genetic	Class IIb if QTc > 460/480 ms
	statement.	channelopathies and	test result provides either diagnostic or	
		cardiomyopathies	prognostic info, or influences therapeutic	
			choices.	
		Panel: geneticists,	Screening of family members: when genetic	
		arrhythmia specialists	testing leads to the adoption of	
		Agreement ≥ 84%	therapy/protective measures/ lifestyle	
			adaptations.	
			LOTS: Class I: 1) any at with strong eligibel	
			index of suspision for LOTS: 2) any	
			asymptometic at with OT prolongetics of	
1	1		asymptomatic pt with QT prolongation on	

serial ECGs: QTc >480 ms prepuberty; >500	
ms, adult; 3) Mutation specific genetic	
testing for family members and other	
appropriate relatives	
Class IIb: any asymptomatic pt with	
otherwise idiopathic QTc values >460 ms	
(puberty) or 480 ms on serial ECGs	
CPVT: Class I: 1) any pt w strong clinical	
index of suspicion of CPVT;	
2) Mutation specific genetic testing is	
recommended for family members and	
appropriate relatives	
Brugada: Class I: Mutation specific genetic	
testing is recommended for family members	
and appropriate relatives	
Class IIa: any pt w strong clinical index of	
suspicion of BrS, including with	
procainamide challenge	
Class III: not indicated in the setting of an	
isolated type 2 or 3 Brugada ECG pattern	
Short QTS: Class I: Mutation specific genetic	
testing is recommended for family members	
and appropriate relatives	
Class IIb: any pt with strong clinical index of	
suspicion	
AKVC: Class I: Mutation specific genetic	
testing is recommended for family members	
and appropriate relatives	
Class lia: can be useful for patients satisfying	
task force diagnostic criteria	
Class IIb: may be considered for patients	
with possible ACM/ARVC	

	Class III: not recommended for patients with	
	only a single minor criterion according to	
	the 2010 task force criteria	
	SCD/SIDS: Class I: 1) Collection of tissue	
	sample recommended (blood or	
	heart/liver/spleen tissue): 2) Mutation	
	spacific gapatic tasting is recommanded for	
	specific genetic testing is recommended for	
	family members and appropriate relatives	
	Class IIb: testing may be considered if	
	circumstantial evidence suggests LQTS or	
	CPVT specifically	
	ACA/resuscitated: Class I: Genetic testing	
	should be guided by the results of medical	
	evaluation and is used for the 1° purpose of	
	screening at-risk family members for sub-	
	clinical disease	
	Class III: Routing genetic testing in the	
	absonce of a clinical index of suspicion for a	
	absence of a chinical index of suspicion for a	
	specific cardiomyopathy or channelopathy,	
	is not indicated for the survivor of	
	unexplained OHCA	
	HCM: Class I: 1) any pt in whom the clinical	
	dx of HCM is established. 2) Mutation	
	specific genetic testing is recommended for	
	family members and appropriate relatives	
	DCM: Class I: 1) DCM and significant cardiac	
	conduction disease and/or family Hx of	
	nremature unexpected sudden death 2)	
	Mutation specific genetic testing is	
	wutation specific genetic testing is	
	recommended for family members and	
	appropriate relatives	

			LVNC: Class I: Mutation specific genetic testing is recommended for family members and appropriate relatives Class IIa: can be useful if clinical dx of LVNC is established PCCD: Class I: Mutation specific genetic testing is recommended for family members and appropriate relatives Class IIb: may be considered as part of diagnostic evaluation for patients with either isolated CCD or CCD with concomitant congenital heart disease, especially w post family Hx of CCD.	
 Nannenberg EA Circ CV Genetics 2012 (336) 22373669 	Study type: Retrospective single center, Netherlands Size: 1170	Inclusion criteria: Genotype positive 6 inherited arrhythmia syndromes analyzed with Family Tree Mortality Ratio (FTMR): LQT1,2,3; Brugada Syndrome, SCN5A overlap syndrome (LQT3, BrS, conduction disease); RYR2 CPVT. Exclusion criteria: N/A	 <u>1° endpoint</u>: Using FTMR method to achieve Standardized Mortality Ratio(SMR) (observed to expected mortality by genotype and age in inherited arrhythmias <u>Results</u>: LQTS1: in first 10 y of life SMR 2.9 (1.5–5.1) LQTS2: age 30-39 y, SMR 4.0 (1.1–10) LQTS3: age 15-19 y, SMR 5.8(1.2–16.9) SCN5A overlap syndrome: 20-39 y, SMR 3.8 (2.5–5.7) CPVT: age 20-39 y, SMR 3.0 (1.3–6.0) BrS: 40-59 y, SMR 1.79 (1.2–2.4), especially males 	 Identify age ranges of highest risk for specified inherited arrhythmia syndromes Asymptomatic patients over age ranges may not require rx
 Kimbrough J Circ 2001 (337) <u>11479253</u> 	Study type: Retrospective multi-center Size: 791	Inclusion criteria: 791 first degree relatives of 211 LQTS probands Exclusion criteria: N/A	<u>1° endpoint</u> : Risk of ACE for family members of proband with LQTS <u>Results</u> : Severity of proband symptoms did not significantly influence family member's symptoms, although more likely to receive BB.	 Affected female parents have increased risk of cardiac event before age 40 y. Severity of proband symptoms did not significantly influence family members' symptoms.

			Female gender and duration of QTc important risk factors	
Kaufman ES	Study type:	Inclusion criteria: Patients	<u>1° endpoint</u> : risk of death in LQTS when a	• SCD of sibling did not predict risk
Heart Rhythm	Retrospective	with QTc ≥450 msec in	sibling has died: ACA, SCD, or syncope	of death or ACA • Did correlate with increased risk of
• 18534367	International	with SCD	Results: 270 patients with sibling SCD	syncope ~6%
	LQTS Registry		Sibling death did not correlate with risk	 Hx of syncope, QTc≥ 530 msec,
		Exclusion criteria: N/A	ACA/SCD	female gender correlated with
	<u>Size</u> : 1915		Was associated with increased risk of	increased risk ACA/SCD
			syncope	
			Associations with increased risk death: QIC	
Wedekind H Eur	Study type:	Inclusion criteria:	1° endpoint: Recurrent syncope. ACA or	• Risk predictors: QTc > 500 msec,
J Ped 2009 (339)	Retrospective	Genotype positive	SCD after dx LQTS. Mean followup 5.9±4.7 y	prior syncope or ACA
• <u>19101729</u>	single center	probands , age ≤16 y LQTS:		 LQT2 highest rate SCD vs other
		89% LQT1, 2,3	Results: 92% treated: Followup:	
	<u>Size</u> : 83	Mean QTc 510±74 ms	Propranolol 79%, atenolol 20%, metoprolol	
			12%, bisoproiol 8%, pindolol 2%; mexiletine	
		78% with BB rx	1CD 8%, pacer 5%,	
			31% recurrent symptoms: 14% ACA or SCD;	
		Exclusion criteria: N/A	syncope 86%	
			Significant predictors: QTc >500 ms (HR: 2.9;	
			95% CI: 1.2–7.3 p=0.02); prior syncope HR:	
			4.04; 95% CI: 1.1–15, ACA HR:11.7; 95% CI:	
Goldenberg I	Study type:	Inclusion criteria:	1° endpoint: LQTS with normal QTc: risk for	• Genotype positive patients with
JACC 2011 (340)	Multicenter	Genotyped patients with	ACE: ACA or SCD	normal QTc =25% of genotype
• <u>21185501</u>	international	LQTS: 3386 patients		positive patients.
	registry,	Normal QTc: ≤440 ms	Results: Normal QTc =14% of total LQTS	• 4% ACA/SCD with normal QTc vs
	retrospective	Prolonged Q1c >440 ms	patients in study.	15% If prolonged Q1c
	Size: 469	genotype	those with prolonged OTc (15%) but higher	
	<u></u>	Schothe	than genotype neg family members.	

		Exclusion criteria: N/A	Increased risk: mutation characteristics; LQT1 vs LQTS 2, HR: 9.88; p=0.03; Duration of QTc and gender important only in those with prolonged QTc.	
 Tester DJ JACC 2006 (341) <u>16487842</u> 	Study type: retrospective single center	Inclusion criteria: consecutive patients undergoing Genetic testing LQTS 1997-2004	1° endpoint:yield of LQTS genetic testingvs. clinical genotypeResults:50% positive genotype.Yield	• Genotype results more likely to be positive with QTc >480ms or with higher Schwartz score
	<u>Size</u> : 541	Exclusion criteria: N/A	correlated with duration of QTc and phenotype: 0%: QTc<400 62%: QTc >480 ms (p<0.0001) Schwartz score ≥4: 72% positive	
 Priori S Circ 2002 (342) <u>11901046</u> 	Study type: Multicenter retrospective Size: 200	Inclusion criteria: Brugada S with ECG changes, spont (51%) or induced 130 probands Exclusion criteria: N/A	1° endpoint:Brugada risk stratification forSCDPES performed in 86Results:SCN5A identified in 22% probands,46% of family membersRisk analysis:gender; ECG, family hx,	 Multivariable risk predictor: spontaneous ST elevation V1-V3 and Hx of syncope Syncope without spontaneous ST elevation not a risk factor PES not predictive Mutation carriers without
			mutation status, symptoms Syncope without ST elevation on baseline ECG: not a risk Syncope AND ST elevation: increased risk SCD, HR: 6.4; p <0.002	phenotype: low risk
FINGER Probst V Circ	<u>Study type</u> : Multi-center	Inclusion criteria: Brugada	<u>1° endpoint</u> : ACE outcomes in BrS	• Low event rate in asymptomatic
2010 (343)	registry. 11	ECG spont (45%) or with	Results: PES performed in 62%: 41%	 Inducibility w PES or family Hx SCD
• <u>20100972</u>	centers in Europe	drug challenge. Median 45 y (35-55).	positive, higher in symptomatic patients 46% vs 37%, p=0.02.	or SCN5A mutation not predictors of ACE
	<u>Size</u> : 1029	Hx ACA 6%, syncope 30%, asymptomatic 64% (654 patients). SCN5A positive 22%.	PES performed in 369 asymptomatic patients: 37% positive (137/369); 85% (117/137) inducible asyx patients had ICD implanted ICD's implanted: 433/1029 patients (42%):	 Predictors of ACE: symptoms, ACA, syncope, presence of ICD, spont type 1 ECG. Among asymptomatic patients: 37% positive PES; of these 85% had
		Exclusion criteria: N/A	of 433: 54 ACA (12.5%), 208 syncope (48%),	ICD implanted.

			171 asymptomatic (39%). 118/171	• ICD implantation in asymptomatic
			asymptomatic patients with ICD (69%)	patients was significant in
			implanted due to positive EPS.	multivariable analysis as predictor of
				ACE: HR:10.1; 95% CI: 1.7–58.7,
			ACE 51: approp ICD shocks 44, SCD 7.	p=0.01).
			Mean ACE rate 1.6%/y: 7.7% in patients w	• No independent predictive value of
			Hx ACA;1.9% w prior syncope; 0.5% in	PES (p=0.09), males (p=0.42, spont
			asymp patients	type 1 ECG (p=0.38) age (p=0.97)
			Predictors: symptoms (p<0.001): ACA (HR:	
			11; 95% CI: 4.8–24.3, p<0.001), syncope (HR:	
			3.4; 95% Cl 1.6–7.4, p=0.002),	
			ICD implantation (HR: 3.9; 95% CI: 1.4–10.6,	
			p=0.007).	
			spont type 1 ECG (HR: 1.8;95% CI: 1.03–	
			3.33, p=0.04);	
			NOT predictive: gender, family Hx SCD, +PES	
			(p=0.48), presence SCN5A mutation	
Moss AJ Circ	Study type:	Inclusion criteria: LQTS	1° endpoint: Recurrent CE on b-bl in LQTS	• For LQT 1 and 2, BB reduce risk
2000(344)	Retrospective	registry, Rochester, patients		Highly symptomatic patients
• <u>10673253</u>	observational	treatment w BB age <41 y,	Results: B-BI significantly reduce risk LQT 1	prior to treatment at high risk
		80% syncope or ACA prior	and 2;	for recurrent events.
	<u>Size</u> : 869	to rx. Atenolol, metoprolol,	LQT 3: no effect	LQT 3 patients: BB did not
		nadolol, propranolol.	For symptomatic patients, HR 5.8 for	reduce risk
		139/869 genotyped: LQT	recurrent CE: 32% ACE within 5 y.	
		1(69), LQT 2 (42), LQT 3 (28)	Prior syncope: HR: 3.1.	
		Exclusion criteria: age >41 y	Prior ACA, HR: 12.9 for ACA or sudden	
		start rx	death: 14% recurrent CA.	
• Zareba JCE 2003	Study type:	Inclusion criteria: 125 LQTS	1° endpoint: Mortality of LQTS patients	• Prior ACA or recurrent syncope on
(345)	Single center	patients with ICD's	treated with/without ICD:	b-bl treatment assoc with significant
• <u>12741701</u>	retrospective	compared with LQTS with	73 patients with syncope on treatment or	mortality without ICD during 8 y
		similar risk and no ICD. ICD	prior ACA and ICD compared with 161 LQTS	followup
	<u>Size</u> :125	Indications: 54 ACA, 19	patients without ICD (89 ACA, 72 rec	
		recurrent syncope on b-bl;	syncope on b-bl)	
		52 "other" (syncope; +		
		family Hx SCD)	Results: Deaths: ICD 1.3% (1 pt), followup	
			av 3 y, vs. 16% (26 patients) in non-ICD	
		Exclusion criteria: N/A	patients during 8 y mean followup.	

• Monnig G Heart	Study type:	Inclusion criteria:	1° endpoint: LQTS Appropriate ICD shocks	• Predictors of approp ICD shocks:
Rhythm 2005	single center	symptomatic LQTS patients	or death during followup.	QTc >500 msec, prior ACA
(346)	retrospective	undergoing ICD implant.		 Approp shocks reduced by anti-
• <u>15840474</u>		Mean QTc 540±64; 85%	Results: Mean followup 65±34 mo.	brady pacing, b-bl rx, rate-smoothing
	<u>Size</u> : 27	famle, 63% ACA, 33%	Death 1 pt, non-cardiac.	
		recurrent syncope on b-bl,	Approp shocks: 37%; 30% multiple shocks.	
		4% "severe phenotype	Logistic regression: QTc >500 ms, prior ACA	
		81 genotype pos: LQT 1 28,	predictive.	
		LQT2 39; LQT3 1, LQT5 13.	Shocks reduced from av 7.1 to 0.75 shocks	
			annually by adding b-bl, increased rate anti-	
		Exclusion criteria: N/A	brady pacing, rate smoothing algorithm.	
 Hayashi M Circ 	Study type:	Inclusion criteria: CPVT 50	1° endpoint: ACE in CPVT patients:	 Higher risk for lack of BB, Hx ACA
2009 (347)	single center	probands, 51 family	syncope, ACA, approp ICD shocks, SCD	 Prior syncope not associated with
• <u>19398665</u>	retrospective	members, age at dx 15±10		increased risk
		у.	<u>Results:</u> followup 7.9 y	
	<u>Size</u> : 101	Symptoms 60% (61	8 y total event rate 32% total, 27% with b-bl,	
		patients), all probands, 22%	58% without b-bl. 8 y event ACA/SCD 13% (8	
		family members	patients)	
		93% symptomatic <21 y old	Increased risk: Absence BB HR: 5.54; 95% CI:	
		77% detection of mutations:	1.17–16.15, p=0.003), Hx ACA HR: 13.01;	
		RYR2 CASQ2	95% CI: 2.48–68.21, p=0.002); younger age	
			at dx (HR: 0.54/decade; 95% CI: 0.33–0.89,	
		Exclusion criteria: N/A	p=0.02)	
			32% with events on b-blockers did not take	
			meds on day of event.	
			Nadolol: ACE 19%	
Delise P EHJ	Study type:	Inclusion criteria: Type 1	<u>1° endpoint</u> : predictors in Brugada S of ACE	 Combining 2 or more risk factors
2011(348)	Multi- center	Brugada ECG: spontaneous	(approp ICD shocks, sudden death)	was useful risk stratification:
• <u>20978016</u>	prospective	54%, drug-induced 46%.		 Spontaneous type 1 ECG
			Results: Median followup 40 mos (IQR 20-	 Family Hx sudden death,
	<u>Size</u> : 320	Median age 43 y.	67)	syncope, positive PES
		Males 81%	5.3 % MACE (17 patients): VF on ICD (14),	
			sudden death3	 MACE occurred only in patients
		Asymptomatic 66%,	MACE occurred in 10.4% of symptomatic	with 2 or more risk factors. MACE
		syncope 33%	and 2.8% of asymptomatic patients	event rates:
			(p=0.004)	 3.0%/pt/yr in symptomatic,
		NU prior ACA	ICD's implanted in 34% (110 patients)	 0.8%/pt/yr in asymptomatic

• Hiraoka M JE 2013 (349) • <u>23702150</u>	Study type: Prospective single center Size: 69	Exclusion criteria: N/A Inclusion criteria: Brugada S patients ages 18–35 y Mean age 30±6 y No genetic testing Exclusion criteria: N/A	 PES performed in 245 (76%): positive in 50% of symptomatic and 32% of asymptomatic patients. MACE in 14% of positive PES, 0% of negative, 5.3% of no EPS: positive predictive values 14%, negative pred value 100% VF occurred in 15.5% of patients with inducible VF using doubles, 8.6% of triples Combination of risk factors most significant: spont ECG, family Hx sudden death, syncope, positive EPS: no events occurred in patients without any of above or with only one risk factor. Spontaneous type 1 ECG: if additional risk factors, 30% MACE (p<0.001) <u>1° endpoint</u>: Brugada S ages 18-35 y at dx, outcomes of VF or SCD Followup 43±27 mos. <u>Results:</u> Based on presenting symptoms: VF 42%, syncope 12%, asymptomatic 2.5% Not predictive: gender, family Hx SCD, abnl SAECG, spontaneous vs drug-induced ECG, inducible VT/VF All ages 460 patients symptoms at presentation vs outcomes: 	 PES can be useful in patients with spontaneous type 1 ECG and no other risk factors; may be helpful to identify low risk patients Brugada outcomes in young adults vs presenting symptoms: Events: VF 11.2% /y, syncope 3.3% y, asymptomatic 0.7%/y
			All ages 460 patients symptoms at presentation vs outcomes: VF 8.4%/y, Syncope 1.7%/y, asymptomatic 0.3%/y	
 PRELUDE Priori SG et al. JACC 2012 22192666 	Study type: Prospective registry Size: 308	Inclusion criteria: Age >18 y, BrS type 1 ECG spont (56%, 171/308) or drug- induced, without prior ACA;	1° endpoint:Predictive accuracy of PES for sustained VT/VF or approp ICD shock in Brugada.Results:PES performed at enrollment; followup every 6 mo. Mean age 45±12 y.	 PES did not predict high risk Predictors: spontaneous type BrS ECG and symptoms; f-QRS, VERP 200 msec VERP <200 msec was predictive: this data would only be obtained at EPS.

		21% with prior syncope (65	Cardiac arrest 4.5% (14/308), 13/14	NOTE that + PES used in decision
		patients: 16/65 {25%} > 1	resuscitated with ICD, EMS 1.	to implant ICD's: 13/137 patients
		syncope).	PES positive in 41% (126/308); of these:	(9.5%) with ICD's were resuscitated
			single stimulation 5.5%, double 44.5%,	with ICD.
		SCN5A positive 20% of	triples 50%.	
		tested patients.	ICD's implanted in 137 patients (78% of	Note 1/14 patients with VF had only
			inducible patients {98/126} and 21% of non-	spont type 1 ECG and no prior
		(f-QRS =2 or more spikes	inducible patients {39/182}.	syncope, neg family hx, neg EPS,
		within QRS leads V1-V3:	Annual event rate 1.5%:	VERP >200 msec but + SCN5A
		present 8.1%)		mutation and received ICD after EPS.
			Multivariable predictors: spont type 1 ECG	Only 1 pt without ICD had ACA: pt
		Exclusion criteria: N/A	and Hx of syncope (HR: 4.20; 95% CI: 1.38–	had spont type 1 ECG, VRP <200
			12.79, p=0.012), Ventricular ERP <200 msec	msec, and fQRS.
			(HR: 3.91; 95% CI: 1.03–12.79, p=0.045),	
			QRS fractionation (HR: 4.94, 95% CI: 1.54–	
			15.8, p=0.007).	
			Positive PES not predictive (HR: 1.03; 95%	
			CI: 0.34–3.16, p=0.96)	
• Wilde A et al.	Study type:	Inclusion criteria: LQT3	1° endpoint: LQT3 ACE outcomes: syncope,	 High risk LQT3:
Circ 2016	multicenter	SCN5A mutation carriers	ACA, SCD	Females;
• <u>27566755</u>	observational		Median followup 7 y	syncope, QTc 450-490
		In 8%, first cardiac		
	<u>Size</u> : 391	symptom: ACA, SCD	Rx: B-bl 29%; LCSD 2%; pacer 5%;	 Hx of syncope—doubled risk
			ICD 18%.	
		Exclusion criteria:	Time dependent increase in ACE: by age	 BB therapy significantly reduced
		symptoms during first year	40yrs, ~40% with ACE. ~ 50% of ACE =ACA or	risk for ACE, especially in females
		of life-12 patients;	SCD	
		Lost to followup after age 1:		Mutation type/location did not have
		3 patients;	B-blocker rx: 83% risk reduction in females	sig effect on outcome
		Patients with 2 mutations	(p=0.015); 49% risk reduction in males (not	
			sig; too few events in males to assess)	
			BB not pro-arrhythmic	
			3% died on BB during followup	
			Multivariate risk factors: QTc, syncope:	

 Probst V et al. Circ CV Gen 2009 20031634 	Study type: multicenter retrospective Size: 115	Inclusion criteria: BrS families with at least 5 family members genotype carries Exclusion criteria: N/A	Each 10 msec increase in QTc up to 500 msec associated with 19% increase in ACE (no further risk with QTc >500 msec) <u>1° endpoint</u> : BrS assoc with SCN5A <u>Results:</u> BrS ECG present in 47% of mutation carriers Mutation carriers had longer PR and QRS intervals SCN5A mutations are not directly causal of Br pattern ECG	• Poor genotype phenotype correlation for BrS SCN5A
 Crotti L et al. ACC 2012 <u>22840528</u> 	Study type: Multicenter retrospective Size: 129	Inclusion criteria: BrS	<u>1° endpoint</u> : Genotype results Brugada S <u>Results:</u> 20% putative pathogenic mutations, (95% in SCN5A; 5% other genes) Yield similar with type 1 Brugada ECG only (23%) and those with symptoms (17%) Prolonged PQ interval > 200 msec: 38% positive vs 11% if PQ < 200 ms, (OR 8, 1.5- 16)	• Brugada: no genotype/phenotype correlation
 Risgaard B et al. Clin Genet 2013 23414114 	Study type: Exome Sequencing Project (ESP) analysis Size: 6258	Inclusion criteria: Genetic variants of Brugada Syndrome searched for in exome data Exclusion criteria: N/A	1° endpoint:Identify prevalence of mutations associated with BrS in general exome BrS prevalence ~ 1:2000 to 1:100,000Results:10% of variants identified in ESP, a frequency of 1:23	 ~10% of variants associated with BrS are present in Exome, raising doubt about monogenic role in pathogenicity of BrS Recommend using Exome data to establish gene frequency in population

Data Supplement 40. Nonrandomized Trials Related to Congenital LQTS – (Section 7.9.1.1.)

Study Acronym;	Study		1° Endpoint and Results	Summary/Conclusion
Author;	Type/Design;	Patient Population	(P values; OR or RR;	Summary/Conclusion
Year Published	Study Size		& 95% CI)	comment(s)

196

Garson AJ Circ	Study type:	Inclusion criteria: Age	1° endpoint: ACA or SCD for LQTS children	• QTc at presentation >0.60 highest
1993 (350)	Retrospective	<21y, QTc >0.44,	during Mean followup 5 y.	risk group
• <u>8099317</u>	multicenter	unexplained syncope,		 no difference between
		seizures, ACA triggered by	Results: Rx 68% BB, 8% other meds, LCSD	propranolol and atenolol
	<u>Size:</u> 287	emotion or exercise, or	2%, ICD 1%	 consider prophylactic treatment in
		family Hx LQTS.	Med treatment effective for symptoms in	asymptomatic patients with QTc
		Mean age presentation	76%, and for VEA 60%	>0.44
		8.8 y	Symptoms in first mo of life high risk group:	
		61% symptoms	16% died.	
		9% ACA was first	Asymptomatic patients with normal QTc and	
		symptom	positive family Hx may be low risk group (no	
			genotyping results)	
		Exclusion criteria: N/A	Predictors highest risk: symptoms at	
			presentation, propranolol failure	
 Hobbs JB et al. 	Study type:	Inclusion criteria:	<u>1° endpoint</u> : ACA or SCD in adolescents with	 Risk factors: syncope, QTc ≥ 530
JAMA 2006 (351)	Retrospective	Adolescents in LQTS	LQTS	msec, males age 10–12 y
• <u>16968849</u>	multicenter	Registry alive at age 10 y,		
		followed until age 20 y	Results: 81 patients w ACA, 45 SCD	
	<u>Size</u> : 2772		Significant risk factors: recent syncope in	
		Exclusion criteria: N/A	prior 2 y, HR: 11.7; QTc ≥ 530 msec HR: 2.3;	
			males age 10-12 y, HR: 4; males = females	
			ages 13–20 y	
			Beta blocker therapy \downarrow by 64% in patients	
			with syncope in last 2 y	
 Goldenberg I 	Study type:	Inclusion criteria:	1° endpoint: LQTS with normal QTc: risk for	 Genotype positive patients with
JACC 2011 (340)	Multicenter	Genotyped patients with	ACE: ACA or SCD	normal QTc =25% of genotype
• <u>21185501</u>	international	LQTS: 3386 patients		positive patients.
	registry,	Normal QTc: ≤440 ms	Results: Normal QTc =14% of total LQTS	 4% ACA/SCD with normal QTc vs
	retrospective	Prolonged QTc >440 ms	patients in study.	15% if prolonged QTc
		Unaffected: negative	Normal QTc risk ACA/SCD =4%, lower than	
	<u>Size</u> : 469	genotype	those with prolonged QTc (15%) but higher	
			than genotype neg family members.	
		Exclusion criteria: N/A	Increased risk: mutation characteristics;	
			LQT1 vs LQTS 2, HR: 9.88; p=0.03;	
			Duration of QTc and gender important only	
			in those with prolonged QTc.	

 Priori SG NEJM 2003 (352) <u>12736279</u> 	Study type: Retrospective Size: 647	Inclusion criteria: Genotyped patients: LQT1 60%, LQT2 32%, LQT3 8%, mean followup 28 y Exclusion criteria: N/A	1° endpoint:LQTS risk of ACE age <40 y and	 Genetic locus and QTc independent risk factors QTc risk factor for LQT1 and LQT2, not LQT3
 Wedekind H Eur J Ped 2009 (339) <u>19101729</u> 	Study type: Retrospective single center Size: 83	Inclusion criteria: Genotype positive probands, age ≤16 y LQTS: 89% LQT1, 2,3 Mean QTc 510±74 ms 61% symptoms: syncope 49%, ACA 33%, SCD 18% 78% with BB rx Exclusion criteria: N/A	 <u>1° endpoint</u>: Recurrent syncope, ACA or SCD after dx LQTS. Mean followup 5.9±4.7 y <u>Results:</u> 92% treated: Followup: Propranolol 79%, atenolol 20%, metoprolol 12%, bisoprolol 8%, pindolol 2%; mexiletine 4% ICD 8%, pacer 5%. 31% recurrent symptoms: 14% ACA or SCD; syncope 86% Significant predictors: QTc >500 ms, p=0.02, HR: 2.9; 95% CI: 1.2–7.3; prior syncope HR: 4.04; 95% CI: 1.1–15, ACA HR: 11.7; 95% CI: 3.1–43.4, p<0.001 	 Risk predictors: QTc >500 msec, prior syncope or ACA LQT2 highest rate SCD vs other
 Jons C et al. JACC 2010 (353) 20170817 	Study type: Retrospective International LQTS Registry Size: 1059	Inclusion criteria: LQTS patients, QTc ≥ 450 msec with syncope as first symptoms 20% with ICD 52 patients LCSD Exclusion criteria: N/A	1° endpoint: Risk of ACE in LQTS patients with syncope Severe = ACA, approp ICD shock, SCD <u>Results:</u> Lowest risk in patients with single syncope before rx; intermediate risk: multiple syncope before rx, HR: 1.8 Higher risk: syncope after BB rx: HR:3.6 p<0.001. Does not state how many patients died/aca.	 Recurrent syncope during BB treatment assoc with increased risk of recurrent events BB failure highest in children and females
 Barsheshet Circ 2012 (354) <u>22456477</u> 	Study type: Retrospective observational	Inclusion criteria: LQT1 genotyped patients, mutations KCNQ1, ages birth-40	1° endpoint: Risk for ACA/SCD vs. mutation location in LQT1 Results: 105 events: 27 ACA, 78 SCD	• LQT1 patients with C-loop mutations are at high risk for ACA/SCD, and derive pronounced benefit from b-blocker rx

	<u>Size</u> : 860	Exclusion criteria: N/A	C-loop mutations highest risk (HR: 2.75; 95%	
	patients		CI: 1.29–5.86, p=0.009)	
			B-bl treatment sig greater risk reduction in C	
			loop mutations (HR: 0.12; 95% CI: 0.02–0.73,	
			p=0.02) vs all other mutations (HR: 0.82; 95%	
			CI: 0.31–2.13, p=0.68)	
			C-loop mutations showed sig reduction in	
			channel activation in response to b-	
			adrenergic stimulation	
 Vincent GM Circ 	Study type:	Inclusion criteria:	<u>1° endpoint</u> : ACE (syncope, CA, SCD) in LQT 1	 Risk for CA in compliant patients
2009 (355)	Retrospective	Genotype + LQT1 patients	treatment with BB	<<< non-compliant (OR:0.03; 95%
• <u>19118258</u>	observational	treatment with BB for		CI: 0.003–0.22, p=0.001)
		minimum 2 y (unless	Results: 75% asymptomatic.	 Beta-bl meds approp treatment
	<u>Size</u> : 216	CA/SCD), median	ACE 25%.	for asxy patients, and symptomatic
		followup 10 y. Median	5.5% CA/SCD (12 patients) after rx: 11/12	patients who have not had CA
		age 26 y (4–76 y);	non-compliant or on QT prolonging med.	before b-bl rx.
		73% symptomatic; prior	None of 26 patients with prior CA had SCD	 Risk of CA/SCD on beta bl not
		CA in 12% (26 patients).	on beta-bl, one had CA.	assoc with baseline QTc nor prior
		Mean QTc 495±48 ms	Risk for CE reduced to 0.06 CE/y (0.05–0.07)	syx nor gender
				 LQT1 patients with prior CA had
		Exclusion criteria: N/A		very low risk CA/SCD on BB
Moss AJ Circ 2000	Study type:	Inclusion criteria: LQTS	1° endpoint: Recurrent CE on b-bl in LQTS	 For LQT 1 and 2, BB reduce risk
(344)	Retrospective	registry, Rochester,		 Highly symptomatic patients prior
• <u>10673253</u>	observational	patients treatment w BB	<u>Results</u>: B-BI significantly reduce risk LQT 1	to treatment at high risk for
		age <41 y, 80% syncope	and 2;	recurrent events.
	<u>Size</u> : 869	or ACA prior to rx.	LQT 3: no effect	 LQT 3 patients: BB did not reduce
		Atenolol, metoprolol,	For symptomatic patients, HR 5.8 for	risk
		nadolol, propranolol.	recurrent CE: 32% ACE within 5 y.	
		139/869 genotyped: LQT	Prior syncope: HR: 3.1.	
		1(69), LQT 2 (42), LQT 3	Prior ACA, HR: 12.9 for ACA or sudden death:	
		(28)	14% recurrent CA.	
		Exclusion criteria: age		
		>41 y start rx		

 Abu-Zeitone JACC 2014 (356) 25257637 	Study type: Retrospective multicenter Size: 1530	Inclusion criteria: Patients in LQTS registry, Rochester, NY treatment with BB: atenolol (441), metoprolol (151), propranolol (679), nadolol (259), age <40 y, no AICD <u>Exclusion criteria</u> : simultaneous use of 2 beta Blockers	<u>1° endpoint</u> : First cardiac event: syncope, CA, sudden deathafter starting b-bl <u>Results:</u> LQT 1: risk reduction 57% any b-bl, no differential efficacy. LQT2: nadolol only med with sig risk reduction (HR: 0.4)	 All BB reduce risk of events, without difference In LQT 2 nadolol appeared superior (HR: 0.40) For patients with recurrent events on beta-bl, propranolol offered least protection (HR: 0.52)
• Goldenberg I JCE 2010 (357) • <u>20233272</u>	Study type: Retrospective observational Multi-center Size: 1393	Inclusion criteria: Genotyped LQT1 (971) and LQT2 (422) patients in International LQTS registry. Ages Birth-40 y. ICD 129 patients (LQT1 50, 9%; LQT2 79, 19%) LCSD 31 patients, LQT1 3%, LQT2 4% Exclusion criteria: N/A	 <u>1° endpoint</u>: Age related, gender and genotype specific risk factors for ACE (syncope, approp shock, ACA, or SCD) <u>Results</u>: ACE LQT1 39%, LQT2 46% Risk for ACE: Ages 0–14 y, LQT1 genotype vs LQT2 (HR: 1.49; 95% CI: 1.14–1.93, p<0.003); males vs females (HR: 1.31, p=0.04) Ages 15–40 y, LQT2 vs LQT1, (HR 1.67; 95% CI: 1.31–2.13, p<0.001); females vs. males HR: 2.58; 95% CI: 1.90–3.49, p<0.001) QTC≥500 msec at increased risk in both age groups: 0–14 y, HR: 2.3 (p<0.0001); age 15–40 y, HR: 2.22 (p<0.001) Treatment in LQT1: atenolol decreased risk HR: 0.23; 95% CI: 0.08–0.67, p=0.008) nadolol was not associated with sig risk reduction (HR: 0.4; 95% CI: 0.14–1.16, p=0.09) Treatment in LQT2: nadolol reduced risk (HR: 0.13; 95% CI: 0.03–0.62, p=0.01); atenolol did not (HR: 0.69; 95% CI: 0.32–1.49, p=0.34) ACA or SCD rarely occurred during treatment with beta-bl 	 B-blockers reduced risk in LQT1 and 2: LQT1 atenolol > nadolol LQT2 nadolol > atenolol ACA/SCD rarely occurred as presenting symptom in patients treatment with b-bl QTc ≥ 500 msec increased risk HR: 2.2–2.3 Syncope during b-bl treatment assoc with increased risk ACA/SCD Recommend BB therapy routinely to all high-risk LQT1 and LQT2 patients without contraindications as first rx 1° AICD therapy recommended for those with syncope during b-bl therapy

			 Patients with syncope during b-bl treatment had rel high rate subsequent ADA/SCD (>1 event per 100 pt-y. 	
 Sauer AJ JACC 2007 (358) <u>17239714</u> 	Study type: retrospective Size: 812	Inclusion criteria: Genotype positive LQTS adults ≥18 y old 8% prior ACA Exclusion criteria: N/A	1° endpoint:ACE: syncope, ACA, SCDbetween ages 18-40 y in LQTSResults:Risk predictors:ACA or SCD:femalegender HR:32.68;QTc ≥550 msec HR:6.35;syncope after age18y, HR:5.10LQT2LQT233% recurrent ACE.LQT1 highest priorevents34%.BB reduced risk ACA, SCD by 60%; highest	 Highest risk: females, QTc >500 msec, syncope after age 18 y LQT2 higher risk QTc ≤499 msec did not contribute to higher risk lethal event
• Steinberg C J Interv Card EP 2016 (359) • 27394160	Study type: retrospective cohort Size: 114	Inclusion criteria: Genotype positive LQT1 (62%) or LQT2 (38%) treated with bisoprolol 52%, (59 patients), nadolol 14%, (16 patients) or atenolol 34%, (39 patients) 59% females Exclusion criteria: N/A	benefit in QTc ≥500 msec, LQT1 and LQT2. <u>1° endpoint</u> : syncope, SCD, ACA, documented polymorphic VT LQT1 or 2, on BB Median followup 3 y for bisoprolol and nadolol; 6 y for atenolol (p=0.03) <u>Results:</u> Symptoms: 29%: syncope 27%, ACA 3.5%, documented VT; ICD's 7%. Dosing: bisoprolol 5 mg, nadolol 65–80 mg, atenolol 55 mg Nadolol patients highest proportion of probands vs bisoprolol (p=0.007) QTc shortening greater with bisoprolol and nadolol, vs. atenolol; QTc reduction greater in nadolol vs. atenolol, similar to bisoprolol	 Bisoprolol (selective b-1 antagonist) well-tolerated, and shortened QTc similar to nadolol not powered to assess difference in BB

			Cumulative incidence ACE 0.5%/pt-y. ACA in one pt on bisoprolol; syncope in 2 patients with atenolol; no events with nadolol	
			NO difference events bisoprolol 0.4% vs other b-blocker 0.6%	
 Nannenberg EA Circ CV Genetics 2012 (336) 22373669 	Study type: Retrospective single center, Netherlands Size:	Inclusion criteria: Genotype positive 6 inherited arrhythmia syndromes analyzed with Family Tree Mortality Ratio (FTMR): LQT1,2,3; Brugada Syndrome, SCN5A overlap syndrome (LQT3, BrS, conduction disease); RYR2 CPVT. Exclusion criteria: N/A	 <u>1° endpoint</u>: Using FTMR method to achieve Standardized Mortality Ratio(SMR) (observed to expected mortality by genotype and age in inherited arrhythmias <u>Results:</u> LQTS1: in first 10 y of life SMR 2.9 (1.5–5.1) LQTS2: age 30-39 y, SMR 4.0 (1.1–10) LQTS3: age 15-19 y, SMR 5.8(1.2–16.9) SCN5A overlap syndrome: 20-39 y, SMR 3.8 (2.5–5.7) CPVT: age 20-39 y, SMR 3.0 (1.3–6.0) BrS: 40-59 y, SMR 1.79 (1.2–2.4), especially males 	 Identify age ranges of highest risk for specified inherited arrhythmia syndromes Asymptomatic patients over age ranges may not require rx
 ● Villain E EHJ 2004 (360) ● <u>15321698</u> 	Study type: retrospective single center Size: 122	Inclusion criteria: LQTS in pt <18 y treated with BB, dx 1984-2002; 86% genotype pos. 26 patients dx in first mo of life; for others, median age 6y at dx 54% symptomatic probands Exclusion criteria: N/A	 <u>1° endpoint</u>: ACA or SCD in LQTS patients <18yr old during followup median 7.5 y <u>Results:</u> BB: nadolol 50 mg/m²/d given bid; Propranolol 3-5 mg/kg/d, acebutolol 10 mg/kg/d., atenolol 50 mg/d, bisoprolol 10 mg/d. Monitored at least yearly with ecg, exercise test and/or holter, goal peak HR <130-150 bpm. Symptomatic patients w longer QTc. 3 neonates died; one pt died after pacemaker implantation. One pt died after meds discontinued. 4.5% recurrent syncope. Cumulative event- free survival 94% 	 BB highly effective in children, particularly in LQT1 Double mutations or LQT2,3 higher risk no LQT1 patient died while receiving BB

 Moltedo JM Ped Cardiol 2011 (361) <u>20960185</u> 	Study type: retrospective Size: 57	Inclusion criteria: Pediatric patients with LQTS treated with atenolol.	<u>1° endpoint:</u> Death, recurrent symptoms in young LQT1 ps treatment with atenolol during followup 5.4±4.5 y	 Atenolol in twice daily dosing effective in pediatric patients in reducing events Assessing adequacy of beta-
		Genotyping not available	Results: Mean age dx 9 \pm 6 y, 60% females.	blockade by blunting peak HR
		Exclusion criteria: N/A	Mean QTc 521± 54 msec Mean dose atenolol 1.5±0.5 mg/kg/d twice daily; dose titrated to achieve peak HR <150 bpm on holter and exercise. + family Hx sudden death22%. ICD's 10% Symptoms 42%: VT: 18%, syncope 10%, ACA 7%, AV block 4%. One death, non-compliant with meds.	recommended • Recurrent syncope occurred in patients with QTc >500 msec
			Recurrent symptoms: 8%, 4 patients: 34	
			received ICD. All patients with recurrences	
			6% side effects (1 pt) or inadequate heart	
			rate control-change b-blocker	
 Schwartz et al.2004 (362) <u>15051644</u> 	Aim: To assess the long-term efficacy of LCSD	Inclusion criteria: 162 LQTS patients who underwent LCSD between	<u>1° endpoint</u> : Cardiac events and on survival free of cardiac events	 LCSD is associated with a significant reduction in the incidence of ACA and syncope in
	in a group of	1970 and 2002 were	Results: Their QT interval was very	high-risk LQTS patients when
	high-risk	identified. Among them,	prolonged (QTc, 543±65 ms); 99% were	compared with pre-LCSD events.
	patients.	15 underwent left	symptomatic; 48% had a CA; and 75% of	However, LCSD is not entirely
	<u>Study type</u> : Multicenter global registry	regarded as inadequate denervation and therefore insufficient	symptomatic. The average follow-up periods between first CE and LCSD and post-LCSD were 4.6 and 7.8 y, respectively. After LCSD,	events including SCD during long- term follow-up. • The study population included the
	C	therapy. Accordingly, the	46% remained asymptomatic. Syncope	vast majority of LQTS patients
	Size: 14/	analysis is on the 147	occurred in 31%, ACA in 16%, and sudden	treated with LCSD worldwide.
	patients	LCSD	per patient dropped by 91% (p<0.001)	LCSD appeared more effective in
			Among 74 patients with only syncope before	LQT1 and LQT3 patients.
		Exclusion criteria: N/A	LCSD, all types of CEs decreased significantly	
			as in the entire group, and a post-LCSD QTc	
			<500 ms predicted very low risk. The	
			percentage of patients with >5 CEs declined	

			from 55% to 8% (p<0.001). In 5 patients with preoperative implantable defibrillator and multiple discharges, the post-LCSD count of	
			shocks decreased by 95% (p=0.02) from a	
			median number of 25 to 0 per patient.	
Bos JM Circ	Study type:	Inclusion criteria: LQTS	<u>1° endpoint</u> : LCSD for LQTS: ACE: syncope,	• 23% recurrent ACE after LCSD
Arrnythm Elect	Single center	2005 2010 moon OTc	ACA, SCD, approp ICD snock for VF	
• <u>23728945</u>	retrospective	528±74 msec;	F/U 3.0±1.3 ÿ.	
	<u>Size</u> : 52	33% 1° prevention.	<u>Results</u> 23% recurrent ACE (not specified).	
		Mean age 14.1±10 y.	15% no reduction in events.	
		Exclusion criteria: N/A	No recurrence in patients with b-bl intolerance as indication (vs. recurrent events). (0/12 vs 17/40, p<0.001)	
	C , 1 , 1		Ptosis: 8%, pneumothorax 6%	
• Schneider, HE	Study type:	Inclusion criteria: LQI 5,	<u>1° endpoint</u> : LCSD for LQ1, CPV1: ACE	Reduction in ICD discharges
2012 (264)	single contor	crvi S, with recurrent	LOS 3-9 d; followup median 2.3 y (0.6–3.9 y)	Minor comps froquent
• 22821214	Single center	or ACA on BB.		• Millor comps frequent
	<u>Size</u> : 10	Mean age 14 y (3.9–42 y).	Results: Decrease in arrhythmia burden,	
		2 ICD pre-surg; 6 ICD at	ACE	
		LSCD.	No ICD discharges for VT	
			ACA: 10%	
		Exclusion criteria: N/A	Horner syndrome 70%, 20% pleural effusion	
• Collura CA Heart	Study type:	Inclusion criteria: LCSD	1° endpoint: LCSD for LQTS and CPVT: ACE	• LCSD reduced shocks in 72%
Rhythm 2009 (365)	single center	2005-2008, video-	followup mean 17 mo	during short term followup
• <u>19467503</u>	retrospective	assisted. Mean age		• 18% ineffective
		9.1±9.7 y, (2mo-42 y)	<u>Results:</u> 2° prev: ICD shocks eliminated 72%;	
	<u>Size</u> : 20	LQIS 12 geno +, 4 geno –	18% ineffective	
			2° prev 11, mean QTC 549 msec; 1° 9, mean QTC 480 msec.	
		Exclusion criteria: N/A		
Hofferberth SC	Study type:	Inclusion criteria: LCSD	1° endpoint: ACE after LCSD: LQTS, CPVT, VF	LCSD recommended in patients
JTCS 2014(366)	single center	2000-2011. LQTS 13	Median followup 28 mo, (4–131 mo)	with recurrent symptoms refractory
• <u>24268954</u>	retrospective			to meds

		(median age 8 y), CPVT 9	Results: 73% marked reduction in	• 27% recurrent symptoms, non-
	<u>Size</u> : 24	(age 17 y), VF 2 (age 23).	arrhythmia burden; 55% arrhythmia free.	responders
			27% persistent symptoms	
		Exclusion criteria: N/A		
 Chattha IS 	Study type:	Inclusion criteria:	1° endpoint: Genotypic specific changes in	 End of recovery QTc >445 msec,
Heart Rhythm 2010	Retrospective	Exercise testing done on	QTc with exercise	usually at 4 min of recovery,
(367)	single center	3 groups:		distinguished 92% of LQTS from
• <u>20226272</u>		LQT1, LQT2, and controls	Results: Changes in QTc:	controls
	<u>Size</u> : 75		LQT1: longer corrected QTc at peak and early	 Start of recovery QTc >460 msec
		Exclusion criteria: N/A	recovery	correctly identified 80% of LQT1 and
			LQT2: QTc increased during recovery	92% of LQT2
			Controls: normal QTc during recovery	
• Aziz PF CAE 2011	Study type:	Inclusion criteria: LQT1,	1° endpoint: QTc changes during exercise in	 QTc >460 msec at 7min of
(368)	Single center	LQT2, and controls	LQTS	recovery predicted LQT1 or LQT2 vs
• <u>21956039</u>	retrospective	undergoing cycle	Results: LQT1 and LQT2 with sig increase in	controls with 96% sensitivity, 86%
		ergometer exercise	QTc during recovery.	specificity, 91% PPV.
	<u>Size</u> : 158	testing	Recovery delta QTc- (7 min-1 min) > 30 msec	
			predicted LQT2	
		Exclusion criteria: N/A		
 Laksman ZW JCE 	Study type:	Inclusion criteria: LQT1	1° endpoint: LQT1 patients undergoing	 LQT1 patients with c-loop
2013 (369)	Single center	patients undergoing	exercise: assess QTc and response to BB	mutations did not increase QTc with
• <u>23691991</u>	retrospective	exercise testing; 28% with	Results: no difference in QTc response	exercise
		C-loop mutations	based on mutation location in LQT1;	 BB reduced supine, standing and
	<u>Size</u> : 123		however, BB did not reduce QTc in c-loop	peak exercise QTc
		Exclusion criteria: N/A	mutation patients	
 Sy RW Heart 	Study type:	Inclusion criteria: 27	1° endpoint: CPVT outcomes: recurrent	 SVT occurred frequently (AF) and
Rhythm 2011 (370)	single center	patients with CPVT	syncope, death or appropr shocks	caused ICD shocks
• <u>21315846</u>	retrospective	Median age 35 y		 Patients presenting <21 y
	33% presented	65% female	Results: followup 6.2±5.7y	appeared to have increased risk
	<21 y	CA 33%, syncope 56%,	63% exercise induced, 83% adrenalin	death during followup
		asymptomatic 11%	induced; polymorphic VT more common	 Two deaths despite medications
	<u>Size</u> : 27	ICD's in 15 patients with	than bidirectional.	and ICD therapies
		CA or recurrent syncope	SVT in 26%, (AF in 3, focal LA tach in 1)	
		on b-blockers;	caused ICD shocks	
		Exclusion criteria: N/A		

			2 deaths, both in patients with ICD's; one VF	
			triggered by inappropriate shocks: one	
			incessant VT not-responding to ICD	
			A approprishocks: 19% inappropriate shocks	
			5 v risk ACE on b-blockers 4 9% all CDVT	
			5 8% for PVP2 carriers	
• Enorralini C IACC	Chudu tuno.	Inclusion criterio: LOTS	10 and a sint. Outcome of LOTC action to with	
	Study type:	Inclusion criteria: LQIS	<u>1° endpoint</u> : Outcome of LQTS patients with	• ACA In first year of life are at very
2009 (371)	Retrospective	first user of life	ACA during infancy	nign risk of subsequent ACA/SCD
• <u>19695463</u>	International	first year of life		during next 10 y of life
	LQTS Registry		<u>Results:</u> 70 patients events <1y: 20 SCD, 16	
		Exclusion criteria: N/A	ACA, 34 syncope.	 BB not effective in preventing
	<u>Size</u> : 212		Risk of ACE: HR <100, QTc ≥500 msec	SCD/ACA in patients with prior ACA
			ACA in first year: HR: 23.4 for ACA/SCD in	
			first 10y.	
			BB reduced risk in patients with syncope but	
			not ACA/SCD	
• Zhang C, et al. JCE	Study type:	Inclusion criteria: LQTS	1° endpoint: Identify major ACE (syncope,	 ADHD meds-stimulant or non-
2015 (372)	LQT registry	patients 1979-2003, with	ACA, SCD) in patients with LQTS treatment	stimulants-associated with
• <u>26149510</u>	retrospective	followup to 2015, treated	with ADHD meds; mean followup 7.9y	increased risk majory ACE,
		with Attention		particularly in mlaes
	Size: 548	deficit/hyperactivity	Results: 62% cumulative probablility of ACE	
		disorder (ADHD)	in ADHD group, vs 28% in non-ADHD group.	
		medications	Time dependent use increased risk. HR: 3.07.	
			p=0.03: increased riks in males. HR: 6.8	
		Exclusion criteria: other	· ····, ······························	
		LQT: patients with ICD's		
• Chov et al. 1997	Study type:	Inclusion criteria: healthy	1° endpoint: Effect on OTUc from KCl after	"Potentially arrhythmogenic OT
(373)	Double-blind	subjects (12) and CHF	guinidine or placebo.	abnormalities during guinidine
• 9337183	comparison of	(mean EF 17%) with age-		treatment and in CHF can be nearly
	potassium	matched controls without	Results:	normalized by modest elevation of
	infusion after	CHF	KCl was IV. 0.5 mEg/kg (to maximum of 40	serum potassium"
	quinidine and		meEq) over 60-70 min resulted in	
	placebo	Exclusion criteria: N/A	normalization of guinidine-induced and CHF-	
	sequentially in		related OTU prolongation	
	12 healthy			
			1	

	Also, study on QTU in patients with CHF and age-matched controls who receive IV KCI <u>Size:</u> 12 healthy, 8 CHF plus 8 age- matched controls			
 Kannankeril P Pharmacol Rev 2010 (374) 21079043 	Study type: Review Size: N/A	Inclusion criteria: N/A Exclusion criteria: N/A	1° endpoint:N/AResults:N/ALists drugs associated with torsades de pointesGenetic background-polymorphisms- may contribute to risk	 Associated factors for drug induced LQTS; bradycardia, hypokalemia; hypomagnesemia by modulating L-type calcium channel function Drugs prolonging QT: block rapid component of delayed rectifier potassium current, IKr

Data Supplement 41. Nonrandomized Trials Related to Catecholaminergic Polymorphic Ventricular Tachycardia – (Section 7.9.1.2.)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
 Hayashi M Circ 	Study type:	Inclusion criteria: CPVT 50	1° endpoint: ACE in CPVT patients:	 Higher risk for lack of BB, Hx ACA
2009 (347)	single center	probands, 51 family	syncope, ACA, approp ICD shocks, SCD	 Prior syncope not associated with
• <u>19398665</u>	retrospective	members, age at dx 15±10		increased risk
		y.	Results: followup 7.9 y	
	<u>Size</u> : 101	Symptoms 60% (61	8 y total event rate 32% total, 27% with b-bl,	
		patients), all probands, 22%	58% without b-bl. 8 y event ACA/SCD 13% (8	
		family members	patients)	
		93% symptomatic <21 y old		

			1	
		77% detection of mutations: RYR2 CASQ2	Increased risk: Absence BB HR: 5.54; 95% CI: 1.17–16.15, p=0.003), Hx ACA HR: 13.01;	
			95% CI: 2.48–68.21, p=0.002); younger age	
		Exclusion criteria: N/A	at dx (HR: 0.54/decade; 95% CI: 0.33–0.89,	
			p=0.02)	
			32% with events on b-blockers did not take	
			meds on day of event.	
			Nadolol: ACE 19%	
Roston TM Circ	Study type:	Inclusion criteria: age <19 y	<u>1° endpoint</u> : ACE during followup in CPVT	• CPVT 25% recurrent events on
Arrn EP 2015 (375)	multicenter	dx with CPV1	Treatment failure: syncope, CA	BB—compliant, non-compliant,
• <u>25713214</u>	retrospective	Symptomatic 78%; 211		Inadequate dosing
	conort	D blockers 01%	<u>Results:</u> Median followup 3.5y (1.4–5.3 y)	High complications with ICDs
	Size: 226	B-DIOCKERS: 91%	Deaths 3% (6 patients): 2 patients receiving	
	<u>Size</u> : 220	AICD: 54%	D-DIOCKER; One previously asymptomatic	
		channel blockers	B-DIOCKETS: 25% recurrent events; 2% dealins	
			(non complaince, suboptimal doca);	
			(1011-complaince, suboptimal dose),	
		Exclusion criteria: N/A	asymptomatic after ry: 11% recurrent VT	
		Exclusion citteria. N/A	EV CA (1 pt)	
			5% CA (I pt)	
			shocks 22% inappropriate shocks:	
			complications 23%	
Chattha IS	Study type:	Inclusion criteria: Exercise	1° endpoint: Genotypic specific changes in	• End of recovery QTc >445 msec.
Heart Rhythm	Retrospective	testing done on 3 groups:	QTc with exercise	usually at 4 min of recovery,
2010 (367)	single center	LQT1, LQT2, and controls		distinguished 92% of LQTS from
• <u>20226272</u>			Results: Changes in QTc:	controls
	<u>Size</u> : 75	Exclusion criteria: N/A	LQT1: longer corrected QTc at peak and	 Start of recovery QTc >460 msec
			early recovery	correctly identified 80% of LQT1 and
			LQT2: QTc increased during recovery	92% of LQT2
			Controls: normal QTc during recovery	
Wilde AA NEJM	Study type:	Inclusion criteria: CPVT	1° endpoint: CPVT patients and LCSD: ACE	LCSD does not preclude ICD
2008(376)	Single center	patients, treatment BB,	after ICD implantation	implantation
• <u>18463378</u>	observational	multiple ICD shocks: LCSD		 LCSD Reduced symptoms and
		performed	Results: no symptoms after LCSD	shocks
	<u>Size</u>: 3	RYR2 mutations		

		Exclusion criteria: N/A		LCSD recommended in CPVT
				patients with symptoms on b-bl therapy
• Li J ATS 2008	Study type:	Inclusion criteria: 11	1° endpoint: LQTS treatment with LCSD:	LCSD reduced syncopal episodes
(377)	Single center	patients LCSD for LQT 2002-	outcomes	by 82%;
• <u>19022016</u>	retrospective	2007, BB not tolerated or		 Mortality: 9.1%
		refractory; followup time	Results: 7/11 no symptoms;	
	<u>Size</u> : 11	37±26 mos.	2 recurrent syncope; 1 SCD	
		Exclusion criteria: N/A		
• Collura CA Heart	Study type:	Inclusion criteria: LCSD	1° endpoint: LCSD for LQTS and CPVT: ACE	 LCSD reduced shocks in 72%
Rhythm 2009	single center	2005-2008, video-assisted.	followup mean 17 mos	during short term followup
(365)	retrospective	Mean age 9.1±9.7 y, (2mo–		
• <u>19467503</u>		42y)	Results: 2° prev: ICD shocks eliminated	 18% ineffective
	<u>Size</u> : 20	LQTS 12 geno +, 4 geno –	72%;	
		LQT; CPVT 2	18% ineffective	
		Exclusion criteria: N/A	2° prev 11, mean QTc 549 msec; 1° 9, mean	
			QTc 480 msec.	
Schneider HE	Study type:	Inclusion criteria: LQT 5,	1° endpoint: LCSD for LQT, CPVT: ACE	 Reduction in ICD discharges
Clin Res Cardiol	Retrospective	CPVT 5, with recurrent	LOS 3–9 d; followup median 2.3y (0.6–3.9 y)	• 10% ACA
2013 (364)	single center	syncope, VT, ICD shocks or		 Minor comps frequent
• <u>22821214</u>		ACA on BB.		
	Size: 10	Mean age 14 y (3.9–42 y).	<u>Results</u> : Decrease in arrhythmia burden,	
		2 ICD pre-surg; 6 ICD at	ACE	
		LSCD.	No ICD discharges for VT	
		Exclusion criteria: N/A	ACA: 10%	
			Horner syndrome 70%, 20% pleural effusion	
Hofferberth SC	Study type:	Inclusion criteria: LCSD	1° endpoint: ACE after LCSD: LQTS, CPVT, VF	LCSD recommended in patients
JTCS 2014 (366)	single center	2000-2011. LQTS 13	Median followup 28mo, (4–131 mo)	with recurrent symptoms refractory
• <u>24268954</u>	retrospective	(median age 8 y), CPVT 9		to meds
		(age 17 y), VF 2 (age 23 y).	Results: 73% marked reduction in	 27% recurrent symptoms, non-
	<u>Size</u> : 24	Exclusion criteria: N/A	arrhythmia burden; 55% arrhythmia free.	responders
			27% persistent symptoms	
• Van der Werf C	Study type:	Inclusion criteria:	1° endpoint: reduction of VA in CPVT with	• Flecainide suppresses VA in CPVT,
JACC 2011 (378)	multicenter	Flecainide treatment for	flecainide during exercise testing. Median	up to 76%
• <u>21616285</u>	retrospective	genotype positive CPVT	followup 20mo	
		patients, 8 European		
	<u>Size</u>: 33	centers prior to 12/2009;		

		Exclusion criteria: N/A	<u>Results:</u> Median age 25 y (7–68y); 73% females 29/33 underwent exercise testing Median dose flecainide in responders 150 mg (100–300mg). 76% partial or complete suppression VA with exercise (p<0.001); no worsening of VA	
			level	
 Watanabe H Heart Rhythm 2013 (379) 23286974 	Study type: Single center retrospective	Inclusion criteria: Genotype negative CPVT with VA, syncope or ACA	<u>1° endpoint</u> : Flecainide efficacy for suppressing VA in CPVT during exercise testing <u>Results:</u> Mean followup 48 mo	• Flecainide suppressed VA on exercise testing in 75% of patients
	<u>Size</u> : 12	Exclusion criteria: N/A	Reduced arrhythmias 8/12 patients, prevented VA 7/12 2/12 ACA/SCD, non-compliance	
 Priori S circ 2002(342) <u>12093772</u> 	Study type: multicenter retrospective	Inclusion criteria: CPVT probands (30) underwent genotyping; and 118 family members screened	<u>1° endpoint</u> : CPVT genotype RyR2 vs outcome Besults: RyR2 identified in 47% of	• Genotype positive RyR2 did not correlate with VA, SCD, or response to BB
	<u>Size</u> : 148	Exclusion criteria: N/A	Results: RyR2 identified in 47% of probands, and 9 family members, 4 clinically silent 71% of gene positive were de novo; 29% familial: of familial, 75% asymptomatic, 55% VA on exercise test; 44% no syx or VA on exercise testing RyR2: events at younger age, males increased syncope Genotype positivity did not correlate with	

Data Supplement 42.1		S Related to Diugada Sylic	() () () () () () () () () () () () () (
Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
 Gehi AK, et al. JCE 	Study type: Meta-	Inclusion: Publications	1° endpoint: Identify risk predictors of	 BrS ACE risk increased with
2006 (333)	analysis: retrieved	1/1990-3/2005 on	adverse natural history in patients with	prior syncope or SCD, RR: 3.24
• <u>16836701</u>	30 prospective	prognosis of patients	Brugada ECG	 Males, RR: 3.47
	studies on Brugada	with a Brugada ECG:		 Spontaneous type 1 ECG, RR:
	ECG	Prospective cohort	Results:	4.65
		studies, >10 subjects,	Risk increased with prior hx syncope or	
	<u>Size</u> : 1545	primary data on syncope,	ACA, spontaneous type 1 Br ECG, and male	
		SCD, ICD shocks;	gender	
		followup >6 mo and		
		>90% followup	NOT sig risk factors: Fam hx SCD	
			SCN5A mutation, or inducibility by PES:	
		Exclusions: non-English;	(not a risk factor but heterogeneity of	
		presence of cardiac	studies)	
		disease		
 Somani R, et al. HR 	Study type:	Inclusion criteria:	<u>1° endpoint:</u> Provocation of Brugada ECG	 Procainamide infusion provoked
2014 (380)	Multicenter	CASPER study of	with procainamide infusion 15 mg/kg,	Brugada ECG changes in ~7% of
• <u>24657429</u>	prospective	probands and first	maximum 1 gm	CASPER population.
		degree relatives of		
	<u>Size: 174</u>	Unexplained cardiac	<u>Results:</u> Mean age 47 yrs	
		arrest, SCD <60 y, VT or	Procainamide: increased HR, prolongation	
		VF undergoing	of QT.	
		cardioversion or	Brugada ECG provoked in 12/174 = 6.9%	
		defibrillation, syncope	10/12 pts with ECG changes had SCN5A	
		with polymorphic VT	mutation.	
		Exclusion criteria:		
		decreased LVEF, HCM,		
		CHD, overt Brugada ECG		
	Charles to man	pattern, prolonged QTc		
• Mizusawa Y, et al.	Study type:	Inclusion criteria:	<u>1° endpoint:</u> compare effects of fever and	• 3 aymptomatic patients
HK 2016 (381)	multicenter	Brugada S pts with fever	arugs on BrS ECG	developed VF/SCA during
• <u>2/03363/</u>	retrospective	88 asymptomatic (79%)	Subgroup of asymptomatc pts, (N=52),	followup; 1/3 with spontaneous
		26% SCN5A mutation	serial ECG's	Brs ECG,

Data Supplement 42. N	Ionrandomized Trials	s Related to Brugada Synd	drome – (Secction7.9.1.3)

	<u>Size</u> : 112	Mean age 46 y	followup	
		76% males	Results: fever shortened PR, drug	 Paper is hard to interpret
			challenge prolonged PR and QRS	
		Exclusion criteria: N/A		
			Drug challenge in 36 pts: ajmaline 24,	
			pilsicainide 7, flecainide 5	
• FINGER	Study type: Multi-	Inclusion criteria:	1° endpoint: ACE outcomes in BrS	• Low event rate in asymptomatic
 Probst V Circ 2010 	center registry, 11	Brugada Syndrome		patients 0.5%/y.
(343)	centers in Europe	ECG spont (45%) or with	Results: PES performed in 62%: 41%	 Inducibility w PES or family Hx
• <u>20100972</u>		drug challenge.	positive, higher in symptomatic patients	SCD or SCN5A mutation not
	<u>Size</u> : 1029	Median 45 y (35-55).	46% vs 37%, p=0.02.	predictors of ACE
		Hx ACA 6%, syncope 30%,	PES performed in 369 asymptomatic	 Predictors of ACE: symptoms,
		asymptomatic 64% (654	patients: 37% positive (137/369); 85%	ACA, syncope, presence of ICD,
		patients).	(117/137) inducible asyx patients had ICD	spont type 1 ECG.
		SCN5A positive 22%.	implanted	 Among asymptomatic patients:
			ICD's implanted: 433/1029 patients (42%):	37% positive PES; of these 85%
		Exclusion criteria: N/A	of 433: 54 ACA (12.5%), 208 syncope	had ICD implanted.
			(48%), 171 asymptomatic (39%). 118/171	 ICD implantation in
			asymptomatic patients with ICD (69%)	asymptomatic patients was
			implanted due to positive EPS.	significant in multivariable
				analysis as predictor of ACE:
			ACE 51: approp ICD shocks 44, SCD 7.	HR:10.1; 95% CI: 1.7–58.7,
			Mean ACE rate 1.6%/y: 7.7% in patients w	p=0.01).
			Hx ACA;1.9% w prior syncope; 0.5% in	 No independent predictive
			asymp patients	value of PES (p=0.09), males
			Predictors: symptoms (p<0.001): ACA (HR:	(p=0.42, spont type 1 ECG
			11; 95% CI: 4.8–24.3, p<0.001), syncope	(p=0.38) age (p=0.97)
			(HR: 3.4; 95% Cl 1.6–7.4, p=0.002),	
			ICD implantation (HR: 3.9; 95% CI: 1.4–	
			10.6, p=0.007).	
			spont type 1 ECG (HR: 1.8;95% CI: 1.03–	
			3.33, p=0.04);	
			NUT predictive: gender, family Hx SCD,	
			+PES (p=0.48), presence SCN5A mutation	
• Hiraoka M JE 2013	Study type:	Inclusion criteria:	<u>1° endpoint</u> : Brugada S ages 18-35 y at	Brugada outcomes in young
(349)	Prospective single	Brugada S patients ages	dx, outcomes of VF or SCD	adults' vs presenting symptoms:
• <u>23702150</u>	center	18–35 y	Followup 43±27 mos.	

	<u>Size</u> : 69	Mean age 30±6 y No genetic testing <u>Exclusion criteria</u> : N/A	<u>Results:</u> Based on presenting symptoms: VF 42%, syncope 12%, asymptomatic 2.5% Not predictive: gender, family Hx SCD, abnl SAECG, spontaneous vs drug-induced ECG, inducible VT/VF All ages 460 patients symptoms at presentation vs outcomes: VF 8.4%/y, Syncope 1.7%/y, asymptomatic 0.3%/y	• Events: VF 11.2%/y, syncope 3.3%/y, asymptomatic 0.7%/y
• PRELUDE • Priori SG et al. JACC 2012 (382) • <u>22192666</u>	Study type: Prospective registry Size: 308	Inclusion criteria: Age >18 y, BrS type 1 ECG spont (56%, 171/308) or drug-induced, without prior ACA; 21% with prior syncope (65 patients: 16/65 {25%} >1 syncope). SCN5A positive 20% of tested patients. (f-QRS = 2 or more spikes within QRS leads V1-V3: present 8.1%) Exclusion criteria: N/A	 <u>1° endpoint</u>: Predictive accuracy of PES for sustained VT/VF or approp ICD shock in Brugada S <u>Results:</u> PES performed at enrollment; followup every 6 mo. Mean age 45±12 y. Cardiac arrest 4.5% (14/308), 13/14 resuscitated with ICD, EMS 1. PES positive in 41% (126/308); of these: single stimulation 5.5%, double 44.5%, triples 50%. ICD's implanted in 137 patients (78% of inducible patients {98/126} and 21% of non-inducible patients {39/182}. Annual event rate 1.5%: Multivariable predictors: spont type 1 ECG and Hx of syncope (HR: 4.20; 95% CI: 1.38–12.79, p=0.012), Ventricular ERP < 200 msec (HR: 3.91; 95% CI: 1.03–12.79, p=0.045), QRS fractionation (HR: 4.94' 95% CI: 1.54–15.8, p=0.007). 	 PES did not predict high risk Predictors: spontaneous type BrS ecg AND symptoms; f-QRS, VERP <200 msec VERP <200 msec was predictive: this data would only be obtained at EPS. NOTE that + PES used in decision to implant ICD's: 13/137 patients (9.5%) with ICD's were resuscitated with ICD. Note 1/14 patients with VF had only spont type 1 ECG and no prior syncope, neg family hx, neg EPS, VERP >200 msec but + SCN5A mutation and received ICD after EPS. Only 1 pt without ICD had ACA: pt had spont type 1 ECG, VRP < 200 msec, and fQRS.

			Positive PES not predictive (HR: 1.03; 95%	
• Casado-Arroyo R JACC 2016 (383) • <u>27491905</u>	Study type: Single center retrospective Size: 447	Inclusion criteria: Compare BrS early period ≤2002 vs. 2003-2014 Early: 165 Latter: 282 ICD's: 48% early, 44% latter Exclusion criteria: N/A	10.94–9.96)1° endpoint: Long term trends Brugada SEPSResults: Early group more severephenotypeACA 12% early, 4.6% latter, p =.005PES positive 34% early, 19% latter,p<0.001Spontaneous type 1 ECG: early 50%, latter26%, p=0.0002Recurrent VA: early 19%, latter 5%,p=0.007	 Brugada s: changes over time Decrease in ACA over time as presentation PES predictive in early group but not latter
• Belhassen B et al, CAE 2015 (384) • <u>26354972</u>	Study type: retrospective single center Size: 96	Inclusion criteria: Brugada S patients undergoing PES and treated with Class IA drugs Mean age 39±16 y 88% males Exclusion criteria: N/A	1° endpoint: Brugada S outcomes treated with IA drugs Mean followup 113±71 mo Results: Prior ACA 10, syncope 27, 59 asymptomatic PES: VF induced in 69% (100% of prior ACA, 74% of syncope, 61% of asymptomatic), PES RVA and RVOT in most, ≤3 extrastimuli. PES positive in 77% males, 9% females; in 88% with spont ECG vs 59% without spont ECG. Tested (60 patients) w quinidine (54), disopyramide (2), both (4). Quinidine prevented re-induction of VF in 90%; disopyramide 50% 30 Patients with neg PES were not treated: all remained asymptomatic. ICD implanted in 20 patients after PES (30% of inducible VF patients): complications 55% of patients.	 Brugada S: Class IA meds: No deaths on quinidine; 40% of ACA patients remained arrhythmia free off AAD (3 treatment with quinidine for many years then discontinued rx 38% side effects

			4 died of non-cardiac causes.	
			Recurrent syncope: vasovagal 10. non-	
			arrhythmic 2.	
			2/96 had recurrent arrhythmia: both with	
			prior ACA: both discontinued quinidine	
			and had VE storms	
• Nademanee K et al	Study type:	Inclusion criteria: 9	1° and noint: manning and ablation of	 BrS shows delayed
Circ 2011(385)	Retrospective single	Brugada natients	BVOT in Brugede	repolarization over anterior BVOT
● 21/03/08	contor	symptomatic with		enicardium
· <u>21403038</u>	Center		Bosults: Aptorior aspect of DV/OT	Ablation normalizes ECG and
	Size: 0		Results: Anterior aspect of RVOT	
	<u>512e</u> : 9	median (anised as /men.	epicardium with late fractionate egms	reduces vi/vF
		median 4 episodes/mon;	Ablation successful in 78% (7/9) VF not	
		median age 38 y; all with	inducible, normalization of Brugada ECG in	
		ICD's	89%	
			Followup 20±6 mo, no recurrent VT/VF in	
		Exclusion criteria: N/A	all patients off meds (except one on	
			amiodarone)	
 Sunsaneewitaykul B 	Study type:	Inclusion criteria: BrS	1° endpoint: Ablation of zone of late	 Ablation of late activation zone
et al. JCE 2012 (386)	Retrospective single	patient's EP mapping and	activation in RVOT	in RVOT may suppress VF storm
• <u>22988965</u>	center	ablation. between 8/07-		and reduce VF recurrence
		12/08	Results: Patients with VF storm: ablation	
	<u>Size</u> : 10	VF storm (4) and no VF	modified Brugada ECG in 75% (3/4) and	
		storm (6)	suppressed VF in all 4 during followup of	
		Exclusion criteria: N/A	12–30 mo. RBBB in ¼ patients	
• Zhang et al. HR 2016	Study type: Two	Inclusion criteria: BrS	1° endpoint: Brugada mapping and	Ablation epicardial RVOT results
(387)	center	patients, 9 spont, 2	ablation of RVOT epicardium	in normalization of Brugada ECG
• 27453126	retrospective	induced		and reduces VT/VF
			Results: Normalization of spont Brugada	• ICD needed despite ablation
	Size: 11	Exclusion criteria: N/A	FCG pattern in all	
	<u></u>		73% free of VT/VE at 25+11 mo	
Brugada Let al Circ	Study type:	Inclusion criteria: BrS	1° endpoint: Enicardial manning and	• Ablation may eliminate
A F 2015 (388)	Single center	spont ECG median age	ablation RVOT in Brugada	spontaneous Brugada ECG nattern
• 26291334	retrospective	39 v	Results: Ablation resolved spontaneous	spentaneous bragada Leo pattern
- 20231334	Size 14	Exclusion criteria: N/A	Brugada ECG	
	<u>512C</u> . 14	LACIUSION CITCEIIa. N/A		
			5 mo, no recurrence	

McNamara DA	Study type:	nclusion criteria:	1° endpoint: All-cause mortality, ACE in	• Decreased mortality in patients
 Cochrane Database 	Cochrane search for	patients >18 y, ion	BrS and ICD	randomized to ICD in BrS: 9-fold
Syst Rev 2015 (389)	randomized trials of	channelopathies,		reduction
	ICD vs medical	randomized to ICD vs	Results: 2 studies identified, Brugada	
	treatment ion	medical rx, identified 2	Syndrome, same authors.	 Brugada patients with prior
	channelopathy	studies including Brugada	ICD: assoc with decreased risk mortality	ACA: ICD treatment reduced
		patients	RR: 0.11; 95% CI: 0.01–0.83)	mortality
	<u>Size</u> : 86		Adverse events higher in ICD: 28% vs 10%,	
		Exclusion criteria: N/A	RR: 2.44; 95% CI: 0.92–6.44)	
			Non-fatal ACE higher in ICD: 26% vs 0%,	
			RR: 11.4; 95% CI: 1.57–83.3)	
• Delise P et al. EHJ	Study type: Multi-	Inclusion criteria: Type 1	<u>1° endpoint</u> : predictors in Brugada S of	 Combining ≥2 risk factors was
2011 (348)	center prospective	Brugada ECG:	ACE (approp ICD shocks, sudden death)	useful risk stratification:
• <u>20978016</u>		spontaneous 54%, drug-		Spontaneous type 1 ECG
	<u>Size</u> : 320	induced 46%.	Results: Median followup 40 mos (IQR	Family Hx sudden death, syncope,
			20–67)	positive PES
		Median age 43 y.	5.3 % MACE (17 patients): VF on ICD (14),	 MACE occurred only in patients
		Males 81%	sudden death3	with ≥2 risk factors
			MACE occurred in 10.4% of symptomatic	 MACE event rates:
		Asymptomatic 66%,	and 2.8% of asymptomatic patients	3.0%/pt/yr in symptomatic,
		syncope 33%	(p=0.004)	0.8%/pt/yr in asymptomatic
			ICD's implanted in 34%(110 patients)	 PES can be useful in patients
		No prior ACA	PES performed in 245 (76%): positive in	with spontaneous type 1 ECG and
			50% of symptomatic and 32% of	no other risk factors; may be
			asymptomatic patients.	helpful to identify low risk
		Exclusion criteria: N/A	MACE in 14% of positive PES, 0% of	patients
			negative, 5.3% of no EPS: positive	
			predictive values 14%, negative pred value	
			100%	
			VF occurred in 15.5% of patients with	
			inducible VF using doubles, 8.6% of triples	
			Combination of risk factors most	
			significant: spont ECG, family Hx sudden	
			death, syncope, positive EPS: no events	
			occurred in patients without any of above	
			or with only one risk factor.	
			Spontaneous type 1 ECG: if additional risk	
---	---------------------	--------------------------	---	---
			factors, 30% MACE (p<0.001)	
• Sieira J et al. Circ	Study type: Single	Inclusion criteria:	<u>1° endpoint</u> : Event-free survival in	• Brugada S: Positive PES
Arrhyth EP 2015 (390)	center	Asymptomatic patients	Brugada S.	predictor of adverse events, HR:
• <u>26215662</u>	retrospective	type 1 BrS ECG, spont	Mean followup 73±59 mo.	9.1.
		(11%) or drug-induced.		• Event free survival 95.4% at 10
	<u>Size</u> : 363	Mean age 40.9±17 y,	<u>Results</u> : PES positive in 10% (32 patients)	and 15 y
		55% males.	ICD's implanted 17% (61 patients), 6	
		321 patients underwent	approp rx.	
		PES.	Event free survival: 99% 1 y, 96% at 5 y,	
		22% genotype + SCN5A.	95.4% at 10 and 15 y.	
			Arrhythmic events: 9, annual incidence	
		Exclusion criteria: N/A	0.5%	
			Multivariate analysis: Positive PES only	
			significant predictor (HR: 9.1, 95% CI: 1.8–	
			46.8, p<0.01)	
 Konigstein M et al. 	Study type:	Inclusion criteria:	<u>1° endpoint</u> : Outcomes of non-cardiac	 Non-cardiac drug induced type
Heart Rhythm 2016	multicenter	Brugada database non-	drug-induced BrS	1 Brugada ECG:
(391)	retrospective	cardiac drug-induced		 26% VF/pulseless VT
• <u>27131070</u>		Brugada patients; each	Results: By definition: "spontaneous type	 13.5% mortality
	<u>Size</u> : 74	with 5 healthy controls	1" ECG:	
		Mean age 39±16 y.	49% psychotropic meds (lithium,	
		77% males	amitriptyline), 27% anesthetic/analgesic,	
			24% other; of total, 20% propofol	
		Exclusion criteria: N/A	occurred predominantly in adult males,	
			frequently due to drug toxicity, occurs late	
			after onset of treatment	
			Off-drug ECG's: 33% type IIC Brugada ECG	
 Sroubek J et al. Circ 	Study type:	Inclusion criteria: BrS	<u>1° endpoint</u> : CA or appropriate ICD shock	 Positive PES associated with
2016 (392)	Systematic review	patients without ACA	in Brugada S.	increased risk ACE during
• <u>26797467</u>	and pooled analysis	who underwent PES		followup; induction with 1–2
	of prospective	Mean age 44.9 ±13.3 yrs;	Results: PES induced sust VEA (40%).with	extrastimuli associated with
	observational	79% male; 53% spont	up to triple extrastimuli in 527 patients	higher risk.
	studies	type 1 ECG	(2%, single; double 18%; triples 28%	• Specificity of induction as risk
			AICD's implanted in 576 patients: 77% of	predictor decreased with triple
	Size: 8 studies,	Prior Syncope 33%;	ICD implanted in PES positive patients	VEST
	1312 patients			

	Exclusion criteria: N/A	65 patients experienced ACE during	 Negative PES did not identify
		median followup 38 mo: 5 CA, appropriate	low risk individuals
		ICD shock 60.	 Annual event rates varied based
		Positive PES assoc with increased risk ACE:	on syncope, spontaneous type 1
		HR: 2.66, 95% CI: 1.44–4.92, p <0.001);	ECG, and positive PES:
		greatest risk in those induced with single	 Asymptomatic patients with
		(HR: 1.99, 95% CI: 0.52–7.68, p=0.32); or	spont type ECG and positive PES:
		double extrastimuli (HR: 2.55, 95% CI:	annual incidence 1.70 (0.73–3.35)
		1.34–4.88, p=0.005), vs. triples (HR: 2.08,	• Aymptomatic patients with drug
		95% CI: 0.98–4.39, p=0.06)	ind ECG and + PES: annual
		Clinical variables useful: annual event	incidence 0.45 (0.01–2.49)
		rates for no syncope, drug induced type 1	Clinical factors important
		ECG: 0.27% (95% CI: 0.07–0.68); Positive	determinants of risk: syncope;
		syncope and spont type 1 ECG 3.22%;	spont type 1 ECG
		(95% CI: 2.23–4.5)	 Asymptomatic patients with
		Highest risk: + syncope, spont type 1 ECG:	drug induced ECG patterns: "PES
		neg PES HR: 2.55; 95% CI: 1.58–3.89;	may not be warranted"
		positive PES HR: 5.6; 95% CI: 2.98–9.58	• Symptomatic patients:
		Annual incidence rates of CA or VT:	increased risk with positive PES,
		Asymptomatic, spont type 1 ECG: annual	but risk exists with neg PES:
		events 1.04 (95% CI: 0.61–1.67): positive	higher if spont type 1 ECG: ? value
		PES 1.70 (95% CI: 0.73–3.35): negative PES	of PES
		0.78 (95% CI: 0.36–1.47)	
		Asymptomatic. drug ind ECG: overall 0.27.	
		neg PES 0.23 (95% CI: 0.05–0.68), pos PES	
		0.45 (95% CI: 0.01–2.49)	
		Spont type 1 ECG: asymptomatic, with	
		neg PES: annual event incidence 0.78%	
		(95% CI: 0.36–1.47); pos PES 1.70 (95% CI:	
		0.73–3.35).	
		Prior syncope and neg PES 2.55% (95% CI:	
		1.58–3.89); Positive PES 5.60 (95% CI:	
		2.98–9.58)	
		Drug induced ECG: asymptomatic: neg	
		PES 0.23% (95% CI: 0.05–0.68); positive	
		PES 0.45 (95% CI: 0.01–2.49); prior	
		syncope and negative PES 1.29 (95% CI:	

			0.52–2.67); positive PES 1.96 (95% CI:	
			0.40–5.73)	
• Sieira J et al. Heart	Study type: Single	Inclusion criteria:	1° endpoint: Brugada outcomes in	 BrS Females:
2016 (393)	center	Women with BrS,	women, mean followup 73 mo	 Less severe than males, less
• <u>26740482</u>	retrospective	spontaneous 8%, or		spont type 1 ECG
		induced	<u>Results:</u> Mean age 41.5± 17.3 y	 Event rate 0.7%/y (males
	<u>Size</u> : 228		women = 42% of Brugada population	1.9%/y)
		Exclusion criteria: N/A	Spontaneous type 1 ECG 7.9% vs males	Higher risk: prior ACA, SND
			23%, p<0.01	
			ICD implanted in 28%, event rate 0.7%/y	
			vs 1.9% males	
• Priori S et al. Circ	Study type:	Inclusion criteria:	<u>1° endpoint</u> : Brugada risk stratification for	Multivariable risk predictor:
2002 (394)	Multicenter	Brugada S with ECG	SCD	spontaneous ST elevation V1-V3
• <u>11901046</u>	retrospective	changes, spont (51%) or	PES performed in 86	and Hx of syncope
	Size: 200	Induced	Results CONTA identified in 220/	 Syncope without spontaneous ST elevation not a risk factor
	<u>Size</u> : 200	120 probands	<u>Results:</u> SCNSA Identified III 22%	DES not prodictive
		Exclusion criteria: N/A	Probanus, 40% of failing members	• PES not predictive Mutation carriers without
		Exclusion citteria. N/A	mutation status symptoms	nhenotype: low risk
			Syncone without ST elevation on baseline	phenotype. low hisk
			FCG: not a risk	
			Syncone AND ST elevation: increased risk	
			SCD. HR: 6.4. p<0.002	
• Fauchier L et al. IJC	Study type: meta-	Inclusion criteria:	1° endpoint: utility of PES in Brugada S:	 Inducibility of VT in Brugada S
2013 (395)	analysis	Brugada S patients	adverse event = sust VT/VF, appropriate	patients with syncope or
• <u>23642819</u>	,	undergoing PES	ICD shock, sudden death)	asymptomatic may identify an
	<u>Size</u> : 1789	ACA 11%, syncope 31%,		increased risk of subsequent
		asymptomatic 57%	Results: Inducible VT/VF associated with	events
			higher risk arrhythmic event in patients	
		Exclusion criteria: N/A	with prior syncope (OR: 3.30, 95% CI:	
			1.68–6.51, p=0.0006) and in asymptomatic	
			patients (OR: 4.62, 95% CI: 2.14–9.97,	
			p<0.0001)	
 Rodriguez-Manero 	Study type:	Inclusion criteria: BrS	1° endpoint: ICD usage and comps in	BrS:
M et al. Heart Rhythm	retrospective multi	patients with implantable	Brugada S.	 ICD approp use in ~14%
2016 (396)	center	ICD	followup mean 69 ± 54 mo	 Monomorphic VT in 4.2%
• <u>26538325</u>		1993-2014	Results: 13.7% at least one approp rx	

	Size: 834	mean age 45±13.9 y	Monomorphic VT recorded in 4.2% (35	• Successful ablation in 80% of 10
		24% women	patients), sensitive to anti-tach pacing in	patients with outflow tract VT
		Evolution critoria: N/A	43%	
		Exclusion criteria: N/A	Nonomorphic VI from RVOI 6, LVOI 2,	
			BBR 2 successfully ablated in 80%	
• Sacher F et al. Circ	Study type:	Inclusion criteria: BrS	<u>1° endpoint</u> : ICD outcomes in BrS,	Approp ICD shocks more
2013 (397)	Retrospective	patients with ICD	followup mean 77±42 mo	prevalent in symptomatic BrS;
• <u>23995538</u>	multi-center	Mean age 46±13 y		Asymptomatic patients had
		ACA 31, syncope 181,	Results: appropriate shocks 12%,	approp shocks 1%/y
	<u>Size</u> : 378	asymptomatic 166	Shock rates highest for ACA patients	 Optimal programming may
			(48%), syncope 19%, 12% asymptomatic	reduce inapprop shocks
		Exclusion criteria: N/A	Inaapropriate shocks 24%; due to lead	 Lead failure a significant
			failure, SVT, T wave oversensing or sinus	problem
			tach. Lead failure 29%	
 Rosso R et al. Isr 	Study type:	Inclusion criteria: BrS	<u>1° endpoint</u> : Followup efficacy and comps	 Appropriate shocks occurred
Med Assoc J 2008	retrospective multi-	patients with ICD	of ICD in Brugada;	only in symptomatic patients with
(398)	center, 12 centers,	Mean age 44.1 y	followup 45±35 mo	prior ACA
• <u>18669142</u>	1994-2007			 VF inducibility did not predict
		Exclusion criteria: N/A	Results: Symptoms 71%: ACA 19%,	approp shocks
	<u>Size</u> : 59		syncope 53%, inducible VF in	 High complication rate
			asymptomatic patients 24%, family Hx SCD	
			0.5%.	
			Appropriate shocks 8.4%, all with prior	
			ACA	
			Comps 32%	
			Inappropriate shocks 27%	
			Psych problems 13.5%, mainly related to	
			inappropriate shocks	
 Conte G et al. JACC 	Study type:	Inclusion criteria: BrS	1° endpoint: Long term followup ICD in	 ACA and VT inducibility on EPS
2015 (399)	Prospective single	patients with ICD's	BrS, mean followup 84±57 mo	were multi-variate predictors of
• <u>25744005</u>	center			appropriate shocks
		Exclusion criteria: N/A	Results: Spontaneous VA in 17%.	 Appropriate shocks occurred in
	<u>Size</u> : 176		Appropriate shocks 15.9%	13% of asymptomatic patients
			Inappropriate shocks 18.7%	
			Electrical storm 2.3%	
			SCN5A mutation (22%) did not correlate	
			with approp shocks	

• Miyazaki S et al. AJC	Study type: single	Inclusion criteria:	1° endpoint: Brugada S ICD outcomes	• Brugada S + ICD's:
2013 (400)	center	Brugada S patients with	Median followup 76 mo	Complications 37%
• <u>23433764</u>	retrospective	ICD		
		Mean age 48±12 y	Results: Complications 37%: device related	
	<u>Size</u> : 41	93% males	20%, inappropriate shocks in 24%	
			Appropriate shocks: 12%	
		Exclusion criteria: N/A		
• Takaqi M et al.	Study type:	Inclusion criteria:	1° endpoint: ACE documented VT or SCD	 ICD implantation in Brugada:
Heart Rhythm	retrospective single	Brugada S patients	in Brugada S with ICD	 Higher events in IIa vs IIb
2014(401)	center	undergoing ICD	Mean followup 60±31 mo	 Spontaneous type 1 ECG AND
• <u>24981871</u>		implantation,		syncope useful for identifying
	<u>Size</u> : 213	Mean age 53±14 y	Results: indications classified as	intermediate risk
		Males 93%	IIa (66): spontaneous type 1 ECG and Hx	
			of cardiac syncope, or	
		Exclusion criteria: N/A	IIb (147): spont or drug induced type ECG	
			and inducible VF by PES.	
			Event rates: Ila 12%, 2.2%/y;	
			IIb 3%, 0.5%/y p=0.01	

Data Supplement 43. Nonrandomized Trials Related to Early Repolarization "J-wave" Syndrome – (Secction 7.9.1.4)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
• Rosso R et al. JACC	Study type:	Inclusion criteria:	1° endpoint: Assess frequency of ER on	 J point elevation occurs more
2008 (398)	Retrospective	Idiopathic VF patients	ECG vs controls	frequently in idiopathic VF
• <u>18926326</u>	single center	compared with 123		patients than healthy controls
		age/gender matched	Results: ER more common among VF	 Athletes intermediate frequency
	<u>Size</u> : 45	controls.	patients, 42% vs 13%, p=0.001	of J point elevation between
		Mean age 38±15 y, 71%	J point elev in inferior leads: 27% vs 8%,	normal adults and idiopathic VF
		male	p=0.006	patients
		2/45 dx with Brugada	J point elev in leads I-aVL 13% vs 1%,	 ST segment elevation or QRS
			p=0.009	slurring did not add diagnostic
		Exclusion criteria: N/A	J point elev in V4-V6 equal among	values
			groups, 6.7 vs 7.3%	

			Males more often had J point elev vs	
			females; young athletes more frequent	
			than controls but less than VF patients	
• Haissaguerre M, et	Study type:	Inclusion criteria:	<u>1° endpoint</u> : Recurrent VF >3 episodes	 Recurrent VF high: 40% with
al. JACC 2009 (402)	multicenter cohort	Idiopathic VF survivors		mult episodes in 27%
• <u>19215837</u>		with ER assessed for	Results: overall 27% with multiple (>3	 Meds not effective other than
	<u>Size</u> : 122	recurrent VF	episodes) of recurrent VF	quinidine or hydroquinindine (9
			Inducible VF 28% in entire cohort	pts)
		All pts had AICDs	Pts with >3 episodes recurrent VF:	
		implanted	inducible VF 48%, p<0.01, prior syncope	
			58%, p<0.001 compared with pts with <3	
		Mean age of diagnosis 39	episodes of recurrent VF. Anti-	
		У	arrhythmic meds not highly effective in	
			preventing recurrent VF	
		Exclusion criteria:	1 death due to refractory VF	
 Tikkanen JT ET AL. 	Study type:	Inclusion criteria: ECG's	<u>1° endpoint</u> : Death from cardiac causes;	 ER pattern in inferior leads of
NEJM 2009 (403)	retrospective	obtained in general	2°: death from any cause and from	ECG is associated with an
• <u>19917913</u>	community based	population reviewed,	arrhythmia before end of 2007; mean	increased risk of death from
	screen of ECG's in		followup 30±11 y.	cardiac causes in middle-aged
	Finnish population	Exclusion criteria: N/A		adults
	1962-1972		<u>Results</u> : Prevalence J point elev of at	 ER transmural heterogeneity in
			least 0.1 mV: 5.8%: inferior leads 3.5 %,	vent repolarization, increases risk
	<u>Size</u> : 10864		70% male; Lateral leads 2.4%, 58% male	during cardiac ischemia
			J point elev at least 0.2 mV inferior leads	
			0.3%, lateral 0.3%	
			Cardiac death: ER patients (RR: 1.28, 95%	
			CI: 1.04–1.59, p=0.03); arrhythmia death	
			J point elev 0.2 mV: cardiac death RR:	
			2.98, 95% CI: 1.85–4.92, p=0.01;	
			arrhythmic death RR: 2.92, 95% CI: 1.45–	
			5.89, p=0.01	
			QTc (RR: 1.2, 95% CI: 1.02–1.42, p=0.03)	
			and LVH (RR: 1.16, 95% CI: 1.05–1.27,	
			p=0.004) weaker predictors cardiac	
			death	

• Sinner MF et al.	Study type: 3	Inclusion criteria: 452	1° endpoint: Combined meta-analysis	 Unable to reliably identify
Heart Rhythm 2012	community based	patients with ER	failed to reach genome wide significance	genetic variants predisposing to ER
(404)	ECG cohorts	underwent genome wide		
• <u>22683750</u>	<u>Size</u> : 7482	association studies	Results: ER: 70% male	
		Exclusion criteria: N/A		
• Adhikarla C et al. AJC	Study type:	Inclusion criteria: ER >	1° endpoint: assess changes in ER on	 ER pattern lost in over half of
2011 (405)	retrospective	0.1 mV with ST segment	ECG during 10 y followup	young male cohort over 10 y
• <u>21907947</u>	Screening ECG's on	elevation, J wave as		period, not related to death
	veterans for ER	upward defection, slurs as	Results: 122/244 patients had second	
	1987-99	delay on R wave	ECG	
		downstroke: first 250	ER persisted in 38%; most no longer filled	
	<u>Size</u> : 29281	patients selected. Mean	criteria.	
		42±10 y		
		Exclusion criteria: other		
		ECG abnormalities		
 Siebermair J, et al. 	Study type: Single	Inclusion criteria:	1° endpoint: Appropriate VF shocks on	 Recurrent VF high: 43%
Europace 2016 (406)	center	Idiopathic VF survivors	ICD in idiopathic VF pts; compare ER to	 Recurrent VF higher in ER
• <u>26759124</u>	retrospective	assessed for ER and ICD	non-ER	patients
		interventions during		 High incidence AF in VF survivors
	<u>Size</u> : 35	follow-up median 8.8 y	Results: overall 43% recurrent VF after	
			median 6.6 yrs.	
		Exclusion criteria: N/A	VF more frequent in ER patients: (HR:	
			3.9, 95% CI: 1.4–11.0, p=0.01)	
			40% inappropriate shocks: 66% due to AF	
●Cheng YJ, et al. JAHA	Study type: meta-	Inclusion criteria: studies	<u>1° endpoint</u> : risk of SCA, cardiac death,	 Early repolarization associated
2016	analysis	assessing link between ER	death any cause associated with early	with absolute risk increase of
• <u>27671315</u>		and risk of SCA, cardiac	repolarization pattern on ECG	139.6 additional SCAs/100,000 pt
	Size: 16 studies	death, and eath from any		y and responsible for 7.3% of SCA
	including 334,524	cause	Results: Increased risk of SCA (RR:2.18,	in general poulation
	patients identified		95% CI: 1.29–3.68), and cardiac death	
		Exclusion criteria: N/A	(RR: 1.48, 95% CI: 1.06–2.07) in patients	
			with early repolarization.	
			Increased risk predominantly in Asians	
			and whites but not African Americans.	
			J-point elevation in inferior leads,	
			notching configuration, and harizaontal	

			or descending ST segement connote higher risk.	
 Tikkanen JT et al. Circ AE 2012 (407) 22730409 	Study type: Retrospective population based Size: 432	Inclusion criteria: Prevalence of ER in Baseline ECG's of 432 consecutive cases of SCD due to ischemia compared with 532 survivors of acute ischemic event Exclusion criteria: N/A	1° endpoint: Prevalence of ER in SCD vs survivors of acute ischemia <u>Results:</u> Prevalence ER ≥0.1 mV in at least 2 inf or lateral leads: 14.4% cases vs 7.9% controls. ER with horizontal or descending ST segment assoc with SCD 10.2% vs 5.3%, p=0.004; ER with ascending ST NS. SCD patients younger, more often male, smokers, lower BMI, elevated HR, prolonged QRS complex, lower prevalence of Hx of CVD	 Higher prevalence of ER in SCD ischemic patients than in survivors of acute coronary event ER increases vulnerability to fatal arrhythmia during acute myocardial ischemia
 Junttila MJ et al. Heart Rhythm 2014 (408) <u>24858812</u> 	Study type: Community based ECG's Finnish population, mean 44±8 yrs Size: 10,846	Inclusion criteria: arrhythmic outcomes and cardiac deaths in patients with ER on community screening Exclusion criteria: N/A	 <u>1° endpoint</u>: Sustained VT or VF, arrhythmic death, non-arrhythmic cardia death, AF, CHF, CAD; mean followup 30±11 y <u>Results:</u> Inferior ER 3.5% prevalence: predicted VF-VT events (N=108), HR: 2.2 (1.1–4.5, p=0.03), not not nonarrhythmic cardiac death, CHF, or CAD Inferior ER predicted arrhythmic death in cases without other QRS abnormalities (HR: 1.68, 95% CI: 1.1–2.58, p=0.02) but not in those with coexisting abnormalities in QRS morphology (HR: 1.3, 95% CI: 0.86–1.96, p=0.22) 	 Inferior ER without other QRS morphology changes predicted occurrence of VT-VF but not non- arrhythmic cardiac events Suggests ER sign of increased vulnerability to ventricular tachyarrhythmias

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
 Gaita F et al. JACC 	Study type: single	Inclusion criteria:	1° endpoint: Prolongation of QTc with	 Hydroquinidine prolonged QTc
2004 (409)	center retrospective	Symptomatic patients with	medications	and resulted in non-inducible VF
• <u>15093889</u>		QTc <380 undergoing drug		• use dependent block fast inward
	<u>Size</u> : 6	testing. One prior ACA age	Results: Flecainid, sotalol, ibutilide,	Na, blocks rapid IKr and IKs, IKATP,
		6 y.	hydroquinidine tested.	Ito.
		PES 5 adult patients: 4/5	Only hydroquinidine prionged QTc from	
		Inducible VF.	263±12 to 363±25, prolonged VERP to	
		5 adults received ICD s.	≥200 msec, and no VF induced.	
		Exclusion criteria: N/A		
 Giustetto C et al. 	Study type:	Inclusion criteria: Short	<u>1° endpoint</u> : outcomes with AICD or	• Short QTS may be a cause of SCD
EHJ 2006 (51)	Retrospective single	QTc ≤340 msec and	hydroquinidine	in infancy
• <u>16926178</u>	center	personal or family Hx of		
		CA. 73% males.	<u>Results:</u> Median age dx 30 yrs (4-80);	 Hydroquinidine may be
	<u>Size</u> : 29		62% symptomatic: syncope 24%, AF 31%.	proposed in children or patients
		Exclusion criteria: N/A	34% ACA (10 patients); 2/10 had CA in	not suitable for AICD
			infancy. In 28% ACA was initial symptom.	
			AICD implanted in 14; 10 hydroquinidine.	PES sensitivity 50%
			with appropriate ICD shock. No at or	
			with appropriate ICD shock. No pt on	
			nydroquinidine nad SCD of syncope.	
			PES 18/29: VERP 140-180 msec. VF	
			induced in 61% (11/18); 3/6 with	
			documented VF had inducible VF:	
			sensitivity 50%. AERP CL 600: 120-180	
			ms, mean 157.	
• Gollob MH et al.	Study type:	Inclusion criteria: review	<u>1° endpoint</u> : review reported cases of	 Gollob criteria for SQTS, ≥4
JACC 2011 (410)	Medline database	details of reported cases of	Short QTS: 61 cases worldwide	points very likely
• <u>21310316</u>	search	SQTS		• QTc duration <370, <350, <330
			Results: Increased in males: 75% mean	J point-Tpeak <120 msec
	<u>Size</u> : 61	Exclusion criteria: non-	Q1C 397 msec, 248–381 msec in	Clinical hx: ACA, SCD, AF,
		English journals	symptomatic cases.	unexplained syncope;

Data Supplement 44. Nonrandomized Trial	s Related to Short-QT Syndrome – (Secction 7.9.1.5)

				Family hx; Genotype results
• Giustetto C et al.	Study type:	Inclusion criteria:	1° endpoint: syncope, CA or approp ICD	 SQTS assoc with SCD in all ages
JACC 2011 (53)	retrospective multi-	European Short QT	shocks SQTS	 Symptomatic patients have high
• <u>21798421</u>	center	Registry patients with QTc		risk of recurrent arrhythmic events
		≤360 msec with Hx sudden	Results: Mean Followup 64±27 mo.	 Patients treated with
	<u>Size</u> : 53	death, ACA, syncope;	Median age 26 y (IQR 17–39). 62%	Hydroquinidine did not have
		patients with QTc ≤340	symptomatic: 32% with ACA (13 patients)	arrhythmic events
		msec included without	or sudden death(4), syncope 8, AF 6,	 Asymptomatic patients: no
		symptoms.	palps 13.	CA/ICD shocks.
		75% males.	Age at CA 3 mos–62 y.	 PES not sensitive
		Family Hx SCD/CA (11).	Males: >90% of CA occurred between	
		Genotype positive 23% of	14-40 yrs.	
		probands: HERG in 4	Prevalence CA males 35%, females 30%.	
		families (N588K in 2,	AICD in 24, hydroquinidine in 12.	
		T6181 in 2; CACNB2b in	11/12 with prior CA received ICD: 2	
		one family)	approp ICD shocks. 58% complications of	
		•	ICD, inapprop shocks due to T wave	
		Exclusion criteria: N/A	oversensing 4/14.	
			PES: 28 patients. VERP CL 600-500: mean	
			166 msec. AERP 166 msec. VF induced in	
			16/28: 3/28 with prior CA = sensitivity	
			37%, NPVs 58%.	
			Overall event rate 3.3%/y: 4.9% in	
			patients without AA drugs.	
			Asymptomatic patients: 27. ICD	
			implanted in 9 due to + family Hx or	
			induced VF. Two long term quinidine.	
			One syncope; 2 nonsust VT on ICD.	
• Villafane J et al.	Study type:	Inclusion criteria: patients	<u>1° endpoint</u> : ACE in short QT; Assess	• modified Gollob score >5
JACC 2013 (411)	Multicenter	<21 y old with short QTc	Gollob score	associated with likely clinical
• <u>23375927</u>	retrospective	<360 msec.	Mean followup 6 y.	events
		Median age 15 y	Results: Symptoms 56%: ACA 24%,	• High rate inappropriate shocks
	<u>Size</u> : 25		syncope 16%	
		Exclusion criteria: N/A	84% personal or family Hx ACA/SCD	
			24% genotype +	
			AICD 11: 2 approp shocks; 64%	
			inappropriate shocks	

			10 patients med rx: quinidine Gollob score <5 remained event free	
			(excluding patients for symptoms)	
 Mazzanti A et al. JACC 2014 (412) <u>24291113</u> 	<u>Study type</u> : Registry <u>Size</u> : 73	Inclusion criteria: Short QTS: asymptomatic ≤340 msec, or QTc 340–360 msec Plus ACA, family Hx SCD or family Hx SQTS 53% symptomatic at referral Exclusion criteria: N/A	<u>1° endpoint</u> : SQTS patients followed for median 56 mo <u>Results:</u> 84% male Mean age 26±15 y, QTc 329±22 msec. 40% presented with ACA, range 1 mo–41 y. CA during sleep 83%, 17% emotion/exertion Rate CA 4% first yr of life, 1.3%/y between 20-40 y. Probability first occurrence CA by 40 y: 41%.	 SQTS highly lethal at young age 11% genotype positive Prior ACA predicts recurrent CA: recommend ICD for these patients Gollob score did not predict risk
			p<0.0000001	
 Iribarren C et al. Ann Noninv ECG 2014 (413) <u>24829126</u> 	Study type: Retrospective <u>Size</u> : 1026	Inclusion criteria: Screened 6,387,070 ECG's in population of 1.7 million persons for QTc ≤300 msec Exclusion criteria: N/A	 <u>1° endpoint</u>: Prevalence, risk of death associated with Short QT during 8.3 y median followup <u>Results:</u> Prevalence 2.7/100,000, or 1/141,935 ECG's. Associations: age >65 y, AA race, prior Hx 	• QTc ≤300 msec: 2.6 fold increased risk death
			VA, COPD, ST changes QTc ≤300 msec assoc w increased mortality: HR: 2.6 (95% CI: 1.9–3.7)	
• Guerrier K et al. Circ Arrh EP 2015 (414)	Study type: Single center retrospective	Inclusion criteria: Screened 272, 504 ECG's <21 y for QTc≤340 msec	<u>1° endpoint</u> : Prevalence short QTc ≤340 msec in patients <21 y old, deaths	 Short QTc ≤340 msec prevalence 0.05% in <21 y old
• <u>26386018</u>	<u>Size</u> :	Exclusion criteria: N/A	Results: Prevalence 0.05%, 76% males Females shorter QTc 312 vs 323 msec, p=0.03 2 deaths: respiratory; dilated cardiomyopathy	 Short QT rare, increased prevalence in males

 Bun SS et al. JCE 	Study type: case	Inclusion criteria: 28 y old	1° endpoint: treatment electrical storm	 Case report efficacy of
2012 (415)	report	ACA while asleep, QTc 320	in short QTS	isoproterenol in treating recurrent
• 22493951		msec, admitted with		VF in short QT
	Size: 1	electrical storm, 8 VF	Results: isoproterenol infusion resulted	
		arrests while	in sinus rhythm	
		sedated/hypothermia		
		seddedynypothermid		
		Exclusion criteria: N/A		
		Exclusion enterna. N/A		
Dhutia Hietal Bril	Study type: single	Inclusion criteria: Healthy	1º and a inter Dravalance and significance	• Males Afro-Caribbean ethnicity
Charte Med 2016	Study type. Single	neerle eres 14, 25 v	<u>I enupoint</u> . Prevalence and significance	• Males, And-Calibbean etimicity
Sports Med 2016	center retrospective	people ages 14–35 y	of short QTS among healthy young	had strongest association with
(416)		undergoing screening with	individuals	short QI
• <u>26400956</u>	Size: screening	hx, PE, ECG		 Short QTc ≤320 msec: excellent
	18,825 patients		<u>Results:</u> QTc ≤320 msec: 0.1%, 26	medium term prognosis in young
		Exclusion criteria: N/A	patients	patients
			QTc ≤330 msec: 0.2%, 44	 Recommend using QTc ≤320
			patients	msec to prevent over-diagnosis
			QTc <380 msec: 7.9%, 1478	
			patients	
			QTc <390 msec: 15.8%, 2973	
			patients	
			Followup 5.3±1.2 y, no deaths	

Data Supplement 45. RCTs Related to VA in the Structurally Normal Heart – (Section 8)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
 Ling et al. 	Aim: to compare the	Inclusion criteria:	Intervention: RF catheter	1° endpoint: The 1° end	 RF Catheter ablation is
2014 (417)	efficacy of	(1)	ablation of RVOT	point was recurrence of	more effective than AAD
• <u>24523413</u>	radiofrequency catheter	frequent	Comparator:	RVOT VPBs at a rate of	for treatment of frequent
	ablation (RFCA) vs.	symptomatic VPBs	Antiarrhythmic		premature beats arising
		from the RVOT	medications		from the RVOT.

AAD for treatment	of documented by 12-	≥300 beats per day	
patients with frequ	ent lead	documented by 24 h	
ventricular prematu	ure ECG to have	Holter monitoring. The 2°	
beats (VPBs) origina	ating inferior axis and left	variables of interest	
from the right	bundle-branch	including the number of	
ventricular outflow	tract block (LBBB) QRS	VPBs, the burden	
(RVOT).	morphology	of VPBs (the number of	
	(2) >6000 VPBs per	VPBs/ total QRS	
Study type:	24h on Holter	complexes×100%), and	
Prospective, RCT	monitoring.	LVEF at each follow-up	
		time point were collected	
Size: 330 patients	Exclusion criteria:		
	(1) the presence of	During the 1y follow-up	
	non-RVOT	period, VPB	
	origin for VPBs	recurrence was	
	indicated by an S	significantly lower in	
	wave in lead I, R-	patients randomized to	
	wave duration	RFCA group (32 patients,	
	index in V1 and	19.4%) vs. AAD group (146	
	V2≥0.5, and R/S	patients, 88.6%; p<0.001,	
	wave amplitude	log-rank test). In a Poisson	
	index in V1 and	generalized estimating	
	V2≥0.311;	equations regression	
	(2) previous AAD	model, RFCA	
	therapy;	was associated with a	
	(3) evidence of any	greater decrease in the	
	structural	burden of VPBs (incidence	
	heart disease;	rate ratio: 0.105; 95% CI:	
	(4) hyperthyroidism	0.104–0.105; p<0.001)	
	or electrolyte	compared with AAD. In a	
	disturbance;	liner GEE model, the LVEF	
	(5) drug	had a tendency	
	toxicity;	to increase after the	
	(6) diabetes	treatment in both groups	
	mellitus;	(coefficient, 0.584; 95% CI:	
	(7) BP>165/100 mm	0.467–0.702; p<0.001).	
	Hg;		

		 (8) significant impairment of renal function; (9) QT interval>450 ms in the absence of bundle-branch block; (10) significant AV conduction disease and left or right bundle-branch block 			
Krittayaphong	Study type:	Inclusion criteria:	Intervention:	<u>1° endpoint:</u>	• BB may be useful for
et al. 2002 (94)	RCT	VA with LBBB,	Atenolol 50-100mg/day	Atenolol significantly	patients with RVOT and
• <u>12486439</u>	Aim: To dotorming the	inferior axis	Comparator: Diacobo	decreased PVC count	symptomatic VA.
	efficacy of atenolol in	Symptomatic (VA		(p=0.001) and average heart rate (n<0.001)	
	the treatment of	disturbed their		compared to placebo.	
	symptomatic VA from	daily activities)		Both placebo and atenolol	
	RVOT compared with			decreased symptom	
	placebo	Exclusion criteria		frequency.	
		SHD.			
	<u>Size:</u> 52				

Data Supplement 46. Nonrandomized Trials, Observational Studies, and/or Registries Related to Outflow Tract and AV Annular VA – (Section 8.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
 Liao et al. 2015 (418) 	Study type:	Inclusion criteria:	Results:	• Right ventricular outflow tract VAs may
• <u>26670064</u>	Single Center	Patients with idiopathic	Among 244 patients with	require ablation within the pulmonic
	Observational	VAs that were	LBBB and inferior QRS axis	valve sinus cusps.
		successfully ablated	VAs, 24 patients required	
	<u>Size</u> :	within the pulmonic	ablation within the pulmonic	
	24 patients	valve sinus cusps	sinus cusps.	

 Morady et al. 1990 (419) 2242533 	Study type: Single Center observational Size: 10 patients	Exclusion criteria: none Inclusion criteria: Consecutive patients undergoing DC Shock catheter ablation of RVOT VT Exclusion criteria: none	Successful ablation within the right PV sinus in 10 patients, the left sinus in 8, and anterior sinus in 6. There were no complications. <u>Results:</u> DC shock ablation in the RVOT rendered 9 of 10 patients free of VT over a mean follow-up of 33 <u>+</u> 18 mo. There were no complications.	• RVOT VT can be successfully ablated with DC shock ablation with high efficacy and low complications.
• Yamada et al. 2008 (420) • <u>18598894</u>	<u>Study type</u> : Single Center Observational <u>Size</u> : 265 patients	Inclusion criteria: Idiopathic VAs undergoing catheter ablation 44 patients with VAs mapped and ablated within the aortic sinuses	<u>Results:</u> Left coronary cusp in 24 patients (54.5%), Right coronary cusp in 14 patients (31.8%), Right-Left cusp junction in 5 patients (11.4%), and Noncoronary cusp in 1 pt. Successful catheter ablation in 44/44 patients (100%). No complications.	• The aortic valve sinuses are a common location of outflow tract arrhythmias that can be effectively and safely ablated with RF current.
 Yamada et al. 2010 (421) <u>20855374</u> 	Study type: Single Center Observational Size: 27 patients	Inclusion criteria: Among 221 consecutive patients with LV Idiopathic VAs, 27 patients had VAs mapped and ablated on the Summit of the LV Exclusion criteria: N/A	<u>Results:</u> Successful ablation from the Great Cardiac Vein in 14 patients and on the epicardial surface of the LV in 4. In 5 patients ablation abandoned because of origin in the inaccessible region. In 4 patients ablation abandoned due to close proximity to epicardial coronary artery.	• LV summit VAs may be ablated within the GCV or inferior to the GCV on the epicardial surface, though sites superior to the GCV are often inaccessible to ablation.

 Mountantonakis et al. 2010 (422) 20855374 	Study type: Single Center Observational Size: 47 patients	Inclusion criteria: Among 511 consecutive patients with non-scar related VAs, 47 patients were found to have a site of origin within the Coronary Venous System (CVS).	<u>Results:</u> Twenty-five (53%) were in the great cardiac vein, 19 (40%) in the anterior interventricular vein, and 3(7%) in the middle cardiac vein. Successful ablation achieved in 17 of 18 (94%) ablated at the earliest CVS site and in 16	• Although ablation at the earliest CVS site is effective, it is often (62%) precluded, mainly because of proximity to coronary arteries. Ablation at adjacent CVS and non-CVS sites can be successful in 55% of these anatomically challenging cases, for an overall ablation success rate of 70%.
		Exclusion enteria. N/A	adjacent CVS or non-CVS sites.	
 Doppalapudi et al. 2009 (423) <u>19121799</u> 	Study type: Single Center Observational Size: 4 patients	Inclusion criteria: Among 340 patients with idiopathic VT referred for ablation, four were identified with VT that was mapped to the epicardium at the crux. Exclusion criteria: N/A	<u>Results:</u> VT was sustained and rapid (mean cycle length 264 msec) in all patients and was associated with syncope or presyncope in three. VT was induced with programmed stimulation or burst pacing in all 4 patients but required isoproterenol infusion in three.	Idiopathic VT may arise by a focal mechanism from the epicardium at the crux in close proximity to the posterior descending coronary artery. This syndrome can result in rapid, catecholamine-sensitive VT and requires careful attention to the posterior descending coronary artery during ablation.
• Konstantinidou et al.	Single Center	Inclusion criteria:	Results: The RVOT was reached in all	• RVOT access is feasible with the Magnetic Navigation System, while RVOT
• <u>21307021</u>	Single Center Observational Size: 13 patients	with VT suggestive of RVOT origin with ablation guided by Magnetic Navigation <u>Exclusion criteria</u> : N/A	patients utilized solely with the Magnetic Navigation System. Successful RVOT ablation was achieved in (135) (92.3%) patients. No Complications occurred. During a mean follow-up of 252±211 d, clinical arrhythmia recurrence was observed in 1 of 13 (7.7%) patients.	fast, and effective.

• Ouyang et al. 2002	Study type:	Inclusion criteria:	Results:	• VAs may arise in either the right or left
(425)	Single Center	Consecutive patients	The RVOT was site of origin in	ventricular outflow tracts and can be
• <u>11823089</u>	Observational	with VAs from the right	7 patients and aortic sinuses	safely ablated with RF current.
		ventricular outflow tract	in 8 patients.	
	Size: 15 patients	or aortic sinuses	The left coronary cusp was	
			the site of origin in 5 of 7	
		Exclusion criteria: N/A	patients and the right	
			coronary cusp in 2 of 7	
			patients with aortic sinus VAs	
• Tada et al. 2005 (426)	Study type: Single	Inclusion criteria:	<u>Results:</u>	 VAs may arise from the anterolateral,
• <u>15766824</u>	Center Observational	Consecutive patients	Among 352 patients with	posterior, and posteroseptal regions of
		with VAs mapped to the	idiopathic VAs, 19 (5%) had	the mitral annulus and can be effectively
	Size: 19 patients	mitral valve annulus	mitral annular VAs.	and safely ablated with RF current.
			11 (58%) originated from the	
		Exclusion criteria: N/A	anterolateral mitral annulus,	
			2 from the posterior mitral	
			annulus, and 6 from the	
			posteroseptal mitral annulus.	
			Successful ablation achieved	
			in 19/19 patients (100%).	
			No complications observed.	
			Over a follow-up period of	
			21 <u>+</u> 15 mo, there were no	
			recurrences of VAs after	
			ablation.	
• Tada et al. 2008 (427)	Study type: Single	Inclusion criteria:	<u>Results:</u>	• A site of origin in the Pulmonary artery
• <u>18313601</u>	Center Observational	Cases of VAs mapped	Among 276 patients with VAs	should be suspected when mapping and
		and ablated within the	referred for RF ablation, 12	ablation of apparent RVOT VAs is not
	Size: 12 patients	Pulmonary Artery.	patients were identified with	successful within the RVOT. Ablation
			a successful site of catheter	within the pulmonary artery is safe and
		Exclusion criteria: N/A	ablation within the pulmonary	effectifve.
			artery.	
			All 12 patients had attempted	
			ablation within the RVOT with	

• Tada et al. 2007 (428) • <u>18313601</u>	Study type: Single Center Observational Size: 38 patients	Inclusion criteria: Consecutive patients with idiopathic VAs mapped and ablated on the tricuspid annulus Exclusion criteria: N/A	a change in the QRS morphology after ablation. A characteristic prepotential was recorded within the pulmonary artery in all patients. Ablation was successful within the pulmonary artery in 12/12 patients (100%). There were no complications. No recurrences of VAs were observed over a follow-up period of 27±13 mo. <u>Results:</u> Among 454 consecutive patients with idiopathic VAs, 38 patients (8%) were found to originate from the tricuspid annulus. 28 (74%) originated from the septal tricuspid annulus 10 (26%) from the freewall portion of the annuls. Catheter ablation eliminated 90% of freewall VAs but only 57% of septal tricuspid annular VAs. There were no complications.	• Tricuspid annular VAs are not rare and ablation has a higher efficacy for freewall than septal sites.
• Kamioka et al. 2015	Study type:	Inclusion criteria:	Results:	• LVOT VAs may arise above or below the
(429)	Single Center	Consecutive patients	Twelve patients had VAs	aortic valve. Prepotentials are recorded
• <u>25633492</u>	Observational	with LVOT Vas	mapped in the Aortic cusps,	at the site of successful ablation in the
	Size: 34 patients		and 22 patients had VAs	majority of patients with origin within the
		Exclusion criteria: N/A	mapped below the Aortic	aortic sinuses but are rarely recorded
			valve.	below the aortic valve.

			Pre-potentials recorded in	
			91% of Aortic Sinus VAs and	
			13% below the aortic valve.	
			VAs successfully ablated in	
			34/34 patients (100%)	
• Nagashima et al	Study type: Single Site	Inclusion criteria:	Results:	 Ablation within the GCV requires
2014 (430)	observational	30 patients with VAs with	Angiography in 27 natients	careful attention to the provimity of
• 25110162	observational	early activation within	showed earliest GCV site	coronary arteries with the notential for
• 25110105	Size: 20 patients	the Great Cardiac Voin	within 5 mm of a coronary	coronary arterial injuny
	<u>5126</u> . 50 patients		arton (in 20 (74%)	coronary arteriar injury.
		(GCV).	Ablation was performed in the	
		Fuchusian anitaria, N/A	Ablation was performed in the	
		Exclusion criteria: N/A	GCV III 15 patients and	
			abolished VA in 8. Ablation	
			was attempted at adjacent	
			non-GCV sites in 19 patients	
			and abolished VA in 5 patients	
			(4 from the left ventricular	
			endocardium and 1 from the	
			left coronary cusp).	
			After a median of 2.8 mo, 13	
			patients remained free of VA.	
			Major complications occurred	
			in 4 patients, including	
			coronary injury requiring	
			stenting.	
• Yamada et al. 2015	Study type: Single	Inclusion criteria:	Results:	 LVOT VAs originating from intramural
(431)	Center observational	64 consecutive patients	Among 64 patients, 14	foci could usually be eliminated by
• <u>25637597</u>	study	with symptomatic	patients were identified with	sequential unipolar radiofrequency
		idiopathic sustained VTs	intramural foci between the	ablation and sometimes required
	Size: 64 patients	(VTs) (N=14), NSVT	endocardium and epicardium	simultaneous ablation from both the
		(N=15), or premature	which required sequential or	endocardial and epicardial sides.
		ventricular contractions	simultaneous irrigated	
		(PVCs) (N=35), which	unipolar radiofrequency	
		presumed origins	ablation from the endocardial	
		identified in the AMC, LV		

		summit, or intramural	and epicardial sides for their	
		sites between the	elimination.	
		endocardium and	Simultaneous ablation was	
		epicardium.	most likely to be required	
			when the distance between	
		Exclusion criteria: N/A	the endocardial and epicardial	
		,	ablation sites was >8 mm and	
			the earliest local ventricular	
			activation time relative to the	
			QRS onset during the VAs was	
			<30 ms at both ablation sites.	
• Hai et al. 2015 (432)	Study type: Single	Inclusion criteria:	Results:	 Specific identification and targeting of
• 25637597	Center observational	All patients who	Among 21 patients.	PPs when ablating VAs at the AMC may
	study	underwent successful	prepotentials (PPs) were	improve procedural success.
		catheter ablation of VAs	found at the ablation sites	r r
	Size: 21 patients	at the Aortomitral	preceding the ventricular EGM	
	<u> </u>	Continuity (AMS)	during arrhythmias in 13	
			(61.9%) patients and during	
		Exclusion criteria: N/A	sinus rhythm in 7 (53.8%)	
		· · · · · · · · · · · · · · · ·	patients.	
			VAs with PPs were associated	
			with a significantly higher	
			burden of premature	
			ventricular complexes (PVCs;	
			26.1±10.9% vs. 14.9±10.1%,	
			p=0.03), shorter ventricular	
			EGM to QRS intervals	
			(9.0±28.5 msec vs. 33.1±8.8	
			msec, p=0.03), lower pace	
			map scores (8.7±1.6 vs.	
			11.4±0.8, p=0.001), and a	
			trend toward shorter V-H	
			intervals during VA (32.1± 8.6	
			msec vs. 76.3±11.1 msec,	
			p=0.06) as compared to those	
			without PP.	

• Yamada et al. 2010	Study type: Single	Inclusion criteria:	Results:	• The MDI has limited value for
(433)	Center observational	All patients who	48 consecutive patients	discriminating endocardial from
• <u>19804552</u>	study	underwent successful	undergoing successful	epicardial VA origins in sites adjacent to
		catheter ablation of VAs	catheter ablation of idiopathic	the LSOV probably due to preferential
	Size: 21 patients	at the Aortomitral	VAs originating from the left	conduction, intramural VA origins or
		Continuity (AMS)	coronary cusp (LCC, N= 29),	myocardium in contact
			aortomitral continuity (AMC,	with the LCC.
		Exclusion criteria: N/A	N=10) and great cardiac vein	
			or anterior interventricular	
			cardiac vein (Epi, N= 9).	
			An S wave in lead V5 or V6	
			occurred significantly more	
			often during both the VAs and	
			pacing from the AMC than	
			during that from the LCC and	
			Epi (p<0.05 vs. p=0.0001). For	
			discriminating whether VA	
			origins can be ablated	
			endocardially or epicardially,	
			the maximum deflection index	
			(MDI = the shortest time to	
			the maximum deflection in	
			any precordial lead/QRS	
			duration) was reliable for VAs	
			arising from the AMC (100%),	
			but was less reliable for LCC	
			(73%) and Epi (67%) VAs. In 3	
			(33%) of the Epi VAs, the site	
			of an excellent pace map was	
			located transmurally opposite	
			to the successful ablation site	
			(LCC = 1 and AMC = 2).	

Study Acronym; Author:	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values: OR or RR:	Summary/Conclusion Comment(s)
Year Published	,		& 95% CI)	
 Doppalapudi et al. 2008 (434) <u>19808390</u> 	Study type: Single Site Observational Size: 9 patients	Inclusion criteria: VT mapped to the Posterior Papillary Muscle of the LV Exclusion criteria: none	Among 290 patients with idiopathic VAs, 7 were found to have origin in the Posteromedial PM. All patients had RBBB and Superior QRS axis. No patient had SHD. VT had focal mechanism, sensitive to catecholamines <u>Results:</u> Successful catheter ablation in all patients without complications.	• Posteromedial papillary muscle VT is catecholamine sensitive with a focal mechanism that is amendable to catheter ablation. Catheter stability may be difficult and multiple RF applications are usually required.
 Yamada et al. 2010 (435) <u>20558848</u> 	Study type: Single Site Observational Size: 19 patients	Inclusion criteria: VT mapped to the Posteromedial or Anterolateral Papillary Muscles of the LV Exclusion criteria: none	Among 159 consecutive patients with idiopathic VAs mapped to the LV, the site of origin was in the Posteromedial PM in 12 and the Anterolateral PM in 7. <u>Results:</u> Successful ablation was achieved in 19/19 patients. Multiple QRS morphologies were observed in 47% of patients and in 7 patients ablation on both sides of the PM were required. No complications were observed. Recurrence of PM VAs was observed in 2/19 patients.	 VT of focal origin may occur in either the posteromedial of the anterolateral PMs of the LV. Catheter ablation often requires multiple RF applications over a wide area suggesting an origin deep within the PM. The recurrence risk after initially successful ablation is higher than for many other forms of idiopathic VT.

Data Supplement 47. Nonrandomized Trials, Observational Studies, and/or Registries of Catheter Ablation in Papillary Muscle VA - (Section 8.2)

• Yokokawa et al. 2010 (436) • <u>20637311</u>	Study type: Single Site Observational Size: 40 patients	Inclusion criteria: VT mapped to the Posteromedial or anterolateral Papillary Muscles of the LV Exclusion criteria: None	Results40 consecutive patientsreferredfor ablation of symptomaticpremature ventricularcomplexes(PVCs) (N=19) or VT (VT)(N=21) originating from aPapillary muscle in the LV(N=32) or RV (N=8).Antiarrhythmic drugs failed tocontrol the VAs in 24 patients.20 of 40 patients (50%) hadSHD: prior MI in 10 patients,dilated cardiomyopathy in 9,and VHD in 1 pt.Catheter ablation was acutelysuccessful in 33 of 40 patients(83%).Pleomorphic QRSmorphologies observed in31/40 patients.By MRI, the mass of thearrhythmogenic PM wasgreater in patients with failedthan successful ablations.In follow-up, the PVC burdenwas and wood from 15% +11%	 VAs may originate in the papillary muscles of both the LV and the RV. PVCs from the papillary muscles are often pleomorphic. Catheter ablation is successful in over 80% of cases, with greater mass of the papillary muscle predicting lower efficacy of ablation.
			In follow-up, the PVC burden was reduced from 15% <u>+</u> 11%	
			to 3% <u>+</u> 3%; p<0.01) after successful ablation.	
• Crawford et al. 2010	Study type: Single	Inclusion criteria:	Results:	 PVCs and VT may originate in the RV
(437)	Site observational		A total of 15 distinct PAP VAs	PAPs. Radiofrequency ablation is
• 20206325			was manned to the nosterior	effective in eliminating these
<u>ZUZU03Z5</u>			was mapped to the posterior	enective in eliminating these

	Size: 8 patients	VAs mapped to the	(N=3), anterior (N=4), or	arrhythmias with low risk of
		papillary muscles in the right ventricle.	septal (N=8).	complications.
			Successful ablation achieved	
		Exclusion criteria: none	in all 8 patients.	
			The PVC burden was reduced	
			from 17% <u>+</u> 20% preablation to	
			0.6% <u>+</u> 0.8% postablation.	
• Ban et al. 2013 (438)	Study type: Single	Inclusion criteria:	<u>Results:</u>	 In PMVT, a high-amplitude, discrete
• <u>24385992</u>	Site Observational	Among 284 patients with	Successful catheter ablation	potential before the QRS and slow down-
		idiopathic VAs	was achieved in 7 of 8 (87.5%)	stroke of the initial Q wave on the
	Size: 12 patients	undergoing ablation, 12	patients with high amplitude	unipolar electrogram at ablation sites are
		patients were identified	electrograms at the earliest	related to favorable outcome after RF
		with VAs originating from	site of origin.	catheter ablation.
		the Papillary Muscles of	The 4 patients with low	
		the LV.	amplitude and fractionated	
			electrograms had recurrences	
			of VAS after ablation.	
			The mean duration from	
			onset to peak downstroke (Δt)	
			on the unipolar electrogram	
			was significantly longer in the	
			successful group than in the	
			recurrence group (58±8 ms vs.	
			37±9 ms, p=0.04). A slow	
			downstroke >50 ms of the	
			initial Q wave on the unipolar	
			electrogram at ablation sites	
			was also significantly	
			associated with successful	
			outcome (85.7% vs. 25.0%,	
			p=0.03).	

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
 Nogami et al. 2000 	Study type:	Inclusion criteria:	<u>Results:</u>	• Verapamil sensitive idiopathic LV VT is
(439)	Multicenter	20 consecutive patients	Sustained VT could be	a reentrant tachycardia involving a
• <u>10987604</u>	Observational	with verapamil-sensitive	induced by programmed	discrete longitudinal pathway in the LV
		left VT	electrical stimulation,	septum and retrograde conduction over
	Size: 20 patients	exhibiting a RBBB and	entrained by rapid ventricular	the His Purkinje network. Catheter
		left-axis deviation QRS	pacing, and terminated by	ablation is highly successful with a low
		who underwent RF	verapamil in all patients.	risk of complications.
		ablation.	Two discrete potentials could	
			be recorded on the LV septum	
		Exclusion criteria:	with antegrade conduction	
		None	(P1) and retrograde	
			conduction (P2).	
			RF current applied to the exit	
			site of P1 terminated VT in all	
			patients.	
			The interval between the LV	
			and the P1 potential	
			demonstrated decremental	
			conduction and verapamil	
			sensitivity.	
• Liu et al. 2015 (440)	Study type:	Inclusion criteria:	Results:	Ablation of FVT guided by activation
• <u>10987604</u>	Single Center	Consecutive patients	120 patients with idiopathic	mapping is associated with a single
	Observational	with Idiopathic fascicular	fascicular VT (mean age,	procedural success rate of 80.3% without
		VT undergoing catheter	29.3±12.7 y; 82% men; all	the use of AAD.
	Size: 120 patients	ablation.	with normal EF).	
		_	Catheter ablation acutely	23 patients (20%) developed new onset
		Exclusion criteria:	successful in 117 of 120	LPF block, whereas 67 patients (58.3%)
		None	patients. Over median follow-	exhibited rightward shift in their frontal
			up of 55.7 mo, VI recurred in	axis compared with baseline.
			1/ patients, all successfully re-	There were no complications from the
			ablated.	procedure.

Data Supplement 48. Nonrandomized Trials, Observational Studies, and/or Registries Related to Interfascicular Reentrant VT (Belhassen Tachycardia)- (Section 8.3)

• Lin et al. 2005 (441)	Study type:	Inclusion criteria:	Results:	• A linear ablation lesion perpendicular
• <u>26386017</u>	Single Center	Consecutive patients	Among 15 patients with	to the long axis of the LV across the left
	Observational	with idiopathic fascicular	idiopathic fascicular VT, 6	side of the interventricular septum is an
		VT undergoing catheter	(40%) had VT that was not	effective ablation strategy for patients
	Size: 15 patients	ablation	inducible with programmed	with idiopathic fascicular VT that is non-
			stimulation and isoproterenol.	inducible.
		Exclusion criteria:	For these patients, a linear	
		N/A	lesion was placed	
			perpendicular to the long axis	
			of the ventricle approximately	
			midway from the base to the	
			apex in the region of the mid	
			to mid-inferior septum.	
			Left posterior fascicular block	
			developed in 2 of 6 patients.	
			No spontaneous arrhythmias	
			occurred during follow-up to	
			16±8 mo (range 6–30 mo).	

Data Supplement 49. Nonrandomized Trials, Observational Studies, and/or Registries Related to Idiopathic Polymorphic VT/VF - (Section 8.5)

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
 Haïssaguerre et 	Study type:	Inclusion criteria:	Results:	 Idiopathic VF is often triggered by short
al. 2002 (442)	Multi-Center	16 patients with	16 patients with idiopathic VF	coupled PVCs from the RVOT or the
• <u>11879868</u>	Observational	idiopathic VF treated with	triggered by short coupled PVCs	Purkinje system. The initiating focus can
		catheter ablation	(mean 300 msec). The mean PVC	be successfully ablated with low risk of
	Size: 16 patients		frequency per day was 9618.	complications.
		Exclusion criteria: N/A	The initiating focus was in the	
			RVOT in 4 patients, the RV	
			Purkinje in 4 patients, the LV	
			Purkinje in 7 patients, and both	
			the RV and LV Purkinje in 1 pt.	

• VALIANT • Solomon et al. 2005 (30) • <u>15972864</u>	Aim: To evaluate risk and predictors of SCD in patients post MI with left ventricular dysfunction and/or HF Study type: Observational study of patients enrolled in a RCT Size: 14,609 patients	Inclusion criteria: Patients with first or subsequent MI with HF, LV dysfunction, or both Exclusion criteria: ICD in place prior to randomization	Initially successful ablation of the triggering PVC focus in 16/16 patients. Long term freedom from VF observed in 13 patients. Intervention: Analysis of rates of SCD. Evaluation of EF determined by echocardiography as well as other parameters. Comparator: N/A <u>1° endpoint</u> : The risk of sudden deathwas greatest in the first 30 d after MI: 1.4% per mo, 95% CI: 1.2%–1.6% and decreased to 0.14% per mo 95% CI: 0.11%– 0.18% after 2 y after MI. Patients with LVEF <30% were at the greatest risk for SCD	• Each 5% lower LVEF was associated with a 21% increase in adjusted risk of SCD or CA with resuscitation.
 Linzer et al. 1990 (25) <u>2371954</u> 	Study type: observational Size: 57	Inclusion criteria: Syncope with negative Holter Exclusion criteria: Patients who had undergone electrophysiology study	<u>1° endpoint</u> : Monitor up to 1mo with Loop <u>Results:</u> arrhythmia was the cause of symptoms (diagnostic yield 25%; 95% Cl: 14–38%). VT (1 patient), high grade AV block (2 patients), supraventricular tachycardia (1 patient), asystole or junctional bradycardia from neutrally mediated syncope (3 patients) and normal cardiac rhythms (the remaining 7 patients).	 25% yield for syncope Dx after negative Holter VT/VF uncommon (1 pt)
• Noda et al. 2005 (443)	Study type: Single Center Observational	Inclusion criteria:	Results:	• PVCs from the RVOT may trigger VF when the coupling interval is short (<320

• <u>16198845</u>	<u>Size</u> : 16 patients	16 patients who had documented VF or syncope out of a total of 101 patients with RVOT VAs undergoing catheter ablation	Holter monitoring showed frequent PVCs with LBBB inferior QRS axis with mean coupling interval of 245 <u>+</u> 28 msec. RF ablation targeting the initiating PVC focus acutely successful in 16/16 patients. Over mean follow-up period of 54±39 mo, no recurrences of syncope or VF.	msec). The long term outcome after ablation of the triggering focus is excellent.
 Haissaguerre et al. 2002 (444) <u>12186801</u> 	Study type: Multicenter Observational Size: 27 patients	Inclusion criteria: 27 patients undergoing catheter ablation of idiopathic VF without SHD	<u>Results:</u> Premature beats were elicited from the Purkinje conducting system in 23 patients: from the left ventricular septum in 10, from the anterior right ventricle in 9, and from both in 4, and from the RVOT in 4 patients. The interval from the Purkinje potential to the following myocardial activation varied from 10–150 ms during premature beat but was 11±5 ms during sinus rhythm, indicating location at peripheral Purkinje arborization. The accuracy of mapping was confirmed by acute elimination of premature beats during local radiofrequency delivery. During a follow-up of 24±28 mo, 24 patients (89%) had no recurrence of VF without drug	• Idiopathic VF can be successfully ablated by targeting the initiating focus which is usually in the Purkinje system or RVOT.
• Van Herendael et	Study type: Single	Inclusion criteria:	Results:	 Catheter ablation of VPD-triggered
al. 2014 (445)	Center Observational	30 patients from among	In 21 patients, VF/PMVT occurred	VF/PMVT is highly successful. Left
• <u>24398086</u>	Size: 30 nationts	1132 consecutive	in the setting of cardiomyopathy;	ventricular outflow tract and papillary
	Size: 30 patients	patients undergoing	I IN 9 patients, VF/PIVIVT was	muscles are common and are previously

• Sadek et al. 2015 (446) • <u>25240695</u>	Study type: Single Center Observationa. Size: 10 patients	catheter ablation of VAs of all types	idiopathic. The origin of VPD trigger was from the Purkinje network in 9, papillary muscles in 8, left ventricular outflow tract in 9, and other low-voltage areas unrelated to Purkinje activity in 4. Acute VPD elimination was achieved in 26 patients (87%), with a decrease in VPDs in another 3 patients (97%). During median follow-up of 418 d (interquartile range [IQR] 144- 866), 5 patients developed a VF/PMVT recurrence after a median of 34 d. Results: VF was the clinical arrhythmia in 7 patients and monomorphic VT in 3 patients. Six patients required a repeat procedure. After mean follow-up of 21.5±11.6 mo, all patients were free of sustained VAs, with only 1 patient requiring AAD therapy and 1 patient having isolated PVCs no longer inducing VF. There were no procedural complications.	 unrecognized sites of origin of these triggers in patients with and without SHD. VAs originating from the moderator band may present with VF. Catheter ablation is effective, though the risk of requiring more than one procedure may be higher than for other sites.
 Tester DJ et al. Mayo Clinic Proc 2011 (447) <u>21964171</u> 	Study type: retrospective single center Size: 35	Inclusion criteria: Unexplained drowning patients 1988-2010 molecular autopsy, mean age 17±12 y (4-69 y). 28 swimming (age 15.7 y), 7 bathtub (age 23 y). PCR	1° endpoint: genetic mutation yield in unexplained drowning victims <u>Results:</u> 23% positive mutations, 8/28 swimming, 0/7 bathtub Pos family Hx 43%: syncope, seizures, CA, near-drowning or	• Recommend genetic screening for unexplained drowning, especially if positive family Hx of drowning, prolonged QTc

		DNA sequencing for LQTS 1-3, RYR2 <u>Exclusion criteria</u> : N/A N/A	drowning. Among 11 patients with positive personal or family hx, 64% gene positive	
• Tzimas I et al. Int	Study type:	Inclusion criteria:	<u>1° endpoint</u> : Testing mutations in	 NOS1AP mutation of KCNq1 may be
J Legal Med 2016	retrospective	Genotyping performed in	19 variants in drowning/water	significant in drowning victims.
(448)		corpses found in water:	related deaths.	 Recommend molecular autopsy in
• <u>27460199</u>	<u>Size</u> : 171	drowning, unclear deaths.		unexplained water deaths.
			Results: one SNP of KCNQ1 noted	
		Exclusion criteria: N/A	NOS1AP significance	
 Anderson JH et 	Study type:	Inclusion criteria:	<u>1° endpoint</u> : yield of genetic	• In decedents with exertion related SUD
al. Circ CV Gen	retrospective single	Exertion related SUDY	testing in decedents with exercise	<20 y, overall yield 44%,
2016 (449)	center	decedents (sudden	related sudden death	• Yield higher in probands <11 y.
• <u>27114410</u>		unexplained death in		
	<u>Size</u> : 32	young)	<u>Results:</u> PCR DNA testing putative	
		ages 1-19 y	mutation in 34% (11 patients,	
		Mean age 11±5 y Family	LQTS, CPVT).	
		HX SCD age <50 y In 10%	Subsequent WES performed in 21	
			patients, yield 3/21, 14%	
		Nolecular autopsy 1998-	(calmodulin 2, PKP2 1-ARVC).	
		2010.	Calmodulin deaths 2, 5 y.	
		followed by whole-exome	Viold higher among decodents	
		sequencing	area $1-10 \times (91\%) \times 11-10 \times 10^{-10}$	
		sequencing	(19%) n=0.0001	
		Exclusion criteria: N/A	(1370), p=0.0001	
• Wang D et al.	Study type:	Inclusion criteria: SUD	1° endpoint: Yield of	• Overall genetic testing positive in
Forensic Sci Int	Retrospective cohort	channelopathy genetic	channelopathy genetic screening	13.5%–19.5% of autopsy negative sudden
2014 (450)		testing in NYC 2008-2012.	in ethnically diverse population of	death
• <u>24631775</u>	<u>Size</u> : 274	LQTS, RYR2 testing.	SUCD	• "Genetic testing information should be
		Ages ≤1 y, 141 patients,		provided to the family members with
		51%,	Results: Gene positive: 13.5%	proper counseling along with the choices
		Age 1–58 y, 133 cases,	infants, 19.5% older	of further clinical evaluation"

		African Americans 48%, Hispanic 22%, Caucasian 16% <u>Exclusion criteria</u> : autopsy positive	SCN5A positive, 68% infants, 50% non-infants AA carried more SCN5A, KCNQ1 variants vs other ethnic groups; Whites: more RYR2 LQTS more prevalent during sleep related deaths, RYR2 active	
 Kumar S et al. Heart Rhythm 2013 (451) <u>23973953</u> 	<u>Study type</u> : <u>Size</u> : 502	Inclusion criteria: Autopsy negative sudden unexplained death syndrome (SADS) and unexplained CA (UCA) (patients resuscitated successfully), mean age 32 y. Clinical evaluation (ECG, EST, echo) w targeted genetic testing. SADS mean age 24 y, UCA 32 y. Exclusion criteria: N/A	<u>1° endpoint</u> : Evaluate yield of comprehensive evaluation of SADS and UCA <u>Results:</u> SADS: yield 18%; LQTS in young ≤20 y; Brugada in age ≥40 y. UCA: yield 62%: mainly LQTS and BrS; CPVT, ER, ARVC, Short QT. Targeted genetic tesing in patients with proven or suspected phenotoype: molecular dx SADS 35%, UCA 48%.	 Clinical + targeted genetics yield: SADS: 18%, UCA 62% Inherited cardiac disease diagnosed only in families with multiple events Recommend ongoing periodic clinical evaluation of children/young family members for developing disease

Data Supplement 50. Nonrandomized Trials, Observational Studies, and/or Registries of PVC-induced Cardiomyopathy - (Section 9)

Study Acronym; Author; Year	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
Published			a 11	
• Ban et al.	Study type:	Inclusion criteria:	Results:	• A PVC burden >26%/d
2013 (452)	Single Site	PVC burden >10%	Left ventricular dysfunction (EF	predicts LV dysfunction
• <u>23194696</u>	Observational	per 24 h and no	<50%) was present in 28 of 127	with sensitivity of 70%
		known SHD	patients (22.0%). The mean PVC	and specificity of 78%.
	<u>Size</u> : 127		burden (31 <u>+</u> 11 vs. 22 <u>+</u> 10%,	Thus, PVC induced LV
	patients		p<0.001), the presence of non-	dysfunction is reversible

		Exclusion	sustained VT (53.6 vs. 33.3%	with catheter ablation
		criteria: SHD	n < 0.05) and the presence of a	though there is wide
		<u>entena</u> . snb	retrograde D wave following a	variability in the DVC
			$P_{\rm L}$ (64.2 yr 20.2% p=0.001)	burden associated with
			PVC (04.3 VS. 30.3%, $p=0.001$)	
			were significantly greater in those	reduced LVEF.
			with LV dysfunction than in those	
			with normal LV function. The cut-	
			off PVC burden related to LV	
			dysfunction was 26%/day, with a	
			sensitivity of 70% and a specificity	
			of 78%.	
			The origin sites of PVCs, the acute	
			success rate, and the recurrence	
			rate during follow-up after RFCA	
			were similar. In a multivariate	
			analysis, the PVC burden (OR:	
			2.94; 95% CI: 0.90–3.19, p=0.006)	
			and the presence of retrograde P-	
			waves (OR: 2,79: 95% CI: 1,08-	
			7 19 n=0 034) were	
			independently associated with	
			PVC-mediated LV dysfunction	
•	Study type:	Inclusion criteria:	Results:	 Idionathic VE is often
Haïssaguerre	Multi-Center	16 natients with	16 natients with idionathic VE	triggered by short
	Observational	idionathic VE	triggered by short coupled PVCs	coupled PVCs from the
(112)	Observational	treated with	(mean 300 msec) The mean BVC	RVOT or the Purkinia
(442) ● 11970969	Size: 16	cathotor ablation	frequency per day was 0618	system The initiating
• 1187 5808	<u>Size</u> . 10		The initiating focus was in the	focus con ho succossfully
	patients	Evolution	DVOT in A notion to the DV	ablated with low risk of
			RVOT IN 4 patients, the RV	ablated with low risk of
		criteria: N/A	Purkinje in 4 patients, the LV	complications.
			Purkinje in / patients, and both	
			the RV and LV Purkinje in 1 pt.	
			Initially successful ablation of the	
			triggering PVC focus in 16/16	
			patients.	
			Long term freedom from VF	
			observed in 13 patients.	

•	Study type:	Inclusion criteria:	Re	esults:	 Idiopathic VF can be
Haissaguerre	Multicenter	27 patients	Pre	remature beats were elicited	successfully ablated by
et al. 2002	Observational	undergoing	fro	om the Purkinje conducting	targeting the initiating
(444)	<u>Size</u> : 27	catheter ablation	sys	ystem in 23 patients: from the	focus which is usually in
• <u>12186801</u>	patients	of idiopathic VF	lef	eft ventricular septum in 10,	the Purkinje system or
		without SHD	fro	om the anterior right ventricle	RVOT.
			in	9, and from both in 4, and from	
			the	ne RVOT in 4 patients.	
			Th	he interval from the Purkinje	
			ро	otential to the following	
			m	hyocardial activation varied from	
			10	0–150 ms during premature	
			be	eat but was 11±5 ms during	
			sin	nus rhythm, indicating location	
			at	t peripheral Purkinje	
			art	rborization.	
			Th	he accuracy of mapping was	
			col	onfirmed by acute elimination of	
			pre	remature beats during local	
			rad	adiofrequency delivery. During a	
			fol	ollow-up of 24±28 mo, 24	
			pa	atients (89%) had no recurrence	
			of	f VF without drug	
• Lee et al.	Study type:	Inclusion criteria:	<u>1°</u>	endpoint: All cause mortality	 ICD was not associated
2015 (453)	Single Center,	Continuous Flow			with improved survival.
• <u>25940215</u>	Retrospective	LVAD only	<u>Re</u>	esults:	
	review, 2004–		• 6	64 patients. Had ICDs.	
	2013	Exclusion	• [Death occurred in 15 (38%)	
		<u>criteria</u> : N/A	pa	atients in the no ICD group vs.	
	<u>Size:</u> 100		18	8 (30%) in the ICD group.	
			Un	nivariate analysis demonstrated	
			an	marginal early survival benefit	
			at	t up to 1 y. No difference after 1	
			у.		
			• N	Multivariate analysis did not	
			she	now any significant predictor of	
			sui	urvival.	

			• No patients died of SCD.	
Carballeira	Study type:	Inclusion criteria:	Results:	• A QRS duration >153
Pol et al.	Single Site	Consecutive	Of the 45 patients studied, 28	msec of high frequency
2014 (454)	Observational	patients without	patients (62%) developed PVC-	PVCs and a non-outflow
• <u>24184787</u>		SHD who had	related LV dysfunction and 17	tract site of origin are
	Size: 45	>10% PVCs/d and	patients (38%) remained with	predictors of developing
	patients	normal LVEF	normal LV function.	PVC-induced LV
		(>0.55) who were	The PVC burden was similar	dysfunction.
		observed.	(26.5% vs 26%) between the two	
			groups (p=NS).	
		Exclusion	The QRS duration was	
		criteria:	significantly greater for those who	
		Structural Heart	developed LV dysfunction than	
		Disease	those who did not (159 vs 142	
			msec, p<0.001).	
			A PVC QRS duration >153 msec	
			best predicted the development	
			of LV dysfunction (sensitivity 82%	
			and specificity 75%).	
			A non-outflow tract site of origin	
			was also an independent	
			predictor of LV dysfunction.	
• Deyell et al.	Study type:	Inclusion criteria:	Results:	 For patients with a PVC
2012 (455)	Single Center	114 consecutive	Over a median follow-up of 10.6	burden >10%/d, LV
• <u>22640894</u>	observational	patients with PVC	mo, 24 of 48 patients with LV	dysfunction may reverse
		burden >10%/d	dysfunction were classified as	after successful catheter
	<u>Size</u> : 114	undergoing	reversible and 13 of 48 as	ablation. The more
	patients	catheter ablation.	irreversible and 11 of 44 were	prolonged the QRS
		66 patients had	excluded due to failed ablation.	duration of the PVC the
		preserved LV		higher the risk that LV
		function and 48	There was a gradient of VPD QRS	dysfunction will not
		patients had	duration between the control,	improve.
		impaired LV	reversible, and irreversible groups	
		function	(mean VPD QRS 135, 158, and 173	
			ms, respectively; p<0.001). This	
		Exclusion	gradient persisted even for the	
		criteria:	same site of origin. In multivariate	

		Structural Heart	analysis, the only independent	
		Disease	predictor of irreversible LV	
			function was VPD QRS duration	
			OR: 5.07; 95% CI: 1.22–21.01 per	
			10-ms increase).	
• Del Carpio	Study type:	Inclusion criteria:	Results:	 A higher PVC burden
Munoz et al.	Single Center	70 patients	Patients with reduced LVEF	and prolonged QRS
2011(456)	Observational	undergoing PVC	(N=17) as compared to normal	duration during PVCs
• 21332870		ablation without	LVEF (N=53) had an increased	may predict patients with
	Size: 70	SHD.	burden of PVCs (29.3±14.6% vs	reversible, PVC-induced
	patients	Exclusion	16.7±13.7%, p=0.004), higher	CM.
	l .	criteria:	prevalence of NSVT (VT) [13 (76%)	
		Known SHD	vs 21 (40%), p=0.01], longer PVC	
			duration (154.3±22.9 vs	
			145.6±20.8 ms, p=0.03) and	
			higher prevalence of multiform	
			PVCs [15 (88%) vs 31 (58%).	
			p=0.04].	
			There was no significant	
			difference in prevalence of	
			sustained VT. ORS duration of	
			normally conducted complexes.	
			PVC coupling interval, or delay in	
			PVC intrinsicoid deflection.	
• Olgun et al.	Study type:	Inclusion criteria:	Results:	• The presence of
2011 (457)	Single Center	51 consecutive	Fourteen of the 21 patients (67%)	interpolated PVCs was
• 21376837	Observational	patients with	with cardiomyopathy had	predictive of the
		PVCs undergoing	interpolated PVCs, compared with	presence of PVC -related
	Size: 51	24 h Ambulatory	only 6 of 30 patients (20%)	cardiomyopathy.
	patients	Monitoring,	without PVC-induced	Interpolation may play an
		including 21	cardiomyopathy (p<0.001).	important role in the
		patients with	Patients with interpolated PVCs	generation of PVC-
		PVC-induced	had a higher PVC burden than	induced cardiomyopathy.
		cardiomyopathy	patients without interpolation	
		and 30 patients	(28%±12% vs. 15%±15%;	
		without	p=0.002). The burden of	
		cardiomyopathy.	interpolated PVCs correlated with	

	the presence of DV/C			
	une presence of PVC			
	cardiomyopathy (21%±30% vs.			
	4%±13%; p=0.008). Both PVC			
	burden and interpolation			
	independently predicted PVC-			
	induced cardiomyopathy (OR:			
	1.07; 95% CI: 1.01–1.13, p=0.02;			
	and OR: 4.43; 95% CI: 1.06–18.48,			
	p=0.04, respectively). The			
	presence of ventriculoatrial block			
	at a ventricular pacing cycle			
	length of 600 ms correlated with			
	the presence of interpolation			
	(n=0.004) Patients with			
	internolation had a longer mean			
	ventriculoatrial block cycle length			
	than nationts without			
	interpolated DVCc (520+110 mc			
	$\frac{1}{100} \frac{1}{100} \frac{1}$			
	vs. 394±92 ms; p=0.01).			
idemir <u>Study t</u>	• IICMP was relatively			
2011 Single C	Patients with TICMP compared to common (~1 in every 15			
Observ	patients with preserved LVEF patients) in our study			
<u>35667</u>	were more likely to be male (65% population. The			
<u>Size</u> :	vs 39%, p=0.043) and predictors of TICMP were			
patient	asymptomatic (29% vs 9%, male gender, absence of			
	p=0.018), and were more likely to symptoms, PVC burden			
	have higher PVC burden (29.4±9.2 of ≥16%, persistence of			
	vs 8.1±7.4, p<0.001), persistence PVCs throughout the day,			
	of PVCs throughout the day (65% and the presence of			
	vs 22%, p=0.001), and repetitive repetitive monomorphic			
	monomorphic VT (24% vs 0.9%, VT			
	p<0.001). PVC burden of 16% by			
	ROC curve analysis best separated			
	the patients with TICMP			
	compared to patients with			
	preserved LVEE (sensitivity 100%			
	monomorphic VT (24% vs 0.9%, p<0.001). PVC burden of 16% by ROC curve analysis best separated the patients with TICMPVT			
			specificity 87%, area under curve	
----------------------------------	---------------------	---------------------	-------------------------------------	--
• Daman at	Churchy trypos		0.96).	• A DVC burden of > 240/
• Barnan et	<u>Study type</u> :		Results:	• A PVC burden of >24%
al. 2010 (459)	Single Center	consecutive	A reduced LVEF (mean 0.3/±0.10)	was independently
• <u>20348027</u>	Observational	group of 1/4	was present in 57 of 174 patients	associated with PVC-
	c: 171	patients referred	(33%). Patients with a decreased	induced cardiomyopathy.
	<u>Size</u> : 1/4	for ablation of	EF had a mean PVC burden of	
	patients	frequent	33%±13% as compared with those	
		idiopathic PVCs	with normal left ventricular	
			function 13%±12% (p<0.0001). A	
		Exclusion	PVC burden of >24% best	
		<u>criteria</u> :	separated the patient population	
		Structural Heart	with impaired as compared with	
		Disease	preserved left ventricular function	
			(sensitivity 79%, specificity 78%,	
			area under curve 0.89) The lowest	
			PVC burden resulting in a	
			reversible cardiomyopathy was	
			10%.	
 Kanei et al. 	Study type:	Inclusion criteria:	<u>Results:</u>	 A new index, which
2008 (460)	Single Center	Consecutive	24 patients had <1000 PVCs/24 h,	incorporates PVC burden,
• <u>20348027</u>	Observational	group of 108	55 patients had 1000–10,000	QRS width and presence
		patients referred	PVCs/24 h, and 29 patients had	of SHD or suspected EPI
	<u>Size</u> : 108	for evaluation of	≥10,000 PVCs/24 h. The	origin that best predicted
	patients	frequent	prevalence of LV dysfunction was	PVC-CMP.
		idiopathic PVCs	4%, 12%, and 34%, respectively	
		from the RVOT	(p=0.02). With logistic regression	
			analysis, non-sustained VT was an	
		Exclusion	independent predictor of LV	
		<u>criteria:</u>	dysfunction with OR: 3.6; 95% CI:	
		Structural Heart	1.3–10.1).	
		Disease		
Hamon et	Study type:	Inclusion criteria:	Results:	• LV dysfunction in the
al. 2016 (461)	Single Center	107 consecutive	Patients with decreased LV	setting of frequent,
• <u>26924618</u>	Observational	patients (69 men;	function had a greater PVC	idiopathic PVCs may
		mean age =	burden on a 24-hour Holter	represent a form of

Size: 107	56±16 y) with	monitor than patients with	cardiomyopathy that can
patients	frequent PVC	normal EF (37%±13% vs.	be reversed by catheter
	(23.1±11.5%)	11%±10% of all QRS complexes;	ablation of the PVCs.
	referred for PVC	p<0.0001). There was a significant	
	ablation.	inverse correlation between the	
		PVC burden and the EF before	
	Exclusion	ablation (r=0.73, p<0.0001).	
	<u>criteria</u> :	PVCs originated in the right	
	Structural Heart	ventricular outflow tract in 31	
	Disease	(52%) of 60 patients, the LV	
		outflow tract in 9 (15%) of 60	
		patients, and in other sites in 13	
		(22%) of 60 patients. The site of	
		PVC origin could not be	
		determined in seven patients.	
		Ablation was completely	
		successful in 48 (80%) patients. In	
		patients with an abnormal EF	
		before ablation, LV function	
		normalized in 18 (82%) of 22	
		patients from a baseline of 34% to	
		59%±7% (p<0.0001) within 6 mo.	
		In the 4 patients in whom	
		ablation was ineffective, the EF	
		further declined from 34%±10%	
		to 25%±7% (p=0.06) during	
		follow-up. In a control group of 11	
		patients with a similar PVC	
		burden (30%±8%) and a reduced	
		EF (28%±13%) who did not	
		undergo ablation, the EF	
		remained unchanged in 10/11	
		patients over 19±17 mo of follow-	
		up and one patient underwent	
		heart transplantation.	

• Bogun et al.	Study type:	Inclusion criteria:	Results:	 LV dysfunction in the
2007 (462)	Single Center	60 consecutive	Patients with decreased LV	setting of frequent,
• <u>17599667</u>	Observational	patients with	function had a greater PVC	idiopathic PVCs may
		idiopathic,	burden on a 24 h Holter monitor	represent a form of
	<u>Size</u> : 60	frequent PVCs	than patients with normal EF	cardiomyopathy that can
	patients	(>10/h), a	(37%±13% vs. 11%±10% of all QRS	be reversed by catheter
		reduced LV EF	complexes; p<0.0001). There was	ablation of the PVCs
		(EF; mean	a significant inverse correlation	
		34%±13%) was	between the PVC burden and the	
		present in 22	EF before ablation (r=0.73,	
		(37%) patients	p<0.0001).	
			PVCs originated in the right	
		Exclusion	ventricular outflow tract in 31	
		criteria:	(52%) of 60 patients, the LV	
		Structural Heart	outflow tract in 9 (15%) of 60	
		Disease	patients, and in other sites in 13	
			(22%) of 60 patients. The site of	
			PVC origin could not be	
			determined in seven patients.	
			Ablation was completely	
			successful in 48 (80%) patients. In	
			patients with an abnormal EF	
			before ablation, LV function	
			normalized in 18 (82%) of 22	
			patients from a baseline of 34% to	
			59%±7% (p<0.0001) within 6 mo.	
			In the 4 patients in whom	
			ablation was ineffective, the EF	
			further declined from 34%±10%	
			to 25%±7% (p=0.06) during	
			follow-up. In a control group of 11	
			patients with a similar PVC	
			burden (30%±8%) and a reduced	
			EF (28%±13%) who did not	
			undergo ablation, the EF	
			remained unchanged in 10/11	

			patients over 19±17 mo of follow-	
			up	
• 7hong et al	Study Type:	Inclusion Criteria:	Results:	REA appears to be
2014 (463)	Single Center	510 natients with	Of 510 natients identified 215	more effective than AAD
• 24157533	Prospective	frequent PVCs	(40%) underwent REA and 295	in PVC reduction and
• 24137333	observational	(>1000/24 h)	(60%) received AAD. The	IVEE normalization
	observational	were treated	reduction in PVC frequency was	
	Size	either by RFA or	greater by RFA than with AAD (-	
	510 natients	with AAD from	21 799/24 h vs -8 376/24 h	
	510 patients	January 2005	n < 0.001) The LVFE was increased	
		through	significantly after RFA (53%-56%)	
		December 2010.	p<0.001) but not after AAD (52%-	
		Data from 24 h	52%; p=0.6) therapy. Of 121	
		Holter monitoring	(24%) patients with reduced LVEF.	
		and	39 (32%) had LVEF normalization	
		echocardiography	≥50%. LVEF was restored in 25 of	
		before and 6–12	53 (47%) patients in the RFA	
		mo after	group compared with 14 of 68	
		treatment were	(21%) patients in the AAD group	
		compared	(p=0.003). PVC coupling interval	
		between the	less than 450 ms, less impaired	
		treatment 2	left ventricular function, and RFA	
		groups	were independent predictors of	
			LVEF normalization performed by	
		Exclusion	using multivariate analysis.	
		criteria:		
		Structural Heart		
		Disease		
• Kawamura	Study type:	Inclusion criteria:	Results:	 In addition to the PVC
et al. 2014	Single Center	214 patients	Among these patients, 51 (24%)	burden, the CI-dispersion
(464)	Observational	undergoing	had reduced LVEF and 163 (76%)	and BMI are associated
• <u>24157533</u>		successful	had normal LV function. Patients	with PVC-induced
	<u>Size</u> : 214	ablation of PVCs	with LV dysfunction had	cardiomyopathy
	patients	who had no other	significantly longer coupling	
			interval (CI) dispersion	

		causes of	(maximum-Cl-minimur	m-CI) and
		cardiomyonathy	had significantly highe	r PVC
		caraioniyopatiiy	hurden compared to t	hose with
		Exclusion	pormal IV function (Cl	-dispersion:
		Criteria:	115±25 IIISEC VS. 94±13	
			p<0.001; PVC burden:	19% VS.
		Disease	15%; p=0.04). Furthern	nore,
			patients with LV dysful	nction had
			significantly higher bo	dy mass
			index (BMI) compared	to those
			with normal LV function	on (BMI>30
			kg/m²; 37% vs. 13%; p	=0.001).
			Logistic regression ana	lysis
			showed that CI-dispers	sion, PVC
			burden, and BMI (>30	kg/m²) are
			independent predictor	rs of PVC-
			induced cardiomyopat	hy.
 Yokokawa 	Study Type:	Inclusion Criteria:	Results:	 PVC-induced
et al. 2013	Single Center	A consecutive	The majority of patien	ts (51 of 75, cardiomyopathy resolves
(465)	observational	series of 264	68%) with PVC-induced	d LV within 4 mo of successful
• 24612052	Size:	patients with	dysfunction had a reco	overy of LV ablation in most patients.
	264 patients	frequent	function within 4 mo.	n 24 (32%) In about one-third of the
		idiopathic PVCs	patients, recovery of L	V function patients, recovery is
		referred for PVC	took more than 4 mo (mean 12±9 delayed and can take up
		ablation,	mo; range 5-45 mo). A	n epicardial to 45 mo. An epicardial
		including 87 with	origin of PVCs was mo	re often origin predicts delayed
		LV dysfunction	present (13 of 24, 54%) in recovery of LV function.
		,	patients with delayed	recovery of
		Exclusion	IV function than in pat	tients with
		criteria:	early recovery of LV fu	nction (2 of
		Structural Heart	51 4% p<0.0001) The	PVC-OBS
		Disease	width was significantly	longer in
		Discuse	nations with delayed	recovery
			than in patients with r	ecovery
			within $A = (170 \pm 21)$	
				13 ¥3
			159±10 ms; p=0.02). If	
			muitivariate analysis, o	oniy an

	epicardial PVC origin was	
	predictive of delayed recovery of	
	LV function in patients with PVC-	
	induced cardiomyopathy	

Study Acronym; Author;	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR;	Summary/Conclusion Comment(s)
Year Published			& 95% CI)	
 Jeejeebhoy et al. 2015(466) <u>26443610</u> 	Study type: Scientific Statement of the AHA Size: N/A	Inclusion criteria: Comprehensive review and recommendations for management of CA during pregnancy Exclusion criteria: N/A	<u>1° endpoint:</u> N/A <u>Results:</u> Specific recommendation for management of CA during late pregnancy and delivery. There are 2 of major importance that are given the force of Recommendations in the absence of supporting data on outcomes (LOE-C): Left Uterine Displacement during CPR when the uterus is above the umbilicus; and the 4-5 min rule for emergency C- section during CA PMCD.	 Both this Scientific Statement on Cardiac Arrest in Pregnancy and the 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care; Part 10: Special Circumstances of Resuscitation, recommend that in CA when the uterus is above the umbilicus, left uterine displacement (142) should be performed to relieve aortocaval compression during CPR. While there is limited data on the relief of aortocaval compression by this maneuver, there is no data on the effect of LUD on outcomes. This is a Class I Recommendation, with LOE C. There is no specific data to support these recommendations from the point of view of outcomes yet they are woven in to two recommendation documents recently released. The 4-5 min window for PMCD is also based on limited theoretic information, but does not have any scientific basis supporting improved maternal or fetal outcomes. It is a Class IIa

Data Supplement 51. Nonrandomized Trials, Observational Studies, and/or Registries Related to Pregnancy - (Section 10.2)

				recommendation, LOE C. It is led to the
				recommendation that a scalpel be
				available for response teams on the
				obstetrical units, and a recommendation
				against moving the patient to operating
				room or delivery suite, but rather doing
				the PMCD on site.
 Creagna A A, et al 	Study type:	Inclusion criteria:	1° endpoint: Deaths during or within	 Pregnancy-related mortality ratios are
2014 (467)	Analysis of	De-identified maternal	1 y after pregnancy, with causes	3–4 times higher among black than white
• <u>3880915</u>	surveillance data	and related fetal	based upon death certificate data.	women
	accumulated by	deaths reported to CDC		 The data do not distinguish CA from
	CDC (Division of	by 52 voluntary	Results: Pregnancy-related mortality	other mechanisms of CV death; nor do
	Reproductive	reporting areas (50 U.S.	ratio increased steadily from 7.2	they distinguish tachyarrhythmic CA from
	Health)	states, New York City,	deaths/100,000 live births in 1987 to	other mechanisms.
		and District of	17.8 deaths/100,000 live births in	
	<u>Size:</u>	Columbia); based upon	2009. The reasons for this increase	
	Absolute numbers	death certificate data	are unclear.	
	not specified			
		Exclusion criteria:	In parallel with this, there has been a	
		None specified	decline in the contribution of the	
			traditional causes of pregnancy-	
			related mortality (i.e., hemorrhage,	
			sepsis, hypertensive disorders of	
			pregnancy), and the emergence of CV	
			and other medical conditions as	
			important contributors to mortality.	
			For the most recent surveillance	
			period shown (2006–2009), CV	
			conditions alone accounted for over	
			1/3 of all pregnancy-related deaths.	
• ZAHARA II	Study type:	Inclusion criteria:	<u>1° endpoint</u> : Cardiovascular events	Postpartum risk is low among women
• Kampman et al.	Prospective cohort	Pregnant women with	within 1 y postpartum	tree of events during pregnancy
2015 (468)		known congenital heart		Women who have events during
• <u>25641540</u>	<u>Size</u> : 172	disease	Results: Women with events during	pregnancy should be followed
		Exclusion criteria: N/A	pregnancy were 7.1 times more likely	postpartum for changes in cardiovascular
			to have events postpartum	status.

• ZAHARA • Drenthen et al. 2010 (469) • <u>20584777</u>	Study type: retrospective analysis of registry data Size: 1302 pregnancies in 714 women with congenital heart disease	Inclusion criteria: Pregnant women with known congenital heart disease Exclusion criteria: Miscarriages at <20 wk of gestation; elective abortions.	<u>1° endpoint:</u> Cardiovascular events during pregnancy <u>Results:</u> Cardiovascular complications occurred in 7.6% of pregnancies, with "clinically significant" arrhythmias most common events – 4.7%; type not specified.	 Arrhythmias were most common events, mostly atrial; others not specified Presence of cyanotic heart disease (corrected/uncorrected), use of cardiac medication before pregnancy, left heart obstruction, aortic or pulmonic regurgitation, and mechanical valves were most closely associated with cardiovascular complications.
 Mhyre et al. 2014 (470) <u>24694844</u> 	Study type: Retrospective cohort study of CA during admissions for delivery from the Nationwide Inpatient Sample (NIS) Size: 56,900,512 hospitalizations for delivery between 1998 and 2011	Inclusion criteria: Diagnosis code indicating delivery or a procedure code related to delivery Exclusion criteria: Diagnosis code indicating abnormal products of conception or a procedure code indicating abortion.	1° endpoint: Cardiac arrest during hospitalization for delivery in the United States between 1998 and 2011. 2° outcomes included: (1) survival to hospital discharge; (2) the association between CA and demographic and socioeconomic characteristics, and medical and obstetric diagnoses and procedures; and (3) association between CA and the annual hospital delivery volume. <u>Results:</u> 4,843 cardiopulmonary arrests (CPA) between 1998 and 2011 (event rate = 8.5 CPA/100,000 hospitalizations, or 1: 12,000). Incidence was higher for older subjects (≥35 y), black women, and Medicaid patients. The conditions most strongly associated with CPA were pulmonary hypertension, malignancy, CVD (i.e., ischemic heart disease, congenital heart disease, cardiac valvular disease, and pre- existing hypertension), liver disease,	 CPA is rare among patients hospitalized for delivery, but considerably higher than the age adjusted incidence of CPA in general population. There is a trend towards improving survival to hospital discharge over the 14 y observation period, but the incidence has not changed significantly. The most common etiologies numerically are those that are not associated with the tachyarrhythmic CA, but the incidence is highest among those conditions that are more likely to be associated with tachyarrhythmic events. The cumulative number of CPAs in the sample was 4,843 over 14 y (average = 346/y), but this number is based on the limitations of the sample size in the NIS.

			and systemic lupus erythematosus.	
			However, the absolute numbers were	
			highest for postpartum or	
			antepartum hemorrhage combined =	
			44.7%, HF, amniotic fluid embolism.	
			and sepsis.	
• Siu et al. 2001	Study type:	Inclusion criteria:	1° endpoint: Prepartum (2 nd and 3 rd	• A subgroup at high risk for 1° or 2°
(471)	Retrospective	Congenital or acquired	trimesters), peripartum, and	cardiac complications of pregnancy is
• 11479246	analysis of a	cardiac lesions or	postpartum 1° cardiac. 2° cardiac.	identifiable, with a combined incidence of
	multicenter	cardiac arrhythmias.	neonatal, or obstetric complications.	17%. Among 1° events, 55% occurred
	consecutive series	Patients in whom	·····	during the 2^{nd} and 3^{rd} trimesters.
	of pregnant women	cardiac arrhythmia was	Results:	• The majority of arrhythmias were SVT's.
	with a Hx a heart	the 1° diagnosis must	The principal cardiac lesion was	• Careful scrutiny of high risk cardiac
	disease.	have had symptomatic	congenital in 445 pregnancies (74%).	patients during pregnancy, beginning no
		sustained	acquired in 127 pregnancies (22%).	later than the second trimester, is
	Size:	tachyarrhythmias or	and arrhythmic in 27 pregnancies	warranted for both arrhythmic and non-
	599 pregnancies in	bradyarrhythmias	(4%, with the majority being SVT's).	arrhythmic 1° and 2° complications.
	562 consecutive	requiring treatment	1° cardiac events occurred in 80	
	referrals	before pregnancy.	pregnancies (13%); 55% of which	
		Exclusion criteria:	occurred prepartum. Pulmonary	
		Isolated mitral valve	edema and/or cardiac arrhythmia	
		prolapse (moderate or	accounted for most of the cardiac	
		mild mitral	events, the majority SVT's. Predictors	
		regurgitation) or those	of 1° cardiac events were HF, TIA,	
		referred for	CVA, or arrhythmia before	
		termination of	pregnancy; baseline NYHA class >II or	
		pregnancy.	cyanosis; left heart obstruction; and	
			LV EF<40%.	
			A 2° cardiac event occurred in 37	
			(6%). Worsening of NYHA class by >2	
			classes occurred in 26 of the 579	
			pregnancies in which the baseline	
			NYHA class was I or II.	
• Einav et al. 2012	Study type:	Inclusion criteria:	<u>1° endpoint:</u>	 Maternal outcomes may not be as poor
(472)	Retrospective	(1) At least 5 clinical	Maternal and neonatal survival to	as in other CA populations.
• <u>22613275</u>	analysis of	details regarding the	hospital discharge and the	Mortality rates were higher among
	published original	case (e.g. age,		women who underwent PMCD compared

	articles, case series, case reports and letters to the editor regarding PMCD during CA in pregnancy <u>Size:</u> 94 cases selected from 108 publications that met review criteria.	gravidity, parity, obstetric and medical Hx, presenting rhythm, location of arrest), and the care provided (e.g. chest compression, ventilation, monitoring, drugs given); (2) At least one of the following outcomes: (a) maternal non- return/return of spontaneous circulation or non- survival/survival to hospital discharge; (b) fetal/neonatal outcome. <u>Exclusion criteria</u> Maternal arrest post- delivery, no data enabling relation of case details to outcome, or if both outcomes were unclear.	relationship between PMCD and this outcome. <u>Results:</u> ROSC was achieved in 60.6% of mothers (N=57), among whom 89.5% survived to hospital discharge (51/57). Time from arrest to PMCD was reported for only 57 cases of the 76 (75%) receiving PMCD; the average time was 16.6±12.5 min (median 10, range 1–60, IQR 8–25), with only 4 cases achieving the recommended 4-min target. Overall survival to hospital discharge was 54.3%. Among 23 with VT/VF, 15 survived to discharge. Overall, in- hospital location and PMCD <10 min were statistically significant. Neurological outcomes of surviving mothers (N=51) were described as CPC 1/2 in 78.4% (40/51). The overall neonatal survival rate was 63.6% (42/66). Neurological outcomes of surviving neonates were CPC 1/2 in 52.3% (22/42),	 with those who did not, possibly because of a subgroup with spontaneous or rapid ROSC. The 4-min time goal for PMCD usually remains unmet (4 of 57, 7%), yet neonatal survival is still likely if delivery occurs within 10 or even 15 min of arrest and neonatal survival was most-powerfully associated with maternal arrest occurring in-hospital, regardless of the cause of arrest.
 Citro et al. 2013 (473) 23519095 	Study type: Case reports identified in systematic	Inclusion criteria: Diagnostic criteria for tako-tsubo syndrome	<u>1° endpoint</u> : Diagnosis of TTS <u>Results:</u> 13 of 15 cases of TTS had	 Acute medical/surgical stressors are increasingly recognized as a trigger for TTS
	literature review	based upon modified Mayo criteria <u>Exclusion criteria</u> : Preexisting cardiomyopathy or	onset 24 h after a C-section. 13 patients had cardiac complications (pulmonary edema, cardiogenic shock, or CA [N=1]) All patients had return of LV function in 13.43±10.96 d.	 Distinction from peripartum cardiomyopathy is important for prognostic reasons. Cardiac arrest is infrequent in TTS. LQT2 more likely to have ACE postpartum vs LQT1 or 3

		other known cardiac		Risk greatest during 9 mo postpartum:
		defects		HR: 2.7, 95% CI: 1.8–4.3, p<0.001
				• risk reduced by using beta-bl. HR: 0.34.
				95% CI: 0.14-0.84, p=0.02.
• Seth et al. 2007	Study type:	Inclusion criteria:	1° endpoint: LQTS-related death,	• The data have implications for
(474)	Retrospective	First live birth	ACA, and/or syncope before, during,	observation and pharmacological
• 17349890	analysis of data	pregnancy in women	and after pregnancy	management during the 9 mo post-
	from the	with identified LQTS-		partum.
	International LQTS	related gene mutation	Results:	
	Registry	or considered to be	Compared to frequency of endpoint	
		affected with LQTS on	events prior to pregnancy, event	
	<u>Size</u> :	the basis of a QTc>470	rates during pregnancy were lower,	
	391	ms	but significantly higher during the 9	
		Exclusion criteria:	mo postpartum period. Frequency of	
		First live birth prior to	events returned to pre-pregnancy	
		1980.	levels after 9 mo. The post-partum	
			increase was greatest among those	
			with HERG mutations.	
• Katz et al. 2005	Study type:	Inclusion criteria:	<u>1° endpoint</u> :	 The data reviewed supports, but does
(475)	Systematic	Case reports of	Outcomes for fetus and mothers as a	not prove, that PMCD within 4 minutes of
• <u>15970850</u>	MEDLINE review of	pregnant CA victims	result of PMCD	onset of maternal CA improves maternal
	outcomes from	between 25 and 42 wk		and neonatal outcomes.
	perimortem	of gestation who	Results:	A controlled trial will never be feasible.
	cesarian deliveries	underwent PMCD.	In 30 of 38 PMCD's surviving infants	The conclusion is based upon general
	<u>Size:</u>		were delivered. One of the twins died	data on survival free of neurological
	38	Exclusion criteria:	in the neonatal period from anoxic	injury during CA as a function of down-
		Cesarean deliveries	injury and complications of	time.
		performed on mothers	prematurity. In 12 of 22 cases in	
		who were dying from	which hemodynamic data was	
		mortal injuries, but still	reported, sudden return of pulse and	
		had vital signs, were	BP occurred when the uterus was	
		excluded.	emptied.	
• Dijkman et al.	Study type:	Inclusion criteria:	<u>1° endpoint:</u>	• Use of PMCD is increasing over time.
2010 (476)	Retrospective	All cases of maternal	Frequency of use of PMCD over time	Outcome for pregnant women with CA
• <u>20078586</u>	cohort study of CA	CA during the second	and case fatality rate of those with	and PMCD remains dismal, but this study
	during pregnancy,	halt of pregnancy in	PMCD (N=12) compared to those	is limited by small numbers and apparent
	with and without	The Netherlands	without PMCD (N=43).	long delays to initiation of PMCD.

	PMCD during a 15 y	identified by survey		 The data are reasonable for trend to
	period.	from 1993-2008.	Results:	increased used of PMCD, but outcomes
			A total of 8 of 55 mothers survived	cannot be relied upon because of factors
	Size:	Exclusion criteria:	(15%). Among the 12 women in	cited above.
	55 CA among	None specified	whom PMCS was performed, there	
	2,929,289 women,		were two maternal survivors (17%).	
	12 of whom		In the 43 women in whom no PMCS	
	underwent PMCD.		was performed, there were six	
			maternal survivors (14%).	
			No PMCD's were performed prior to	
			2000, and the use progressively	
			increased after 2000. The maternal	
			case fatality rate for PMCS for the	
			entire 15 y period was 83% (10/12).	
			For the period of August 2004 to	
			August 2006 the case fatality rate for	
			PMCS was 75% (3/4) and the case	
			fatality rate for resuscitation without	
			PMCS was 67% (6/9).	
			Neonatal case fatality rate with	
			PMCD was 58%. Corresponding data	
			for no PMCD is not provided.	
• Colletti et al. 2013	Study type:	Inclusion criteria:	<u>1° endpoint</u> :	 Even in light of these numbers, it is
(477)	Review and opinion	Studies of radiation	Magnitude of exposure risk to fetus	generally recommended that fluoroscopic
• <u>23436839</u>	article on radiation	exposure to fetus as a	based upon nature of radiation-	procedures be avoided until after the first
	during pregnancy	result of cardiovascular	associated procedure and stage of	trimester, unless clinical circumstances,
		procedures in pregnant	pregnancy	based on risk/potential benefit
	<u>Size:</u>	women.		considerations, warrant an earlier
	Not specified		Results:	intervention.
		Exclusion criteria:	Most procedures entail a fetal dose	
		N/A	well below the fetal risk threshold of	
			50 mGy. For the specific issue of	
			fluoroscopic radiation for ICD	
			implants, no specific data is available.	
			However, for groin-to-heart catheter	
			procedures, the fetal exposure is	
			0.094–0.244 mGy/min. Thus, a	

			fluoroscopic time of 1 h falls well-	
			below the fetal risk threshold.	
• Natale et al. 1997	Study type:	Inclusion criteria:	<u>1° endpoint</u> :	 ICD's are effective and safe for the
(478)	Multicenter	Women with an ICD	Use, efficacy and safety of ICD's	pregnant female
• <u>9386142</u>	retrospective	who completed a	during pregnancy.	 There were no apparent adverse effects
	analysis of women	pregnancy or was	Results:	on the fetus.
	with an ICD who	currently pregnant.	The EF at the time of ICD	
	became pregnant.	(1). The clinical	implantation was 49.8±9.7% (present	
		presentation and	EF was 51.4±9.5%). Underlying	
	<u>Size</u> :	indication for ICD	cardiac diseases were long-QT	
	44	implantation were	syndrome (N=13), idiopathic VF (17),	
		sudden cardiac death	cardiomyopathy (8), congenital heart	
		in 33 patients, VT in 9	disease (3), CAD with an ischemic	
		patients, and VT with	cardiomyopathy (1), HCM (1), and	
		syncope in 2 patients.	ARVC (1). The indications for the ICD	
			were VF in 33 patients, VT in 9, and	
		Exclusion criteria: N/A	VT/syncope in 2.	
			During the first pregnancy after	
			implant, 33 women experienced no	
			ICD discharge, 8 received one shock;	
			1 experienced 5 firings in Afib; and 2	
			had 11 and 5 discharges, respectively,	
			for monomorphic VT. During delivery,	
			in the women in whom the ICD	
			remained active, none received any	
			shocks. In the 24 to 48 h period after	
			delivery, 1 patient had an ICD	
			discharge for VF. Overall, the total	
			number of ICD discharges during	
			pregnancy ranged from none to 11,	
			with an average of 0.66±1.9 shocks	
			(0.07 shock per mo).	
			There were no apparent adverse	
			effects on the fetus among the 11	
			shocks delivered during pregnancy	

• Damilakis et al.	Study type:	Inclusion criteria:	<u>1° endpoint:</u>	• Catheter ablation procedures result in a
2001 (479)	Radiation exposure	Women of childbearing	Radiation exposure and fluoroscopy	very small increase in risk of potentially
• <u>11514375</u>	and fluoroscopy	age undergoing	times estimated for phantom	harmful radiation effects to the fetus.
	tines to a	catheter ablation	simulated fetus, calculated for first,	
	theoretical fetus	procedures for	second, and third trimesters.	
	during simulated	supraventricular	Results:	
	pregnancies during	tachycardias.	The average radiation dose to the	
	ablation procedures		fetus was <1 mGy in all periods of	
	in female patients	Exclusion criteria:	gestation. Average excess fatal cancer	
	of childbearing age.	N/A	was 14.5/10 ⁶ fetuses exposed during	
	Estimated radiation		the first trimester. Corresponding	
	exposure was		values for the second and third	
	carried out for each		trimesters were 30 and 55.7/10 ⁶ ,	
	projection of the		respectively. The risk for hereditary	
	cardiac ablation		effects in future generations was	
	procedure, using		1.5/10 ⁶ cases for irradiation during	
	fetal phantoms		the first trimester. Corresponding	
	simulating		values for the second and third	
	pregnancy in the		trimesters were 3.0 and 5.6/10 ⁶ ,	
	first, second, and		respectively.	
	third			
	trimesters.			
	Size: 20 women			

Study Acronym;	Aim of Study;	Patient Population	Study Intervention	Endpoint Results	Relevant 2° Endpoint (if
Author;	Study Type;		(# patients) /	(Absolute Event Rates,	any);
Year Published	Study Size (N)		Study Comparator	P values; OR or RR; &	Study Limitations;
			(# patients)	95% CI)	Adverse Events
• CAST	Aim: Test	Inclusion criteria:	Intervention: Drugs as	1° endpoint: after 10	 Excess in deaths due to
 The Cardiac 	hypothesis that	Post MI, 6 d to 2 y; six	listed	mo there was an excess	shock due to recurrent MI.
Arrhythmia	suppression of	or more PVCs/h and	Encainide 432, placebo	in deaths due to	
Suppression Trial	ventricular ectopy	no VT over 15 beats at	425	arrhythmia (p=0.0004)	
Investigators. 1989	post MI reduces	120 bpm. 80%	Flecainide 323, placebo	in patients treated with	
(480)	incidence of SCA n	suppressioin of PVCs	318.	encainide or flecainide.	
• <u>2473403</u>	patients whose	and 90% suppression			
	ectopy was	of NSVT.	Comparator: Placebo		
	suppressed by			Safety endpoint (if	
	encainide,	Exclusion criteria: No		relevant): n/a	
	flecainide or	flecainide for EF<30%.			
	moricizine	Moricizine was second			
		choice if EF>30%			
	Study type:				
	Randomized				
	contolled, double-				
	bllind				
	<u>Size: 1498</u>				
• CAST II	Aim: test	Inclusion criteria:	Intervention: Moricizine	<u>1° endpoint:</u>	• N/A
 The Cardiac 	hypothesis that	Post MI, 6 d to 2 y; six		Terminated early due	
Arrhythmia	suppression of	or more PVCs/h and	Comparator: Placebo,	to excess mortality (17	
Suppression Trial II	ventricular ectopy	no VT over 15 beats at		of 665 with death or	
Investigators. 1992	post MI reduces	120 bpm. 80%		SCA with moricizine vs	
(481)	incidence of SCA n	suppressioin of PVCs		3 of 660 with placebo)	
• <u>1377359</u>	patients whose	and 90% suppression			
	ectopy was	of NSVT.		Safety endpoint: n/a	
	suppressed by				
	moricizine	Exclusion criteria:			
		patients with any runs			
		lasting 30 sec or			

Data Supplement 52. RCTs Comparing Medication-Induced Arrhythmias - (Section 10.7)

Study type: Randomized contolled, double- bllind	longer at a rate of ≥120 complexes/min		
<u>Size</u> : 1335			

Data Supplement 53. Nonrandomized Trials, Observational Studies, and/or Registries of Medication-Induced Arrhythmias (Section 10.7)

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Author; Vear Published	Study Size		(P values; OR or RR;	Comment(s)
• Wyse et al. 2001	Study type:	Inclusion criteria:	1º endnoint: Mortality	 Mortality of patients with a transient
(482)	Prospective study of	Patients with "transient"	<u>i enapoint.</u> Mortanty	or correctable cause of VT/VE was no
• 11704386	the registry of AVID.	or "correctable" VT/VF.	Results: mortality of patients	different or perhaps even worse than
	examining the	compared with patients	with a transient or	that of the 1° VT/VF.
	outcome of patients	with high risk in AVID	correctable	However, the small number of patients
	with "transient" or	registry. Patients in	cause of VT/VF was no	with AAD reaction seemed to "most
	"correctable" causes	registry could have EF	different or perhaps even	likely to presage better survival"
	of VT/VF	>40%	worse than that of the 1°	
			VT/VF.	
	Size 278 patients with	Exclusion criteria: N/A		
	transient or			
	correctable cause, of			
	18 (6 E%) had an AAD			
	reaction			
Monnig et al. 2012	Study type: Single	Inclusion criteria:	1° and point: ICD shock	• ICD therapy was appropriate in 1/1% of
(483)	center observational	survival of CA due to		natients with drug-induced OT
• 21979994	trial	acquired QT	Results: Over mean followup	prolongation/TdP. (where DI-TdP was
		prolongation/TdP who	of 84 mo, 44% had	due to an AAD in 79%).
		received an ICD. 79% had	appropriate shocks and	
		drug-induced TdP from	inappropriate shocks in 30%	 However, EF was not normal (mean
		an AAD. sotalol N=17;	(Only inappropriate in 3 of 43)	41±12)
	Size 43 patients	amiodarone N=12;		
		quinidine		

		N=3; propafenone N=1;		 Appropriate shocks were most
		ajmaline N=1]		common in those with structural disease.
		Exclusion criteria: N/A		Beta blockers did not seem to reduce
				risk
• Antman et al. 1990	Study type: An open-	Inclusion criteria:	1° endpoint: Resolution of	 90% of patients had a treatment
(484)	label multicenter	Digitalis intoxication with	toxicity and time course.	response in the setting of advanced and
• <u>2188752</u>	clinical trial of Fab	actual or potentially	Dosing requirements	potentially life-threatening digitalis
	treatment for life-	life-threatening cardiac		toxicity.
	threatening digitalis	rhythm disturbances,	Results: 80% had resolution	
	intoxication	hyperkalemia, or both	of all signs and symptoms of	
		caused by digitalis	toxicity, 10% improved, and	
		intoxication; refractory to	10% showed no response.	
		or likely to be refractory	Median initial response time	
		to treatment with	was 19 min. Time to complete	
	<u>Size</u> 150	conventional therapeutic	response was 88 min median	
		modalities.	(30–360 min).	
		46% had refractory VT	54% of those with CA survived	
		and 33% had VF.	hospitalization.	
			Adverse events in 14/148,	
		Exclusion criteria: N/A	with hypokalemia or	
			worsening CHF.	
• Chan et al. 2014	Study type: Review	Inclusion criteria: digoxin	1° endpoint: Resolution of	 Confirms efficacy, onset of action.
(485)	of 10 case series	poisoning	toxicity, time course to effect.	Suggests that lower doses (at lower cost)
• <u>25089630</u>				are appropriate in many situations due to
		Exclusion criteria: N/A	Results: Response varied	pharmacokinetics of digoxin (unless CA is
			from 80-90% to 50%.	imminent).
			Reversal of toxicity 30–45	
	<u>Size</u> 2080		min.	
			Adverse events <10%	
			(exacerbated CHF, increased	
			HR and hypokalemia)	
			Lower dose requirements	
			(1/2 of the full neutralizing	
			dose) are appropriate unless	
			CA is imminent.	

• Hauptman et al. 1999	Study type: Review	Inclusion criteria: N/A	1° endpoint: N/A	More common manifestations
(486)	of treatment of			(including occasional ectopic beats,
• <u>10069797</u>	digoxin toxicity	Exclusion criteria: N/A	Results: N/A	marked first-degree AV block, or AF with
				a slow ventricular response) require only
				temporary withdrawal of the drug and
	<u>Size</u> N/A			monitoring.
				5
				Administration of potassium salts is
				recommended for ectopic VA, even
				when the serum
				potassium is within the "normal" range.
• Kelly et al. 1992 (487)	Study type: Review	Inclusion criteria: N/A	1° endpoint N/A	• Describes VT with digoxin toxicity.
• 1626485				Notes exacerbation of digoxin toxicity
		Exclusion criteria: N/A	Results: N/A	with low and high K, hypothyroidism,
	Size: N/A			Notes benefit of magnesium
				administration.
• Osmonov et al. 2012	Study type: Single	Inclusion criteria: drug-	1° endpoint: improvement or	 Digoxin-induced AV block (without
(488)	center observational	related symptomatic type	need for pacer.	"toxicity") usually improved (28 of 39)
• 22530749	series.	2 second degree or third		after withdrawal of the drug.
		degree AV block	Results: 39 patients had AV	_
			block with digoxin dosing,	
		Exclusion criteria: MI,	with 28 of them improving	
		electrolyte abnormalities,	after withdrawal of the drug.	
	<u>Size:</u> 108	digitalis toxicity, and		
		vasovagal syncope.		
		Digoxin toxicity (a digoxin		
		level from a blood		
		test of higher than 2		
		nmol/L with symptoms		
		such as nausea,		
		vomiting, and color vision		
		abnormalities or		
		Above 2.5 nmol/L with or		
		without symptoms.		
• Tzivoni et al. 1988	Study type:	Inclusion criteria: TdP	<u>1° endpoint</u> Abolition of TdP	• This established MgSO4 as treatment
(489)	Consecutive series	(9/12 due to AAD)		for TdP

• <u>3338130</u>	Provided 2 gm IV with		Results: In nine of the	
	second bolus of 2 g	Exclusion criteria: N/A	patients a single bolus of 2 g	
	after 5-15 min. 9		completely abolished the TdP	
	received infusion at 3-		within 1 to 5 min, and in three	
	20 mg/min for 7-48 h.		others complete abolition of	
			the TdP was achieved after a	
	Size 12		second bolus was given 5 to	
			15 min later.	
• Keren et al. 1981	Study type: Single	Inclusion criteria: TdP,	1° endpoint: response to	• This confirmed the effectiveness of V
(490)	center series	QTc>600 ms	therapy of isoproterenol	pacing for DI-TdP, even after
• 7296791			and/or ventricular pacing.	isoproterenol was ineffective.
		Exclusion criteria: N/A		
			Results: Pacing effective in 4	 This confirms the effectiveness of
			of 4 patients, 2 who had not	isoproterenol as a first line treatment.
	Size: 10 (9 on AAD, 4		responded to isoproterenol.	
	treated with pacing)		Continued up to 48 h and	 Magnesium was not given in this
			pacer removed after another	series
			24 h Pacing rate was "lowest	
			effective rate" 88-105 hpm	
			In 2 cases atrial nacing was	
			tried initially effective but	
			unstable so V pacing	
			provided	
			provided.	
			Lidocaino was givon in 4 casos	
			without improvement	
			Isoproterenol (2-8	
			microgram/min) was given in	
			7 cases: offective in E/7	
• Chaviat al 1007	Study type:	Inclusion critoria, bealthu	19 and a sint: Effect on OTH:	• "Detentially arrhythmogonic OT
• CHUY et al. 1997	Double blind	subjects (12) and CUT	from KCl often quiniding or	Potentially drinythinogenic QI
(5/3)		(moon EE 170/) with acc	riom KCI after quinidine or	abilition maillies during quinique treatment
• <u>933/183</u>		(mean EF 1/%) with age-	ріасеро.	and in CHF can be nearly normalized by
	potassium infusion	matched controls		modest elevation of serum potassium"
	after quinidine and	WITNOUT CHF	<u>Results:</u>	

	placebo sequentially in	Exclusion criteria: N/A	KCl was IV, 0.5 mEq/kg (to	
	12 nealthy subjects.		maximum of 40 meEq) over	
	Also, study on QIU In		60-70 min resulted in	
	patients with CHF and		normalization of quintaine-	
	age-matched controls		Induced and CHF-related QTU	
	who receive IV KCI		prolongation	
	Circo 12 healthu 0			
	SIZE: 12 Rediting, 8			
	CHF plus 8 age-			
	matched controls			
• Yang et al. 1996 (491)	Study type: Basis EP	Inclusion criteria: N/A	<u>1° endpoint:</u> Change in IC50	• Extracellular potassium is a critical
• 8565156	(cardiac myocytes)		for dotetilide and quinidine	determinant of drug block of IKr, with
		Exclusion criteria: N/A	according to the extracellular	substantial clinical implications. The
			K concentration	increase in drug block with low [K+]o
				provides a mechanism to explain the link
			Results: Elevating [K+]o from	between hypokalemia and torsade de
	<u>Size:</u> N/A		1 to 8 mmol/L increased the	pointes
			IC50 for dofetilide block from	
			2.7±0.9 to 79±32 nmol/L and	
			for quinidine block from	
			0.4±0.1 to 3.8±1.2	
			µmol/L.Increased K blunted	
			drug effect of dofetilide and	
			quinidine	
 Hellestrand et al. 	Study type: Clinical	Inclusion criteria: Group	<u>1° endpoint:</u>	 Flecainide significantly increased both
1983 (492)	research study	I:11 with temporary		acute and chronic thresholds and the
• <u>6195608</u>		pacer; Group II:10 with	Results: Given IV flecainide 2	most marked rise (>200%) occurred
		chronic pacer at	mg/kg over 10 min. 7 with	during chronic oral therapy.
		generator change; Group	programmable pacers given	
		III: 7 with programmable	oral 100-400 mg per day.	
	<u>Size:</u> 28	pacer with pacing	I: 0.66–1.44 V	
		threshold testing	II: 1.73–2.13 V	
			III: 10 min: at 2.7 V: 0.14–0.22	
		Exclusion criteria: N/A	msec; at 4.9 V 0.06–0.11	
			After 3 wk: at 2.7V 0.09–0.28	
			msec, at 4.9 V 0.06–0.16	

 Echt et al. 1989 (493) <u>2469545</u> 	Study type: Basic canine study Size: 78 protocols total	Inclusion criteria: N/A Exclusion criteria: N/A	1° endpoint:change indefibrillation threshold (DFT)Results:ED90 increased from11 to 22 Joules (p<0.01)	• Lidocaine doubled the defibrillation energy requirement
 Crijns et al. 1988 (494) <u>3143257</u> 	Study type: observational trial Size: 6 of 79 patients treated with flecainide developed this wide complex tachycardia	Inclusion criteria: Rate – related BBB giving wide QRS tachycardia Exclusion criteria: N/A	<u>1° endpoint:</u> N/A <u>Results:</u> 6 patients developed WCT, rates 145-200 BPM	• Wide complex tachycardia resulted from tachycardia and flecainide slowing conduction. This can appear to be VT but is not.
• Bajaj et al. 1989 (495) 2551538	Study type: Basic canine Size: 30	Inclusion criteria: N/A Exclusion criteria: N/A	<u>1° endpoint:</u> After infusion of ODE, a potent metabolite of encainide, shortening in intervals (HV and QRS) with NaHCO3 or NaCl <u>Results:</u> With NaHCO3, QRS: 92–76 msec; HV 44 to 37 msec	• Short-term administration of NaHCO3 or NaCl can partially reverse ODE- induced conduction slowing, which may be an important factor in arrhythmia aggravation
• Myerburg et al. 1989 (496) <u>2480856</u>	Study type: Case series Size: 4 (3 flecainide, 1 encainide)	Inclusion criteria: Prior CA or symptomatic sustained VT, treated with a Ic medication who developed runs of sustained VT, NSVT or increased ectopy Exclusion criteria: N/A	1° endpoint: suppression of drug-induced arrhythmias <u>Results:</u> Drug-induced arrhythmias were suppressed in all 4 patients	• Propranolol had failed to prevent inducibility of sustained VT during previous programmed stimulation studies in three of the four patients, but it reproducibly suppressed drug-induced arrhythmias that appeared only after administration of the IC agents in each patient.
 Schwartz PJ et al. 2016 (497) 27150690 	Study type: Review	Inclusion criteria: N/A Exclusion criteria: N/A	N/A	 Review of Hx of drug-induced QT prolongation and TdP. crediblemeds.org categorizes drugs as possible, conditional and known TdP risk. Drugs associated with prolonged QT and TdP fall into a number of different

				 pharmacologic classes, and the risk of TdP increases according to clinical and genetic factors. Clinical decision support systems reduce prescription of QT prolonging drugs in patients at risk of TdP due to clinical or genetic factors.
• Kannankeril P, et al.	Study type: Review	Inclusion criteria: N/A	<u>1° endpoint N/A</u>	Hypokalemia worsens risk of TdP
Pharcological Reviews				Although no randomized prospective trial
2010. (374)	<u>Size</u> : N/A	Exclusion criteria: N/A	Results: N/A	has been conducted, intravenous
				magnesium has become a first-line
				therapy for drug-induced TdP.

Data Supplement 54. Nonrandomized Trials, Observational Studies, and/or Registries Related to ACHD - (Section 10.8)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
• Basso C, et al.	Study type:	Inclusion criteria: N/A	<u>1° endpoint</u> : N/A	• Discussed gross and microscopic
Virchows Arch	Review		Role of autopsy to establish cause of SCD: Assoc of	pathologic findings
2008 (498)		Exclusion criteria: N/A	European Cardiovascular Pathology developed	
• <u>17952460</u>	<u>Size</u> : N/A		guidelines	 "Further tests in future":
			Includes ARVC, athlete's heart, HCM, myocarditis	molecular or toxicology
The survey C.A., etc.	Church a trans ou	In aluaian aritaria.	<u>Results.</u> N/A	· Detiente with CUD et high en viel
• Inorne SA, et	Study type:	ACUD mean age 24.0	<u>1° endpoint</u> : Review side effects of chronic oral	• Patients with CHD at higher risk
al.	Retrospective	ACHD, mean age 34.9	amiodarone	for amio adverse effects, esp
Circ 1999 (499)	multicenter	y, receiving		women, cyanosis, Fontan, or dose
• <u>10402444</u>	C	amiodarone for 26 mo;	Results: 36% developed thyroid dysfunction: 19	>200 mg
	<u>Size:</u> 92 pts	case-control group.	hyper, 14 hypothyroid. Sig risk factors: Female	
		Mean duration 3 y,	gender (OR: 3.0) cyanotic HD (OR: 7.0); Fontan	
		mean dose 191 mg	(OR: 4.0); dosage >200 mg/d (OR: 4.0)	
		Exclusion criteria: N/A		
• Deal B, et al.	Study type:	Inclusion criteria: TOF	<u>1° endpoint</u> : Induction of VT in TOF, response to	 TOF EPS reproduces clinical
AJC 1987 (500)	single center	pts undergoing cath +	drug rx	sustained VT
• <u>3591695</u>	retrospective	EPS and drug testing	Mean 3.3 drugs/pt tested. Followup mean 2.2 y	Pts with freq PVC's: 60% inducible
		Sust VT: 4		sust VT

	<u>Size</u> : 9	PVC's: 5 Exclusion criteria:	<u>Results</u>: all pts with clinical sust VT had inducible sustained VT 60% pts with frequent PVC's had inducible sust VT	Surgery to improve hemodynamics eliminated VT • Elevated RV pressure: did not
			Pts with RV hypertension did not respond to any medications 4 pts underwent surgery: no recurrent VT	respond to medicationss
 Gatzoulis MA et al. Circ 1995 (501) <u>7600655</u> 	Study type: Single center prospective Size: 41	Inclusion criteria: TOF survivors Exclusion criteria: N/A	1° endpoint:TOF mechano-electrical interactionMean followup 24 yResults:41/178 patients evaluated serially, +reviewed 4 SCDQRS duration correlated with RV size on Echo andheart size on CXRVT 9 patients:QRS mean 199 msec, CTR 0.67;significantly different than those without VT	 TOF: QRS duration ≥ 180 msec predicts VT and SCD All patients with documented sustained VT and patients with SCD had QRS duration ≥ 180 msec (100% sensitivity) Chronic RV volume overload related to diastolic dysfunction
 Koyak Z et al. Circ 2012 (502) <u>22991410</u> 	Study type: Retrospective multi-center with case- controls Size: 213	Inclusion criteria: ACHD patients in Canadian database Exclusion criteria: N/A	 <u>1° endpoint</u>: SCD in ACHD <u>Results:</u> 1,189 deaths among 25,790 ACHD patients: 19% SCD (213 patients) Arrhythmic cause 80% SCD vs severity of congenital heart disease Mild 12%, mod 33%, severe 55% 	• Risk for SCD in ACHD: SVT (OR: 3.5), mod-severe systemic ventricular dysfunction (OR: 3.4), mod-severe sub-pulmonary vent dysfunction (OR: 3.4), increased QRS duration (OR: 1.34 per 10 msec increase)
 Diller GP et al. Circ 2012 (503) 22496160 	Study type: Single center retrospective Size: 413	Inclusion criteria: TOF patients Mean age 36 y Median followup 2.9 y Exclusion criteria: N/A	<u>1° endpoint:</u> TOF: sustained VT, ACA/SCD, approp ICD shock <u>Results:</u> 4.6% sust VT/SCD/ACA (SCD 1.2%, Sustained VT, 2.2%, ICD shock 1.2%) Combination echo variables c/w poor outcome: RA area, RV fractional area change, LV global longitudinal strain, mitral annular systolic excursion	 TOF: sust VT/SCD1.2/ACA 4.6% LV longitudinal function associated with greater risk SCD/VT
• Harrison DA et al. JACC 1997 (504) • <u>9350941</u>	Study type: Single center retrospective Size: 18	Inclusion criteria TOF and VT, compared with 192 TOF patients without arrhythmia	<u>1° endpoint</u> : TOF and sustained VT <u>Results:</u> Patients with VT had frequent PVC's, low CI, RVOT aneurysms/PR/TR	 TOF patients with VT have anatomic aneurysms of RVOT or PR Combined approach of correcting structural abnormalities + intra-op map-guided VT ablation may

		Exclusion criteria: N/A	14 patients reoperated: 10/14 cryoablation map- guided: recurrent VT in 3/10 Two patients with VT developed severe CHF, died.	reduce risk of deteriorating function and optimize VT management
 Knauth Al et al. Heart 2008 (505) <u>17135219</u> 	Study type: Single center retrospective Size: 88	Inclusion criteria: TOF patients with CMR Median postop interval: 21 y Exclusion criteria: N/A	<u>1° endpoint</u> : TOF major ACE: death, sustained VT, NYHA Class III/IV, clinical predictors <u>Results:</u> MACE: 20.5%: death 5%, Sustained VT 10%, worsening NYHA class 11% QRS duration ≥180 msec correlated with RV size	 TOF adverse outcomes predictors: RVEDV z score ≥7, OR: 4.55 LVEF <55%, OR: 8.05 RVEF <45% QRS duration ≥180 msec
 Therrien J et al. Circ 2001 (506) <u>11369690</u> 	Study type: cohort study Size: 70	Inclusion criteria: PVR for TOF VT preop 22% AT preop 17% Exclusion criteria: N/A	<u>1° endpoint</u> : Impact of PVR in TOF on QRS duration and VT, AT Mean followup 4.7 y <u>Results:</u> Cryoablation 15 patients with intraop mapping: 9 VT, 6 AFL: none had recurrence of pre- existing arrhythmia VT post PVR 9% from 22%, p<0.001 AFL/AF decreased from 17% to 12%, p=0.32	• PVR in TOF: QRS duration stabilized Concurrent cryoablation decreased incidence of VT
 Therrien J et al. AJC 2005 (507) <u>15757612</u> 	Study type: Single center retrospective Size: 17	Inclusion criteria adult TOF undergoing pulmonary valve replacement (PVR) Exclusion criteria: N/A	1° endpoint: TOF and PVR: effect on RV volume Mean followup 21 mo <u>Results:</u> PVR decreased RV volume: RVEDV: From 163 ml/m ² –107 ml/m ² RVESV: 109 to 69 ml/m ² RVEF did not change: EF 32–34 Patients with RVEDV >170 ml/m ² or RVESV >85 ml/m ² : no pt had normalization of RV volume after surgery	 TOF and PVR: Decreases RV volumes RVEF did not change PVR before marked RV volume increase?
 Harrild DM et al. Circ 2009 (508) <u>19139389</u> 	Study type: Single center retrospective Size: 98	Inclusion criteria TOF patients with late pulmonary valve replacement for RV dilation; matched controls with TOF, RV dilation but no PVR	 <u>1° endpoint</u>: Impact of PVR in TOF on major adverse events followup median 1.4 y <u>Results</u>: Freedom from death or VT: 5 y: 80%, 10 y: 41% 	 TOF with late PVR: VT or death every 20 patient-y In matched comparison with TOF controls, PVR did not reduce the incidence of VT or death NOTE: advanced RV enlargement, empiric cryoablation

• Adamson L et al. Interact CTS 2009 (509) • <u>19567499</u>	Study type: meta-analysis medline 1950- 2009 Size: 1070	Median age 21 y 6% preop VT QRS duration >180 msec: 19% <u>Exclusion criteria</u> : N/A <u>Inclusion criteria</u> PVR after TOF repair: 19 papers analyzed <u>Exclusion criteria</u> : N/A	Empiric cryoablation: 7 patients: 5/7 VT during followup Incidence death, VT, or both: 4.8/100 pt yrs All cause mortality: 6.1% No sig change in QRS duration after surgery <u>1° endpoint</u> : Effect of PVR in TOF on RV size and function <u>Results:</u> summarizes all 19 papers' conclusions	PVR in TOF: Low mortality Reduces RV volumes RV function improves Symptoms and functional status improves
 Sabate Rotes A et al. CAE 2015 (510) <u>25416756</u> 	Study type: Single center retrospective Size: 205	Inclusion criteria: TOF patients with late pulmonary valve replacement for RV dilation between 1988-2010 Median age 33 y Prior VT 8% LVEF <50%: 16% Exclusion criteria: N/A	 <u>1° endpoint</u>: Impact of PVR in TOF on major adverse events: VT, SCD/ACA, appropriate ICD shock <u>Results</u>: Freedom from MACE: 5 y: 95%, 10 y: 90%, 15 y: 79% More events occurred in patients without cryoablation Cryoablation of VT: 22 patients: (11%) 1/22 event after 7 y. Empiric Cryo performed in patients with VT, inducible VT at EPS not ablated, or Hx of unexplained syncope/pre-syncope; not map- guided 	 • TOF and PVR: Hx of VT and LV dysfunction associated with higher risk, HR: 4.7 • QRS duration ≥180 msec predictive of arrhythmic event • Surgical cryoablation of VT may be protective Recommend patients with risk factors for VT undergo pre-or postop EPS
• Tsai SF et al. AJC 2010 (511) • <u>20723654</u>	Study type: single center retrospective Size: 80	Inclusion criteria: ACHD patients ≥ 18y undergoing V stim Mean age 30 y Exclusion criteria: patients with clinical ventricular arrhythmias	 <u>1° endpoint</u>: Inducible VT in ACHD patients without clinical VA <u>Results</u>: Inducible sust VT: 29% (TOF 52%, TGA 26%) Predictors: increased QRS, decreased VO2 on exercise, ventricular fibrosis on MRI (p < .05) 	 Inducible VT: 29% Combined fibrosis on MR and peak oxygen uptake <80% predicted had 100% sensitivity for sustained VT Consider using MRI, ex test as screening for V stim studies

• Garson A et al.	Study type:	Inclusion criteria: TOF	1° endpoint: Induction of VT in TOF	• TOF with inducible VT: more
JACC 1983 (512)	single center	patients undergoing EP		frequent PVC's, longer HV interval,
• <u>6853902</u>	retrospective		Results: patients with syncope had inducible	elevated RV pressure, reduced RV
		Exclusion criteria: N/A	sustained or non-sust VT	EF
	<u>Size</u> : 27			 Poor hemodynamics correlated
				with VT induction
 Chandar JS et 	Study type:	Inclusion criteria: TOF	1° endpoint: Inducible VT in TOF	Correlation poor hemodynamics
al. AJC 1990	Multicenter	patients undergoing		with inducible VT
(513)	retrospective	EPS	Results: Induced VT correlated with delayed age	
• <u>1689935</u>		Mean age repair 5 y	at repair, longer followup, syncope, elevated RV	
	<u>Size</u> : 359	Mean followup 7 y	pressure, frequent PVC's on holter	
		Exclusion criteria: N/A		
 Koyak Z et al. 	Study type:	Inclusion criteria:	1° endpoint: SCD in ACHD	Risk for SCD in ACHD:
Circ 2012 (502)	Retrospective	ACHD patients in		SVT (OR: 3.5)
• <u>22991410</u>	multi-center	Canadian database	Results: 1189 deaths among 25790 ACHD	mod-severe systemic ventricular
	with case-		patients:	dysfunction (OR: 3.4)
	controls	Exclusion criteria: N/A	19% SCD (213 patients)	mod-severe sub-pulmonary vent
			Arrhythmic cause 80%	dysfunction (OR: 3.4)
	<u>Size</u> : 213		SCD vs severity of congenital heart disease	increased QRS duration (OR: 1.34
			Mild: 12%, mod: 33%, severe: 55%	per 10 msec increase)
• Kella DK et al.	Study type:	Inclusion criteria: ICD	<u>1° endpoint</u> : ICD outcomes in ACHD	 Non-TOF patients less likely to
PCE 2014 (514)	Retrospective	in ACHD patients	Median followup 3.2 y	receive appropriate shocks
• <u>24889130</u>	single center	TOF 56%		 ICD implantation indications
		TGA 25%	Results: 1° prevention 53%	should be ACHD lesion specific
	<u>Size</u> : 59		Approp ICD therapies 20%	
		Exclusion criteria: N/A	22% inapprop shocks	
			TOF: 27% approp shocks, non-TOF: 11% (p=0.043)	
• Santharam S et	Study type:	Inclusion criteria:	<u>1° endpoint</u> : ICD outcomes in ACHD	ACHD and ICD:
al. Europace	Retrospective	ACHD patients with	Mean followup 5 y	2.9%/y shock rate
2016 (515)	single center	ICD 2000-2014		Complications 9%/y
• <u>27234868</u>		Mean age 41 y	Results: Indications:	• Disease specific indications, risks
	<u>Size</u> : 42	TOF 50%, TGA 12%	2° prev: 62%	must be clearly discussed
			1° 38%.	 alternatives for 1° prevention
		Exclusion criteria: N/A	Appropriate shocks 14%	ablation
			Complications: 45%	

• Vehmeijer JT et	Study type:	Inclusion criteria: 24	1° endpoint: ICD implants in ACHD	• High rate appropriate ICD therapy
al. EHJ 2016	Meta-analysis	studies with 2162	Mean followup 3.6 y	in both 1° and 2° ACHD
(516)	EMBASE,	ACHD patients with		High rates inappropriate shocks
• <u>26873095</u>	MEDLINE,	ICD:	<u>Results:</u> 1° 53%, 2° 47%	and complications
	Google Scholar	Mean age 36 y	Approp intervention (ATP or shock): 24%;	Case-by-case analysis
		TOF 50%	1° 22%, 2° 35%.	costs/benefits essential
	<u>Size</u> : 2162		Inapprop shocks 25%; Complications: 26%	
		Exclusion criteria: N/A	All-cause mortality 10%	
• Moore JP et al.	Study type:	Inclusion criteria:	1° endpoint: Subcutaneous ICD in ACHD	• Subcut ICD feasible in ACHD, most
CAE 2016 (517)	Retrospective	subcut ICD in ACHD	outcomes. Single ventricle 52%.	commonly single ventricle patients
• <u>27635073</u>	multi-center 7	starting 2011.	Median followup 14 mo.	with limited venous access
	centers	Median age 33.9 y	Results: 1ary prevention: 67%, 2ary 33%.	Successful conversion of induced
			Implant: VT induced 81%, converted ≤ 80 joules in	VT
	<u>Size</u> : 21	Indication: limited	all. Infection: 1 (5%);	 "reasonable" rhythm
		venous access (10),	Shocks: inapprop 21%, appropriate 1 (5%). One	discrimination
		right-to-left cardiac	death due to asystole.	
		shunt 5		
		Exclusion criteria: N/A		
 Okamura H et 	Study type:	Inclusion criteria:	1° endpoint: screening for suitability for	 for use of subcutaneous ICD in
al. Circ J 2016	Retrospective	ACHD patients	subcutaneous ICD use in ACHD patients	ACHD, screening of left and right
(518)	single center	undergong screening	Results: Left parasternal: failure 21%, reduced to	parasternal position may improve;
• <u>27109124</u>		for subcutaneous ICD	12% using right parasternal.	QT interval and T wave inversion
	<u>Size</u> : 100	Mean age 48 y		V2-V6 independent predictors of
		Exclusion criteria: N/A		left parasternal screening.
• Yap SC et al.	Study type:	Inclusion criteria:	1° endpoint: ICD outcomes in ACHD patients:	 ACHD Appropriate shocks 6%/yr,
EHJ 2007 (519)	Multicenter	ACHD patients ≥18 y	median followup 3.7 y	no difference in 1° or 2° prevention
• <u>17030523</u>	retrospective,	receiving ICD		 Inappropriate shocks 41%
	Dutch national	Mean age 37±13 y	Results: Early comps 13%, late 17%	
	registry	2° prevention 60%	Approp shocks 23%, inapprop 41% -mainly SVT.	
			TOF fewer approp shocks vs other congenital heart	
	<u>Size</u> : 64	Exclusion criteria:	disease, HR 0.29	
• Khairy P et al.	Study type:	Inclusion criteria: TOF	<u>1° endpoint</u> : TOF: correlate V stim with outcomes	 Multivariate analysis: inducible
Circ 2004 (520)	Multicenter	patients undergoing V	Results: sust monomorphic VT 30%, polymorphic	sustained VT independent risk for
• <u>15051640</u>	cohort	stim	VT 4.4%	subsequent clinical VT or SCD (RR:
		followup 6.5 y	Independent risk factors: age ≥18 y (OR: 3.3),	4.7)
	<u>Size</u> : 252		palpitations (OR: 2.8), frequent PVCs (OR: 5.6), CT	
		Exclusion criteria: N/A	ratio ≥0.6, prior shunt (OR: 3.1)	

				• Older age, prior shunts, frequent PVC's, cardiomegaly—increased likelihood of inducible VT
• Khairy P et al.	Study type:	Inclusion criteria: TOF	1° endpoint: TOF ICD outcomes	• TOF ICD shocks annual rate 7.7–
Circ 2008 (521)	Retrospective	patients receiving ICD	Median followup 3.7 y	9.8%, approx. equal for 1° and 2°
• <u>18172030</u>	multicenter, 11	Median age 33 y		prevention
	sites		Results: 2° prevention: 44%	• Approp shocks: elevated EDP (HR:
		Exclusion criteria: N/A	Comps: total 30%, 5% early	1.3), nonsust VT (HR: 3.7)
	<u>Size</u> : 121		Approp shocks: 30%	• Inappropriate shocks 5.8%/y
			Annual rate approp: 1° 7.7%, 2° 9.8% (p=0.11)	• Comps 30%: 21% leads, 6%
				generator
• Zeppenfeld K et	Study type:	Inclusion criteria:	1° endpoint: Ablation of VT in congenital heart	• VT ablation of anatomic isthmus
al. Circ 2007	Single center	repaired congenital	disease	successful: 91% without recurrence
(522)	retrospective	heart disease patients	followup 30 mo	during 30 mo followup
• 17967973		with sustained VT,	<u>Results</u> : SR voltage map, identify scar: anatomic	
	<u>Size</u> : 11	undergoing voltage	isthmus: between TV-RVOT, pulm annulus and RV	
		map, ablation	free wall, pulm annulus and septal scar, septal scar	
			and TV	
		Exclusion criteria: N/A	Ablation of isthmus (most common between TV	
			and anterior RVOT) abolished all 15 VT circuits.	
• van Zyl M et al.	Study type:	Inclusion criteria:	1° endpoint: outcome VT ablation in congenital	• VT ablation in ACDH: reentrant VT
HR 2016 (523)	single center	repaired congenital	heart disease: SCD or appropriate ICD shock	targets anatomic isthmus:
• <u>26961296</u>	retrospective	heart disease patients	Mean followup 33 mo	with confirmed block, no recurrent
		with VT undergoing	Results: Reentrant VT 67%, Focal 33%	VT
	<u>Size</u> : 21	ablation	Isthmus dependent VT mechanism in 67%,	
		Mean age 45 y	conduction block confirmed in 8	
		71% males		
		Exclusion criteria: N/A		
• Kapel GF et a.	Study type:	Inclusion criteria: TOF	<u>1° endpoint</u> : TOF VT ablation in LV outcomes	• TOF VT ablation in LV successful
CAE 2014 (524)	Retrospective, 2	patients with VT		in 4 patients: no recurrence during
• <u>25151630</u>	centers	ablation	<u>Results</u> : Left sided mapping/ablation if right side	20 mos
			RFA failed, part of circuit in LV	• Rt side failure: septal hypertrophy
	<u>Size</u> : 28	Exclusion criteria: N/A	4/28 VT ablations used LV approach	2, pulmonary homograft 1, VSD
			Target anatomic isthmus with transection	patch 1

• Kapel GF, et al.	Study type: 2	Inclusion criteria:	1° endpoint: Ablation of VT in CHD	Predictors of lack of success:
Circ AE 2015	centers,	repaired CHD pts	followup 46 mo. 41% prior ICD	No complete procedural success,
(525)	retrospective	undergoing ablation		decreased LV function
• <u>25422392</u>			Results: complete success 25/34 pts: 74%; 18/25	• Transection of VT isthmus feasible
	<u>Size</u> : 34	Mean age 48 y	had preserved fxn	in 74%
		74% male	Procedural failure: hypertrophy, pulm homograft,	
		TOF 82%	prox to HBE, no critical reentry	
		TGA; VSD, AVSD, PS	79% discharged with ICD	
		Sustained VT 79%	15/18 complete success + preserved function d/c	
			on no AAD—no recurrences	
		Exclusion criteria: N/A	4 late deaths, 2 CHF, 2 CA	
• Kapel GF et al.	Study type:	Inclusion criteria:	1° endpoint: TOF VT isthmus identification	 TOF VT: slow conducting
EHJ 2017 (526)	Single center	repaired TOF patients		anatomic isthmus is dominant
• <u>27233946</u>		with VT	Results: slow conducting anatomic isthmus	substrate
	<u>Size</u> : 74	induction/mapping	identified by electroanatomical mapping: targeted	
		63% male	for ablation	
		Mean age 40 y	28 patients with inducible VT. Ablation in 18 of	
		Exclusion criteria: N/A	isthmus	
• Khairy P et al.	Study type:	Inclusion criteria: TGA	1° endpoint: TGA s/p atrial baffle ICD outcomes	 TGA s/p atrial baffle: ICD
CAE 2008 (527)	Retrospective	s/p atrial baffle with		appropriate shocks mainly in
• <u>19808416</u>	multicenter, 7	ICD	Results: 2° prevention: 38%	patients with 2° prevention, (HR:
	sites	Mean age 28 y, 89%	Annual rates approp shocks:	18; p=0.034) and lack of BB, (HR:
		male	1° 0.5%, 2° 6%	16.7; p=0.03)
	<u>Size</u> : 37	Exclusion criteria: N/A	Independent predictors: 2° prevention, lack of BB	 SVT preceded VT in 50% of
			Approp shocks: None with inducible VT;	approp shocks
			37% of patients without inducible VT (p=0.043)	 Inducible VT did not predict
			Comps 38%, 33% lead, 3% generator	appropriate shock treatment in
				TGA
				Protective effect of BB
• Tutarel O et al.	Study type:	Inclusion criteria:	1° endpoint: all-cause mortality ACHD	 9-fold (864%) increase in ACHD
Eur H J 2014	retrospective	ACHD patients ≥60 y at		patients >60 y between 2000 and
(528)	cohort, Royal	entry, followed	Results: 14.6% died (55/375)	2011
• <u>23882067</u>	Brompton	1/2000-3/2012, mean	Cardiac deaths: 40% CHF, CAD	
		age 65 y, median	Independent predictors mortality: CAD (HR: 5.05);	
	<u>Size</u> : 375	followup 5.5 y	CHF (HR: 2.36); NYHA class (HR: 1.96); mod-severe	
			systemic vent dysfunction (HR: 1.90)	
		Exclusion criteria: N/A		

• Koyak Z et al.	Study type:	Inclusion criteria:	<u>1° endpoint</u> : SCD in ACHD	 Increased risk SCD: severe
Europace 2017	Multicenter	ACHD; age matched		ventricular dysfunction, increase
(529)	case-control:	controls; mean	Results: 131 SCD, mean age 36±14 y	QRS duration ≥5 ms/y
• <u>27247006</u>	CONCOR,	followup 7 y	Increased risk: increase in QRS duration ≥5 ms/y	
	Toronto, Leuven		(OR: 1.9), change in systemic vent fxn to severe	
	<u>Size</u> : 25,000	Exclusion criteria: N/A	(OR: 16.9; 95% CI: 1.8–120.1, p=0.008)	
• Engelfriet P et	Study type:	Inclusion criteria:	<u>1° endpoint</u> : ACHD morbidity	 VEA highest in TOF 14%;
al. EHJ 2005	multicenter	ACHD patients in	Median followup 5 y	Cyanotic 6%, VSD 3%,
(530)	retrospective	Europe: ASD, VSD,	Results: Ventricular arrhythmias:	
• <u>15996978</u>		TOF, coA, TGA,	TOF 14%, cyanotic 6%, VSD 3%, others 2% except	
	<u>Size</u> : 4110	Marfan, Fontan,	Fontan: 0	
		cyanotic	SVT: Fontan 45%, ASD 28%, TGA 26%, TOF 20%,	
			cyanotic 16%	
		Exclusion criteria: 8	Endocarditis: VSD 7%, cyanotic 6%, TOF 4%, others	
		lesions included	0-2%	
• Gallego P et al.	Study type:	Inclusion criteria: 936	1° endpoint: Causes SC arrest in ACHD	• Highest SCA:
AJC 2012 (531)	single center	ACHD patients		TGA 10/1000
• <u>22464215</u>	retrospective	followed single center	<u>Results:</u> SCA 2.6/1000 pt y	UVH, coarctation, TOF
		8387 patient-y of	SCA occurred in 23% of severe subaortic	 Severe subaortic ventricular
	<u>Size</u> : 22	followup	ventricular dysfunction, vs 0.7% with nonsevere	dysfunction (HR: 29)
			dysfunction, p<0.001	
		Exclusion criteria: N/A	80% of SCA occurred in TGA, UVH, coarctation,	
			TOF	
• Engelings CC et	Study type:	Inclusion criteria:	1° endpoint: Identify cause of death in ACHD	• Leading causes of cardiac death:
al. Int J Cardiol	National cohort	ACHD patients >18 y,		CHF 28%, Sudden 23%
2016 (532)		mean followup 3.7 y;	<u>Results:</u> 239 deaths, 9.2%, mean age 39.8±17.8 y	 Sudden death highest: Marfan's,
• <u>26970963</u>	<u>Size</u> : 2596	between 1/01-1/15	Related to Cong HD: 72%: CHF 28%, SCD 23%	AS, Eisenmenger syndrome, cc TGA,
			Leading causes: CHF-UVH, TGA	TGA, TOF, VSD, UVH
		Exclusion criteria: N/A	SCD: Eisenmenger, TOF, Marfan, AS	 AICD under-utilized
			Comparing 2001-2008 with 2009-2015:	
			CHF increased from 23-30%, SCD decreased from	
			29-20%	

 Fish FA (533) JACC 1992 <u>1906902</u> 	Study type: Retrospective multi-center Size: 124 (entire study, 579)	Inclusion criteria: Use of class Ic AA meds in 124/579 young patients with VA Flecainide 103, encainide 21 Exclusion criteria: N/A	 <u>1° endpoint</u>: Adverse events during treatment with flecainide or encainide for VA: Pro- arrhythmia, CA/SD <u>Results:</u> Flecainide: Pro-arrhythmia: 5.8%, CA 3.9%, sudden death4.9% Encainide: pro-arrhythmia 9.5%, CA 9.5%, sudden death9.5% Efficacy 71-76% 10 patients CA/Death: most on flecainide 	 Deaths 5.6%, CA 4.8%, pro- arrhythmia 6.4% for patients treatment for VA with either flecainide or encainide for SVT patients, risk higher if structural HD, not for VT
 Stan MN et al., 2014 (534) 22518347 	Retrospective single center 23	ACHD patients developing amio- induced thyrotoxicosis after ≥ 3 mos amio, Mayo Clinic 1987- 2009; median followup3.1 yrs.	<u>1° endpoint</u> : Identify incidence and risk factors amio <u>Results:</u> Thyrotoxicosis13.6% (23/169) ACHD patients developed amio thryrotoxicosis.	•Highest Risk: low BMI <21, cyanotic HD
 Silka MJ et al. JACC 1998 (535) <u>9669277</u> 	Study type: Retrospective statewide registry Size: 41	Inclusion criteria: congenital heart disease surgery in Oregon 1958-1996 3589 patients Exclusion criteria: single ventricle not included	 <u>1° endpoint</u>: Population based risk of SCD in congenital heart disease <u>Results:</u> SCD 1/1118 patient-y 37/41 late sudden deathoccurred in 4 lesions Causes SCD: arrhythmia 75%, CHF 10%, other cardiac 17% (embolic, aneurysm rupture) 	 Late SCD: 4 lesions: 1/454 patient-y Aortic stenosis Coarctation TGA TOF Cause SCD: arrhythmia 75%, CHF 10%
 Oechslin EN et al. AJC 2000 (536) <u>11074209</u> 	Study type: single center retrospective Size: 197	Inclusion criteria: ACHD patients followed Toronto, 2609 adults Exclusion criteria: N/A	<u>1° endpoint</u> : Mortality causes in ACHD <u>Results</u> : Mean age death 37 y Causes: sudden 26%, CHF 21%, periop 18% Youngest age at death: TGA, tricuspid atresia, PA, aortic coarc <30 y >50 y; ASD, PDA	 Highest mortality lesions congenital heart disease: univentricular 41%; ccTGA 26%, TOF or PA 16%, Ebstein 9% AVSD 7%,
Nieminen HP et al. JACC 2007 (537)	<u>Study type</u> : National	Inclusion criteria: Finland national registry of congenital	<u>1° endpoint</u> : Causes of death in ACHD during 45 y followup	• Causes of late death in congenital heart disease: cardiac 67%: CHF

• 17888844	registry,	heart disease, 6024	Results: 45 y survival 89%, lower than gen	40%, periop 26%, SCD 22% other
	retrospective	patients surviving first	population	CV 12%
		operation	Highest risk CD: TGA, UVH, TOF, VSD	• Highest risk of SCD: coA 42%, TOF
	<u>Size</u> : 592		Other CVD: stroke, arrhythmia, pulm emboli,	and TGA: 30%
		Exclusion criteria: N/A	endocarditis, aortic rupture	Increased non-cardiac death 2
			Increased non-cardiac mortality	fold: neurologic, respiratory
 Verheugt C et 	Study type:	Inclusion criteria:	1° endpoint: Complications in ACHD	Ventricular arrhythmias overall
al. IJC 2008 (538)	Meta-analysis	ASD, VSD, PS, TOF,		7%, highest TOF 14%
• <u>18687485</u>	MEDLINE 1980-	coarctation, TGA	Results: Vent arrhythmias: TOF 14%, VSD 2.9%,	 MI highest" coarctation 5%
	2007	Exclusion criteria:	TGA 1.9%	SVT: all lesions: 18%
		univentricular heart	SVT: TGA 26%, ASD 28%TOF 20%	
	<u>Size</u> : 7894		Summarizes endocarditis, CHF, CVA, MI, SVT by	
			lesion	
• Pillutla P et al.	Study type:	Inclusion criteria: CDC	1° endpoint: ACHD death trends	• Decline in mortality among TGA,
AHJ 2009 (539)	CDC registry	registry 1979-2005,		TOF
• <u>19853711</u>	causes of death	congenital heart	Results: Cyanotic lesions: arrhythmia, then HF	
		disease in USA	Non-cyanotic lesions, MI after 1990, arrhythmia	 MI leading cause of death in
	<u>Size</u> :		prior to 1990	patients with non=cyanotic lesions
		Exclusion criteria: N/A		
 Verheugt CL et 	Study type:	Inclusion criteria:	1° endpoint: ACHD causes of death	 Lesions with highest mortality:
al. EHJ 2010	Dutch CONCOR	6933 ACHD patients:		Univentricular heart 25%,
(540)	national registry,	197 deaths: 2.8%	Results: Median age death 49 yrs	DORV + TOF 13%
• <u>20207625</u>	retrospective		77% CV cause: CHF 26% age 51 yrs, sudden	ccTGA 6%
		Exclusion criteria: N/A	death19% age 38 yrs	Ebstein 5%
	<u>Size</u> : 197		Ventricular arrhythmias predicted SCD, HR 1.5	AVSD 5%
			SVT and VT predicted CHF, HR 5.1 and 4.5	TGA 3%
			See complications by lesion analysis!	
• Zomer AC et al.	Study type:	Inclusion criteria:	1° endpoint: ACHD causes of death	SCD: 10% with exertion
IJC 2012 (541)	Retrospective	causes of death in	Total followup 26,500 pt y	Highest mortality: univentricular
• <u>20934226</u>	national registry	ACHD patients		hearts 26%, TOF/DORV/PA 20%,
			Results: Median age at death 48 y	TGA and cc TGA 10%, AVSD 6%,
	<u>Size</u> : 231	Exclusion criteria: N/A	Causes of death: CHF 26%, SCD 22%, malignancy	Ebstein 6%,
			9%, pneumonia 4%	
			SCD exercise 8%,	
			Lower risk-ASD 3%, VSD 1.3%, AS 1%	
			Youngest age: TGA 33 y, AVSD 37 y, ASD age 61 y	

•	Diller GP et al. Circ 2015 (542) 26369353	Study type: Single center cohort Size: 6969	Inclusion criteria: ACHD patients followed 1991-2013, median followup 9.1 yrs Exclusion criteria: N/A	 <u>1° endpoint</u>: Cause of death ACHD compared with general age/gender matched, calculate SMR (standardized mortality ratio) <u>Results</u>: 7.7% died, 0.72%/pt y Leading causes: CHF 42%, pneumonia 10%, SCD 7%, cancer 6%, hemorrhage 5% SCD highest: TGA arterial switch 33%, AVSD 14%, Fontan and single RV 13% each, complex congenital heart disease 11%, Eisenmenger 9%, TOF 6% 	 Highest mortality: Eisenmenger, complex congenital heart disease, UVH SMR, p<0.001: Fontan: 23.4, Complex congenital heart disease 14.1, Eisenmenger 12.8, systemic RV 4.9, Ebstein 3.3, TGA arterial switch 2.6 (0.08), TOF 2.3, Marfan 2.2, coarctation 1.7
•	Raissadati A et	Study type:	Inclusion criteria:	<u>1° endpoint</u> : ACHD Late mortality causes	• Late 40 yr survival: simple defects
а	I. JACC 2016	Nationwide	Patients undergoing		87%, complex 65%
(!	543)	cohort study,	cardiac surgery <15 y	Results: early mortality 5.6%; late 10.4%	• 40 y freedom sudden death: 99%
•	27470457	Finland	old between 1953-	congenital heart disease related deaths: 6.6%:	simple, 91% severe, (HR: 9.9)
		C	2009	causes-CHF 28%, reop 14%, SCD 13%, other CV 8%	Highest CV mortality: UVH, TGA,
		<u>Size</u> : 10,964	Fuchasian anthenian NI/A	Sudden deaths: arrhythmia/unknown 78%, MI 7%,	TOF, VSD, coarc
			Exclusion criteria: N/A	aortic dissection 5%	Increased lung, neuro, infectious
				Sudden death ages: ASD 40 y TOE 30 y coard 20 y	diseases
				Cancer higher than general nonulation especially	
				females, (RR: 5.9)	
•	Teuwen CP et	Study type:	Inclusion criteria:	1° endpoint: ACHD Non-sustained VT: risk for	• Sustained VT/VF developed rarely
а	l. IJC 2016 (544)	retrospective	ACHD patients with	sustained VT/VF	in patients with only non-sust VT
•	26805391	cohort	VA:	Mean age 40±14 y	• Recurrent sust VT/VF frequent in
			Nonsust VT 71%		patients presenting with sust VT/VF
		<u>Size</u> : 145	Sustained VT 17%	Results: 5/103 nonsust VT patients developed	 recommend "wait and see
			VF 12%	sustained VT/VF	approach" for nonsust VT;
			Exclusion criteria: N/A		aggressive treatment for sust VT/VF

 Wells R et al. 2009 (545) <u>19691680</u> 	Study type: Retrospective multicenter Size: 20 patients	Inclusion criteria: ACHD, mean age 34.9 y, receiving amiodarone for ≥6 mo; case-control group. Mean duration 3 y, mean dose 191 mg Exclusion criteria: N/A	Review side effects of chronic oral amio 36% developed thyroid dysfunction: 19 hyper, 14 hypothyroid. Sig risk factors: Female gender (OR: 3.0) cyanotic HD (OR: 7.0); Fontan (OR: 4.0); dosage >200 mg/d (OR: 4.0)	Patients with congenital heart disease at higher risk for amio adverse effects, esp women, cyanosis, Fontan, or dose >200 mg
 Afilalo J et al. JACC 2011 (546) <u>21939837</u> 	Study type: Quebec database 1993- 2005 Size: 3239	Inclusion criteria: ACHD patients ≥65 y old at entry, followed up to 15 y Exclusion criteria: N/A	<u>1° endpoint</u> : all-cause mortality ACHD <u>Results:</u> most common types congenital heart disease: shunt lesions 60%, valvar 37%, severe 3% Arrhythmias present: AF 25%, Ventricular arrhythmias 3–4% Mortality driven by co-morbidity: dementia (HR: 3.24), GI bleed (HR: 2.79), chronic kidney disease (HR: 2.5); CHF (HR: 1.98), diabetes (HR: 1.76), COPD (HR: 1.67)	 Current ACHd populations surviving to age 65 y or greater, co- morbid diseases most powerful predictors of mortality; increased CAD 7% vs 5% age matched Ventricular arrhythmias present in 3–4% Prevalence ACHD in geriatrics: 3.7 /1000 (vs 4.2/1000 in non-geriatric)
 El Malti R et al. EJ Human Genetics 2016 (547) <u>26014430</u> 	Study type: retrospective Size: 154	Inclusion criteria: familial congenital heart disease genetic screening Exclusion criteria: N/A	 <u>1° endpoint</u>: Screening congenital heart disease for FATA4, NKX2.5, ZIC3 <u>Results</u>: 10.4% identified with causal gene NKX2.5 identified in ASD/VSD and conduction disorders; 6/154, 3.9% ZIC3 1.9%, GATA4, 0.7% 	 Familial AV block/ASD correlated with NKX2.5 Can be used to screen high risk SCD families
 Abou Hassan OK et al. Sci Rep 2015 (548) 25742962 	Study type: retrospective <u>Size</u> : 188	Inclusion criteria: congenital heart disease in Lebanon: high incidence of cosanguinity <u>Exclusion criteria</u> : N/A	 <u>1° endpoint</u>: Screening NKX 2.5 gene defect in congenital heart disease <u>Results:</u> Familial ASD: 60% with NKX 2.5 Diversity of phenotypes: congenital heart disease, AV block, SCD, coronary sinus disease 	• Familial septal defects and conduction disorders: high prevalence NKX2.5, SCD
• Ellesoe SG et al. CHD 2016 (549) • <u>26679770</u>	Study type: Size: 39	Inclusion criteria: Probands with familial	<u>1° endpoint</u>: NKX 2.5 occurrence in familial congenital heart disease	• Screen familial ASD patients for NKX 2.5, esp if conduction disorders

		congenital heart	Results: NKX 2.5 found 2.5% of probands	
		uisease		
		Exclusion criteria: N/A		
• Cuypers JA et	Study type:	Inclusion criteria: ASD	1° endpoint: ASD surgical repair long-term	• Surgical repair ASD: late SCD 1.5%
al. Heart 2013	Longitudinal	surgical repair 1968-	outcomes	
(550)	cohort	1990	Mean Followup 35 y	
• <u>23886606</u>				
	<u>Size</u> : 135	Exclusion criteria: N/A	Results: SVT: 16%, late SCD 1.5%	
			Pacemaker 6%.	
			LVEF 58%, RVEF 51%. Low RVEF 31%, d ilated RV	
			20%	
 Kuijpers JM et 	Study type:	Inclusion criteria: ASD	<u>1° endpoint</u> : ASD secundum outcomes: gender	ASD secundum outcomes: males
al. EHJ 2015	Dutch national	secundum in Dutch	differences	higher risk conduction
(551)	registry	registry	Cumulative followup 13584 pt-y	disturbances, SVT, CVA, CHF;
• <u>25883174</u>		Mean age 45 y		decreased life expectancy c/w
	<u>Size</u> : 2207	Males 33%	<u>Results:</u> Median survival: men 79.7 y, women 85.6	general population
			у.	
		Exclusion criteria: N/A	Compared w age/sex matched gen pop, survival	
			for males lower; equal for females.	
• Khairy P et al.	Study type:	Inclusion criteria: TOF	<u>1° endpoint</u> : TOF arrhythmia outcomes &	• TOF Ventricular arrhythmias 15%,
Circ 2010 (552)	Retrospective	repair	correlates	increased with LV diastolic
• <u>20713900</u>	multi-center	Female 54%		dysfunction
		Mean age 37 y	<u>Results:</u> Sustained arrhythmia: 43%.	AF and Vent arrhythmias
	<u>Size</u> : 556	Exclusion criteria: N/A	Prevalence AT 20%: RAE, HTN, number of surgeries	increased after age 45 y
			and the second	
			Ventricular 14.6%: number of surgeries, QRS	
	Church a transmission	Inclusion with the TOP	duration, LV diastolic dysfunction (OR: 3.3)	
Valente AM et	<u>Study type</u> :	Inclusion criteria: TOF	<u>1° endpoint</u> : TOF risk factors death, VI	• IOF predictors SCD, VI:
ai. Heart 2014	multi contor	Audian and 24 y	Desulte: 2.7% death (VT median age 28 ···	KVH, ventricular dystunction (RV or
(553)		wellan age 24 y	<u>Results:</u> 5.7% deality v1, median age 38 y	
• <u>241/9163</u>	cohort	Exclusion criteria: N/A	DV mass (volume ratio >0.2 (HB: E.04)	Higher BV systelic pressure UP
		LACIUSION CITCETIa: N/A	$1 \times 11 d_{22} \times 100 He ratio 20.3, (RK: 5.04)$	
	Size: 873		LVLF 2 SLOTE <2, (ΠΝ. 3.34)	1.37
	<u>JILC</u> . 0/3	1	AI, (IIN. 3.03)	

• Arya S et al.	Study type:	Inclusion criteria: TOF	<u>1° endpoint</u> : TOF outcomes: risk changing?	• TOF late SCD: 1.8%
CHD 2014 (554)	single center	Late followup	Desults: Arrhythmics F 49() older posten interval	
• <u>24314315</u>	single center	Agos 17 59 y	<u>Results:</u> Armythmias 54%: older postop interval,	
	Size: 100	Ages 17-36 y	Wide QRS mean 158 msec.	
	<u>5126</u> : 109	Exclusion critoria: N/A	No correlation with surgical era, gender RV	
	Church a trunc ou	Exclusion criteria. N/A	pressure, RVOT gradient, RVEDV	TOT to share add in a dather C CO(
• WU MH et al. HR 2015 (555)	National	repair Taiwan;	<u>1° endpoint</u> : TOF late arrnythmia outcomes	• TOF tachycardia in adults: 6.6%: VT 18%, VF 3%,
• 25461497	database Taiwan	database those born	Results: Prevalence TOF in adults 0.06/1000	 Median age VT/VF 23–25 y
	retrospective	2000-2010 reviewed	Survival 10 y: 78%	 Interventions for tachycardia
	(national health	for late outcomes	Arrhythmias 4.6%: 73% tachycardia	2.4% annually, adults
	insurance! Easily	58% males	Overall tachycardia: 3.3% (6.6% adults, 1.8% peds).	
	accessible care!)		AF 29%. AVB 0.6%	
	,	Exclusion criteria: N/A	SVT/AT/AFL/AF = 80%. VT 18%. VF 3%	
	Size: 4781	,	Mortality with VT: 24%, VF 60%.	
• Heng EL et al.	Study type:	Inclusion criteria: TOF	1° endpoint: TOF outcomes and biomarkers	TOF: BNP level ≥15 pmol/L
Heart 2015 (298)	Single center	patients with	Median followup 10 v	associated with 5 fold increased
• 25351509	prospective	age/gender matched	Measured aldosterone, ANP, BNP, renin,	risk death
20001000	FF	controls.	endothelin	Incorporate BNP into risk
	Size: 90			stratification
		BNP 1pmol/L = 3.472	Results: Late deaths: 9%	
		pg/ml	BNP \geq 15 pmol/L: increased mortality (HR: 5.4),	
			sustained VT. (HR: 2.06)	
		Exclusion criteria: N/A		
• Drago F et al.	Study type:	Inclusion criteria:	1° endpoint: TOF voltage mapping of ventricular	TOF scar extension correlates
IJC 2016 (556)	Retrospective		endocardium	with risk factors for life-threatening
• 27505328	single center	Exclusion criteria:		arrhythmias
			Results: 97% with scar in RVOT.	
	Size: 146		Total scar extension c/w: QRS ≥180 ms, LV and RV	
			dysfunction, PVC, prior shunt, re-intervention.	
			duration of post surgical followup	
			- proceeding of the second proceeding of the s	
• Kriebel T et al.	Study type:	Inclusion criteria:	1° endpoint: TOF patients undergoing ablation.	• TOF VT Ablation acute success
JACC 2007 (557)	single center	repaired TOF patients	contact mapping, RF ablation	100% (8 patients)
• 18036455	retrospective	with VT undergoing		Recurrence 25% in 35 mo
		ablation	Results: 13 VT circuits, 2 focal	
	<u>Size</u> : 10	Males 75%; Age 52 y	ICD pre in 2, recommended post in all	
		Exclusion criteria: N/A		
-------------------	---------------------	-------------------------	--	--
• Witte KK et al.	<u>Study type</u> :	Inclusion criteria:	<u>1° endpoint</u> : TOF patients with ICD vs dilated CM	• TOF patients: higher risk inapprop
Europace 2008	single center	TOF patients with ICD		shocks 25% vs 4%,
(558)	retrospective	compared with dilated	Results: TOF appropr shocks 25%; inapprop 20%	• Death rate for TOF 5%, < DCM,
• <u>18442962</u>		CM		21%
	<u>Size</u> : 20			
		Exclusion criteria:		
• Lange R et al.	Study type:	Inclusion criteria: TGA	1° endpoint: TGA atrial switch outcomes.	• TGA atrial baffle risk factors SCD:
Circ 2006 (559)	Single center	with atrial repair:	Mean followup 19 y	Prior VSD closure, Mustard repair
• 17060385	retrospective	Senning 79%		
		Mustard 21%	Results: 25 y survival: Mustard 76%, Senning 91%	
	Size: 417		(p=0.002)	
		Exclusion criteria: N/A	Mustard: die more often of arrhythmia (p<0.001),	
			reop baffles (p<0.0001);	
			Independent risk SCD: VSD closure (HR: 2.3),	
			Mustard (HR: 2.0)	
Schwerzmann	Study type:	Inclusion criteria: TGA	1° endpoint: TGA s/p Mustard outcomes	• TGA s/p Mustard: late SCD or
M et al. EHJ 2009	Single center	s/p Mustard repair	Mean followup 9 y	sustained VT: 9%
(560)	retrospective	Mean age 28 y		 QRS duration ≥140 msec highest
• 19465439			Results: Sustained VT/SCD 9%: risk factors:	risk sVT/SCD (HR: 13.6: 95% CI: 2.9-
	Size: 149		Associated anatomic lesion (HR: 4.9), NYHA \geq III	63.4)
		Exclusion criteria: N/A	(HR: 9.8), impaired subaortic RVEF (HR: 2.2)	
			AT 44%, not predictor of VT/SCD (HR: 2.7: 95% CI:	
			0.6–13)	
Wheeler M et	Study type:	Inclusion criteria: TGA	1° endpoint: TGA atrial switch late outcomes	• TGA s/p atrial switch: 1°
al. CHD 2014	Single center	patients, s/p atrial	Results: SCD 5.6%	prevention ICD-no appropriate rx
(561)	retrospective	switch, Mustard or	ICD 5.6% 1° prevention: no appropriate therapy	• Higher risk: older age at surgery
• 24151816		Senning	Patients with SCD: all with AT vs 29% AT in	presence of AT earlier era of
24101010	Size: 89		survivors	surgery

• Bouzeman A et al. IJC 2014 (562) • <u>25499397</u>	Study type: Retrospective multicenter, Size: 12	Inclusion criteria: TGA s/p atrial switch with ICD Median age 34 y Exclusion criteria: N/A	<u>1° endpoint</u> : TGA atrial switch and ICD outcomes Median followup 19 mo <u>Results:</u> 2° prevention 33%; Implant: one death during DFT (8%) All patients with severe vent dysfunction; 54% worsening CHF, 5/11 (45%) transplanted. 50% sustained AT during followup	 TGA atrial switch and ICD: 9% appropriate therapy (1 pt, 1° prevention, successful ATP without shock) complications: 27% HF determines outcomes
 Buber J et al. Europace 2016 (563) <u>26705566</u> 	Study type: Retrospective single center Size: 18	Inclusion criteria: TGA s/p atrial switch with ICD implanted for 1° prevention Median age 26 y Exclusion criteria: N/A	 <u>1° endpoint</u>: TGA s/p atrial switch: ICD outcomes Median followup 4 y <u>Results</u>: EPS performed 72%: sust VT 54%, AFL 31%. VT inducibility did not predict appropriate shock. One pt received shock for VT; 39% for SVT, Inappropriate shocks: 61%, mainly SVT/AFL 	 AT most common cause for ICD shocks in 1° prevention TGA s/p atrial switch NOT predictive: VT inducibility, QRS duration, age 50% complications
 Backhoff D et al. PCE 2016 (564) <u>27503213</u> 	Study type: Retrospective multicenter, 4 German centers Size: 33	Inclusion criteria: TGA s/p atrial switch with ICD. Median age 27 y, 85% male. Exclusion criteria: N/A	 <u>1° endpoint</u>: TGA s/p atrial switch: ICD rx Median followup 4.8 y <u>Results</u>: 2° prev 12%. Shocks: Approp 9%, inapprop 24% Annual incidence approp rx: 1.9%/pt/yr. Inducible VT/VF: no approp shock 2° prev: no approp shock No predictors of approp rx 	 TGA s/p atrial switch: low rate of appropriate ICD shocks 9% < AT main cause of inappropriate shocks Vigorous treatment of AT, careful ICD programming (inactivation VT zone, program VF zone 220-230 bpm) Complications 21%
 Pundi KN et al. CHD 2016 (565) 27545004 	Study type: Retrospective single center Size: 996	Inclusion criteria: Fontan patients operated at Mayo 1973-2012, with questionnaire sent Exclusion criteria: arrhythmia prior to Fontan surgery	<u>1° endpoint:</u> Fontan arrhythmia outcomes <u>Results:</u> Freedom from arrhythmia requiring treatment: 10 y: 71%; 20 y: 42%; 30 y 24%. AFL /AT 48%, AF 19%, SVT AC /AVN 4%, VT 5%, SND 13%. Predictors arrhythmia: AP Fontan, age at surgery >16 y, AT postoperatively.	 Fontan late outcomes: 5% VT, 5% late SCD Risk factors: arrhythmias (65%), AVV replacement, post bypass Fontan pressure >20 mm Hg Preop sinus rhythm was protective

 Sakamoto T et al. Asian CVTS 2016 (566) <u>27563102</u> 	Study type: Retrospective single center Size: 40	Inclusion criteria: Fontan patients operated 1974-1986 Surgery: AP 70%, RA- RV 25% Exclusion criteria: N/A	<u>1° endpoint</u> : Late outcomes Fontan 20/40 (50%) died <u>Results:</u> Causes of death in 20 patients: CHF 30%, SCD 20%, arrhythmia 20%, other 30%	 Late SCD in Fontan: 10% overall Timely conversion of AP Fontan, medication to decrease ventricular volume and pressure load needed
 Alexander ME et al. JCE 1999 (567) <u>10466482</u> 	<u>Study type:</u> single center <u>Size</u> : 130	Inclusion criteria: congenital heart disease patients undergoing V-stim TOF 33%, TGA 25%, LVOT lesions 12% Median age 18 y Exclusion criteria: N/A	<u>1° endpoint</u> : Sustained VT inducibility in congenital heart disease <u>Results:</u> Sust VT inducible 25% Non-sust VT 12%, AFL or SVT: 32%	 Positive V stim correlated decreased survival (HR: 6), arrhythmic events (HR: 3) Patients with documented clinical VT: 33% negative V stim— frequent false negative
 Silka MJ et al. Circ 1993 (568) <u>8443901</u> 	Study type: Multicenter retrospective Size: 125	Inclusion criteria: 177 patients age <20 y undergoing ICD; 125 with data available. Mean age 14.5 y Cardiomyopathy 54%, electrical 26%, congenital heart disease 18% Exclusion criteria: N/A	<u>1° endpoint</u> : ICD outcomes in younger patients Mean followup 2.6 y <u>Results:</u> 2°: ACA 76%, refractory VT 10%. 1°: Syncope with HD and inducible sustained VT: 10% Shocks: appropriate 68% of patients, inapprop 20%. 5 late SCD. Predictors late mortality: abnormal vent fxn	 Early ICD study: 2° prevention 86% 5 y survival: 85% SCD free survival 5 yrs: 90%
 Berul Cl et al. JACC 2008 (569) <u>18436121</u> 	Study type: Multicenter retrospective Size: 443	Inclusion criteria: Pediatric and congenital heart disease patients receiving ICD in 4 centers 1992-2004 Median age 16 y; 69% structural HD: TOF 19%, HCM 14%	<u>1° endpoint</u> : ICD comps & therapies young Mean followup 7.5 y <u>Results:</u> 2° prev 48% Comps: early 14%, late 29%, electrical storm 5% Appropriate shocks 26%, inapprop 21%higher in electrical disease (31%) vs cardiomyopathy (13%), congenital heart disease (28%) SCD 1%	 ICD in young patients: high inappropriate shocks 28% in congenital heart disease Complications 43%

		Electrical 31%		
		Exclusion criteria: N/A		
 Khanna AD et 	Study type:	Inclusion criteria:	1° endpoint: ACHD patients with ICD outcomes	Appropriate ICD shock more likely
al. AJC 2011	Retrospective	ACHD patients with	Mean followup 2.2 y	in patients with elevated
(570)	single center,	ICD		subpulmonary pressure
• <u>21684513</u>	Mayo	TOF 44%	Results: 1° prevention 64%	
		cc-TGA 17%	Approp shock 19%, inapprop 15%	
	<u>Size</u> : 73	Exclusion criteria: N/A		
• Koyak Z et al.	Study type:	Inclusion criteria:	1° endpoint: ACHD ICD approp shock risk score.	Appropriate shocks for ACHD:
CAE 2012 (571)	Multicenter	ACHD patients	Median followup 4.6 y	2° prevention, (HR: 3.6)
• <u>22095638</u>	retrospective 10	receiving ICD	Results: 2° prevention 50%	CAD, (HR: 2.7), and symptomatic
	centers	Mean age 41 y	Shocks: approp 29%, inapprop 30%, (SVT 69%)	nonsust VT (HR: 9.1)
	Netherlands,	TOF 51%, Septal defect	Comps 29%	High morbidity with ICD
	Belgium	20%, ccTGA 13%	63% underwent PES: 73% inducible sust VT/pmVT,	No assoc between ICD treatment
			VF: no difference in appropriate shocks: 33% with	and QRS duration
	<u>Size</u> : 136		induc VT, 32% w/out	Inducible sustained VT did not
		Exclusion criteria: N/A	In 1° prev patients, univariable risks symptomatic	correlate with appropr shock
			nonsust VT HR: 8; 95% CI: 2.3–27.1, p=0.001 and	•TGA patients: appropriate
			subpulmonary ventricular dysfunction, HR: 3.0;	therapy: 29% 2° prev, 4.3% 1°
			95% CI: 1.2–12.6, p=0.02	• TOF patients: not at higher risk
				approp rx
• Khairy P et al.	PACES/HRS Expert	Consensus Statement	1° endpoint:	
HR 2014 (572)	on recognition and management of			
• 24814377	arrhythmias in AC	HD	Results:	

Study Acronym;	Study	Patient Population	1° Endpoint and Results	Summary/Conclusion
Author;	Type/Design;		(P values; OR or RR;	Comment(s)
Year Published	Study Size		& 95% CI)	
 Bardy et al. 	Study type:	Inclusion criteria: Meeting	1° endpoint: Successful immediate	 In small, nonrandomized studies, an
2010 (573)	Prospective non-	class I, IIa, IIb criteria for an ICD	conversion of 2 consecutive episodes	entirely S-ICD consistently detected
• <u>20463331</u>	randomized clinical		of induced VF each with a single 65-j	and converted VF induced during EP
	trials (covered 4	Exclusion criteria: GFR <30	shock.	testing.
	trials)	ml/min, need for		• The device also successfully detected
		antibradycardia pacing, Hx of	Results:	and treated all 12 episodes of
	<u>Size</u> : N=78 in	VT at rates <170 bpm and	 Mean age of the 78 patients was 	spontaneous, sustained VT
	temporary S-ICD	documented VT known to be	61±11 y	
	implantation for	reliably terminated with ATP	 All 6 patients underwent successful 	
	testing 4 electrode		implantation of the S-ICD, and in all the	
	configurations and		patients, defibrillation with 65-J	
	DFT testing; N=49		submaximal shocks was successful	
	in a trial that		during 2 consecutive episodes of	
	compared the best		induced VF. Of 18 induced VF episodes,	
	of the tested S-ICD		all were successfully detected by the	
	in the first trial		device. After 488 d of FU, there were	
	with a transvenous		no complications.	
	ICD system,		• In the 4 th trial, 53 patients were	
	comparing DFTs;		evaluated for sensing and defibrillation	
	N=6 followed by		during implantation. Of 137 episodes	
	N=55 in trials that		of induced VF, 100% were detected by	
	tested permanent		the S-ICD. After 10 mo of FU, 53 of 55	
	S-ICD implantation.		patients were alive. Pocket infection	
			developed in 2 patients. 12 episodes of	
			VT in 3 patients were successfully	
			treated during followup	
Olde Nordkamp	Study type:	Inclusion criteria: Class I or Ila	<u>1° endpoint</u> : Effectiveness and safety	• The S-ICD is effective at terminating
et al. 2012 (574)	Retrospective	indication for a 1° or 2°	of the S-ICD	VA
• <u>23062537</u>	study	prevention ICD		Rate of inappropriate shocks was
			Results: Mean age=50 y. After 18 mo	13%
	<u>Size</u> : N=118	Exclusion criteria: None	of followup, 8 patients experienced 45	• The rate of complications decreased
			successful appropriate shocks (98%	with improved technology and
			first shock conversion efficacy). No	implanter's experience.

Data Supplement 55. Nonrandomized Trials, Observational Studies, and/or Registries of S-ICD - (Section 11.1)

			sudden deaths occurred. Fifteen	
			patients (13%) received inappropriate	
			shocks, mainly due to T-wave	
			oversensing, which was mostly solved	
			by a software upgrade and changing	
			the sensing vector of the S-ICD. Sixteen	
			patients (14%) experienced	
			complications. Adverse events were	
			more frequent in the first 15	
			implantations/center compared with	
			subsequent implantations.	
• Kobe et al. 2013	Study type:	Inclusion criteria: Patients	1° endpoint: Short and long term	• Failure of conversion of induced VF
(575)	Retrospective	with a 1° or 2° prevention	effectiveness and safety	with the S-ICD set to standard polarity
• <u>23032867</u>	case-control study	indication for an ICD		was 10.4%, and there were comparable
	(matching was		Results: Conversion rates of induced	inappropriate shock rates during short-
	done on the basis	Exclusion criteria: None	VF were 89.5% with a 65J shock, and	term follow-up.
	of sex and age)	mentioned	95.5% including reversed shock	
			polarity in the study group.	
	Size: N=138		Termination of induced VF was	
			successful in 90.8% of the control	
			patients (p=0.815). Procedural	
			complications were similar between	
			the 2 groups. During a mean follow-up	
			of 217 d, 3 patients with S-ICD were	
			appropriately treated for VA. Three	
			inappropriate shokcks (5.2%) occurred	
			in 3 S-ICD patients due to T-wave	
			oversensing, whereas AF with rapid	
			conduction was the predominant	
			reason for inappropriate therapy in	
			conventional devices (p=0.745).	
• de Bie et al.	Study type:	Inclusion criteria: All patients	1° endpoint: Suitability for an S-ICD	• After 5 y of follow-up, approximately:
2013 (576)	Retrospective	who received a single- or dual	defined as not reaching one of the	i. 55% of the patients would have
• <u>23704324</u>	study	chamber ICD in the Leiden	following endpoints during follow-up:	been suitable for an S-ICD.
		University Medical Center	(1) an atrial and/or right ventricular	ii. Significant predictors of
	Size: N=1,345	between 2002 and 2011.	pacing indication, (2) successful anti-	unsuitability for an S-ICD were: 2°
			tachycardia pacing without a	

		Exclusion criteria : Patients with a pre-existent indication for cardiac pacing were excluded.	subsequent shock or (3) an upgrade to a CRT-defibrilator device. <u>Results:</u> During a median follow-up of 3.4y, 463 patients (34%) reached an endpoint. The cumulative incidence of ICD recipients suitable for an initial S- ICD implantation was 55.5% after 5 y. Appropriate ATP and the necessity of cardiac pacing resulted in the unsuitability for an S-ICD in approximately 94% of the cases, whereas device upgrade was responsible for the unsuitability in approximately 6% of the cases.	prevention, severe HF and prolonged QRS duration. iii. No mention of patients with ESRD (mean GFR 85-89 ml/min)
• Weiss R. et. al 2013 (577) • <u>23979626</u>	Study type: Prospective non- randomized multicenter trial Size: N=321 (314 were implanted successfully)	Inclusion criteria: Adult patients with a standard indication for an ICD. Exclusion criteria: Patients who required pacing or had documented pace terminable VT.	 <u>1° endpoint</u>: The 180 d S-ICD system complication-free rate compared with a pre-specified performance goal of 79%. The 1° effectiveness end point was the induced VF conversion rate compared with a pre-specified performance goal of 88%, with success defined as 2 consecutive VF conversions of 4 attempts. <u>Results:</u> Followup was for 11 mo. Mean age was 52 y. The 180 d system complication-free rate was 99%, and sensitivity analysis of the acute VF conversion rate was >90% in the entire cohort. There were 38 discrete spontaneous episodes of VT/VF recorded in 21 patients (6.7%), all of which successfully converted. Forty-one patients (13.1%) received an inappropriate shock. 	• This study supports the efficacy and safety of the S-ICD System for the treatment of life-threatening VA.

Olde Nordkamp	Study type:	Inclusion criteria: Patients	There were no cases of lead failures, endocarditis or bacteremia, tamponade, cardiac perforation, pneumothorax, hemothorax, or subclavian vein occlusion associated with the S-ICD System. There was no electrode or pulse generator movement in 99% of implanted patients throughout the followup period. 1° endpoint: To determine the	 In patients without an indication for
et al. 2014 (578)	Prospective non-	more than 18 y old with a prior	prevalence of patients who are not	bradycardia- or resynchronization
• <u>24320684</u>	randomized study	ICD implantation visiting the	suitable for	pacing, 7.3% were not suitable for S-
	c : N 220	ICD outpatient clinic.	a S-ICD according to the QRS-T	ICD implantation according to the QRS-
	<u>Size</u> : N=230	Exclusion criteria: Patients who were pacemaker- dependent or had an indication for pacing during implantation (i.e., ICD settings other than VVI ≤40 or DDI ≤40). Also patients with an indication for resynchronization pacing.	morphology screening-ECG; (2) to identify clinical characteristics of these patients; and (3) to analyze whether standard 12-lead ECG parameters can be used to predict QRS-T morphology screening failure. Patients were defined suitable when at least 1 sensing vector was considered appropriate in both supine and standing position.	T morphology screening-ECG. This indicates that this prerequisite screening method is not limiting S-ICD selection for most patients.
			<u>Results:</u> In total, 7.4% of patients, who were all male, were considered not suitable for a S-ICD according to the QRS-T morphology screening-ECG.	
			Independent predictors for TMS failure	
			were HCM (HCM; OR: 12.6), a heavy	
			weight (OR: 1.5), a prolonged QRS	
			the lead with the largest T wave on a	
			standard 12-lead surface FCG (OR	
			14.6).	

• Randles et al.	Study type:	Inclusion criteria: ICD patients	1° endpoint: S-ICD eligibility that	• About 85.2% of patients with an
2014 (579)	Prospective non-	with no ventricular pacing.	required ≥2 leads to satisfy the S-ICD	indication for a 1° or 2° prevention ICD
• <u>24351884</u>	randomized study		screening template in both erect and	have a surface ECG that is suitable for
		Exclusion criteria: Patients	supine positions.	S-ICD implantation when assessed with
	<u>Size</u> : N=196	with an S-ICD, patients with a		an S-ICD screening template. A
		paced QRS complex, and	Results: Overall, 85.2% of patients	prolonged QRS duration was the only
		patients who were unable to	(95% CI: 80.2–90.2%) fulfilled surface	baseline characteristic independently
		stand for the time required to	ECG screening criteria.	associated with ineligibility for S-ICD
		record an erect ECG.	The proportion of patients with 3, 2, 1,	implantation.
			and 0 qualifying leads were 37.2%	
			(95% CI: 30.4–44.0%), 48.0% (95% CI:	
			41.0–55.0%), 11.2% (95% CI: 6.8–	
			15.6%), and 3.6% (95% CI: 1.0–6.2%).	
			The S-ICD screening template was	
			satisfied more often by Lead III (1°	
			vector, 83.7%, 95% CI: 78.5–88.9%)	
			and Lead II (2° vector, 82.7%, 95% CI:	
			77.4–88.0%) compared	
			with Lead I (alternate vector, 52.6%,	
			95% CI: 45.6–59.6%).	
• EFFORTLESS S-	Study type:	Inclusion criteria: Patients	1° endpoint: Effectiveness and safety	 This study showed appropriate
ICD Registry	Prospective and	receiving a S-ICD	of the S-ICD.	system performance with clinical event
• Lambiase et al.	retrospective			rates and inappropriate shock rates
2014 (580)	observational	Exclusion criteria: Specific	Results: Complication-free rates were	comparable with those reported for
• <u>24670710</u>	study	contraindications include class	97 and 94%, at 30 d and 360 d,	transvenous ICDs.
		I indications for permanent	respectively. 317 spontaneous	
	<u>Size</u> : N=472 (241	pacing, pace-terminable VT,	episodes were recorded in 85 patients	
	studied	and previously implanted	during the follow-up period. Of these	
	prospectively)	functional unipolar pacing	episodes, 169 (53%) received therapy,	
		system.	93 for VT/VF. One patient died of	
			recurrent VF and severe bradycardia.	
			First shock conversion efficacy was	
			88% with 100% overall successful	
			clinical conversion after a maximum of	
			five shocks. The 360d inappropriate	
			shock rate was 7% with the vast	
			majority occurring for oversensing	

			(62/73 episodes), primarily of cardiac	
			signals (94% of oversensed episodes).	
• Groh et al. 2014	Study type:	Inclusion criteria: Patients	1° endpoint: Rate of passing screening	 More work is needed on sensing
(581)	Prospective non-	who had previously undergone	test and predictors of failure.	algorithms on S-ICDs to increase pt
• <u>24755323</u>	randomized study	implantation of a transvenous		eligibility for this device.
		ICD for 1° or 2° prevention and	Results: 8% of patients failed the	
	Size: N=100	who were not receiving	screening test.	
		bradycardia pacing and did not	Patients with T-wave inversions in the	
		have an indication for pacing	inferior leads had a 45% chance of	
		were identified.	failing the screening.	
		Exclusion criteria: See above.		
• EFFORTLESS/	Study type:	Inclusion criteria: Patients	1° endpoint: Safety and effectiveness	• S-ICD demonstrated high efficacy for
IDE Registry	Prospective and	indicated for an ICD.	of the S-ICD	VT/VF. Complications and
 Burke et al. 	retrospective			inappropriate shock rates were
2015 (582)		Exclusion criteria: Patients	Results: Followup was for 651 d.	reduced consistently with strategic
• <u>25908064</u>	<u>Size</u> : N=882 (568	with recurrent VT reliably	Spontaneous VT/VF events (N= 111)	programming and as operator
	from EFFORTLESS	terminated with ATP and	were treated in 59 patients; 100	experience increased.
	and 308 from the	patients in need of pacing.	(90.1%) events were terminated with 1	
	IDE trials)	Patients with ESRD were	shock, and 109 events (98.2%) were	
		excluded from the IDE trials.	terminated within the 5 available	
			shocks.	
			The estimated 3 y inappropriate shock	
			rate was 13.1%. Estimated 3 y, all-	
			cause mortality was 4.7% (95% CI:	
			0.9%–8.5%), with 26 deaths (2.9%).	
			Device-related complications occurred	
			in 11.1% of patients at 3 y. There were	
			no electrode failures, and no S-ICD-	
			related endocarditis or bacteremia	
			occurred. Three devices	
			(U.3%) were replaced for right	
			ventricular pacing. I nemo	
			complication rate decreased by	
			$(0.1, 8, 0\%, 0.4) \in E\%$ and there was a	
			(Q1: 8.9%; Q4: 5.5%), and there was a	
			trend toward a reduction in	

	inappropriate shocks (Q1: 6.9% Q4:	
	4.5%).	

Data Supplement 56. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries for WCD – (Section 11.2)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Endpoint Results (Absolute Event Rates, P values; OR or RR; &	Summary/Conclusions Comment(s)
• Chung MK. Cardiol Clin.	Review article	N/A	95% CI)	Description of WCD indications, efficacy and
● <u>24793801</u>	Study Size: N/A			initations.
 Chung MK, et al. J Am Coll Cardiol. 2010. (584) <u>20620738</u> 	Study type: observational, post- market registry and Social Security Death Index Size: 3569	Inclusion <u>criteria</u> : All patients implanted and signed consent post-market <u>Exclusion</u> <u>criteria</u> : N/A	<u>1° endpoint:</u> Observational study of compliance and effectiveness	Asystole was an important cause of mortality in SCA events. Compliance was satisfactory with 90% wear time in >50% of patients and low sudden death mortality during usage. 80 sustained VT/VF events occurred in 59 patients (1.7%). First shock success was 76/76 (100%) for unconscious VT/VF and 79/80 (99%) for all VT/VF. 8 patients died after successful conversion of unconscious VT/VF (survival 89.5% of VT/VF events). Asystole occurred in 23 (17 died), PEA in 2 and respiratory arrest in 1 (3 died), representing 24.5% of SCA. During WCD use, 3541/3569 patients (99.2%) survived overall. Survival occurred in 72/80 (90%) VT/VF events. Survival was comparable to that of implantable ICD patients.
 Klein HU et al. Pacing Clin Electrophysiol. 2010. (585) <u>19889186</u> 	Review article <u>Study size:</u> N/A	N/A	N/A	Description of WCD indications, efficacy and limitations.

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Relevant 2° Endpoint (if any);
Author;	Study Size		(P values; OR or RR;	Study Limitations;
Year Published			& 95% CI)	Adverse Events
• Blanck et al. 1993	Study type:	Inclusion criteria:	Results:	BBRVT typically occurs in patients
(170)	Single Center Review	All patients at single	45 of 48 patients had SHD	with SHD from a variety of causes in
• <u>8269297</u>		center with BBRVT	SHD was NICM in 16	patients with prolonged HV
	Size: 48 patients	diagnosed at EPS between	patients, Ischemic CM in 23	conduction intervals.
		1980-1992	patients, VHD in 2 patients	BBRVT is associated with aborted
		Exlcusion Criteria:		SCD, Syncope, and Palpitations
		7) Typical RBBB or	Mean LVEF=23.2%	 BBRVT is most commonly
		LBBB QRS		associated with a LBBB QRS
		morphology	Clinical Presentation	morphology, and less commonly
		during VT	Aborted SCD in 26%	with RBBB or Interfascicular QRS
		8) QRS preceded by	Syncope in 51%	morphologies
		His and	Sustained palpitations in	 Catheter ablation targeting the
		appropriate BB	10%	RBB or LBB is highly effective and
		potential		associated with a low risk of serious
		9) Stable HV, RB-V,	Mean HV interval in sinus	complications.
		or LB-V interval	80.4 msec	
		10) Induction		
		dependent on HV	QRS morphology in VT	
		delay	LBBB in 46 patients	
		11) Termination by	RBBB in 5 patients	
		block in HPS	Interfascicular reentry in 2	
		12) Noninducibility	patients	
		after RBB ablation		
			Catheter Ablation	
			Performed in 28 patients	
			targeting the RBB in 26	
			patients and LBB in 2	
			patients	
			Successful ablation of VT in	
			100%	
			No Complications observed.	

Data Supplement 57. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries for Special Considerations for Catheter Ablation – (Section 12)

300

• Lopera et al. 2004	Study type:	Inclusion criteria:	Results:	BBRVT occurs in patients with
(173)	Single Center Review	His Bundle, LBB, or RBB	HPS VT induced in 20 of 234	both NICM and ICM, usually with
• <u>15028072</u>		potential closely	consecutive patients	impaired LVEF.
	Size: 20 patients	associated with QRS with	referred for VT ablation	 BBRVT is most commonly
		any of		associated with a LBBB QRS
		the following:	NICM: 9 of 81 patients	morphology, and less commonly
		4) H-H interval	(11%) had HPS VT	with RBBB or Interfascicular QRS
		variation	ICM: 11 of 153 patients	morphologies
		preceding similar	(7.1%) had HPS VT	 Catheter ablation targeting the
		V-V interval	Mean LVEF 29 <u>+</u> 17%	RBB or LBB is highly effective and
		variation;	2 of 20 patients had normal	associated with a low risk of serious
		5) Anterograde	LVEF	complications if only one BB is
		activation of the		targeted and a higher risk of AV
		bundle branches	Clinical Presentation	block if both BBs are targeted for
		during	ICD Shocks in 10 patients	ablation.
		tachycardia; or,	Syncope in 3 patients	
		6) Abolition of VT by	Other symptoms in 7	
		bundle branch	patients	
		ablation.		
			Typical BBRVT in 16 of 20	
		Exclusion criteria: None	patients	
			(all had LBBB QRS	
			morphology)	
			13 of 16 patients BBRVT	
			successfully ablated by RBB	
			ablation and 3 of 16 by LBB	
			ablation.	
			HV interval prolonged from	
			70+5.9 msec to $83+17$ msec	
			after ablation.	
			Typical PRP\/T and	
			Interface index VT in 2 of 20	
			nationts Ablation of both	
			the PPP and portion of PP	
			eliminated VT in both	

• Mehdirad et al.1995 (174) • <u>8771124</u>	Study type: Single Center Review Size: 16 patients	Inclusion criteria: All patients undergoing RF catheter ablation of the RBB for BBRVT	patients, complicated by AV block in 1 pt. Focal Mechanism from BBs in 2 patients, one in RBB, one in LBB. Ablation eliminated focal VT in both patients, complicated by AV block in 1 pt. Results: HV interval 68±8 msec at baseline LVEF mean 31±15% RBBB developed in 15/16 patients after RBB ablation AV block occurred in 1 pt After mean of 19+10 mo, one patient died suddenly, 2 received cardiac transplantation, and 1 died of CHF.	 Catheter ablation of the RBB is effective for the treatment of BBRVT BBRVT is associated with prolonged HV conduction intervals. The medium-term follow-up after catheter ablation of the RBB is overall quite good.
• HELP-VT	Aim:	Inclusion criteria:	<u>1° endpoint</u> : At 1y follow-	• <u>Complications</u>
• 24211823	VT catheter ablation in	for catheter ablation of VT	57% for ischemic	NICM and 11 1% of ischemic
- 27211023	patients with NICM to those	with either NICM (N=63)	cardiomyonathy and 40 5%	cardiomyopathy patients, including
	with ischemic cardiomyopathy	or ischemic CM (N=164)	for NICM patients (HR 1 62	death in 4.8% of NICM and 3.7% of
	Study type:	Exclusion criteria:	95% CI: 1.12–2.34, p=0.01).	ischemic cardiomyopathy
	Prospective, non-randomized	Failure of informed	ischemic cardiomyopathy	
	Size: 227 patients	consent	required epicardial ablation	
		Intervention:	in only 2 of 164 (1.2%)	
		Catheter ablation for	whereas NICM required	
		patients with NICM		

		Comparator: Catheter ablation in patients with ischemic cardiomyopathy	epicardial ablation in 30.8% (p=0.0001).	
• Euro-VT Study <u>Aim</u>		Inclusion Criteria	<u>1° Endpoint</u>	• <u>Complications</u>
• Tallier H 2010 10 de	etermine the safety and		Acute success with abiation	1 E% and minor complications in E%
(170) enica	ning and irrigated RE	sustained VT after MI	mannable V/Ts and 40% of	of patients, particularly groin
	eter ablation for VT after	\sim A enisodes of sustained	non-mannable VTs	hematomas with no procedural
MI		VT in prior 6 mo	(n<0.0001)	deaths
			(p<0.0001).	
Study	v Type:	Exclusion Criteria	During 12 mo follow-up. VT	
Multi	ticenter, non-randomized	Age <18 y	recurred in 49% of patients.	
	-	MI within 2 mo		
Study	y Size	LV Thrombus	The mean number of	
63 pa	atients	Unstable Angina	therapies dropped from	
		Severe AS or MR	60±70 prior to ablation to	
		Unwillingness to	14±15 in the same period of	
		participate	time (6 mo) after ablation	
		Intervention	(p=0.02).	
		Electroanatomic mapping		
		and ablation with open-tip		
		irrigated catheter.		
• Post-approval <u>Aim</u>		Inclusion Criteria	<u>1° Endpoint</u>	<u>Comments</u>
Thermocool Trial To ev	valuate long-term safety	Patient with coronary	At 6 mo: 62% without VT	Reduction in amiodarone usage and
Marchlinski F 2016 and e	effectiveness of RF	disease, age ≥18 y and LV	recurrence, proportion of	hospitalization
(177) cathe	eter ablation for VT in	EF ≥10% with recurrent VT	patients with ICD shock	
• <u>26868693</u> patie	ents with coronary disease	(either ≥4 episode	reduced from 81.2 (pre) to	Improvement in QoL
		documented by ICD, ≥ 2	26.8% and \geq 50% reduction	
Study	y Type:	episode documented by	in VT episodes in 63.8% of	
Multi	cicenter, non-randomized	ECG in patients without	patients.	
Cturds	v Size: 240 patients	ICD, IIICessant VI of	Safaty Endnaint	
5100	y Size. 249 patients	AAD treatment	CV specific AF in 2.0% with	
			no stroke	
		Exclusion Criteria	no stroke	

Mobile LV thrombus, MI within 3 mo, idiopathic VT, class IV HF, creatinine
surgery, unstable angina, severe AS or MR
Electroanatomic mapping and ablation with open-tip irrigated catheter.

Data Supplement 58. Nonrandomized Trials, Observational Studies, and/or Registries Related to Post-Mortem Evaluation of SCD - (Section 13)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
 de Noronha et al. 2014 (586) <u>24148315</u> 	Study type: consecutive prospective observational study Size: 720	Inclusion criteria: SCD cases referred by general pathologist to specialized cardiac pathology center; SCD defined as witnessed SCA or unwitnessed SCD in an individual alive and well up to 24 hs prior; non- cardiac causes ecluded at initial autopsy Exclusion criteria: Non-sudden death; sudden-death in the context of worsening CHF; absence of age, sex, and circumstances of death	<u>1° endpoint</u> : Determine cause of SCD and compare initial diagnosis with that determined at specialized center. <u>Results</u> : Data were skewed by age (median 32 y, range 1-98 y, 58% ≤35 y. Approximately 1/3 of the cases had a "cardiomyopathy", including idiopathic LVH (26%), HCM (20%) and ARVC (14%), and a category of obesity CM (14%) Coronary artery abnormalities accounted for 10%, with 79% of those being ASHD. In a comparison of diagnoses of 200 autopsies examined after referral, a disparity in final diagnosis was observed in 41% of the cases. A misdiagnosis of cardiomyopathy was reported in 37% referred cases, ultimately determined to have to be structurally normal.	 The specialized cardiac pathology exam appears to have value for determining specific causes of SCD in this population. Referring pathologists tended to have a more difficult time identifying anatomically normal hearts, and over-diagnoses cardiomyopathies. The etiological data are not generalizable to the overall population because of skewing of age at time of SCD for specialized cardiac evaluation.

 Wu et al. 2016 (587) <u>26844513</u> 	Study type: Retrospective observational cohort study of anatomic and histopathological findings in SCD victims between 1998 and 2013 Size: 1656 SCD identified from a total of 3770 sudden deaths (43.9%) from all	Inclusion criteria: Deaths that occur within 1 h of the sudden loss of consciousness due to various CVD, or during sleep or unwitnessed, in which the affected persons were considered healthy 24 h before the event. Exclusion criteria: Deaths due to non-cardiac conditions, such as injuries, poisonings, epilepsy, acute pulmonary	<u>1° endpoint</u> : Causes of SCD, sub-grouped according to circumstances, sex and age groups <u>Results</u> : The peak incidence occurred between the ages of 31 and 60, with a 5-7-fold excess of males/females in that age range. Both incidence and male preponderance markedly decreased in younger and older age groups. Overall, 42% were due to CAD, 12% viral myocarditis, and 5% cardiomyopathy, with 15% being unexplained by autopsy. In age group <35, CAD was 17% of cases, viral myocarditis 27%, and unexplained 32%. At age >55, CAD accounted for 86%, viral <2%, and unexplained <1%.	 The proportion of SCDs that were autopsy negative was strongly age-dependent, as was the common autopsy-provable causes. The proportion of SCDs attributed to dilated cardiomyopathy was surprisingly low, especially in the age group older than 35 y.
	causes during the study period	embolisms, and allergies.		
 Vassalini et al. 2016 (588) 25575272 	Study type: Retrospective cohort autopsy study Size: 54	Inclusion criteria: SCD in subjects aged 1-40 y. Exclusion criteria: Prior Hx of heart disease; sudden infant death syndromes (under 1 y of age), extracardiac causes at autopsy; drug or alcohol abuse found at postmortem toxicology.	<u>1° endpoint</u> : Clinical and postmortem findings of patients who died suddenly without a Hx of prior heart disease. <u>Results:</u> Coronary artery abnormalities in 18.5% (including one with an anomalous coronary artery origin); ARVD/C in 11.1%; LVH in 5 cases (9.2%), 3 of whom had myocyte disarray; VHD in 7.4%; myocarditis in 7.4%; pathological changes in the specialized conducting system in 22.2%, in the absence of any other anatomic or histopathological findings; in 12 cases (22.2%), autopsy was completely negative in 22.2%. No postmortem genetics done in this group	 Although this is a small study, the exclusion of a prior Hx of heart disease restricts this study to SCD that occurred as a first cardiac event. One important finding is the association of SCD with the only abnormalities at postmortem found in the specialized conducting system in 22.2% A second is the autopsy being completely negative in another 22.2%. No postmortem genetics were done in this subgroup
• Tester et al. 2012 (589)	Study type: Prospective	Inclusion criteria: Autopsy-negative SUDs	<u>1° endpoint:</u> Identification of SUD-associated variants in KCNQ1, KCNH2, SCN5A, KCNE1,	 Molecular autopsy provides a reasonable yield of putative SUD-
• <u>22677073</u>	cohort study <u>Size</u> : 173	referred for molecular autopsy. Candidate genes restricted to KCNQ1, KCNH2, SCN5A, KCNE1,	KCNE2, or RYR2. <u>Results:</u> Pathogenic mutations were identified in 45 autopsy-negative SUD cases (26.0%). LQT	associated variants, recognizing that the candidate genes were restricted to the common LQTS-

		KCNE2, and RYR2. SUD- associated variants had to be nonsynonymous, involve a highly conserved residue, and absent from reference normal populations Exclusion criteria: A prior documented Hx of a channelopathy in either probands or family members (Exception: History of long QT on an ECG mentioned in autopsy)	variants more likely to be associated with SUD during sleep; CPVT (RyR2) more like associated with SUD during exercise. Family Hx of SCD positive among relatives of 11 of 45 variant- positive probands.	associated genes and the most common CPVT-associated gene. • It is likely that broader panels, including other genetic disorders, including structural disorders that may not be identified on routine autopsy, would increase this yield.
• Tang et al.	Study type:	Inclusion criteria: N/A	1° endpoint: N/A	• Comprehensive review on
2014 (590)	Review article on			postmortem molecular studies of
<u>24157219</u>	molecular	Exclusion criteria: N/A	<u>Results:</u> N/A	SUD and autopsy-defined
	diagnostic			structural genetic disorders
	protocol for SCD			
	<u>Size</u> : N/A			
• Papadakis et al.	Study type:	Inclusion criteria: Family	<u>1° endpoint</u> : Identification of genetic variants	• Victims of SCD with structural
2013 (591)	Retrospective	members of SCD probands	associated with inherited arrhythmia syndrome	findings of uncertain significance
• 236/1135	conort study,	who died suddenly and	in ≥ 1 relative(s) of probands who had structural	are as likely to have genetic
	cardiogenetic	had been apparently	indings of uncertain significance (such as	arrhythmia syndromes as are
	evaluation of	natural causes last seen	and minor (AD) Comparison group was the	those with normal autonsies
	family members.	alive and well within 12 h.	cohort of 163 families in whom the findings	 Findings call for caution in
	,	with autopsy findings	were consistent with SUD based on normal	interpreting uncertain structural
	<u>Size</u> : 340	showing structural	autopsy.	findings, with particular regard to
	families	abnormalities of uncertain	Results:	implications for family members
		causal effect (e.g.,	51% of the study group had genetic variants	of probands.
		ventricular hypertrophy,	associated with SADS; for the comparison	
		myocardial fibrosis, or	group, consistent with SADS, the proportion	
		minor CAD (N=41).	with positive genetic findings was 47%.	

		-	-	-
• Harmon et al. 2014 (592) • <u>24585715</u>	Study type: Cohort study from NCAA registry of athletes who died suddenly Size: 45	Exclusion criteria: Incomplete postmortem report, presence of an extracardiac cause of death, or positive toxicology screen. Inclusion criteria: 36 of 45 athlete SCDs with sufficient autopsy information Exclusion criteria: N/A	<u>1° endpoint:</u> Autopsy-defined cause of SCD <u>Results:</u> Autopsy-negative SUD in 11 (31%); coronary artery abnormalities in 5 (14%), dilated CM in 3 (8%), myocarditis in 3 (8%), aortic dissection in 3 (8%), and idiopathic LVH (possible HCM) in 3 (8%). There was 1 case each (3%) of HCM, ARVC, LQTS, commotio cordis, commotio cordis, and	 The adjudicated diagnosis agreed with the official pathology report in only 59% of cases. Autopsy-negative SUD was common (31%)
			Kawasaki disease. There was 1 case of death in a sickle cell positive athlete who also had LVH. There was 1 case of death in a sickle cell positive athlete who also had LVH.	
 Bagnall et al. 2014 (593) <u>24440382</u> 	Study type: Retrospective analysis of de- identified cases of autopsy- negative SUDs Size: 28	Inclusion criteria: SUD in the 1–40 y age group, classified as SUD based upon sudden unexpected death with a negative autopsy. Exclusion criteria: Previous Hx of systemic disease or alternative cause of death identified after a complete autopsy, including histopathologic and toxicologic analysis	<u>1° endpoint</u> : Comparison of the yield of whole exome sequencingto common candidate gene sequencing for identifying a potentially relevant variant associated with autopsy-negative SUDs in a population age 1–40 y. <u>Results</u> : Based upon likely variants identified by WES, the yield increased from approximately 10% of cases to as much as 30%.	 Study suggests the WES increases the yield of molecular autopsy in SUD by as much as 3- fold, compared to common candidate genes for LQTS and CPVT. Nonetheless, the majority of molecular autopsies still fail to identify a highly-likely or known disease-causing mutation.
 Anderson et al. 2016 (449) 27114410 	Study type: Whole exome sequencing of stored DNA from	Inclusion criteria: Stored DNA from SUD victims with previous negative molecular autopsies	<u>1° endpoint</u> : Putative variants identified by WES, excluding the previously studied common candidate genes.	• There appears to be added valve to WES, compared to a limited candidate gene approach

	referred cases of	(21/32, 66%) using a	Results : WES increased the yield compared to	for molecular autopsies following
	SUDY with	common candidate gene	the candidate genes, to 44% from 34%.	SUD.
	negative	protocol (KCNO1_KCNH2		Whether a broader candidate
	autonsies	SCN5A RYR2)		gene panel might achieve the
	Size.			same vield requires further study
	32	Exclusion criteria:		• The data suggest that the yield
	52	Previous identification of a		from WES is greater for the age
		nutativelt significant		group 1-10 v compared to 11-19
		variant in KCNO1_KCNH2		y but this is not conclusive based
		SCNEA or DVD2 (11/22		y, but this is not conclusive based
		24%)		upon the small numbers.
• Desmall at al	Church a trunca	54%)		a 40% of CCDa in abildran
• Bagnall et al.	Study type:	Inclusion criteria: 292	<u>1° endpoint</u> : Identification of relevant genetic	• 40% of SCDs in children,
2016 (594)	Prospective,	subjects with clinical and	variants among subjects without autopsy or	adolescents and young adults are
• <u>27332903</u>	population-	autopsy confirmed causes	clinical identification of cause of SCD.	classified as unidentified causes
	based, clinical,	of SCD (60%), and 198		based on autopsy and clinical
	toxicological,	(40%) subjects without	<u>Results</u> : Among the total cohort, 292 subjects	information.
	autopsy, and	identified cause based on	had clinical and/or autopsy identified causes of	 In the age group 30–35 y, a
	genetic study of	clinical or autopsy	SCD (60%). The most common identified causes	greater proportion of causes are
	sudden cardiac	information, among whom	were CAD (24%) and inherited	identified, and CAD is the
	death among	113 underwent genetic	cardiomyopathies (16%), while unexplained SCD	dominant cause.
	children and	testing.	accounted for 40% overall (N=198).	 Based on a partial sample of
	young adults,			cases with unidentified causes
	age 1–35 y.	Exclusion criteria: De-	Among the 113 of 198 unexplained cases that	that underwent post-mortem
		identified cases; DNA	had post-mortem genetic testing, 31 (27%) were	genetic testing, an estimated 27%
	Size:	unavailable	identified as having a clinically genetic variant.	of such cases yielded evidence of
	490			a clinically relevant genetic
				variant.

Data Supplement 59. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries of Terminal Care - (Section 14)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
 Hill et al. 2015(595) 25239128 	Study type: Systematic narrative review of	Inclusion criteria: Empirical studies published in English	<u>1° endpoint:</u> N/A – concept mapping was performed for	 Three broad themes (1) Diverse preferences regarding discussion and deactivation.

	published studies (2008 – 2014) <u>Aim:</u> to evaluate the evidence on patients' perception of implantable cardioverter defibrillator deactivation at end of life. <u>Size:</u> N=18 studies	language between 2008 and 2014, primarily related to adults (above 18 y) with an implanted ICD and primarily related to the deactivation of ICDs at end of life	emergent themes from the set of studies <u>Results:</u> See conclusions	 (2) Ethical and legal considerations were predominant in Canadian and American literature. Advance directives were uncommon in Europe. (3) 'Living in the now' was evident among patients.
 Lewis et al. 2014 (37) <u>24668214</u> 	Study type: Integrative review <u>Aim:</u> To explore patients' decision- making experiences regarding ICDs from the decision to implant to the consideration of deactivation at end of life. <u>Size:</u> N=25 studies	Inclusion criteria: original quantitative and qualitative research articles that directly studied the patient response regarding ICD decision-making. 18 y of age orolder, Exclusion criteria articles that did not incorporate the patient's perspective, if they solely focused on living with or adjusting to the ICD.	<u>1° endpoint</u> : N/A – integrative review <u>Results:</u> See conclusions.	 A significant degree of misunderstanding and inaccurate recall of information regarding ICD function at all decision In terms of deactivation decisions, the majority of patients were not aware of this option.
 Kramer et al. 2016 (596) <u>27016104</u> 	Study type: Retrospective cohort study (NCDR linked to Medicare) <u>Aim:</u> to describe the incidence and features	Inclusion Criteria: Patients >65 y who had ICDs inserted between January 1, 2006 through March 31, 2010 Exclusion criteria:	1° endpoint: Descriptive Results: 5 y after device implantation, 50.9% of patients were either deceased or in hospice.	 Half of patients over age 65 y don't survive 5 y. 1/3 of the decedents utilize hospice services.

	of hospice use in a large, nationally representative sample of older patients following ICD implantation, and to identify factors associated with hospice enrollment in this cohort. <u>Size:</u> N=194,969	Not fee-for-service Medicare patients. Patients enrolled in hospice before device placement.	Among decedents, 36.8% received hospice services. Factors most strongly associated with shorter time to hospice enrollment were: older age HR: 1.77; class IV HF HR: 1.79; EF <20% HR: 1.57 Greater regional hospice use	
 Buchhalter et al. 2014 (597) 24276835 	Study type: retrospective chart review – Mayo clinic <u>Aim:</u> To describe features and outcomes of patients who underwent ICD deactivation. <u>Size</u> : N=150	Inclusion criteria: Patients with ICD referred to the cardiac service for deactivation. Exclusion criteria N/A	<u>1° endpoint:</u> Descriptive <u>Results:</u> 150 patients who had their ICD deactivated. Median of 2 d between deactivation and death. Advance directives were present for 85 (57%) of these patients, but only 1 of these made any mention of the ICD. 6 of the ICD deactivations were for pacemaker- dependent patients, Surprisingly, surrogates were responsible for over half (51%) of the deactivation decisions. Palliative care consultation was obtained in 43% of patients.	 Patients have deactivation decisions very close to delay (median 2 d) Over half the time, this decision falls to a surrogate. Devices were not mentioned in advance directives.

• Goldstein et al. 2004	Study type: Telephone	Inclusion criteria:	1° endpoint: Descriptive	Deactivation discussions were not
(598)	survey with next-of-	Deceased patients:		common and occurred late in the illness
• <u>15583224</u>	kin of deceased	median age 76 y at death;	Results:	
	patients	27% women;	27% of next of kin recalled a	Limitations
		median implant time 27	discussion regarding	12 y old
	Aim: To describe the	mo.	deactivation of the ICD with	Relied on reports from the next-of-kin
	frequency, timing, and		their clinician.	Recall bias (interviews occurred a
	correlates of ICD	Interviewed next-of-kin:	21% chose to deactivate.	median of 2.3 y after patient death)
	deactivation	median age 67;	These discussions all took	
	discussions	majority were spouses.	place in the last few d or h of	
			the patient's life.	
	<u>Size:</u> 100		27 patients received shocks in	
			the last mo of life,	
			8 patients received a shock	
			from their ICD in the min	
			before death.	
• Goldstein et al. 2010	Study type:	Inclusion criteria:	1° endpoint: Descriptive	 Over half of hospices had had a patient
(599)	Nationwide survey of	Hospice directors		get shocked by their ICD in the year prior
• <u>20194235</u>	hospice providers	(nursing, clinician, or	Results:	to their death.
		administrative)	97% of hospices admitted	
	Aim: To determine		patients with ICDs	 Older survey: more hospices have a
	whether hospices are		58% reported that in the past	policy now.
	admitting patients		year, a patient had been	
	with ICDs, whether		shocked.	
	such patients are		Only 10% of hospices had a	
	receiving shocks, and		policy that addressed	
	how hospices manage		deactivation.	
	ICDs.		On average, 42% (95% CI, 37%	
			to 48%) of patients with ICDs	
	<u>Size:</u> 414		had the shocking function	
			deactivated.	

 Berger et al. 2006 (600) <u>16689116</u> 	Study type: self-administered survey <u>Aim:</u> To assess whether ICD recipients have considered preferences for disabling the ICD. <u>Size</u> : N=57	Inclusion criteria: Patients with ICDs Exclusion criteria: N/A	36/57 did not have preferences for disabling. 21/57 described situations in which they would want deactivation. Advanced directives were prepared by 35/57 subjects, none addressed the ICD.	 Patients infrequently consider deactivation and rarely consider them in advance directives Limitations: Retrospective Selection bias
 Dodson et al. 2013 (601) <u>23358714</u> 	Study type: telephone survey. <u>Aim:</u> To examine preferences for ICD deactivation in hypothetical scenarios <u>Size</u> : N=95.	Inclusion criteria: Patients with ICDs, >50 y, English speaking Exclusion criteria: N/A	Following an informational script regarding the benefits and harms of ICD therapy, 67/95 (71%) subjects wanted ICD deactivation in 1 or more scenarios.	 Patients endorse preferences for ICD deactivation in hypothetical scenarios Limitations: Single center
Goldstein et al. 2008 (602) <u>18095037</u>	Study type:Qualitative focusgroups.Aim:To identifybarriers to ICDdeactivationdiscussions in patientswith advanced illness.Size:N=15	Inclusion criteria: Patients with ICDs	No participant had ever discussed deactivation with their physician, nor knew that deactivation was an option. Some subjects expressed that the physician should make the decision.	 Patients did not consider and had some confusion about ICD deactivation Limitations: Single center Small sample size
 Habal et al. 2011 (603) <u>21514785</u> 	<u>Study type:</u> semi- structured survey study	Inclusion criteria: N=41 total patients N=19 with ICD	Focused on subset of patients with ICDs 2/19 (11%) reported discussing the possibility of	 Patients expressed varied impressions about deactivation Limitations:

	Aim: To determine HF		ICD deactivation with their	Convenience sampling
	patients' awareness.		physician.	Single center
	comprehension and		Following clarification, 9/19	Small sample size
	utilization of advanced		(47%) stated they would want	
	care directives		their ICD turned off should	
			their condition deteriorate.	
	Size: 41 (19 with ICDs)		5/19 (26%) would not want it	
			deactivated.	
• Kirkpatrick et al. 2012	Study type: Non-		1° endpoint: Descriptive	 Majority of patients are not addressing
(604)	experimental,	30% women;		their ICD in advance directives.
• <u>21943937</u>	descriptive, telephone	85% Caucasian;	Results:	Patients want their doctors to have the
	survey.	median age 61 y;	140 subjects either had a	conversation about deactivation.
		mean implant time 61	living will or a power of	
	Aim: To explore	mo;	attorney.	Limitations:
	patients' preferences	100% 2° education and	Only 3 (2%) of these subjects	Study objectives not explicitly stated
	for ICD deactivation in	higher;	included a plan for their ICD.	Single center
	the setting of a do not	38% with prior shock(s);	96% had never discussed what	
	resuscitate order	mean number of shocks	to do with their ICD at end-of-	
	and/or admission to	4.69.	life with a medical	
	hospice.		professional.	
			Nearly all wanted their	
	<u>Size:</u> N=278		physician to bring up the topic	
			of deactivation.	
• Kramer et al. 2011	Study type:	Inclusion criteria:	1° endpoint: Descriptive	• Legality of ICD deactivation is not well-
(605)	Non-experimental,	Members of Hypertrophic		known among patients
• <u>21296323</u>	descriptive, online	Cardiomyopathy	Results:	
	survey.	Association	Widespread uncertainty and	
			confusion regarding the legal	
	Aim: To identify the		status on implantable cardiac	
	ethical beliefs and		device deactivation was	
	legal knowledge of		found.	
	patients with HCM		57% were unsure if ICD	
	relating to end-of-life		deactivation was legal.	
	care and the		198 patients with an ICD had	
	withdrawal of		advanced directives, and only	
	implantable cardiac		15 (8%) specifically addressed	
	device therapy.		their ICD.	

<u>Size</u> : N=546		

Patient Population 1° Endpoint and Results Summary/Conclusion Study Acronym; Study Type/Design; Comment(s) Author; Study Size (P values; OR or RR; Year Published & 95% CI) **1° endpoint:** N/A – integrative review • Lewis et al. 2014 (606) Study type: Inclusion criteria: • A significant degree of • 24668214 misunderstanding and inaccurate Integrative review Original quantitative and qualitative research **Results:** See conclusions recall of information regarding ICD function at all decision Aim: To explore articles that directly patients' decisionstudied the patient points. making experiences response regarding ICD • The majority of patients were regarding ICDs from decision-making. not aware of deactivation. the decision to • The desire to live trumped age ≥18y implant to the inconveniences for most patients consideration of Exclusion criteria articles but this appeared to be a deactivation at end of function of health state. that did not incorporate life. the patient's perspective, if they solely focused on living Size: 25 studies with or adjusting to the ICD. • Dodson et al. 2013 Following an informational script • Patients endorse preferences Study type: telephone Inclusion criteria: Patients with ICDs, age (601) regarding the benefits and harms of for ICD deactivation in survey. • 23358714 >50 y, English speaking ICD therapy, 67/95 (71%) subjects hypothetical scenarios Aim: To examine wanted ICD deactivation in 1 or more • Limitations: Single center preferences for ICD Exclusion criteria: N/A scenarios. deactivation in hypothetical scenarios Size: N=95.

Data Supplement 60. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries for Shared Decision Making – (Section 15)

1° endpoint: 55 of 106 patients

(51.9%) were unaware that ICD

• Over half of patients were

unaware that there was an

Adult patients with ICDs

Inclusion criteria:

• Lewis et al. 2014 (607)

• <u>25070249</u>

Study type: mailed

survey

	Aim: To assess patient awareness that ICD generator replacement is optional, to gauge their understanding of the risks and benefits of ICD replacement, and to gain insight into their decision-making process. Size: N=106 (response rate 72%).	<u>Exclusion criteria:</u> CRT	generator replacement was not compulsory. <u>Results:</u> If given the option, 15 of 55 (27.2%) stated that they would have considered nonreplacement. For 88 of 106 patients (83.0%), it was "important" or "very important" to discuss risks and benefits of continued therapy before deciding.	option to not replace the ICD and a portion of them would have considered it. • Limitations: Single center and Recall bias
 Hauptman et al. 2013 (608) 23420455 	Study type: Focus groups; standardized patients (providers) <u>Aim:</u> To examine patient-physician communication at the time the decision is made to implant an ICD. <u>Size</u> : 41 patients, 11 providers	 Inclusion criteria: Adult patients with ICDs Cardiologists Exclusion criteria: N/A 	 <u>1° endpoint</u>: Patient focus group findings and the results of standardized patient interviews <u>Results - Patients</u>: 33/41 patients could not recall a discussion about complications. Patients felt a score of 5.7 on a scale of 1-10 on "feeling informed" Mean number of patients out of 100 who would be saved by the ICD was 87.9 <u>Results - Clinicians</u>: In 17 of 22 of interviews, cardiologists did not address or minimized or denied QOL issues and long-term consequences of ICD placement In 15 of 22 of the standardized patient interviews, cardiologists 	 Patients overestimated the benefits and felt uninformed regarding the risks. Patient-physician communication about ICDs is characterized by unclear representation and omission of information to patients

			used unexplained medical terms	
			or jargon.	
• Stewart et al. 2010	Study type: Survey	Inclusion criteria:	1° endpoint/Results	 Study demonstrated that
(609)		Patients with EF	Most patients anticipated more than	patients overestimate the
• <u>20142021</u>	Aim: To examine	<35%	10 y survival.	benefits of ICD therapy.
	patient expectations	Symptomatic HF	54% expected an ICD to save ≥50 lives	
	from ICDs for 1°		per 100 during 5 y.	
	prevention of sudden	Exclusion criteria: N/A	70% of ICD recipients indicated they	
	death in HF.		would keep the ICD on even if dying of	
			cancer,	
	<u>Size</u> : 105		55% even if having daily shocks,	
			None would inactivate even if	
			suffering constant dyspnea at rest.	
• Ottenberg et al. 2014	Study type:	Inclusion criteria:	1° endpoint/Results: 5 Themes:	 Interviews identified significant
(610)	Qualitative Focus	Patients who had	(1) don't mess with a good thing;	gaps for some patients in their
• <u>24889010</u>	Group	declined ICD (12 ICD, one	(2) my health is good enough;	understanding about the ICD.
		CRT)	(3) independent decision making;	
	Aim: To describe the		(4) it's your job, but it's my choice;	
	reasons why patients	Exclusion criteria: N/A	and	
	decline ICD		(5) gaps in learning	
	implantation			
	Size: 13 patients (3			
	groups)			
• Yuhas et al. 2012	Study type:	Inclusion criteria:	1° Endpoint/Results: 5 Themes:	 People who decline had
(611)	Qualitative interview	outpatient cardiology	(1) Patients who refused ICD referral	misunderstandings about their
• <u>22897624</u>		patients with EF ≤35%	had a lack of insight into their own	personal risk.
	Aim: To explore	and without an ICD.	risk.	
	patients' attitudes and		(2) Many patients who accepted ICD	
	perceptions of ICDs to	Exclusion criteria: N/A	referral perceived that this was	
	better understand		strongly recommended by their	
	potential patient-		physicians.	
	related barriers to		(3) Concerns over recall, malfunction,	
	appropriate utilization.		and surgical risk were common in	
			both.	
	Size: N=25. 12 who			
	accepted referral, 13			

who declined referral	(4) Many patients demonstrated	
(note: none had ICDs)	inaccurate perceptions of ICD-related	
	risks	
	(5) Feelings regarding invasive life-	
	prolonging interventions played an	
	important role in ICD referral refusal	
	for some individuals.	

Data Supplement 61. Randomized Trials, Observational Studies, and/or Registries Related to Cost and Value Considerations - (Section 16)

Study	Study Design	Patient Population	Costs	Effectiveness	Value	Summary/Conclusions
Name	Study Size					
AVID	Study type: RCT of ICD vs.	2° prevention:	Within trial:	Within trial:	Lifetime ICER=	 Intermediate value
• Larsen G, et al.	antiarrhythimic drug	resuscitated CA or	ICD \$87,479,	ICD 2.48 y,	\$67,100	based on ACC/AHA
2002 (612)	therapy (largely	sustained VT, EF ≤40%.	Antiarrythmic	Antiarrythmic		benchmarks.
• <u>11980684</u>	amiodarone).		drug Tx	drug Tx 2.27 y	Within-trial	 Authors concluded:
			\$73,564		ICER= \$66,700	ICD was "moderately
	Within trial costs and					cost-effective for 2°
	outcomes to 3 y; lifetime					prevention."
	projection.					
	<u>Size:</u>					
	1,008 patients					
CIDS	Study type:	2° prevention:	Within trial:	Within trial:	12 year ICER;	 Intermediate value
 O'Brien BJ, et 	RCT of ICD vs.	Resuscitated VF or VT.	ICD C\$87,715;	ICD 4.58 y;	C\$99,400	based on ACC/AHA
al. 2001 (613)	amiodarone.		amiodarone	amiodarone	(US\$67,600)	benchmarks.
• <u>11245646</u>			C\$38,600	4.35 y	(with continued	 Authors concluded
	Within trial cost and				ICD benefit)	that "ICD therapy is not
	survival to 6 y; 12 y					attractive" based on
	projection of cost and				Within trial	Canadian standards.
	survival.				ICER=	 No lifetime
	430 patients in economic				C\$213,500	projections of cost and
	substudy.				(US\$145,200)	life expectancy.
	Size: 659 total patients					

 Weiss, et al. 2002 (614) <u>12015242</u> 	Study type: Propensity score matched analysis of Medicare patients. Costs and outcomes to 8 y. Size: 7,619 matched pairs	2° prevention. Hospitalized with 1° diagnosis of VT or VF.	Within study: ICD \$78,700; conventional therapy \$37,200	Within study: ICD 4.6 y; conventional therapy 4.1 y	Within study ICER= \$78,400	 Intermediate value based on ACC/AHA benchmarks. No lifetime projections of cost and life expectancy.
 Buxton et al. 2006 (615) <u>16904046</u> 	Study type: Markov model, 20 y time horizons. Effectiveness inputs from RCTs, cost inputs from UK. Size: Cost data from 535 patients with ICD implants in Liverpool.	2° prevention.	ICD: £87,184; amiodarone: £18,379	Life-y: ICD 9.87; amiodarone 8.41 Quality- adjusted life-y: ICD 7.41, amiodarone 6.35	£48,700/life-y gained (\$64,700) £65,000/QALY gained (\$86,200)	 Intermediate value based on ACC/AHA benchmarks. Authors concluded that ICDs were not cost-effective at the UK benchmark (<£30,000).
 SCD-HEFT Mark DB, et al. (616) <u>16818817</u> 	Study type: RCT of ICD vs. amiodarone or placebo. Costs and outcomes to 5 y; lifetime projection of costs and life expectancy. 1,692 patients in economic substudy (US centers), Size: 2,521 total patients	1° prevention: HF (NYHA II or III) and EF ≤35%.	Within trial: ICD \$61,938; placebo \$42,971 Lifetime: ICD \$158,840; placebo \$79,028	Life expectancy: ICD 10.87 y; placebo 8.41 y	Lifetime ICER= \$38,400 Within trial ICER= \$127,500	 High value based on ACC/AHA benchmarks. Authors concluded that ICD was "economically attractive" compared with placebo as long as ICD benefit was maintained for ≥8 y.
 MADIT-II Zwanziger J, et al. 2006 (617) <u>16750701</u> 	Study type: RCT of ICD vs conventional medical therapy. Within trial costs and survival to 3.5 y; 12 y projection of cost and survival.	1° prevention: Patients with prior MI, EF ≤30%.	Within trial: ICD \$84,100, conventional \$44,900; 12 year projections: ICD \$173,700 to \$180,300,	Within trial: ICD 2.89 y, conventional 2.72 y	12 y ICER= \$78,600 to \$114,000 Within trial ICER =\$235,000;	• Intermediate value based on ACC/AHA benchmarks, based on long-term projections of ICD outcomes.

	Size: 1,095 patients in economic substudy (US patients), 1,232 total patients		conventional \$97,900			
 MADIT-I Mushlin AI, et al. 1998 (618) <u>9626173</u> 	Study type:RCT of ICD or medicaltherapy.Costs and outcomes to 4y.Size:181 patients in economicstudy (US centers), 196total patients.	1° prevention. Prior MI, asymptomatic non- sustained VT, EF ≤35%, inducible VT not suppressed by procainamide.	Within trial: ICD \$97,560; medical therapy \$78,980	Within trial: ICD 3.66 y, medical therapy 2.80 y	Within trial ICER= \$27,000	 High value based on ACC/AHA benchmarks. Authors concluded that "ICD is cost- effective in selected individuals at high risk" for sudden cardiac death.
 Al-Khatib, et al. 2005 (619) <u>15838065</u> 	Study type: Duke database outcomes and costs for 15 y. Llifetime extrapolation by Markov model. Size: 1,285 patients	1° prevention. Post-MI, EF ≤30%.	ICD: \$131,490; medical: \$40,661	Life expectancy: ICD 8.59 y, medical 6.79 y	\$50,500 per life-y gained	 Intermediate value by ACC/AHA benchmarks Authors concluded: ICD therapy for patients eligible for MADIT-II was "economically attractive" by conventional standards.
 Sanders, et al. 2005 (620) <u>16207849</u> 	Study type: Markov model, lifetime projection, applied to data from each of eight randomized trials. Size: Not applicable	1° prevention. Trial subjects in CABG-PATCH, COMPANION, DEFINITE, DINAMIT, MADIT-I, MADIT-II, MUSTT, and SCD-HeFT.	ICD had higher costs in each population: \$55,700 to \$100,500	ICD had higher life expectancy in six trials, ranging from 1.46 to 4.14 life- y added	≤\$39,000 for COMPANION, DEFINITE, MADIT I, MADIT II, MUSTT; \$50,700 for SCD-HeFT Higher cost, worse outcomes for	• High value by ACC/AHA benchmarks when projected life expectancy was increased by >1.4 y

					CABG-PATCH, DINAMIT.	
 Smith, et al. 2013 (621) 22584647 	Study type: Markov model, lifetime projection. Effectiveness from meta-analysis of 6 RCTs. Size: Not applicable	1° prevention. Patients with EF <40%, due to either ischemic or non- ischemic causes.	ICD €86,759; conventional therapy €50,685	ICD 7.08 QALY; conventional therapy 6.26 QALY	ICER= €44,000 (\$49,200)	 High value by ACC/AHA benchmarks. Authors concluded: 1° prophylactic ICD therapy had high value in the European setting for patients with EF <40%.
 Cowie, et al.2009 (622) <u>19359333</u> 	Study type: Markov model, lifetime projection. Effectiveness from meta-analysis of 6 RCTs. European costs. Size: Not applicable	1° prevention. Patients with EF <35%, ischemic or non-ischemic etiology.	ICD €64,600; conventional therapy €18,187	ICD 8.58 life-y (7.27 QALY); conventional therapy 6.71 life-y (5.70 QALY)	ICER= €24,800/ life-y gained (\$27,700) €29,500/QALY gained (\$33,000)	 High value by ACC/AHA benchmarks. Authors concluded: Prophylactic ICD implantation had high value if current guidelines for patients with EF <35% are followed.

References:

- 1. Ruwald MH, Hansen ML, Lamberts M, et al. The relation between age, sex, comorbidity, and pharmacotherapy and the risk of syncope: a Danish nationwide study. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2012; 14:1506-14.
- 2. Soteriades ES, Evans JC, Larson MG, et al. Incidence and prognosis of syncope. N. Engl. J. Med. 2002; 347:878-85.
- 3. Middlekauff HR, Stevenson WG, Stevenson LW, et al. Syncope in advanced heart failure: high risk of sudden death regardless of origin of syncope. J Am Coll Cardiol. 1993; 21:110-6.
- 4. Steinman RT, Herrera C, Schuger CD, et al. Wide QRS tachycardia in the conscious adult. Ventricular tachycardia is the most frequent cause. Jama. 1989; 261:1013-6.
- 5. Brugada P, Brugada J, Mont L, et al. A new approach to the differential diagnosis of a regular tachycardia with a wide QRS complex. Circulation. 1991; 83:1649-59.
- 6. Wellens HJ, Bar FW and Lie KI. The value of the electrocardiogram in the differential diagnosis of a tachycardia with a widened QRS complex. Am J Med. 1978; 64:27-33.
- 7. Elhendy A, Chandrasekaran K, Gersh BJ, et al. Functional and prognostic significance of exercise-induced ventricular arrhythmias in patients with suspected coronary artery disease. Am. J. Cardiol. 2002; 90:95-100.
- 8. Grady TA, Chiu AC, Snader CE, et al. Prognostic significance of exercise-induced left bundle-branch block. Jama. 1998; 279:153-6.
- 9. Costantini O, Hohnloser SH, Kirk MM, et al. The ABCD (Alternans Before Cardioverter Defibrillator) Trial: strategies using T-wave alternans to improve efficiency of sudden cardiac death prevention. J Am Coll Cardiol. 2009; 53:471-9.
- 10. Desai AD, Yaw TS, Yamazaki T, et al. Prognostic significance of quantitative QRS duration. Am J Med. 2006; 119:600-6.
- 11. Freedman RA, Alderman EL, Sheffield LT, et al. Bundle branch block in patients with chronic coronary artery disease: angiographic correlates and prognostic significance. J Am Coll Cardiol. 1987; 10:73-80.
- Baldasseroni S, Opasich C, Gorini M, et al. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am. Heart J. 2002; 143:398-405.
- 13. Zimetbaum PJ, Buxton AE, Batsford W, et al. Electrocardiographic predictors of arrhythmic death and total mortality in the multicenter unsustained tachycardia trial. Circulation. 2004; 110:766-9.
- 14. Buxton AE, Sweeney MO, Wathen MS, et al. QRS duration does not predict occurrence of ventricular tachyarrhythmias in patients with implanted cardioverter-defibrillators. J Am Coll Cardiol. 2005; 46:310-6.
- 15. Monasterio V, Martinez JP, Laguna P, et al. Prognostic value of average T-wave alternans and QT variability for cardiac events in MADIT-II patients. Journal of electrocardiology. 2013; 46:480-6.
- 16. Chow T, Kereiakes DJ, Onufer J, et al. Does microvolt T-wave alternans testing predict ventricular tachyarrhythmias in patients with ischemic cardiomyopathy and prophylactic defibrillators? The MASTER (Microvolt T Wave Alternans Testing for Risk Stratification of Post-Myocardial Infarction Patients) trial. J Am Coll Cardiol. 2008; 52:1607-15.

- 17. Gupta A, Hoang DD, Karliner L, et al. Ability of microvolt T-wave alternans to modify risk assessment of ventricular tachyarrhythmic events: a meta-analysis. Am. Heart J. 2012; 163:354-64.
- 18. Dhar R, Alsheikh-Ali AA, Estes NA, III, et al. Association of prolonged QRS duration with ventricular tachyarrhythmias and sudden cardiac death in the Multicenter Automatic Defibrillator Implantation Trial II (MADIT-II). Heart rhythm. 2008; 5:807-13.
- 19. Bloomfield DM, Steinman RC, Namerow PB, et al. Microvolt T-wave alternans distinguishes between patients likely and patients not likely to benefit from implanted cardiac defibrillator therapy: a solution to the Multicenter Automatic Defibrillator Implantation Trial (MADIT) II conundrum. Circulation. 2004; 110:1885-9.
- 20. Iuliano S, Fisher SG, Karasik PE, et al. QRS duration and mortality in patients with congestive heart failure. Am. Heart J. 2002; 143:1085-91.
- 21. Perez-Rodon J, Martinez-Alday J, Baron-Esquivias G, et al. Prognostic value of the electrocardiogram in patients with syncope: data from the group for syncope study in the emergency room (GESINUR). Heart rhythm. 2014; 11:2035-44.
- 22. Barrett PM, Komatireddy R, Haaser S, et al. Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am J Med. 2014; 127:95-7.
- 23. de Asmundis C, Conte G, Sieira J, et al. Comparison of the patient-activated event recording system vs. traditional 24 h Holter electrocardiography in individuals with paroxysmal palpitations or dizziness. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2014; 16:1231-5.
- 24. Turakhia MP, Hoang DD, Zimetbaum P, et al. Diagnostic utility of a novel leadless arrhythmia monitoring device. Am. J. Cardiol. 2013; 112:520-4.
- 25. Linzer M, Pritchett EL, Pontinen M, et al. Incremental diagnostic yield of loop electrocardiographic recorders in unexplained syncope. Am. J. Cardiol. 1990; 66:214-9.
- 26. Bloch Thomsen PE, Jons C, Raatikainen MJ, et al. Long-term recording of cardiac arrhythmias with an implantable cardiac monitor in patients with reduced ejection fraction after acute myocardial infarction: the Cardiac Arrhythmias and Risk Stratification After Acute Myocardial Infarction (CARISMA) study. Circulation. 2010; 122:1258-64.
- 27. Volosin K, Stadler RW, Wyszynski R, et al. Tachycardia detection performance of implantable loop recorders: results from a large 'real-life' patient cohort and patients with induced ventricular arrhythmias. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2013; 15:1215-22.
- 28. Krahn AD, Klein GJ, Yee R, et al. Use of an extended monitoring strategy in patients with problematic syncope. Reveal Investigators. Circulation. 1999; 99:406-10.
- 29. Solbiati M, Costantino G, Casazza G, et al. Implantable loop recorder versus conventional diagnostic workup for unexplained recurrent syncope. Cochrane Database Syst. Rev. 2016; 4:CD011637.
- 30. Solomon SD, Zelenkofske S, McMurray JJ, et al. Sudden death in patients with myocardial infarction and left ventricular dysfunction, heart failure, or both. N. Engl. J. Med. 2005; 352:2581-8.

- 31. Gula LJ, Klein GJ, Hellkamp AS, et al. Ejection fraction assessment and survival: an analysis of the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT). Am. Heart J. 2008; 156:1196-200.
- 32. Korngold EC, Januzzi JL, Jr., Gantzer ML, et al. Amino-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein as predictors of sudden cardiac death among women. Circulation. 2009; 119:2868-76.
- 33. Patton KK, Sotoodehnia N, DeFilippi C, et al. N-terminal pro-B-type natriuretic peptide is associated with sudden cardiac death risk: the Cardiovascular Health Study. Heart rhythm. 2011; 8:228-33.
- 34. Scott PA, Barry J, Roberts PR, et al. Brain natriuretic peptide for the prediction of sudden cardiac death and ventricular arrhythmias: a meta-analysis. Eur. J Heart Fail. 2009; 11:958-66.
- 35. Blangy H, Sadoul N, Dousset B, et al. Serum BNP, hs-C-reactive protein, procollagen to assess the risk of ventricular tachycardia in ICD recipients after myocardial infarction. Europeae : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2007; 9:724-9.
- 36. Ahmad T, Fiuzat M, Neely B, et al. Biomarkers of myocardial stress and fibrosis as predictors of mode of death in patients with chronic heart failure. JACC. Heart Fail. 2014; 2:260-8.
- 37. Levine YC, Rosenberg MA, Mittleman M, et al. B-type natriuretic peptide is a major predictor of ventricular tachyarrhythmias. Heart rhythm. 2014; 11:1109-16.
- 38. Berger R, Huelsman M, Strecker K, et al. B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation. 2002; 105:2392-7.
- 39. Buxton AE, Lee KL, Hafley GE, et al. Relation of ejection fraction and inducible ventricular tachycardia to mode of death in patients with coronary artery disease: an analysis of patients enrolled in the multicenter unsustained tachycardia trial. Circulation. 2002; 106:2466-72.
- 40. Buxton AE, Lee KL, Fisher JD, et al. A randomized study of the prevention of sudden death in patients with coronary artery disease. Multicenter Unsustained Tachycardia Trial Investigators. N. Engl. J. Med. 1999; 341:1882-90.
- 41. Buxton AE, Lee KL, DiCarlo L, et al. Electrophysiologic testing to identify patients with coronary artery disease who are at risk for sudden death. Multicenter Unsustained Tachycardia Trial Investigators. N. Engl. J. Med. 2000; 342:1937-45.
- 42. Moss AJ, Hall WJ, Cannom DS, et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. N. Engl. J. Med. 1996; 335:1933-40.
- 43. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 2005; 352:225-37.
- 44. Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 2002; 346:877-83.
- 45. Hilfiker G, Schoenenberger AW, Erne P, et al. Utility of electrophysiological studies to predict arrhythmic events. World J Cardiol. 2015; 7:344-50.
- 46. Bourke JP, Richards DA, Ross DL, et al. Routine programmed electrical stimulation in survivors of acute myocardial infarction for prediction of spontaneous ventricular tachyarrhythmias during follow-up: results, optimal stimulation protocol and cost-effective screening. J Am Coll Cardiol. 1991; 18:780-8.

- 47. Bailey JJ, Berson AS, Handelsman H, et al. Utility of current risk stratification tests for predicting major arrhythmic events after myocardial infarction. J Am Coll Cardiol. 2001; 38:1902-11.
- 48. Schmitt C, Barthel P, Ndrepepa G, et al. Value of programmed ventricular stimulation for prophylactic internal cardioverter-defibrillator implantation in postinfarction patients preselected by noninvasive risk stratifiers. J Am Coll Cardiol. 2001; 37:1901-7.
- 49. Brembilla-Perrot B, Suty-Selton C, Beurrier D, et al. Differences in mechanisms and outcomes of syncope in patients with coronary disease or idiopathic left ventricular dysfunction as assessed by electrophysiologic testing. J Am Coll Cardiol. 2004; 44:594-601.
- 50. Bhandari AK, Shapiro WA, Morady F, et al. Electrophysiologic testing in patients with the long QT syndrome. Circulation. 1985; 71:63-71.
- 51. Giustetto C, Di MF, Wolpert C, et al. Short QT syndrome: clinical findings and diagnostic-therapeutic implications. Eur. Heart J. 2006; 27:2440-7.
- 52. Mahida S, Derval N, Sacher F, et al. Role of electrophysiological studies in predicting risk of ventricular arrhythmia in early repolarization syndrome. J Am Coll Cardiol. 2015; 65:151-9.
- 53. Giustetto C, Schimpf R, Mazzanti A, et al. Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol. 2011; 58:587-95.
- 54. Raczak G, Pinna GD, Maestri R, et al. Different predictive values of electrophysiological testing and autonomic assessment in patients surviving a sustained arrhythmic episode. Circ. J. 2004; 68:634-8.
- 55. Brodsky MA, Mitchell LB, Halperin BD, et al. Prognostic value of baseline electrophysiology studies in patients with sustained ventricular tachyarrhythmia: the Antiarrhythmics Versus Implantable Defibrillators (AVID) trial. Am. Heart J. 2002; 144:478-84.
- 56. Daubert JP, Zareba W, Hall WJ, et al. Predictive value of ventricular arrhythmia inducibility for subsequent ventricular tachycardia or ventricular fibrillation in Multicenter Automatic Defibrillator Implantation Trial (MADIT) II patients. J Am Coll Cardiol. 2006; 47:98-107.
- 57. Daubert JP, Winters SL, Subacius H, et al. Ventricular arrhythmia inducibility predicts subsequent ICD activation in nonischemic cardiomyopathy patients: a DEFINITE substudy. Pacing Clin. Electrophysiol. 2009; 32:755-61.
- 58. Gold MR, Bloomfield DM, Anderson KP, et al. A comparison of T-wave alternans, signal averaged electrocardiography and programmed ventricular stimulation for arrhythmia risk stratification. J Am Coll Cardiol. 2000; 36:2247-53.
- 59. Gatzoulis KA, Vouliotis AI, Tsiachris D, et al. Primary prevention of sudden cardiac death in a nonischemic dilated cardiomyopathy population: reappraisal of the role of programmed ventricular stimulation. Circ. Arrhythm. Electrophysiol. 2013; 6:504-12.
- 60. Dargie HJ. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet (London, England). 2001; 357:1385-90.
- 61. Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N. Engl. J. Med. 1996; 334:1349-55.
- 62. The cardiac insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet (London, England). 1999; 353:9-13.
- 63. Hjalmarson A, Goldstein S, Fagerberg B, et al. Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). MERIT-HF Study Group. Jama. 2000; 283:1295-302.
- 64. Cohn JN, Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N. Engl. J. Med. 1991; 325:303-10.
- 65. Cohn JN and Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 2001; 345:1667-75.
- 66. Pfeffer MA, McMurray JJ, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N. Engl. J. Med. 2003; 349:1893-906.
- 67. Pitt B, Segal R, Martinez FA, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet (London, England). 1997; 349:747-52.
- 68. Pitt B, Poole-Wilson PA, Segal R, et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial--the Losartan Heart Failure Survival Study ELITE II. Lancet (London, England). 2000; 355:1582-7.
- 69. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 1999; 341:709-17.
- 70. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 2003; 348:1309-21.
- 71. Zannad F, McMurray JJ, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 2011; 364:11-21.
- 72. Desai AS, McMurray JJ, Packer M, et al. Effect of the angiotensin-receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients. Eur. Heart J. 2015; 36:1990-7.
- 73. Carson P, Wertheimer J, Miller A, et al. The STICH trial (Surgical Treatment for Ischemic Heart Failure): mode-of-death results. JACC. Heart Fail. 2013; 1:400-8.
- 74. Velazquez EJ, Lee KL, Jones RH, et al. Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N. Engl. J. Med. 2016; 374:1511-20.
- 75. Cook JR, Rizo-Patron C, Curtis AB, et al. Effect of surgical revascularization in patients with coronary artery disease and ventricular tachycardia or fibrillation in the Antiarrhythmics Versus Implantable Defibrillators (AVID) Registry. Am. Heart J. 2002; 143:821-6.
- 76. Mondésert B, Khairy P, Schram G, et al. Impact of revascularization in patients with sustained ventricular arrhythmias, prior myocardial infarction, and preserved left ventricular ejection fraction. Heart rhythm. 2016; 13:1221-7.
- 77. Ngaage DL, Cale AR, Cowen ME, et al. Early and late survival after surgical revascularization for ischemic ventricular fibrillation/tachycardia. Ann. Thorac. Surg. 2008; 85:1278-81.
- 78. Every NR, Fahrenbruch CE, Hallstrom AP, et al. Influence of coronary bypass surgery on subsequent outcome of patients resuscitated from out of hospital cardiac arrest. J Am Coll Cardiol. 1992; 19:1435-9.
- 79. van der Burg AE, Bax JJ, Boersma E, et al. Impact of viability, ischemia, scar tissue, and revascularization on outcome after aborted sudden death. Circulation. 2003; 108:1954-9.
- 80. Dumas F, Cariou A, Manzo-Silberman S, et al. Immediate percutaneous coronary intervention is associated with better survival after outof-hospital cardiac arrest: insights from the PROCAT (Parisian Region Out of hospital Cardiac ArresT) registry. Circ. Cardiovasc Interv. 2010; 3:200-7.

- 81. Dumas F, Bougouin W, Geri G, et al. Emergency PCI in post-cardiac arrest patients without ST-segment elevation pattern: insights from the PROCAT II registry. JACC. Cardiovasc. Interv. 2016; 9:1011-8.
- 82. Serruys PW, Morice MC, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N. Engl. J. Med. 2009; 360:961-72.
- 83. Milojevic M, Head SJ, Parasca CA, et al. Causes of death following PCI versus CABG in complex CAD: 5-year follow-up of SYNTAX. J Am Coll Cardiol. 2016; 67:42-55.
- 84. Al-Khatib SM, Hellkamp AS, Lee KL, et al. Implantable cardioverter defibrillator therapy in patients with prior coronary revascularization in the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT). J. Cardiovasc. Electrophysiol. 2008; 19:1059-65.
- 85. Nageh MF, Kim JJ, Chen LH, et al. Implantable defibrillators for secondary prevention of sudden cardiac death in cardiac surgery patients with perioperative ventricular arrhythmias. Journal of the American Heart Association. 2014; 3.
- 86. Kumar S, Barbhaiya CR, Sobieszczyk P, et al. Role of alternative interventional procedures when endo- and epicardial catheter ablation attempts for ventricular arrhythmias fail. Circ. Arrhythm. Electrophysiol. 2015; 8:606-15.
- 87. Anter E, Hutchinson MD, Deo R, et al. Surgical ablation of refractory ventricular tachycardia in patients with nonischemic cardiomyopathy. Circ. Arrhythm. Electrophysiol. 2011; 4:494-500.
- 88. Bhavani SS, Tchou P, Saliba W, et al. Surgical options for refractory ventricular tachycardia. J Card Surg. 2007; 22:533-4.
- 89. Sartipy U, Albage A, Straat E, et al. Surgery for ventricular tachycardia in patients undergoing left ventricular reconstruction by the Dor procedure. Ann. Thorac. Surg. 2006; 81:65-71.
- 90. Choi EK, Nagashima K, Lin KY, et al. Surgical cryoablation for ventricular tachyarrhythmia arising from the left ventricular outflow tract region. Heart rhythm. 2015; 12:1128-36.
- 91. Patel M, Rojas F, Shabari FR, et al. Safety and Feasibility of Open Chest Epicardial Mapping and Ablation of Ventricular Tachycardia During the Period of Left Ventricular Assist Device Implantation. J. Cardiovasc. Electrophysiol. 2016; 27:95-101.
- 92. Mulloy DP, Bhamidipati CM, Stone ML, et al. Cryoablation during left ventricular assist device implantation reduces postoperative ventricular tachyarrhythmias. J Thorac. Cardiovasc. Surg. 2013; 145:1207-13.
- 93. Schwartz PJ, Motolese M and Pollavini G. Prevention of Sudden Cardiac Death After a First Myocardial Infarction by Pharmacologic or Surgical Antiadrenergic Interventions. Journal of cardiovascular electrophysiology. 1992; 3:2-16.
- 94. Krittayaphong R, Bhuripanyo K, Punlee K, et al. Effect of atenolol on symptomatic ventricular arrhythmia without structural heart disease: a randomized placebo-controlled study. Am. Heart J. 2002; 144:e10.
- 95. Vaseghi M, Gima J, Kanaan C, et al. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: intermediate and long-term follow-up. Heart rhythm. 2014; 11:360-6.
- 96. Ajijola OA, Lellouche N, Bourke T, et al. Bilateral cardiac sympathetic denervation for the management of electrical storm. J Am Coll Cardiol. 2012; 59:91-2.
- 97. Ukena C, Mahfoud F, Ewen S, et al. Renal denervation for treatment of ventricular arrhythmias: data from an International Multicenter Registry. Clin. Res. Cardiol. 2016.
- 98. Grimaldi R, de LA, Kornet L, et al. Can spinal cord stimulation reduce ventricular arrhythmias? Heart rhythm. 2012; 9:1884-7.

- 99. Kudenchuk PJ, Brown SP, Daya M, et al. Amiodarone, lidocaine, or placebo in out-of-hospital cardiac arrest. N. Engl. J. Med. 2016:1711-22.
- 100. Joglar JA and Page RL. Out-of-Hospital Cardiac Arrest--Are Drugs Ever the Answer? N. Engl. J. Med. 2016; 374:1781-2.
- 101. Jacobs IG, Finn JC, Jelinek GA, et al. Effect of adrenaline on survival in out-of-hospital cardiac arrest: A randomised double-blind placebocontrolled trial. Resuscitation. 2011; 82:1138-43.
- 102. Piccini JP, Hranitzky PM, Kilaru R, et al. Relation of mortality to failure to prescribe beta blockers acutely in patients with sustained ventricular tachycardia and ventricular fibrillation following acute myocardial infarction (from the VALsartan In Acute myocardial iNfarcTion trial [VALIANT] Registry). Am J Cardiol. 2008; 102:1427-32.
- 103. Dorian P, Cass D, Schwartz B, et al. Amiodarone as compared with lidocaine for shock-resistant ventricular fibrillation. N. Engl. J. Med. 2002; 346:884-90.
- 104. Hassan TB, Jagger C and Barnett DB. A randomised trial to investigate the efficacy of magnesium sulphate for refractory ventricular fibrillation. Emerg. Med. J. 2002; 19:57-62.
- 105. Thel MC, Armstrong AL, McNulty SE, et al. Randomised trial of magnesium in in-hospital cardiac arrest. Duke Internal Medicine Housestaff. Lancet (London, England). 1997; 350:1272-6.
- 106. Somberg JC, Bailin SJ, Haffajee CI, et al. Intravenous lidocaine versus intravenous amiodarone (in a new aqueous formulation) for incessant ventricular tachycardia. Am. J. Cardiol. 2002; 90:853-9.
- 107. Kudenchuk PJ, Cobb LA, Copass MK, et al. Amiodarone for resuscitation after out-of-hospital cardiac arrest due to ventricular fibrillation. N. Engl. J. Med. 1999; 341:871-8.
- 108. Callaham M, Madsen CD, Barton CW, et al. A randomized clinical trial of high-dose epinephrine and norepinephrine vs standard-dose epinephrine in prehospital cardiac arrest. Jama. 1992; 268:2667-72.
- 109. Gueugniaud PY, Mols P, Goldstein P, et al. A comparison of repeated high doses and repeated standard doses of epinephrine for cardiac arrest outside the hospital. European Epinephrine Study Group. N. Engl. J. Med. 1998; 339:1595-601.
- 110. Gorgels AP, van den Dool A, Hofs A, et al. Comparison of procainamide and lidocaine in terminating sustained monomorphic ventricular tachycardia. Am. J. Cardiol. 1996; 78:43-6.
- 111. Ho DS, Zecchin RP, Richards DA, et al. Double-blind trial of lignocaine versus sotalol for acute termination of spontaneous sustained ventricular tachycardia. Lancet (London, England). 1994; 344:18-23.
- 112. Levine JH, Massumi A, Scheinman MM, et al. Intravenous amiodarone for recurrent sustained hypotensive ventricular tachyarrhythmias. Intravenous Amiodarone Multicenter Trial Group. J Am Coll Cardiol. 1996; 27:67-75.
- 113. Teo KK, Yusuf S and Furberg CD. Effects of prophylactic antiarrhythmic drug therapy in acute myocardial infarction. An overview of results from randomized controlled trials. Jama. 1993; 270:1589-95.
- 114. Elizari MV, Martinez JM, Belziti C, et al. Morbidity and mortality following early administration of amiodarone in acute myocardial infarction. GEMICA study investigators, GEMA Group, Buenos Aires, Argentina. Grupo de Estudios Multicentricos en Argentina. Eur. Heart J. 2000; 21:198-205.
- 115. Link MS, Berkow LC, Kudenchuk PJ, et al. Part 7: Adult Advanced Cardiovascular Life Support: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015; 132:S444-S64.

- 116. Herlitz J, Ekstrom L, Wennerblom B, et al. Lidocaine in out-of-hospital ventricular fibrillation. Does it improve survival? Resuscitation. 1997; 33:199-205.
- 117. Markel DT, Gold LS, Allen J, et al. Procainamide and survival in ventricular fibrillation out-of-hospital cardiac arrest. Acad. Emerg. Med. 2010; 17:617-23.
- 118. Stiell IG, Wells GA, Field B, et al. Advanced cardiac life support in out-of-hospital cardiac arrest. N. Engl. J. Med. 2004; 351:647-56.
- 119. Hagihara A, Hasegawa M, Abe T, et al. Prehospital epinephrine use and survival among patients with out-of-hospital cardiac arrest. Jama. 2012; 307:1161-8.
- 120. Donnino MW, Salciccioli JD, Howell MD, et al. Time to administration of epinephrine and outcome after in-hospital cardiac arrest with nonshockable rhythms: retrospective analysis of large in-hospital data registry. BMJ. 2014; 348:g3028.
- 121. Koscik C, Pinawin A, McGovern H, et al. Rapid epinephrine administration improves early outcomes in out-of-hospital cardiac arrest. Resuscitation. 2013; 84:915-20.
- 122. Spaulding CM, Joly LM, Rosenberg A, et al. Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N. Engl. J. Med. 1997; 336:1629-33.
- 123. Cronier P, Vignon P, Bouferrache K, et al. Impact of routine percutaneous coronary intervention after out-of-hospital cardiac arrest due to ventricular fibrillation. Crit. Care. 2011; 15:R122.
- 124. Zanuttini D, Armellini I, Nucifora G, et al. Impact of emergency coronary angiography on in-hospital outcome of unconscious survivors after out-of-hospital cardiac arrest. Am. J. Cardiol. 2012; 110:1723-8.
- 125. Kudenchuk PJ, Newell C, White L, et al. Prophylactic lidocaine for post resuscitation care of patients with out-of-hospital ventricular fibrillation cardiac arrest. Resuscitation. 2013; 84:1512-8.
- 126. Nademanee K, Taylor R, Bailey WE, et al. Treating electrical storm : sympathetic blockade versus advanced cardiac life support-guided therapy. Circulation. 2000; 102:742-7.
- 127. Sasson C, Rogers MA, Dahl J, et al. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ. Cardiovasc. Qual. Outcomes. 2010; 3:63-81.
- 128. Buxton AE, Marchlinski FE, Doherty JU, et al. Hazards of intravenous verapamil for sustained ventricular tachycardia. Am. J. Cardiol. 1987; 59:1107-10.
- 129. Pellis T, Kette F, Lovisa D, et al. Utility of pre-cordial thump for treatment of out of hospital cardiac arrest: a prospective study. Resuscitation. 2009; 80:17-23.
- 130. Volkmann H, Klumbies A, Kuhnert H, et al. Terminating ventricular tachycardias by mechanical heart stimulation with precordial thumps. Z. Kardiol. 1990; 79:717-24.
- 131. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. The Antiarrhythmics versus Implantable Defibrillators (AVID) Investigators. N. Engl. J. Med. 1997; 337:1576-83.
- 132. Connolly SJ, Gent M, Roberts RS, et al. Canadian implantable defibrillator study (CIDS) : a randomized trial of the implantable cardioverter defibrillator against amiodarone. Circulation. 2000; 101:1297-302.

- 133. Kuck KH, Cappato R, Siebels J, et al. Randomized comparison of antiarrhythmic drug therapy with implantable defibrillators in patients resuscitated from cardiac arrest : the Cardiac Arrest Study Hamburg (CASH). Circulation. 2000; 102:748-54.
- 134. Connolly SJ, Hallstrom AP, Cappato R, et al. Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. AVID, CASH and CIDS studies. Antiarrhythmics vs Implantable Defibrillator study. Cardiac Arrest Study Hamburg . Canadian Implantable Defibrillator Study. Eur. Heart J. 2000; 21:2071-8.
- 135. Lau EW, Griffith MJ, Pathmanathan RK, et al. The Midlands Trial of Empirical Amiodarone versus Electrophysiology-guided Interventions and Implantable Cardioverter-defibrillators (MAVERIC): a multi-centre prospective randomised clinical trial on the secondary prevention of sudden cardiac death. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2004; 6:257-66.
- 136. Claro JC, Candia R, Rada G, et al. Amiodarone versus other pharmacological interventions for prevention of sudden cardiac death. Cochrane Database Syst. Rev. 2015; 12:CD008093.
- 137. Raitt MH, Renfroe EG, Epstein AE, et al. "Stable" ventricular tachycardia is not a benign rhythm : insights from the antiarrhythmics versus implantable defibrillators (AVID) registry. Circulation. 2001; 103:244-52.
- 138. Bass EB, Elson JJ, Fogoros RN, et al. Long-term prognosis of patients undergoing electrophysiologic studies for syncope of unknown origin. Am J Cardiol. 1988; 62:1186-91.
- 139. Owens DK, Sanders GD, Heidenreich PA, et al. Effect of risk stratification on cost-effectiveness of the implantable cardioverter defibrillator. Am Heart J. 2002; 144:440-8.
- 140. Ahn JM, Lee KH, Yoo SY, et al. Prognosis of variant angina manifesting as aborted sudden cardiac death. J Am Coll Cardiol. 2016; 68:137-45.
- 141. Yamashina Y, Yagi T, Namekawa A, et al. Favorable outcomes of patients with vasospastic angina associated with cardiac arrest. J Cardiol. 2014; 63:41-5.
- 142. Eschalier R, Souteyrand G, Jean F, et al. Should an implanted defibrillator be considered in patients with vasospastic angina? Arch. Cardiovasc Dis. 2014; 107:42-7.
- 143. Matsue Y, Suzuki M, Nishizaki M, et al. Clinical implications of an implantable cardioverter-defibrillator in patients with vasospastic angina and lethal ventricular arrhythmia. J Am Coll Cardiol. 2012; 60:908-13.
- 144. Takagi Y, Yasuda S, Tsunoda R, et al. Clinical characteristics and long-term prognosis of vasospastic angina patients who survived out-ofhospital cardiac arrest: multicenter registry study of the Japanese Coronary Spasm Association. Circ. Arrhythm. Electrophysiol. 2011; 4:295-302.
- 145. Meisel SR, Mazur A, Chetboun I, et al. Usefulness of implantable cardioverter-defibrillators in refractory variant angina pectoris complicated by ventricular fibrillation in patients with angiographically normal coronary arteries. Am. J. Cardiol. 2002; 89:1114-6.
- 146. Chevalier P, Dacosta A, Defaye P, et al. Arrhythmic cardiac arrest due to isolated coronary artery spasm: long-term outcome of seven resuscitated patients. J Am Coll Cardiol. 1998; 31:57-61.
- 147. Myerburg RJ, Kessler KM, Mallon SM, et al. Life-threatening ventricular arrhythmias in patients with silent myocardial ischemia due to coronary-artery spasm. N. Engl. J. Med. 1992; 326:1451-5.

- 148. Saxon LA, Wiener I, Natterson PD, et al. Monomorphic versus polymorphic ventricular tachycardia after coronary artery bypass grafting. Am. J. Cardiol. 1995; 75:403-5.
- 149. Ascione R, Reeves BC, Santo K, et al. Predictors of new malignant ventricular arrhythmias after coronary surgery: a case-control study. J Am Coll Cardiol. 2004; 43:1630-8.
- 150. Steinberg JS, Gaur A, Sciacca R, et al. New-onset sustained ventricular tachycardia after cardiac surgery. Circulation. 1999; 99:903-8.
- 151. Bigger JT, Jr. Prophylactic use of implanted cardiac defibrillators in patients at high risk for ventricular arrhythmias after coronary-artery bypass graft surgery. Coronary Artery Bypass Graft (CABG) Patch Trial Investigators. N. Engl. J. Med. 1997; 337:1569-75.
- 152. Hohnloser SH, Kuck KH, Dorian P, et al. Prophylactic use of an implantable cardioverter-defibrillator after acute myocardial infarction. N. Engl. J. Med. 2004; 351:2481-8.
- 153. Steinbeck G, Andresen D, Seidl K, et al. Defibrillator implantation early after myocardial infarction. N. Engl. J. Med. 2009; 361:1427-36.
- 154. Piccini JP, Berger JS and O'Connor CM. Amiodarone for the prevention of sudden cardiac death: a meta-analysis of randomized controlled trials. Eur. Heart J. 2009; 30:1245-53.
- 155. Cantero-Perez EM, Sobrino-Marquez JM, Grande-Trillo A, et al. Implantable cardioverter defibrillator for primary prevention in patients with severe ventricular dysfunction awaiting heart transplantation. Transplantation proceedings. 2013; 45:3659-61.
- 156. Frohlich GM, Holzmeister J, Hubler M, et al. Prophylactic implantable cardioverter defibrillator treatment in patients with end-stage heart failure awaiting heart transplantation. Heart (British Cardiac Society). 2013; 99:1158-65.
- 157. Gandjbakhch E, Rovani M, Varnous S, et al. Implantable cardioverter-defibrillators in end-stage heart failure patients listed for heart transplantation: Results from a large retrospective registry. Archives of cardiovascular diseases. 2016; 109:476-85.
- 158. Vakil K, Duval S, Cogswell R, et al. Impact of implantable cardioverter-defibrillators on waitlist mortality among patients awaiting heart transplantation: an UNOS/OPTN analysis. JACCCEP. 2016.
- 159. Connolly SJ, Dorian P, Roberts RS, et al. Comparison of beta-blockers, amiodarone plus beta-blockers, or sotalol for prevention of shocks from implantable cardioverter defibrillators: the OPTIC Study: a randomized trial. Jama. 2006; 295:165-71.
- 160. Pacifico A, Hohnloser SH, Williams JH, et al. Prevention of implantable-defibrillator shocks by treatment with sotalol. d,I-Sotalol Implantable Cardioverter-Defibrillator Study Group. N. Engl. J. Med. 1999; 340:1855-62.
- 161. Kettering K, Mewis C, Dornberger V, et al. Efficacy of metoprolol and sotalol in the prevention of recurrences of sustained ventricular tachyarrhythmias in patients with an implantable cardioverter defibrillator. Pacing Clin. Electrophysiol. 2002; 25:1571-6.
- 162. Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N. Engl. J. Med. 1991; 324:781-8.
- 163. Seidl K, Hauer B, Schwick NG, et al. Comparison of metoprolol and sotalol in preventing ventricular tachyarrhythmias after the implantation of a cardioverter/defibrillator. Am. J. Cardiol. 1998; 82:744-8.
- 164. Kuhlkamp V, Mewis C, Mermi J, et al. Suppression of sustained ventricular tachyarrhythmias: a comparison of d,l-sotalol with no antiarrhythmic drug treatment. J Am Coll Cardiol. 1999; 33:46-52.
- 165. Brodine WN, Tung RT, Lee JK, et al. Effects of beta-blockers on implantable cardioverter defibrillator therapy and survival in the patients with ischemic cardiomyopathy (from the Multicenter Automatic Defibrillator Implantation Trial-II). Am. J. Cardiol. 2005; 96:691-5.

- 166. Reddy VY, Reynolds MR, Neuzil P, et al. Prophylactic catheter ablation for the prevention of defibrillator therapy. N. Engl. J. Med. 2007; 357:2657-65.
- 167. Sapp JL, Wells GA, Parkash R, et al. Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. N. Engl. J. Med. 2016; 375:111-21.
- 168. Kuck KH, Schaumann A, Eckardt L, et al. Catheter ablation of stable ventricular tachycardia before defibrillator implantation in patients with coronary heart disease (VTACH): a multicentre randomised controlled trial. Lancet (London, England). 2010; 375:31-40.
- 169. Al-Khatib SM, Daubert JP, Anstrom KJ, et al. Catheter ablation for ventricular tachycardia in patients with an implantable cardioverter defibrillator (CALYPSO) pilot trial. Journal of cardiovascular electrophysiology. 2015; 26:151-7.
- 170. Blanck Z, Dhala A, Deshpande S, et al. Bundle branch reentrant ventricular tachycardia: cumulative experience in 48 patients. J. Cardiovasc. Electrophysiol. 1993; 4:253-62.
- 171. Brugada J, Aguinaga L, Mont L, et al. Coronary artery revascularization in patients with sustained ventricular arrhythmias in the chronic phase of a myocardial infarction: effects on the electrophysiologic substrate and outcome. J Am Coll Cardiol. 2001; 37:529-33.
- 172. Sears SF, Jr., Todaro JF, Lewis TS, et al. Examining the psychosocial impact of implantable cardioverter defibrillators: a literature review. Clinical cardiology. 1999; 22:481-9.
- 173. Lopera G, Stevenson WG, Soejima K, et al. Identification and ablation of three types of ventricular tachycardia involving the his-purkinje system in patients with heart disease. J. Cardiovasc. Electrophysiol. 2004; 15:52-8.
- 174. Mehdirad AA, Keim S, Rist K, et al. Long-term clinical outcome of right bundle branch radiofrequency catheter ablation for treatment of bundle branch reentrant ventricular tachycardia. Pacing Clin. Electrophysiol. 1995; 18:2135-43.
- 175. Dinov B, Fiedler L, Schonbauer R, et al. Outcomes in catheter ablation of ventricular tachycardia in dilated nonischemic cardiomyopathy compared with ischemic cardiomyopathy: results from the Prospective Heart Centre of Leipzig VT (HELP-VT) Study. Circulation. 2014; 129:728-36.
- 176. Tanner H, Hindricks G, Volkmer M, et al. Catheter ablation of recurrent scar-related ventricular tachycardia using electroanatomical mapping and irrigated ablation technology: results of the prospective multicenter Euro-VT-study. J. Cardiovasc. Electrophysiol. 2010; 21:47-53.
- 177. Marchlinski FE, Haffajee CI, Beshai JF, et al. Long-term success of irrigated radiofrequency catheter ablation of sustained ventricular tachycardia: post-approval THERMOCOOL VT trial. J Am Coll Cardiol. 2016; 67:674-83.
- 178. Tung R, Vaseghi M, Frankel DS, et al. Freedom from recurrent ventricular tachycardia after catheter ablation is associated with improved survival in patients with structural heart disease: An International VT Ablation Center Collaborative Group study. Heart rhythm. 2015; 12:1997-2007.
- 179. Mallidi J, Nadkarni GN, Berger RD, et al. Meta-analysis of catheter ablation as an adjunct to medical therapy for treatment of ventricular tachycardia in patients with structural heart disease. Heart rhythm. 2011; 8:503-10.
- 180. Calkins H, Epstein A, Packer D, et al. Catheter ablation of ventricular tachycardia in patients with structural heart disease using cooled radiofrequency energy: results of a prospective multicenter study. Cooled RF Multi Center Investigators Group. J Am Coll Cardiol. 2000; 35:1905-14.

- 181. Stevenson WG, Wilber DJ, Natale A, et al. Irrigated radiofrequency catheter ablation guided by electroanatomic mapping for recurrent ventricular tachycardia after myocardial infarction: the multicenter thermocool ventricular tachycardia ablation trial. Circulation. 2008; 118:2773-82.
- 182. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2011; 13:1077-109.
- 183. American Geriatrics Society Expert Panel on the Care of Older Adults with M. Guiding Principles for the Care of Older Adults with Multimorbidity: An Approach for Clinicians. Journal of the American Geriatrics Society. 2012; 60:E1-E25.
- 184. Hershberger RE, Morales A and Siegfried JD. Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet. Med. 2010; 12:655-67.
- 185. Piers SR, Tao Q, CF vHvT, et al. Contrast-enhanced MRI-derived scar patterns and associated ventricular tachycardias in nonischemic cardiomyopathy: implications for the ablation strategy. Circ. Arrhythm. Electrophysiol. 2013; 6:875-83.
- 186. Greulich S, Deluigi CC, Gloekler S, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC. Cardiovasc. Imaging. 2013; 6:501-11.
- 187. Kuruvilla S, Adenaw N, Katwal AB, et al. Late gadolinium enhancement on cardiac magnetic resonance predicts adverse cardiovascular outcomes in nonischemic cardiomyopathy: a systematic review and meta-analysis. Circ. Cardiovasc. Imaging. 2014; 7:250-8.
- 188. Tokuda M, Tedrow UB, Kojodjojo P, et al. Catheter ablation of ventricular tachycardia in nonischemic heart disease. Circ Arrhythm Electrophysiol. 2012; 5:992-1000.
- 189. Oloriz T, Silberbauer J, Maccabelli G, et al. Catheter ablation of ventricular arrhythmia in nonischemic cardiomyopathy: anteroseptal versus inferolateral scar sub-types. Circ Arrhythm Electrophysiol. 2014; 7:414-23.
- 190. Proietti R, Essebag V, Beardsall J, et al. Substrate-guided ablation of haemodynamically tolerated and untolerated ventricular tachycardia in patients with structural heart disease: effect of cardiomyopathy type and acute success on long-term outcome. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2015; 17:461-7.
- 191. Haqqani HM, Tschabrunn CM, Tzou WS, et al. Isolated septal substrate for ventricular tachycardia in nonischemic dilated cardiomyopathy: incidence, characterization, and implications. Heart rhythm. 2011; 8:1169-76.
- 192. Kuhne M, Abrams G, Sarrazin JF, et al. Isolated potentials and pace-mapping as guides for ablation of ventricular tachycardia in various types of nonischemic cardiomyopathy. Journal of cardiovascular electrophysiology. 2010; 21:1017-23.
- 193. Cano O, Hutchinson M, Lin D, et al. Electroanatomic substrate and ablation outcome for suspected epicardial ventricular tachycardia in left ventricular nonischemic cardiomyopathy. J Am Coll Cardiol. 2009; 54:799-808.
- 194. Delacretaz E, Stevenson WG, Ellison KE, et al. Mapping and radiofrequency catheter ablation of the three types of sustained monomorphic ventricular tachycardia in nonischemic heart disease. Journal of cardiovascular electrophysiology. 2000; 11:11-7.

- 195. Desai AS, Fang JC, Maisel WH, et al. Implantable defibrillators for the prevention of mortality in patients with nonischemic cardiomyopathy: a meta-analysis of randomized controlled trials. Jama. 2004; 292:2874-9.
- 196. Ruwald MH, Okumura K, Kimura T, et al. Syncope in high-risk cardiomyopathy patients with implantable defibrillators: frequency, risk factors, mechanisms, and association with mortality: results from the multicenter automatic defibrillator implantation trial-reduce inappropriate therapy (MADIT-RIT) study. Circulation. 2014; 129:545-52.
- 197. Knight BP, Goyal R, Pelosi F, et al. Outcome of patients with nonischemic dilated cardiomyopathy and unexplained syncope treated with an implantable defibrillator. J Am Coll Cardiol. 1999; 33:1964-70.
- 198. Brilakis ES, Shen WK, Hammill SC, et al. Role of programmed ventricular stimulation and implantable cardioverter defibrillators in patients with idiopathic dilated cardiomyopathy and syncope. Pacing Clin. Electrophysiol. 2001; 24:1623-30.
- 199. Fonarow GC, Feliciano Z, Boyle NG, et al. Improved survival in patients with nonischemic advanced heart failure and syncope treated with an implantable cardioverter-defibrillator. Am. J. Cardiol. 2000; 85:981-5.
- 200. Olshansky B, Poole JE, Johnson G, et al. Syncope predicts the outcome of cardiomyopathy patients: analysis of the SCD-HeFT study. J Am Coll Cardiol. 2008; 51:1277-82.
- 201. Bänsch D, Antz M, Boczor S, et al. Primary prevention of sudden cardiac death in idiopathic dilated cardiomyopathy: the Cardiomyopathy Trial (CAT). Circulation. 2002; 105:1453-8.
- 202. Strickberger SA, Hummel JD, Bartlett TG, et al. Amiodarone versus implantable cardioverter-defibrillator:randomized trial in patients with nonischemic dilated cardiomyopathy and asymptomatic nonsustained ventricular tachycardia--AMIOVIRT. J Am Coll Cardiol. 2003; 41:1707-12.
- 203. Kadish A, Dyer A, Daubert JP, et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N. Engl. J. Med. 2004; 350:2151-8.
- 204. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 2004; 350:2140-50.
- 205. Kober L, Bloch Thomsen PE, Moller M, et al. Effect of dofetilide in patients with recent myocardial infarction and left-ventricular dysfunction: a randomised trial. Lancet (London, England). 2000; 356:2052-8.
- 206. Grimm W, Christ M, Bach J, et al. Noninvasive arrhythmia risk stratification in idiopathic dilated cardiomyopathy: results of the Marburg Cardiomyopathy Study. Circulation. 2003; 108:2883-91.
- 207. Goldberger JJ, Subacius H, Patel T, et al. Sudden cardiac death risk stratification in patients with nonischemic dilated cardiomyopathy. J Am Coll Cardiol. 2014; 63:1879-89.
- 208. Anselme F, Moubarak G, Savoure A, et al. Implantable cardioverter-defibrillators in lamin A/C mutation carriers with cardiac conduction disorders. Heart rhythm. 2013; 10:1492-8.
- 209. van Rijsingen IA, Arbustini E, Elliott PM, et al. Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers a European cohort study. J Am Coll Cardiol. 2012; 59:493-500.
- 210. Pasotti M, Klersy C, Pilotto A, et al. Long-term outcome and risk stratification in dilated cardiolaminopathies. J Am Coll Cardiol. 2008; 52:1250-60.

- 211. Van Berlo JH, de Voogt WG, van der Kooi AJ, et al. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J. Mol. Med. (Berl.). 2005; 83:79-83.
- 212. Kutyifa V, Moss AJ, Klein H, et al. Use of the wearable cardioverter defibrillator in high-risk cardiac patients: data from the Prospective Registry of Patients Using the Wearable Cardioverter Defibrillator (WEARIT-II Registry). Circulation. 2015; 132:1613-9.
- 213. Singh M, Wang NC, Jain S, et al. Utility of the wearable cardioverter-defibrillator in patients with newly diagnosed cardiomyopathy: a decade-long single-center experience. J Am Coll Cardiol. 2015; 66:2607-13.
- 214. Uyei J and Braithwaite RS. Effectiveness of wearable defibrillators: systematic review and quality of evidence. Int. J Technol. Assess. Health Care. 2014; 30:194-202.
- 215. Al-Khatib SM, Fonarow GC, Joglar JA, et al. Primary prevention implantable cardioverter defibillators in patients with nonischemic cardiomyopathy: A meta-analysis. JAMA Cardiology. 2017.
- 216. Quarta G, Muir A, Pantazis A, et al. Familial evaluation in arrhythmogenic right ventricular cardiomyopathy: impact of genetics and revised task force criteria. Circulation. 2011; 123:2701-9.
- 217. Kapplinger JD, Landstrom AP, Salisbury BA, et al. Distinguishing arrhythmogenic right ventricular cardiomyopathy/dysplasia-associated mutations from background genetic noise. J Am Coll Cardiol. 2011; 57:2317-27.
- 218. Bhonsale A, James CA, Tichnell C, et al. Risk stratification in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. Circ. Arrhythm. Electrophysiol. 2013; 6:569-78.
- 219. Marcus FI, Edson S and Towbin JA. Genetics of arrhythmogenic right ventricular cardiomyopathy: a practical guide for physicians. J Am Coll Cardiol. 2013; 61:1945-8.
- 220. Bhonsale A, Groeneweg JA, James CA, et al. Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. Eur. Heart J. 2015; 36:847-55.
- 221. Rigato I, Bauce B, Rampazzo A, et al. Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circ. Cardiovasc. Genet. 2013; 6:533-42.
- 222. Groeneweg JA, Bhonsale A, James CA, et al. Clinical Presentation, Long-Term Follow-Up, and Outcomes of 1001 Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Patients and Family Members. Circ. Cardiovasc. Genet. 2015; 8:437-46.
- 223. te Riele AS, James CA, Groeneweg JA, et al. Approach to family screening in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Eur. Heart J. 2016; 37:755-63.
- 224. Kamath GS, Zareba W, Delaney J, et al. Value of the signal-averaged electrocardiogram in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart rhythm. 2011; 8:256-62.
- 225. Marcus FI, Fontaine GH, Guiraudon G, et al. Right ventricular dysplasia: a report of 24 adult cases. Circulation. 1982; 65:384-98.
- 226. Corrado D, Basso C, Thiene G, et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol. 1997; 30:1512-20.
- 227. Link MS, Laidlaw D, Polonsky B, et al. Ventricular arrhythmias in the North American multidisciplinary study of ARVC: predictors, characteristics, and treatment. J Am Coll Cardiol. 2014; 64:119-25.

- 228. Corrado D, Wichter T, Link MS, et al. Treatment of arrhythmogenic right ventricular cardiomyopathy/dysplasia: an international task force consensus statement. Circulation. 2015; 132:441-53.
- 229. Corrado D, Leoni L, Link MS, et al. Implantable cardioverter-defibrillator therapy for prevention of sudden death in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation. 2003; 108:3084-91.
- 230. Piccini JP, Dalal D, Roguin A, et al. Predictors of appropriate implantable defibrillator therapies in patients with arrhythmogenic right ventricular dysplasia. Heart rhythm. 2005; 2:1188-94.
- 231. Bhonsale A, James CA, Tichnell C, et al. Incidence and predictors of implantable cardioverter-defibrillator therapy in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy undergoing implantable cardioverter-defibrillator implantation for primary prevention. J Am Coll Cardiol. 2011; 58:1485-96.
- 232. Dalal D, Jain R, Tandri H, et al. Long-term efficacy of catheter ablation of ventricular tachycardia in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol. 2007; 50:432-40.
- 233. Garcia FC, Bazan V, Zado ES, et al. Epicardial substrate and outcome with epicardial ablation of ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation. 2009; 120:366-75.
- 234. Philips B, Madhavan S, James C, et al. Outcomes of catheter ablation of ventricular tachycardia in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ. Arrhythm. Electrophysiol. 2012; 5:499-505.
- 235. Bai R, Di BL, Shivkumar K, et al. Ablation of ventricular arrhythmias in arrhythmogenic right ventricular dysplasia/cardiomyopathy: arrhythmia-free survival after endo-epicardial substrate based mapping and ablation. Circ. Arrhythm. Electrophysiol. 2011; 4:478-85.
- 236. Berruezo A, Fernandez-Armenta J, Mont L, et al. Combined endocardial and epicardial catheter ablation in arrhythmogenic right ventricular dysplasia incorporating scar dechanneling technique. Circ. Arrhythm. Electrophysiol. 2012; 5:111-21.
- 237. Philips B, te Riele AS, Sawant A, et al. Outcomes and ventricular tachycardia recurrence characteristics after epicardial ablation of ventricular tachycardia in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Heart rhythm. 2015; 12:716-25.
- 238. Santangeli P, Zado ES, Supple GE, et al. Long-term outcome with catheter ablation of ventricular tachycardia in patients with arrhythmogenic right ventricular cardiomyopathy. Circ. Arrhythm. Electrophysiol. 2015; 8:1413-21.
- 239. James CA, Bhonsale A, Tichnell C, et al. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol. 2013; 62:1290-7.
- 240. Sawant AC, Bhonsale A, te Riele AS, et al. Exercise has a disproportionate role in the pathogenesis of arrhythmogenic right ventricular dysplasia/cardiomyopathy in patients without desmosomal mutations. Journal of the American Heart Association. 2014; 3:e001471.
- 241. Ruwald AC, Marcus F, Estes NA, 3rd, et al. Association of competitive and recreational sport participation with cardiac events in patients with arrhythmogenic right ventricular cardiomyopathy: results from the North American multidisciplinary study of arrhythmogenic right ventricular cardiomyopathy. European heart journal. 2015; 36:1735-43.
- 242. Sawant AC, te Riele AS, Tichnell C, et al. Safety of American Heart Association-recommended minimum exercise for desmosomal mutation carriers. Heart rhythm. 2016; 13:199-207.
- 243. Saberniak J, Hasselberg NE, Borgquist R, et al. Vigorous physical activity impairs myocardial function in patients with arrhythmogenic right ventricular cardiomyopathy and in mutation positive family members. Eur. J Heart Fail. 2014; 16:1337-44.

- 244. Sen-Chowdhry S, Syrris P, Prasad SK, et al. Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. J Am Coll Cardiol. 2008; 52:2175-87.
- 245. Vermes E, Strohm O, Otmani A, et al. Impact of the revision of arrhythmogenic right ventricular cardiomyopathy/dysplasia task force criteria on its prevalence by CMR criteria. JACC. Cardiovascular imaging. 2011; 4:282-7.
- 246. te Riele AS, Bhonsale A, James CA, et al. Incremental value of cardiac magnetic resonance imaging in arrhythmic risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol. 2013; 62:1761-9.
- 247. Te Riele AS, James CA, Philips B, et al. Mutation-positive arrhythmogenic right ventricular dysplasia/cardiomyopathy: the triangle of dysplasia displaced. Journal of cardiovascular electrophysiology. 2013; 24:1311-20.
- 248. Liu T, Pursnani A, Sharma UC, et al. Effect of the 2010 task force criteria on reclassification of cardiovascular magnetic resonance criteria for arrhythmogenic right ventricular cardiomyopathy. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance. 2014; 16:47.
- 249. Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010; 121:1533-41.
- 250. Hershberger RE, Lindenfeld J, Mestroni L, et al. Genetic evaluation of cardiomyopathy--a Heart Failure Society of America practice guideline. Journal of cardiac failure. 2009; 15:83-97.
- 251. Maron BJ, Shen WK, Link MS, et al. Efficacy of implantable cardioverter-defibrillators for the prevention of sudden death in patients with hypertrophic cardiomyopathy. N. Engl. J. Med. 2000; 342:365-73.
- 252. Christiaans I, van Langen IM, Birnie E, et al. Genetic counseling and cardiac care in predictively tested hypertrophic cardiomyopathy mutation carriers: the patients' perspective. American journal of medical genetics. Part A. 2009; 149a:1444-51.
- 253. Hamang A, Eide GE, Rokne B, et al. Predictors of heart-focused anxiety in patients undergoing genetic investigation and counseling of long QT syndrome or hypertrophic cardiomyopathy: a one year follow-up. Journal of genetic counseling. 2012; 21:72-84.
- 254. Bos JM, Will ML, Gersh BJ, et al. Characterization of a phenotype-based genetic test prediction score for unrelated patients with hypertrophic cardiomyopathy. Mayo Clinic proceedings. 2014; 89:727-37.
- 255. O'Mahony C, Jichi F, Pavlou M, et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur. Heart J. 2014; 35:2010-20.
- 256. Elliott PM, Sharma S, Varnava A, et al. Survival after cardiac arrest or sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1999; 33:1596-601.
- 257. Maron BJ, Spirito P, Shen WK, et al. Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. Jama. 2007; 298:405-12.
- 258. Lin G, Nishimura RA, Gersh BJ, et al. Device complications and inappropriate implantable cardioverter defibrillator shocks in patients with hypertrophic cardiomyopathy. Heart (British Cardiac Society). 2009; 95:709-14.
- 259. Syska P, Przybylski A, Chojnowska L, et al. Implantable cardioverter-defibrillator in patients with hypertrophic cardiomyopathy: efficacy and complications of the therapy in long-term follow-up. J. Cardiovasc. Electrophysiol. 2010; 21:883-9.

- 260. O'Mahony C, Lambiase PD, Quarta G, et al. The long-term survival and the risks and benefits of implantable cardioverter defibrillators in patients with hypertrophic cardiomyopathy. Heart (British Cardiac Society). 2012; 98:116-25.
- 261. Melacini P, Maron BJ, Bobbo F, et al. Evidence that pharmacological strategies lack efficacy for the prevention of sudden death in hypertrophic cardiomyopathy. Heart (British Cardiac Society). 2007; 93:708-10.
- 262. McKenna WJ, Oakley CM, Krikler DM, et al. Improved survival with amiodarone in patients with hypertrophic cardiomyopathy and ventricular tachycardia. Br. Heart J. 1985; 53:412-6.
- 263. Olivotto I, Maron BJ, Montereggi A, et al. Prognostic value of systemic blood pressure response during exercise in a community-based patient population with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1999; 33:2044-51.
- 264. Sadoul N, Prasad K, Elliott PM, et al. Prospective prognostic assessment of blood pressure response during exercise in patients with hypertrophic cardiomyopathy. Circulation. 1997; 96:2987-91.
- 265. Sorajja P, Nishimura RA, Ommen SR, et al. Use of echocardiography in patients with hypertrophic cardiomyopathy: clinical implications of massive hypertrophy. J Am Soc. Echocardiogr. 2006; 19:788-95.
- 266. Maki S, Ikeda H, Muro A, et al. Predictors of sudden cardiac death in hypertrophic cardiomyopathy. Am. J. Cardiol. 1998; 82:774-8.
- 267. Elliott PM, Gimeno JR, Tome MT, et al. Left ventricular outflow tract obstruction and sudden death risk in patients with hypertrophic cardiomyopathy. Eur. Heart J. 2006; 27:1933-41.
- 268. Monserrat L, Elliott PM, Gimeno JR, et al. Non-sustained ventricular tachycardia in hypertrophic cardiomyopathy: an independent marker of sudden death risk in young patients. J Am Coll Cardiol. 2003; 42:873-9.
- 269. Spirito P, Bellone P, Harris KM, et al. Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N. Engl. J. Med. 2000; 342:1778-85.
- 270. Elliott PM, Gimeno Blanes JR, Mahon NG, et al. Relation between severity of left-ventricular hypertrophy and prognosis in patients with hypertrophic cardiomyopathy. Lancet (London, England). 2001; 357:420-4.
- 271. Elliott PM, Poloniecki J, Dickie S, et al. Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. J Am Coll Cardiol. 2000; 36:2212-8.
- 272. Ackerman MJ, VanDriest SL, Ommen SR, et al. Prevalence and age-dependence of malignant mutations in the beta-myosin heavy chain and troponin T genes in hypertrophic cardiomyopathy: a comprehensive outpatient perspective. J Am Coll Cardiol. 2002; 39:2042-8.
- 273. Lopes LR, Rahman MS and Elliott PM. A systematic review and meta-analysis of genotype-phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcomeric protein mutations. Heart (British Cardiac Society). 2013; 99:1800-11.
- 274. Bos JM, Maron BJ, Ackerman MJ, et al. Role of family history of sudden death in risk stratification and prevention of sudden death with implantable defibrillators in hypertrophic cardiomyopathy. Am. J. Cardiol. 2010; 106:1481-6.
- 275. Spirito P, Autore C, Rapezzi C, et al. Syncope and risk of sudden death in hypertrophic cardiomyopathy. Circulation. 2009; 119:1703-10.
- 276. Maron BJ, Doerer JJ, Haas TS, et al. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006. Circulation. 2009; 119:1085-92.
- 277. Kuck KH, Kunze KP, Schluter M, et al. Programmed electrical stimulation in hypertrophic cardiomyopathy. Results in patients with and without cardiac arrest or syncope. Eur. Heart J. 1988; 9:177-85.

- 278. Zhu DW, Sun H, Hill R, et al. The value of electrophysiology study and prophylactic implantation of cardioverter defibrillator in patients with hypertrophic cardiomyopathy. Pacing Clin. Electrophysiol. 1998; 21:299-302.
- 279. Christiaans I, Birnie E, van Langen IM, et al. The yield of risk stratification for sudden cardiac death in hypertrophic cardiomyopathy myosin-binding protein C gene mutation carriers: focus on predictive screening. Eur. Heart J. 2010; 31:842-8.
- 280. Olivotto I, Girolami F, Ackerman MJ, et al. Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin. Proc. 2008; 83:630-8.
- 281. Ingles J, Sarina T, Yeates L, et al. Clinical predictors of genetic testing outcomes in hypertrophic cardiomyopathy. Genet. Med. 2013; 15:972-7.
- 282. Jensen MK, Havndrup O, Christiansen M, et al. Penetrance of hypertrophic cardiomyopathy in children and adolescents: a 12-year followup study of clinical screening and predictive genetic testing. Circulation. 2013; 127:48-54.
- 283. Girolami F, Ho CY, Semsarian C, et al. Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations. J Am Coll Cardiol. 2010; 55:1444-53.
- 284. Klues HG, Schiffers A and Maron BJ. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J Am Coll Cardiol. 1995; 26:1699-708.
- 285. Adabag AS, Kuskowski MA and Maron BJ. Determinants for clinical diagnosis of hypertrophic cardiomyopathy. Am J Cardiol. 2006; 98:1507-11.
- 286. Cooper LT, Jr., Berry GJ and Shabetai R. Idiopathic giant-cell myocarditis--natural history and treatment. Multicenter Giant Cell Myocarditis Study Group Investigators. N. Engl. J. Med. 1997; 336:1860-6.
- 287. Kandolin R, Lehtonen J, Salmenkivi K, et al. Diagnosis, treatment, and outcome of giant-cell myocarditis in the era of combined immunosuppression. Circ. Heart Fail. 2013; 6:15-22.
- 288. Maleszewski JJ, Orellana VM, Hodge DO, et al. Long-term risk of recurrence, morbidity and mortality in giant cell myocarditis. Am. J. Cardiol. 2015; 115:1733-8.
- 289. Feldman AM, Klein H, Tchou P, et al. Use of a wearable defibrillator in terminating tachyarrhythmias in patients at high risk for sudden death: results of the WEARIT/BIROAD. Pacing Clin. Electrophysiol. 2004; 27:4-9.
- 290. Kao AC, Krause SW, Handa R, et al. Wearable defibrillator use in heart failure (WIF): results of a prospective registry. BMC Cardiovasc Disord. 2012; 12:123.
- 291. Naruse Y, Sekiguchi Y, Nogami A, et al. Systematic treatment approach to ventricular tachycardia in cardiac sarcoidosis. Circ. Arrhythm. Electrophysiol. 2014; 7:407-13.
- 292. Takaya Y, Kusano KF, Nakamura K, et al. Outcomes in patients with high-degree atrioventricular block as the initial manifestation of cardiac sarcoidosis. Am. J. Cardiol. 2015; 115:505-9.
- 293. Kandolin R, Lehtonen J, Airaksinen J, et al. Cardiac sarcoidosis: epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation. 2015; 131:624-32.

- 294. Yazaki Y, Isobe M, Hiroe M, et al. Prognostic determinants of long-term survival in Japanese patients with cardiac sarcoidosis treated with prednisone. Am. J. Cardiol. 2001; 88:1006-10.
- 295. Aizer A, Stern EH, Gomes JA, et al. Usefulness of programmed ventricular stimulation in predicting future arrhythmic events in patients with cardiac sarcoidosis. Am. J. Cardiol. 2005; 96:276-82.
- 296. Mehta D, Mori N, Goldbarg SH, et al. Primary prevention of sudden cardiac death in silent cardiac sarcoidosis: role of programmed ventricular stimulation. Circ. Arrhythm. Electrophysiol. 2011; 4:43-8.
- 297. Coleman GC, Shaw PW, Balfour PC, Jr., et al. Prognostic value of myocardial scarring on CMR in patients with cardiac sarcoidosis: a systematic review and meta-analysis. JACC. Cardiovasc. Imaging. 2016.
- 298. Heng EL, Bolger AP, Kempny A, et al. Neurohormonal activation and its relation to outcomes late after repair of tetralogy of Fallot. Heart (British Cardiac Society). 2015; 101:447-54.
- 299. Murtagh G, Laffin LJ, Beshai JF, et al. Prognosis of myocardial damage in sarcoidosis patients with preserved left ventricular ejection fraction: risk stratification using cardiovascular magnetic resonance. Circ. Cardiovasc. Imaging. 2016; 9:e003738.
- 300. Crawford T, Mueller G, Sarsam S, et al. Magnetic resonance imaging for identifying patients with cardiac sarcoidosis and preserved or mildly reduced left ventricular function at risk of ventricular arrhythmias. Circ. Arrhythm. Electrophysiol. 2014; 7:1109-15.
- 301. Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014; 63:329-36.
- 302. Kron J, Sauer W, Schuller J, et al. Efficacy and safety of implantable cardiac defibrillators for treatment of ventricular arrhythmias in patients with cardiac sarcoidosis. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2013; 15:347-54.
- 303. Mohsen A, Jimenez A, Hood RE, et al. Cardiac sarcoidosis: electrophysiological outcomes on long-term follow-up and the role of the implantable cardioverter-defibrillator. J. Cardiovasc. Electrophysiol. 2014; 25:171-6.
- 304. Schuller JL, Zipse M, Crawford T, et al. Implantable cardioverter defibrillator therapy in patients with cardiac sarcoidosis. J. Cardiovasc. Electrophysiol. 2012; 23:925-9.
- 305. Yodogawa K, Seino Y, Ohara T, et al. Effect of corticosteroid therapy on ventricular arrhythmias in patients with cardiac sarcoidosis. Ann. Noninvasive. Electrocardiol. 2011; 16:140-7.
- 306. Segawa M, Fukuda K, Nakano M, et al. Time course and factors correlating with ventricular tachyarrhythmias after introduction of steroid therapy in cardiac sarcoidosis. Circ. Arrhythm. Electrophysiol. 2016; 9:e003353.
- 307. Varr BC, Zarafshar S, Coakley T, et al. Implantable cardioverter-defibrillator placement in patients with cardiac amyloidosis. Heart rhythm. 2014; 11:158-62.
- 308. Kristen AV, Dengler TJ, Hegenbart U, et al. Prophylactic implantation of cardioverter-defibrillator in patients with severe cardiac amyloidosis and high risk for sudden cardiac death. Heart rhythm. 2008; 5:235-40.
- 309. Lubitz SA, Goldbarg SH and Mehta D. Sudden cardiac death in infiltrative cardiomyopathies: sarcoidosis, scleroderma, amyloidosis, hemachromatosis. Prog. Cardiovasc Dis. 2008; 51:58-73.

- 310. Sandner SE, Wieselthaler G, Zuckermann A, et al. Survival benefit of the implantable cardioverter-defibrillator in patients on the waiting list for cardiac transplantation. Circulation. 2001; 104:I171-6.
- 311. Opreanu M, Wan C, Singh V, et al. Wearable cardioverter-defibrillator as a bridge to cardiac transplantation: A national database analysis. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2015; 34:1305-9.
- 312. Vakil K, Kazmirczak F, Sathnur N, et al. Implantable cardioverter-defibrillator use in patients with left ventricular assist devices: a systematic review and meta-analysis. JACC. Heart Fail. 2016; 4:772-9.
- 313. Tsai VW, Cooper J, Garan H, et al. The efficacy of implantable cardioverter-defibrillators in heart transplant recipients: results from a multicenter registry. Circ. Heart Fail. 2009; 2:197-201.
- 314. McDowell DL and Hauptman PJ. Implantable defibrillators and cardiac resynchronization therapy in heart transplant recipients: results of a national survey. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2009; 28:847-50.
- 315. Neylon A, Canniffe C, Parlon B, et al. Implantable cardioverter-defibrillators in a heart transplant population: A single-center experience.
 The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2016; 35:682-4.
- 316. Tanawuttiwat T, Wagner KR, Tomaselli G, et al. Left ventricular dysfunction and conduction disturbances in patients with myotonic muscular dystrophy type i and ii. JAMA Cardiology. 2017; 2:225-8.
- 317. Merino JL, Carmona JR, Fernandez-Lozano I, et al. Mechanisms of sustained ventricular tachycardia in myotonic dystrophy: implications for catheter ablation. Circulation. 1998; 98:541-6.
- 318. Diegoli M, Grasso M, Favalli V, et al. Diagnostic work-up and risk stratification in X-linked dilated cardiomyopathies caused by dystrophin defects. J Am Coll Cardiol. 2011; 58:925-34.
- 319. Meune C, Van Berlo JH, Anselme F, et al. Primary prevention of sudden death in patients with lamin A/C gene mutations. N. Engl. J. Med. 2006; 354:209-10.
- 320. Lallemand B, Clementy N, Bernard-Brunet A, et al. The evolution of infrahissian conduction time in myotonic dystrophy patients: clinical implications. Heart (British Cardiac Society). 2012; 98:291-6.
- 321. Wahbi K, Meune C, Porcher R, et al. Electrophysiological study with prophylactic pacing and survival in adults with myotonic dystrophy and conduction system disease. Jama. 2012; 307:1292-301.
- 322. McMurray JJV, Östergren J, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. The Lancet. 362:767-71.
- 323. Ha AH, Tarnopolsky MA, Bergstra TG, et al. Predictors of atrio-ventricular conduction disease, long-term outcomes in patients with myotonic dystrophy types I and II. Pacing Clin. Electrophysiol. 2012; 35:1262-9.
- 324. Laurent V, Pellieux S, Corcia P, et al. Mortality in myotonic dystrophy patients in the area of prophylactic pacing devices. Int. J. Cardiol. 2011; 150:54-8.

- 325. Bhakta D, Shen C, Kron J, et al. Pacemaker and implantable cardioverter-defibrillator use in a US myotonic dystrophy type 1 population. J. Cardiovasc. Electrophysiol. 2011; 22:1369-75.
- 326. Nazarian S, Wagner KR, Caffo BS, et al. Clinical predictors of conduction disease progression in type I myotonic muscular dystrophy. Pacing Clin. Electrophysiol. 2011; 34:171-6.
- 327. Bhakta D, Groh MR, Shen C, et al. Increased mortality with left ventricular systolic dysfunction and heart failure in adults with myotonic dystrophy type 1. Am. Heart J. 2010; 160:1137-41, 41.
- 328. Groh WJ, Groh MR, Saha C, et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N. Engl. J. Med. 2008; 358:2688-97.
- 329. Laforêt P, de TC, Eymard B, et al. Cardiac involvement in genetically confirmed facioscapulohumeral muscular dystrophy. Neurology. 1998; 51:1454-6.
- 330. Stevenson WG, Perloff JK, Weiss JN, et al. Facioscapulohumeral muscular dystrophy: evidence for selective, genetic electrophysiologic cardiac involvement. J Am Coll Cardiol. 1990; 15:292-9.
- 331. Costa J, Lopes CM, Barsheshet A, et al. Combined assessment of sex- and mutation-specific information for risk stratification in type 1 long QT syndrome. Heart rhythm. 2012; 9:892-8.
- 332. Bai R, Napolitano C, Bloise R, et al. Yield of genetic screening in inherited cardiac channelopathies: how to prioritize access to genetic testing. Circ. Arrhythm. Electrophysiol. 2009; 2:6-15.
- 333. Gehi AK, Duong TD, Metz LD, et al. Risk stratification of individuals with the Brugada electrocardiogram: a meta-analysis. J. Cardiovasc. Electrophysiol. 2006; 17:577-83.
- 334. Kim JA, Lopes CM, Moss AJ, et al. Trigger-specific risk factors and response to therapy in long QT syndrome type 2. Heart rhythm. 2010; 7:1797-805.
- 335. Migdalovich D, Moss AJ, Lopes CM, et al. Mutation and gender-specific risk in type 2 long QT syndrome: implications for risk stratification for life-threatening cardiac events in patients with long QT syndrome. Heart rhythm. 2011; 8:1537-43.
- 336. Nannenberg EA, Sijbrands EJ, Dijksman LM, et al. Mortality of inherited arrhythmia syndromes: insight into their natural history. Circ. Cardiovasc. Genet. 2012; 5:183-9.
- 337. Kimbrough J, Moss AJ, Zareba W, et al. Clinical implications for affected parents and siblings of probands with long-QT syndrome. Circulation. 2001; 104:557-62.
- 338. Kaufman ES, McNitt S, Moss AJ, et al. Risk of death in the long QT syndrome when a sibling has died. Heart rhythm. 2008; 5:831-6.
- 339. Wedekind H, Burde D, Zumhagen S, et al. QT interval prolongation and risk for cardiac events in genotyped LQTS-index children. Eur. J Pediatr. 2009; 168:1107-15.
- 340. Goldenberg I, Horr S, Moss AJ, et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol. 2011; 57:51-9.
- 341. Tester DJ, Will ML, Haglund CM, et al. Effect of clinical phenotype on yield of long QT syndrome genetic testing. J Am Coll Cardiol. 2006; 47:764-8.

- 342. Priori SG, Napolitano C, Memmi M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002; 106:69-74.
- 343. Probst V, Veltmann C, Eckardt L, et al. Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada syndrome registry. Circulation. 2010; 121:635-43.
- 344. Moss AJ, Zareba W, Hall WJ, et al. Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation. 2000; 101:616-23.
- 345. Zareba W, Moss AJ, Daubert JP, et al. Implantable cardioverter defibrillator in high-risk long QT syndrome patients. J. Cardiovasc. Electrophysiol. 2003; 14:337-41.
- 346. Monnig G, Kobe J, Loher A, et al. Implantable cardioverter-defibrillator therapy in patients with congenital long-QT syndrome: a long-term follow-up. Heart rhythm. 2005; 2:497-504.
- 347. Hayashi M, Denjoy I, Extramiana F, et al. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation. 2009; 119:2426-34.
- 348. Delise P, Allocca G, Marras E, et al. Risk stratification in individuals with the Brugada type 1 ECG pattern without previous cardiac arrest: usefulness of a combined clinical and electrophysiologic approach. Eur. Heart J. 2011; 32:169-76.
- 349. Hiraoka M, Takagi M, Yokoyama Y, et al. Prognosis and risk stratification of young adults with Brugada syndrome. Journal of electrocardiology. 2013; 46:279-83.
- 350. Garson A, Jr., Dick M, Fournier A, et al. The long QT syndrome in children. An international study of 287 patients. Circulation. 1993; 87:1866-72.
- 351. Hobbs JB, Peterson DR, Moss AJ, et al. Risk of aborted cardiac arrest or sudden cardiac death during adolescence in the long-QT syndrome. Jama. 2006; 296:1249-54.
- 352. Priori SG, Schwartz PJ, Napolitano C, et al. Risk stratification in the long-QT syndrome. N. Engl. J. Med. 2003; 348:1866-74.
- 353. Jons C, Moss AJ, Goldenberg I, et al. Risk of fatal arrhythmic events in long QT syndrome patients after syncope. J Am Coll Cardiol. 2010; 55:783-8.
- 354. Barsheshet A, Goldenberg I, Uchi J, et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to beta-blocker therapy in type 1 long-QT syndrome. Circulation. 2012; 125:1988-96.
- 355. Vincent GM, Schwartz PJ, Denjoy I, et al. High efficacy of beta-blockers in long-QT syndrome type 1: contribution of noncompliance and QT-prolonging drugs to the occurrence of beta-blocker treatment "failures". Circulation. 2009; 119:215-21.
- 356. Abu-Zeitone A, Peterson DR, Polonsky B, et al. Efficacy of different beta-blockers in the treatment of long QT syndrome. J Am Coll Cardiol. 2014; 64:1352-8.
- 357. Goldenberg I, Bradley J, Moss A, et al. Beta-blocker efficacy in high-risk patients with the congenital long-QT syndrome types 1 and 2: implications for patient management. J. Cardiovasc. Electrophysiol. 2010; 21:893-901.
- 358. Sauer AJ, Moss AJ, McNitt S, et al. Long QT syndrome in adults. J Am Coll Cardiol. 2007; 49:329-37.
- 359. Steinberg C, Padfield GJ, Al-Sabeq B, et al. Experience with bisoprolol in long-QT1 and long-QT2 syndrome. J Interv. Card Electrophysiol. 2016.

- 360. Villain E, Denjoy I, Lupoglazoff JM, et al. Low incidence of cardiac events with beta-blocking therapy in children with long QT syndrome. Eur. Heart J. 2004; 25:1405-11.
- 361. Moltedo JM, Kim JJ, Friedman RA, et al. Use of a cardioselective beta-blocker for pediatric patients with prolonged QT syndrome. Pediatr. Cardiol. 2011; 32:63-6.
- 362. Schwartz PJ, Priori SG, Cerrone M, et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation. 2004; 109:1826-33.
- 363. Bos JM, Bos KM, Johnson JN, et al. Left cardiac sympathetic denervation in long QT syndrome: analysis of therapeutic nonresponders. Circ. Arrhythm. Electrophysiol. 2013; 6:705-11.
- 364. Schneider HE, Steinmetz M, Krause U, et al. Left cardiac sympathetic denervation for the management of life-threatening ventricular tachyarrhythmias in young patients with catecholaminergic polymorphic ventricular tachycardia and long QT syndrome. Clin. Res. Cardiol. 2013; 102:33-42.
- 365. Collura CA, Johnson JN, Moir C, et al. Left cardiac sympathetic denervation for the treatment of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia using video-assisted thoracic surgery. Heart rhythm. 2009; 6:752-9.
- 366. Hofferberth SC, Cecchin F, Loberman D, et al. Left thoracoscopic sympathectomy for cardiac denervation in patients with life-threatening ventricular arrhythmias. J Thorac. Cardiovasc. Surg. 2014; 147:404-9.
- 367. Chattha IS, Sy RW, Yee R, et al. Utility of the recovery electrocardiogram after exercise: a novel indicator for the diagnosis and genotyping of long QT syndrome? Heart rhythm. 2010; 7:906-11.
- 368. Aziz PF, Wieand TS, Ganley J, et al. Genotype- and mutation site-specific QT adaptation during exercise, recovery, and postural changes in children with long-QT syndrome. Circ Arrhythm Electrophysiol. 2011; 4:867-73.
- 369. Laksman ZW, Hamilton RM, Chockalingam P, et al. Mutation location effect on severity of phenotype during exercise testing in type 1 long-QT syndrome: impact of transmembrane and C-loop location. Journal of cardiovascular electrophysiology. 2013; 24:1015-20.
- 370. Sy RW, van der Werf C, Chattha IS, et al. Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation. 2011; 124:2187-94.
- 371. Spazzolini C, Mullally J, Moss AJ, et al. Clinical implications for patients with long QT syndrome who experience a cardiac event during infancy. J Am Coll Cardiol. 2009; 54:832-7.
- 372. Zhang C, Kutyifa V, Moss AJ, et al. Long-QT Syndrome and Therapy for Attention Deficit/Hyperactivity Disorder. Journal of cardiovascular electrophysiology. 2015; 26:1039-44.
- 373. Choy AM, Lang CC, Chomsky DM, et al. Normalization of acquired QT prolongation in humans by intravenous potassium. Circulation. 1997; 96:2149-54.
- 374. Kannankeril P, Roden DM and Darbar D. Drug-induced long QT syndrome. Pharmacol. Rev. 2010; 62:760-81.
- 375. Roston TM, Vinocur JM, Maginot KR, et al. Catecholaminergic polymorphic ventricular tachycardia in children: analysis of therapeutic strategies and outcomes from an international multicenter registry. Circ. Arrhythm. Electrophysiol. 2015; 8:633-42.
- 376. Wilde AA, Bhuiyan ZA, Crotti L, et al. Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N. Engl. J. Med. 2008; 358:2024-9.

- 377. Li J, Liu Y, Yang F, et al. Video-assisted thoracoscopic left cardiac sympathetic denervation: a reliable minimally invasive approach for congenital long-QT syndrome. Ann. Thorac. Surg. 2008; 86:1955-8.
- 378. van der Werf C, Kannankeril PJ, Sacher F, et al. Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J Am Coll Cardiol. 2011; 57:2244-54.
- 379. Watanabe H, van der Werf C, Roses-Noguer F, et al. Effects of flecainide on exercise-induced ventricular arrhythmias and recurrences in genotype-negative patients with catecholaminergic polymorphic ventricular tachycardia. Heart rhythm. 2013; 10:542-7.
- 380. Somani R, Krahn AD, Healey JS, et al. Procainamide infusion in the evaluation of unexplained cardiac arrest: from the Cardiac Arrest Survivors with Preserved Ejection Fraction Registry (CASPER). Heart rhythm. 2014; 11:1047-54.
- 381. Mizusawa Y, Morita H, Adler A, et al. Prognostic significance of fever-induced Brugada syndrome. Heart rhythm. 2016; 13:1515-20.
- 382. Priori SG, Gasparini M, Napolitano C, et al. Risk stratification in Brugada syndrome: results of the PRELUDE (PRogrammed ELectrical stimUlation preDictive valuE) registry. J Am Coll Cardiol. 2012; 59:37-45.
- 383. Casado-Arroyo R, Berne P, Rao JY, et al. Long-term trends in newly diagnosed Brugada syndrome: implications for risk stratification. J Am Coll Cardiol. 2016; 68:614-23.
- 384. Belhassen B, Rahkovich M, Michowitz Y, et al. Management of Brugada Syndrome: Thirty-Three-Year Experience Using Electrophysiologically Guided Therapy With Class 1A Antiarrhythmic Drugs. Circ Arrhythm Electrophysiol. 2015; 8:1393-402.
- 385. Nademanee K, Veerakul G, Chandanamattha P, et al. Prevention of ventricular fibrillation episodes in Brugada syndrome by catheter ablation over the anterior right ventricular outflow tract epicardium. Circulation. 2011; 123:1270-9.
- 386. Sunsaneewitayakul B, Yao Y, Thamaree S, et al. Endocardial mapping and catheter ablation for ventricular fibrillation prevention in Brugada syndrome. J. Cardiovasc. Electrophysiol. 2012; 23 Suppl 1:S10-S6.
- 387. Zhang P, Tung R, Zhang Z, et al. Characterization of the epicardial substrate for catheter ablation of Brugada syndrome. Heart rhythm. 2016.
- 388. Brugada J, Pappone C, Berruezo A, et al. Brugada syndrome phenotype elimination by epicardial substrate ablation. Circ. Arrhythm. Electrophysiol. 2015; 8:1373-81.
- 389. McNamara DA, Goldberger JJ, Berendsen MA, et al. Implantable defibrillators versus medical therapy for cardiac channelopathies. Cochrane Database Syst. Rev. 2015:CD011168.
- 390. Sieira J, Ciconte G, Conte G, et al. Asymptomatic Brugada syndrome: clinical characterization and long-term prognosis. Circ. Arrhythm. Electrophysiol. 2015; 8:1144-50.
- 391. Konigstein M, Rosso R, Topaz G, et al. Drug-induced Brugada syndrome: Clinical characteristics and risk factors. Heart rhythm. 2016; 13:1083-7.
- 392. Sroubek J, Probst V, Mazzanti A, et al. Programmed ventricular stimulation for risk stratification in the brugada syndrome: a pooled analysis. Circulation. 2016; 133:622-30.
- 393. Sieira J, Conte G, Ciconte G, et al. Clinical characterisation and long-term prognosis of women with Brugada syndrome. Heart (British Cardiac Society). 2016; 102:452-8.

- 394. Priori SG, Napolitano C, Gasparini M, et al. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation. 2002; 105:1342-7.
- 395. Fauchier L, Isorni MA, Clementy N, et al. Prognostic value of programmed ventricular stimulation in Brugada syndrome according to clinical presentation: an updated meta-analysis of worldwide published data. Int J Cardiol. 2013; 168:3027-9.
- 396. Rodriguez-Manero M, Sacher F, de AC, et al. Monomorphic ventricular tachycardia in patients with Brugada syndrome: A multicenter retrospective study. Heart rhythm. 2016; 13:669-82.
- 397. Sacher F, Probst V, Maury P, et al. Outcome after implantation of a cardioverter-defibrillator in patients with Brugada syndrome: a multicenter study-part 2. Circulation. 2013; 128:1739-47.
- 398. Rosso R, Kogan E, Belhassen B, et al. J-point elevation in survivors of primary ventricular fibrillation and matched control subjects: incidence and clinical significance. J Am Coll Cardiol. 2008; 52:1231-8.
- 399. Conte G, Sieira J, Ciconte G, et al. Implantable cardioverter-defibrillator therapy in Brugada syndrome: a 20-year single-center experience. J Am Coll Cardiol. 2015; 65:879-88.
- 400. Miyazaki S, Uchiyama T, Komatsu Y, et al. Long-term complications of implantable defibrillator therapy in Brugada syndrome. Am J Cardiol. 2013; 111:1448-51.
- 401. Takagi M, Sekiguchi Y, Yokoyama Y, et al. Long-term prognosis in patients with Brugada syndrome based on Class II indication for implantable cardioverter-defibrillator in the HRS/EHRA/APHRS Expert Consensus Statement: multicenter study in Japan. Heart rhythm. 2014; 11:1716-20.
- 402. Haissaguerre M, Sacher F, Nogami A, et al. Characteristics of recurrent ventricular fibrillation associated with inferolateral early repolarization role of drug therapy. J Am Coll Cardiol. 2009; 53:612-9.
- 403. Tikkanen JT, Anttonen O, Junttila MJ, et al. Long-term outcome associated with early repolarization on electrocardiography. N. Engl. J. Med. 2009; 361:2529-37.
- 404. Sinner MF, Porthan K, Noseworthy PA, et al. A meta-analysis of genome-wide association studies of the electrocardiographic early repolarization pattern. Heart rhythm. 2012; 9:1627-34.
- 405. Adhikarla C, Boga M, Wood AD, et al. Natural history of the electrocardiographic pattern of early repolarization in ambulatory patients. Am. J. Cardiol. 2011; 108:1831-5.
- 406. Siebermair J, Sinner MF, Beckmann BM, et al. Early repolarization pattern is the strongest predictor of arrhythmia recurrence in patients with idiopathic ventricular fibrillation: results from a single centre long-term follow-up over 20 years. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2016; 18:718-25.
- 407. Tikkanen JT, Wichmann V, Junttila MJ, et al. Association of early repolarization and sudden cardiac death during an acute coronary event. Circ. Arrhythm. Electrophysiol. 2012; 5:714-8.
- 408. Junttila MJ, Tikkanen JT, Kentta T, et al. Early repolarization as a predictor of arrhythmic and nonarrhythmic cardiac events in middle-aged subjects. Heart rhythm. 2014; 11:1701-6.
- 409. Gaita F, Giustetto C, Bianchi F, et al. Short QT syndrome: pharmacological treatment. J Am Coll Cardiol. 2004; 43:1494-9.

- 410. Gollob MH, Redpath CJ and Roberts JD. The short QT syndrome: proposed diagnostic criteria. J Am Coll Cardiol. 2011; 57:802-12.
- 411. Villafane J, Atallah J, Gollob MH, et al. Long-term follow-up of a pediatric cohort with short QT syndrome. J Am Coll Cardiol. 2013; 61:1183-91.
- 412. Mazzanti A, Kanthan A, Monteforte N, et al. Novel insight into the natural history of short QT syndrome. J Am Coll Cardiol. 2014; 63:1300-8.
- 413. Iribarren C, Round AD, Peng JA, et al. Short QT in a cohort of 1.7 million persons: prevalence, correlates, and prognosis. Ann. Noninvasive. Electrocardiol. 2014; 19:490-500.
- 414. Guerrier K, Kwiatkowski D, Czosek RJ, et al. Short QT interval prevalence and clinical outcomes in a pediatric population. Circ. Arrhythm. Electrophysiol. 2015; 8:1460-4.
- 415. Bun SS, Maury P, Giustetto C, et al. Electrical storm in short-QT syndrome successfully treated with Isoproterenol. J. Cardiovasc. Electrophysiol. 2012; 23:1028-30.
- 416. Dhutia H, Malhotra A, Parpia S, et al. The prevalence and significance of a short QT interval in 18,825 low-risk individuals including athletes. Br. J Sports Med. 2016; 50:124-9.
- 417. Ling Z, Liu Z, Su L, et al. Radiofrequency ablation versus antiarrhythmic medication for treatment of ventricular premature beats from the right ventricular outflow tract: prospective randomized study. Circ. Arrhythm. Electrophysiol. 2014; 7:237-43.
- 418. Liao Z, Zhan X, Wu S, et al. Idiopathic ventricular arrhythmias originating from the pulmonary sinus cusp: prevalence, electrocardiographic/electrophysiological characteristics, and catheter ablation. J Am Coll Cardiol. 2015; 66:2633-44.
- 419. Morady F, Kadish AH, DiCarlo L, et al. Long-term results of catheter ablation of idiopathic right ventricular tachycardia. Circulation. 1990; 82:2093-9.
- 420. Yamada T, Litovsky SH and Kay GN. The left ventricular ostium: an anatomic concept relevant to idiopathic ventricular arrhythmias. Circ. Arrhythm. Electrophysiol. 2008; 1:396-404.
- 421. Yamada T, McElderry HT, Doppalapudi H, et al. Idiopathic ventricular arrhythmias originating from the left ventricular summit: anatomic concepts relevant to ablation. Circ. Arrhythm. Electrophysiol. 2010; 3:616-23.
- 422. Mountantonakis SE, Frankel DS, Tschabrunn CM, et al. Ventricular arrhythmias from the coronary venous system: Prevalence, mapping, and ablation. Heart rhythm. 2015; 12:1145-53.
- 423. Doppalapudi H, Yamada T, Ramaswamy K, et al. Idiopathic focal epicardial ventricular tachycardia originating from the crux of the heart. Heart rhythm. 2009; 6:44-50.
- 424. Konstantinidou M, Koektuerk B, Wissner E, et al. Catheter ablation of right ventricular outflow tract tachycardia: a simplified remotecontrolled approach. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2011; 13:696-700.
- 425. Ouyang F, Fotuhi P, Ho SY, et al. Repetitive monomorphic ventricular tachycardia originating from the aortic sinus cusp: electrocardiographic characterization for guiding catheter ablation. J Am Coll Cardiol. 2002; 39:500-8.
- 426. Tada H, Ito S, Naito S, et al. Idiopathic ventricular arrhythmia arising from the mitral annulus: a distinct subgroup of idiopathic ventricular arrhythmias. J Am Coll Cardiol. 2005; 45:877-86.

- 427. Tada H, Tadokoro K, Miyaji K, et al. Idiopathic ventricular arrhythmias arising from the pulmonary artery: prevalence, characteristics, and topography of the arrhythmia origin. Heart rhythm. 2008; 5:419-26.
- 428. Tada H, Tadokoro K, Ito S, et al. Idiopathic ventricular arrhythmias originating from the tricuspid annulus: Prevalence, electrocardiographic characteristics, and results of radiofrequency catheter ablation. Heart rhythm. 2007; 4:7-16.
- 429. Kamioka M, Mathew S, Lin T, et al. Electrophysiological and electrocardiographic predictors of ventricular arrhythmias originating from the left ventricular outflow tract within and below the coronary sinus cusps. Clin. Res. Cardiol. 2015; 104:544-54.
- 430. Nagashima K, Choi EK, Lin KY, et al. Ventricular arrhythmias near the distal great cardiac vein: challenging arrhythmia for ablation. Circ. Arrhythm. Electrophysiol. 2014; 7:906-12.
- 431. Yamada T, Maddox WR, McElderry HT, et al. Radiofrequency catheter ablation of idiopathic ventricular arrhythmias originating from intramural foci in the left ventricular outflow tract: efficacy of sequential versus simultaneous unipolar catheter ablation. Circ. Arrhythm. Electrophysiol. 2015; 8:344-52.
- 432. Hai JJ, Chahal AA, Friedman PA, et al. Electrophysiologic characteristics of ventricular arrhythmias arising from the aortic mitral continuitypotential role of the conduction system. J. Cardiovasc. Electrophysiol. 2015; 26:158-63.
- 433. Yamada T, McElderry HT, Okada T, et al. Idiopathic left ventricular arrhythmias originating adjacent to the left aortic sinus of valsalva: electrophysiological rationale for the surface electrocardiogram. J. Cardiovasc. Electrophysiol. 2010; 21:170-6.
- 434. Doppalapudi H, Yamada T, McElderry HT, et al. Ventricular tachycardia originating from the posterior papillary muscle in the left ventricle: a distinct clinical syndrome. Circ. Arrhythm. Electrophysiol. 2008; 1:23-9.
- 435. Yamada T, Doppalapudi H, McElderry HT, et al. Electrocardiographic and electrophysiological characteristics in idiopathic ventricular arrhythmias originating from the papillary muscles in the left ventricle: relevance for catheter ablation. Circ. Arrhythm. Electrophysiol. 2010; 3:324-31.
- 436. Yokokawa M, Good E, Desjardins B, et al. Predictors of successful catheter ablation of ventricular arrhythmias arising from the papillary muscles. Heart rhythm. 2010; 7:1654-9.
- 437. Crawford T, Mueller G, Good E, et al. Ventricular arrhythmias originating from papillary muscles in the right ventricle. Heart rhythm. 2010; 7:725-30.
- 438. Ban JE, Lee HS, Lee DI, et al. Electrophysiological characteristics related to outcome after catheter ablation of idiopathic ventricular arrhythmia originating from the papillary muscle in the left ventricle. Korean Circ. J. 2013; 43:811-8.
- 439. Nogami A, Naito S, Tada H, et al. Demonstration of diastolic and presystolic Purkinje potentials as critical potentials in a macroreentry circuit of verapamil-sensitive idiopathic left ventricular tachycardia. J Am Coll Cardiol. 2000; 36:811-23.
- 440. Liu Y, Fang Z, Yang B, et al. Catheter ablation of fascicular ventricular tachycardia: long-term clinical outcomes and mechanisms of recurrence. Circ. Arrhythm. Electrophysiol. 2015; 8:1443-51.
- 441. Lin D, Hsia HH, Gerstenfeld EP, et al. Idiopathic fascicular left ventricular tachycardia: linear ablation lesion strategy for noninducible or nonsustained tachycardia. Heart rhythm. 2005; 2:934-9.
- 442. Haïssaguerre M, Shoda M, Jais P, et al. Mapping and ablation of idiopathic ventricular fibrillation. Circulation. 2002; 106:962-7.

- 443. Noda T, Shimizu W, Taguchi A, et al. Malignant entity of idiopathic ventricular fibrillation and polymorphic ventricular tachycardia initiated by premature extrasystoles originating from the right ventricular outflow tract. J Am Coll Cardiol. 2005; 46:1288-94.
- 444. Haïssaguerre M, Shah DC, Jais P, et al. Role of Purkinje conducting system in triggering of idiopathic ventricular fibrillation. Lancet (London, England). 2002; 359:677-8.
- 445. Van HH, Zado ES, Haqqani H, et al. Catheter ablation of ventricular fibrillation: importance of left ventricular outflow tract and papillary muscle triggers. Heart rhythm. 2014; 11:566-73.
- 446. Sadek MM, Benhayon D, Sureddi R, et al. Idiopathic ventricular arrhythmias originating from the moderator band: Electrocardiographic characteristics and treatment by catheter ablation. Heart rhythm. 2015; 12:67-75.
- 447. Tester DJ, Medeiros-Domingo A, Will ML, et al. Unexplained drownings and the cardiac channelopathies: a molecular autopsy series. Mayo Clin. Proc. 2011; 86:941-7.
- 448. Tzimas I, Zingraf JC, Bajanowski T, et al. The role of known variants of KCNQ1, KCNH2, KCNE1, SCN5A, and NOS1AP in water-related deaths. Int. J Legal Med. 2016.
- 449. Anderson JH, Tester DJ, Will ML, et al. Whole-exome molecular autopsy after exertion-related sudden unexplained death in the young. Circ. Cardiovasc. Genet. 2016; 9:259-65.
- 450. Wang D, Shah KR, Um SY, et al. Cardiac channelopathy testing in 274 ethnically diverse sudden unexplained deaths. Forensic Sci. Int. 2014; 237:90-9.
- 451. Kumar S, Peters S, Thompson T, et al. Familial cardiological and targeted genetic evaluation: low yield in sudden unexplained death and high yield in unexplained cardiac arrest syndromes. Heart rhythm. 2013; 10:1653-60.
- 452. Ban JE, Park HC, Park JS, et al. Electrocardiographic and electrophysiological characteristics of premature ventricular complexes associated with left ventricular dysfunction in patients without structural heart disease. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2013; 15:735-41.
- 453. Lee W, Tay A, Subbiah RN, et al. Impact of Implantable Cardioverter Defibrillators on Survival of Patients with Centrifugal Left Ventricular Assist Devices. Pacing Clin. Electrophysiol. 2015; 38:925-33.
- 454. Carballeira Pol L, Deyell MW, Frankel DS, et al. Ventricular premature depolarization QRS duration as a new marker of risk for the development of ventricular premature depolarization-induced cardiomyopathy. Heart rhythm. 2014; 11:299-306.
- 455. Deyell MW, Park KM, Han Y, et al. Predictors of recovery of left ventricular dysfunction after ablation of frequent ventricular premature depolarizations. Heart rhythm. 2012; 9:1465-72.
- 456. Del Carpio Munoz F, Syed FF, Noheria A, et al. Characteristics of premature ventricular complexes as correlates of reduced left ventricular systolic function: study of the burden, duration, coupling interval, morphology and site of origin of PVCs. J. Cardiovasc. Electrophysiol. 2011; 22:791-8.
- 457. Olgun H, Yokokawa M, Baman T, et al. The role of interpolation in PVC-induced cardiomyopathy. Heart rhythm. 2011; 8:1046-9.
- 458. Hasdemir C, Ulucan C, Yavuzgil O, et al. Tachycardia-induced cardiomyopathy in patients with idiopathic ventricular arrhythmias: the incidence, clinical and electrophysiologic characteristics, and the predictors. J. Cardiovasc. Electrophysiol. 2011; 22:663-8.

- 459. Baman TS, Lange DC, Ilg KJ, et al. Relationship between burden of premature ventricular complexes and left ventricular function. Heart rhythm. 2010; 7:865-9.
- 460. Kanei Y, Friedman M, Ogawa N, et al. Frequent premature ventricular complexes originating from the right ventricular outflow tract are associated with left ventricular dysfunction. Ann. Noninvasive. Electrocardiol. 2008; 13:81-5.
- 461. Hamon D, Blaye-Felice MS, Bradfield JS, et al. A new combined parameter to predict premature ventricular complexes induced cardiomyopathy: impact and recognition of epicardial origin. J. Cardiovasc. Electrophysiol. 2016; 27:709-17.
- 462. Bogun F, Crawford T, Reich S, et al. Radiofrequency ablation of frequent, idiopathic premature ventricular complexes: comparison with a control group without intervention. Heart rhythm. 2007; 4:863-7.
- 463. Zhong L, Lee YH, Huang XM, et al. Relative efficacy of catheter ablation vs antiarrhythmic drugs in treating premature ventricular contractions: a single-center retrospective study. Heart rhythm. 2014; 11:187-93.
- 464. Kawamura M, Badhwar N, Vedantham V, et al. Coupling interval dispersion and body mass index are independent predictors of idiopathic premature ventricular complex-induced cardiomyopathy. J. Cardiovasc. Electrophysiol. 2014; 25:756-62.
- 465. Yokokawa M, Good E, Crawford T, et al. Recovery from left ventricular dysfunction after ablation of frequent premature ventricular complexes. Heart rhythm. 2013; 10:172-5.
- 466. Jeejeebhoy FM, Zelop CM, Lipman S, et al. Cardiac Arrest in Pregnancy: A Scientific Statement From the American Heart Association. Circulation. 2015; 132:1747-73.
- 467. Creanga AA, Berg CJ, Ko JY, et al. Maternal Mortality and Morbidity in the United States: Where Are We Now? Journal of Women's Health. 2014; 23:3-9.
- 468. Kampman MA, Balci A, Groen H, et al. Cardiac function and cardiac events 1-year postpartum in women with congenital heart disease. Am. Heart J. 2015; 169:298-304.
- 469. Drenthen W, Boersma E, Balci A, et al. Predictors of pregnancy complications in women with congenital heart disease. Eur. Heart J. 2010; 31:2124-32.
- 470. Mhyre JM, Tsen LC, Einav S, et al. Cardiac arrest during hospitalization for delivery in the United States, 1998-2011. Anesthesiology. 2014; 120:810-8.
- 471. Siu SC, Sermer M, Colman JM, et al. Prospective multicenter study of pregnancy outcomes in women with heart disease. Circulation. 2001; 104:515-21.
- 472. Einav S, Kaufman N and Sela HY. Maternal cardiac arrest and perimortem caesarean delivery: evidence or expert-based? Resuscitation. 2012; 83:1191-200.
- 473. Citro R, Giudice R, Mirra M, et al. Is Tako-tsubo syndrome in the postpartum period a clinical entity different from peripartum cardiomyopathy? J Cardiovasc Med (Hagerstown). 2013; 14:568-75.
- 474. Seth R, Moss AJ, McNitt S, et al. Long QT syndrome and pregnancy. J Am Coll Cardiol. 2007; 49:1092-8.
- 475. Katz V, Balderston K and DeFreest M. Perimortem cesarean delivery: were our assumptions correct? Am J Obstet. Gynecol. 2005; 192:1916-20.

- 476. Dijkman A, Huisman CM, Smit M, et al. Cardiac arrest in pregnancy: increasing use of perimortem caesarean section due to emergency skills training? BJOG. 2010; 117:282-7.
- 477. Colletti PM, Lee KH and Elkayam U. Cardiovascular imaging of the pregnant patient. AJR. Am J Roentgenol. 2013; 200:515-21.
- 478. Natale A, Davidson T, Geiger MJ, et al. Implantable cardioverter-defibrillators and pregnancy: a safe combination? Circulation. 1997; 96:2808-12.
- 479. Damilakis J, Theocharopoulos N, Perisinakis K, et al. Conceptus radiation dose and risk from cardiac catheter ablation procedures. Circulation. 2001; 104:893-7.
- 480. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. N. Engl. J. Med. 1989; 321:406-12.
- 481. Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. The Cardiac Arrhythmia Suppression Trial II Investigators. N. Engl. J. Med. 1992; 327:227-33.
- 482. Wyse DG, Friedman PL, Brodsky MA, et al. Life-threatening ventricular arrhythmias due to transient or correctable causes: high risk for death in follow-up. J Am Coll Cardiol. 2001; 38:1718-24.
- 483. Monnig G, Kobe J, Loher A, et al. Role of implantable cardioverter defibrillator therapy in patients with acquired long QT syndrome: a longterm follow-up. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2012; 14:396-401.
- 484. Antman EM, Wenger TL, Butler VP, Jr., et al. Treatment of 150 cases of life-threatening digitalis intoxication with digoxin-specific Fab antibody fragments. Final report of a multicenter study. Circulation. 1990; 81:1744-52.
- 485. Chan BS and Buckley NA. Digoxin-specific antibody fragments in the treatment of digoxin toxicity. Clin. Toxicol. . 2014; 52:824-36.
- 486. Hauptman PJ and Kelly RA. Digitalis. Circulation. 1999; 99:1265-70.
- 487. Kelly RA and Smith TW. Recognition and management of digitalis toxicity. Am. J. Cardiol. 1992; 69:108G-18G.
- 488. Osmonov D, Erdinler I, Ozcan KS, et al. Management of patients with drug-induced atrioventricular block. Pacing Clin. Electrophysiol. 2012; 35:804-10.
- 489. Tzivoni D, Banai S, Schuger C, et al. Treatment of torsade de pointes with magnesium sulfate. Circulation. 1988; 77:392-7.
- 490. Keren A, Tzivoni D, Gavish D, et al. Etiology, warning signs and therapy of torsade de pointes. A study of 10 patients. Circulation. 1981; 64:1167-74.
- 491. Yang T and Roden DM. Extracellular potassium modulation of drug block of IKr. Implications for torsade de pointes and reverse usedependence. Circulation. 1996; 93:407-11.
- 492. Hellestrand KJ, Burnett PJ, Milne JR, et al. Effect of the antiarrhythmic agent flecainide acetate on acute and chronic pacing thresholds. Pacing Clin. Electrophysiol. 1983; 6:892-9.
- 493. Echt DS, Black JN, Barbey JT, et al. Evaluation of antiarrhythmic drugs on defibrillation energy requirements in dogs. Sodium channel block and action potential prolongation. Circulation. 1989; 79:1106-17.
- 494. Crijns HJ, Van Gelder IC and Lie KI. Supraventricular tachycardia mimicking ventricular tachycardia during flecainide treatment. Am. J. Cardiol. 1988; 62:1303-6.

- 495. Bajaj AK, Woosley RL and Roden DM. Acute electrophysiologic effects of sodium administration in dogs treated with O-desmethyl encainide. Circulation. 1989; 80:994-1002.
- 496. Myerburg RJ, Kessler KM, Cox MM, et al. Reversal of proarrhythmic effects of flecainide acetate and encainide hydrochloride by propranolol. Circulation. 1989; 80:1571-9.
- 497. Schwartz PJ and Woosley RL. Predicting the Unpredictable: Drug-Induced QT Prolongation and Torsades de Pointes. J Am Coll Cardiol. 2016; 67:1639-50.
- 498. Basso C, Burke M, Fornes P, et al. Guidelines for autopsy investigation of sudden cardiac death. Virchows Arch. 2008; 452:11-8.
- 499. Thorne SA, Barnes I, Cullinan P, et al. Amiodarone-associated thyroid dysfunction: risk factors in adults with congenital heart disease. Circulation. 1999; 100:149-54.
- 500. Deal BJ, Scagliotti D, Miller SM, et al. Electrophysiologic drug testing in symptomatic ventricular arrhythmias after repair of tetralogy of Fallot. Am J Cardiol. 1987; 59:1380-5.
- 501. Gatzoulis MA, Till JA, Somerville J, et al. Mechanoelectrical interaction in tetralogy of Fallot. QRS prolongation relates to right ventricular size and predicts malignant ventricular arrhythmias and sudden death. Circulation. 1995; 92:231-7.
- 502. Koyak Z, Harris L, de Groot JR, et al. Sudden cardiac death in adult congenital heart disease. Circulation. 2012; 126:1944-54.
- 503. Diller GP, Kempny A, Liodakis E, et al. Left ventricular longitudinal function predicts life-threatening ventricular arrhythmia and death in adults with repaired tetralogy of fallot. Circulation. 2012; 125:2440-6.
- 504. Harrison DA, Harris L, Siu SC, et al. Sustained ventricular tachycardia in adult patients late after repair of tetralogy of Fallot. J Am Coll Cardiol. 1997; 30:1368-73.
- 505. Knauth AL, Gauvreau K, Powell AJ, et al. Ventricular size and function assessed by cardiac MRI predict major adverse clinical outcomes late after tetralogy of Fallot repair. Heart (British Cardiac Society). 2008; 94:211-6.
- 506. Therrien J, Siu SC, Harris L, et al. Impact of pulmonary valve replacement on arrhythmia propensity late after repair of tetralogy of Fallot. Circulation. 2001; 103:2489-94.
- 507. Therrien J, Provost Y, Merchant N, et al. Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. Am J Cardiol. 2005; 95:779-82.
- 508. Harrild DM, Berul CI, Cecchin F, et al. Pulmonary valve replacement in tetralogy of Fallot: impact on survival and ventricular tachycardia. Circulation. 2009; 119:445-51.
- 509. Adamson L, Vohra HA and Haw MP. Does pulmonary valve replacement post repair of tetralogy of Fallot improve right ventricular function? Interactive cardiovascular and thoracic surgery. 2009; 9:520-7.
- 510. Sabate Rotes A, Connolly HM, Warnes CA, et al. Ventricular arrhythmia risk stratification in patients with tetralogy of Fallot at the time of pulmonary valve replacement. Circ Arrhythm Electrophysiol. 2015; 8:110-6.
- 511. Tsai SF, Chan DP, Ro PS, et al. Rate of inducible ventricular arrhythmia in adults with congenital heart disease. Am J Cardiol. 2010; 106:730-6.
- 512. Garson A, Jr., Porter CB, Gillette PC, et al. Induction of ventricular tachycardia during electrophysiologic study after repair of tetralogy of Fallot. J Am Coll Cardiol. 1983; 1:1493-502.

- 513. Chandar JS, Wolff GS, Garson A, Jr., et al. Ventricular arrhythmias in postoperative tetralogy of Fallot. Am J Cardiol. 1990; 65:655-61.
- 514. Kella DK, Merchant FM, Veledar E, et al. Lesion-specific differences for implantable cardioverter defibrillator therapies in adults with congenital heart disease. Pacing Clin Electrophysiol. 2014; 37:1492-8.
- 515. Santharam S, Hudsmith L, Thorne S, et al. Long-term follow-up of implantable cardioverter-defibrillators in adult congenital heart disease patients: indications and outcomes. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2017; 19:407-13.
- 516. Vehmeijer JT, Brouwer TF, Limpens J, et al. Implantable cardioverter-defibrillators in adults with congenital heart disease: a systematic review and meta-analysis. European heart journal. 2016; 37:1439-48.
- 517. Moore JP, Mondesert B, Lloyd MS, et al. Clinical Experience With the Subcutaneous Implantable Cardioverter-Defibrillator in Adults With Congenital Heart Disease. Circ Arrhythm Electrophysiol. 2016; 9.
- 518. Okamura H, McLeod CJ, DeSimone CV, et al. Right Parasternal Lead Placement Increases Eligibility for Subcutaneous Implantable Cardioverter Defibrillator Therapy in Adults With Congenital Heart Disease. Circulation journal : official journal of the Japanese Circulation Society. 2016; 80:1328-35.
- 519. Yap SC, Roos-Hesselink JW, Hoendermis ES, et al. Outcome of implantable cardioverter defibrillators in adults with congenital heart disease: a multi-centre study. European heart journal. 2007; 28:1854-61.
- 520. Khairy P, Landzberg MJ, Gatzoulis MA, et al. Value of programmed ventricular stimulation after tetralogy of fallot repair: a multicenter study. Circulation. 2004; 109:1994-2000.
- 521. Khairy P, Harris L, Landzberg MJ, et al. Implantable cardioverter-defibrillators in tetralogy of Fallot. Circulation. 2008; 117:363-70.
- 522. Zeppenfeld K, Schalij MJ, Bartelings MM, et al. Catheter ablation of ventricular tachycardia after repair of congenital heart disease: electroanatomic identification of the critical right ventricular isthmus. Circulation. 2007; 116:2241-52.
- 523. van Zyl M, Kapa S, Padmanabhan D, et al. Mechanism and outcomes of catheter ablation for ventricular tachycardia in adults with repaired congenital heart disease. Heart rhythm. 2016; 13:1449-54.
- 524. Kapel GF, Reichlin T, Wijnmaalen AP, et al. Left-sided ablation of ventricular tachycardia in adults with repaired tetralogy of Fallot: a case series. Circ Arrhythm Electrophysiol. 2014; 7:889-97.
- 525. Kapel GF, Reichlin T, Wijnmaalen AP, et al. Re-entry using anatomically determined isthmuses: a curable ventricular tachycardia in repaired congenital heart disease. Circ. Arrhythm. Electrophysiol. 2015; 8:102-9.
- 526. Kapel GF, Sacher F, Dekkers OM, et al. Arrhythmogenic anatomical isthmuses identified by electroanatomical mapping are the substrate for ventricular tachycardia in repaired tetralogy of Fallot. European heart journal. 2017; 38:268-76.
- 527. Khairy P, Harris L, Landzberg MJ, et al. Sudden death and defibrillators in transposition of the great arteries with intra-atrial baffles: a multicenter study. Circ Arrhythm Electrophysiol. 2008; 1:250-7.
- 528. Tutarel O, Kempny A, Alonso-Gonzalez R, et al. Congenital heart disease beyond the age of 60: emergence of a new population with high resource utilization, high morbidity, and high mortality. European heart journal. 2014; 35:725-32.

- 529. Koyak Z, de Groot JR, Bouma BJ, et al. Sudden cardiac death in adult congenital heart disease: can the unpredictable be foreseen? Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2017; 19:401-6.
- 530. Engelfriet P, Boersma E, Oechslin E, et al. The spectrum of adult congenital heart disease in Europe: morbidity and mortality in a 5 year follow-up period. The Euro Heart Survey on adult congenital heart disease. European heart journal. 2005; 26:2325-33.
- 531. Gallego P, Gonzalez AE, Sanchez-Recalde A, et al. Incidence and predictors of sudden cardiac arrest in adults with congenital heart defects repaired before adult life. Am J Cardiol. 2012; 110:109-17.
- 532. Engelings CC, Helm PC, Abdul-Khaliq H, et al. Cause of death in adults with congenital heart disease An analysis of the German National Register for Congenital Heart Defects. Int J Cardiol. 2016; 211:31-6.
- 533. Fish FA, Gillette PC and Benson DW, Jr. Proarrhythmia, cardiac arrest and death in young patients receiving encainide and flecainide. The Pediatric Electrophysiology Group. J Am Coll Cardiol. 1991; 18:356-65.
- 534. Stan MN, Sathananthan M, Warnes C, et al. Amiodarone-induced thyrotoxicosis in adults with congenital heart disease-clinical presentation and response to therapy. Endocrine Practice. 2014; 21:33-40.
- 535. Silka MJ, Hardy BG, Menashe VD, et al. A population-based prospective evaluation of risk of sudden cardiac death after operation for common congenital heart defects. J Am Coll Cardiol. 1998; 32:245-51.
- 536. Oechslin EN, Harrison DA, Connelly MS, et al. Mode of death in adults with congenital heart disease. Am J Cardiol. 2000; 86:1111-6.
- 537. Nieminen HP, Jokinen EV and Sairanen HI. Causes of late deaths after pediatric cardiac surgery: a population-based study. J Am Coll Cardiol. 2007; 50:1263-71.
- 538. Verheugt CL, Uiterwaal CS, Grobbee DE, et al. Long-term prognosis of congenital heart defects: a systematic review. Int J Cardiol. 2008; 131:25-32.
- 539. Pillutla P, Shetty KD and Foster E. Mortality associated with adult congenital heart disease: Trends in the US population from 1979 to 2005. Am Heart J. 2009; 158:874-9.
- 540. Verheugt CL, Uiterwaal CS, van der Velde ET, et al. Mortality in adult congenital heart disease. European heart journal. 2010; 31:1220-9.
- 541. Zomer AC, Vaartjes I, Uiterwaal CS, et al. Circumstances of death in adult congenital heart disease. Int J Cardiol. 2012; 154:168-72.
- 542. Diller GP, Kempny A, Alonso-Gonzalez R, et al. Survival Prospects and Circumstances of Death in Contemporary Adult Congenital Heart Disease Patients Under Follow-Up at a Large Tertiary Centre. Circulation. 2015; 132:2118-25.
- 543. Raissadati A, Nieminen H, Haukka J, et al. Late Causes of Death After Pediatric Cardiac Surgery: A 60-Year Population-Based Study. J Am Coll Cardiol. 2016; 68:487-98.
- 544. Teuwen CP, Ramdjan TT, Gotte M, et al. Non-sustained ventricular tachycardia in patients with congenital heart disease: An important sign? Int J Cardiol. 2016; 206:158-63.
- 545. Wells R, Khairy P, Harris L, et al. Dofetilide for atrial arrhythmias in congenital heart disease: a multicenter study. Pacing Clin Electrophysiol. 2009; 32:1313-8.
- 546. Afilalo J, Therrien J, Pilote L, et al. Geriatric congenital heart disease: burden of disease and predictors of mortality. J Am Coll Cardiol. 2011; 58:1509-15.

- 547. El Malti R, Liu H, Doray B, et al. A systematic variant screening in familial cases of congenital heart defects demonstrates the usefulness of molecular genetics in this field. European journal of human genetics : EJHG. 2016; 24:228-36.
- 548. Abou Hassan OK, Fahed AC, Batrawi M, et al. NKX2-5 mutations in an inbred consanguineous population: genetic and phenotypic diversity. Scientific reports. 2015; 5:8848.
- 549. Ellesoe SG, Johansen MM, Bjerre JV, et al. Familial Atrial Septal Defect and Sudden Cardiac Death: Identification of a Novel NKX2-5 Mutation and a Review of the Literature. Congenital heart disease. 2016; 11:283-90.
- 550. Cuypers JA, Opic P, Menting ME, et al. The unnatural history of an atrial septal defect: longitudinal 35 year follow up after surgical closure at young age. Heart (British Cardiac Society). 2013; 99:1346-52.
- 551. Kuijpers JM, van der Bom T, van Riel AC, et al. Secundum atrial septal defect is associated with reduced survival in adult men. European heart journal. 2015; 36:2079-86.
- 552. Khairy P, Aboulhosn J, Gurvitz MZ, et al. Arrhythmia burden in adults with surgically repaired tetralogy of Fallot: a multi-institutional study. Circulation. 2010; 122:868-75.
- 553. Valente AM, Gauvreau K, Assenza GE, et al. Contemporary predictors of death and sustained ventricular tachycardia in patients with repaired tetralogy of Fallot enrolled in the INDICATOR cohort. Heart (British Cardiac Society). 2014; 100:247-53.
- 554. Arya S, Kovach J, Singh H, et al. Arrhythmias and sudden death among older children and young adults following tetralogy of Fallot repair in the current era: are previously reported risk factors still applicable? Congenital heart disease. 2014; 9:407-14.
- 555. Wu MH, Lu CW, Chen HC, et al. Arrhythmic burdens in patients with tetralogy of Fallot: a national database study. Heart rhythm. 2015; 12:604-9.
- 556. Drago F, Pazzano V, Di Mambro C, et al. Role of right ventricular three-dimensional electroanatomic voltage mapping for arrhythmic risk stratification of patients with corrected tetralogy of Fallot or other congenital heart disease involving the right ventricular outflow tract. Int J Cardiol. 2016; 222:422-9.
- 557. Kriebel T, Saul JP, Schneider H, et al. Noncontact mapping and radiofrequency catheter ablation of fast and hemodynamically unstable ventricular tachycardia after surgical repair of tetralogy of Fallot. J Am Coll Cardiol. 2007; 50:2162-8.
- 558. Witte KK, Pepper CB, Cowan JC, et al. Implantable cardioverter-defibrillator therapy in adult patients with tetralogy of Fallot. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2008; 10:926-30.
- 559. Lange R, Horer J, Kostolny M, et al. Presence of a ventricular septal defect and the Mustard operation are risk factors for late mortality after the atrial switch operation: thirty years of follow-up in 417 patients at a single center. Circulation. 2006; 114:1905-13.
- 560. Schwerzmann M, Salehian O, Harris L, et al. Ventricular arrhythmias and sudden death in adults after a Mustard operation for transposition of the great arteries. European heart journal. 2009; 30:1873-9.
- 561. Wheeler M, Grigg L and Zentner D. Can we predict sudden cardiac death in long-term survivors of atrial switch surgery for transposition of the great arteries? Congenital heart disease. 2014; 9:326-32.
- 562. Bouzeman A, Marijon E, de Guillebon M, et al. Implantable cardiac defibrillator among adults with transposition of the great arteries and atrial switch operation: case series and review of literature. Int J Cardiol. 2014; 177:301-6.

- 563. Buber J, Ackley TJ, Daniels CJ, et al. Outcomes following the implantation of cardioverter-defibrillator for primary prevention in transposition of the great arteries after intra-atrial baffle repair: a single-centre experience. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2016; 18:1016-22.
- 564. Backhoff D, Kerst G, Peters A, et al. Internal Cardioverter Defibrillator Indications and Therapies after Atrial Baffle Procedure for d-Transposition of the Great Arteries: A Multicenter Analysis. Pacing Clin Electrophysiol. 2016; 39:1070-6.
- 565. Pundi KN, Pundi KN, Johnson JN, et al. Sudden cardiac death and late arrhythmias after the Fontan operation. Congenital heart disease. 2017; 12:17-23.
- 566. Sakamoto T, Nagashima M, Hiramatsu T, et al. Fontan circulation over 30 years. What should we learn from those patients? Asian cardiovascular & thoracic annals. 2016; 24:765-71.
- 567. Alexander ME, Walsh EP, Saul JP, et al. Value of programmed ventricular stimulation in patients with congenital heart disease. Journal of cardiovascular electrophysiology. 1999; 10:1033-44.
- 568. Silka MJ, Kron J, Dunnigan A, et al. Sudden cardiac death and the use of implantable cardioverter-defibrillators in pediatric patients. The Pediatric Electrophysiology Society. Circulation. 1993; 87:800-7.
- 569. Berul CI, Van Hare GF, Kertesz NJ, et al. Results of a multicenter retrospective implantable cardioverter-defibrillator registry of pediatric and congenital heart disease patients. J Am Coll Cardiol. 2008; 51:1685-91.
- 570. Khanna AD, Warnes CA, Phillips SD, et al. Single-center experience with implantable cardioverter-defibrillators in adults with complex congenital heart disease. Am J Cardiol. 2011; 108:729-34.
- 571. Koyak Z, de Groot JR, Van Gelder IC, et al. Implantable cardioverter defibrillator therapy in adults with congenital heart disease: who is at risk of shocks? Circ Arrhythm Electrophysiol. 2012; 5:101-10.
- 572. Khairy P, Van Hare GF, Balaji S, et al. PACES/HRS Expert Consensus Statement on the Recognition and Management of Arrhythmias in Adult Congenital Heart Disease: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Heart rhythm. 2014; 11:e102-65.
- 573. Bardy GH, Smith WM, Hood MA, et al. An entirely subcutaneous implantable cardioverter-defibrillator. N. Engl. J. Med. 2010; 363:36-44.
- 574. Olde Nordkamp LR, Dabiri AL, Boersma LV, et al. The entirely subcutaneous implantable cardioverter-defibrillator: initial clinical experience in a large Dutch cohort. J Am Coll Cardiol. 2012; 60:1933-9.
- 575. Köbe J, Reinke F, Meyer C, et al. Implantation and follow-up of totally subcutaneous versus conventional implantable cardioverterdefibrillators: a multicenter case-control study. Heart rhythm. 2013; 10:29-36.
- 576. de Bie MK, Thijssen J, van Rees JB, et al. Suitability for subcutaneous defibrillator implantation: results based on data from routine clinical practice. Heart (British Cardiac Society). 2013; 99:1018-23.
- 577. Weiss R, Knight BP, Gold MR, et al. Safety and efficacy of a totally subcutaneous implantable-cardioverter defibrillator. Circulation. 2013; 128:944-53.
- 578. Olde Nordkamp LR, Warnaars JL, Kooiman KM, et al. Which patients are not suitable for a subcutaneous ICD: incidence and predictors of failed QRS-T-wave morphology screening. J. Cardiovasc. Electrophysiol. 2014; 25:494-9.

© 2017 by the American College of Cardiology Foundation, American Heart Association, Inc., and Heart Rhythm Society

- 579. Randles DA, Hawkins NM, Shaw M, et al. How many patients fulfil the surface electrocardiogram criteria for subcutaneous implantable cardioverter-defibrillator implantation? Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2014; 16:1015-21.
- 580. Lambiase PD, Barr C, Theuns DA, et al. Worldwide experience with a totally subcutaneous implantable defibrillator: early results from the EFFORTLESS S-ICD Registry. Eur. Heart J. 2014; 35:1657-65.
- 581. Groh WJ. Arrhythmias in the muscular dystrophies. Heart rhythm. 2012; 9:1890-5.
- 582. Burke MC, Gold MR, Knight BP, et al. Safety and efficacy of the totally subcutaneous implantable defibrillator: 2-year results from a pooled analysis of the IDE study and EFFORTLESS registry. J Am Coll Cardiol. 2015; 65:1605-15.
- 583. Chung MK. The role of the wearable cardioverter defibrillator in clinical practice. Cardiol Clin. 2014; 32:253-70.
- 584. Chung MK, Szymkiewicz SJ, Shao M, et al. Aggregate national experience with the wearable cardioverter-defibrillator: event rates, compliance, and survival. J Am Coll Cardiol. 2010; 56:194-203.
- 585. Klein HU, Meltendorf U, Reek S, et al. Bridging a temporary high risk of sudden arrhythmic death. Experience with the wearable cardioverter defibrillator (WCD). Pacing Clin Electrophysiol. 2010; 33:353-67.
- 586. de Noronha SV, Behr ER, Papadakis M, et al. The importance of specialist cardiac histopathological examination in the investigation of young sudden cardiac deaths. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2014; 16:899-907.
- 587. Wu Q, Zhang L, Zheng J, et al. Forensic Pathological Study of 1656 Cases of Sudden Cardiac Death in Southern China. Medicine (Baltimore). 2016; 95:e2707.
- 588. Vassalini M, Verzeletti A, Restori M, et al. An autopsy study of sudden cardiac death in persons aged 1-40 years in Brescia (Italy). J Cardiovasc Med (Hagerstown). 2016; 17:446-53.
- 589. Tester DJ, Medeiros-Domingo A, Will ML, et al. Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsynegative sudden unexplained death referred for postmortem genetic testing. Mayo Clin. Proc. 2012; 87:524-39.
- 590. Tang Y, Stahl-Herz J and Sampson BA. Molecular diagnostics of cardiovascular diseases in sudden unexplained death. Cardiovasc Pathol. 2014; 23:1-4.
- 591. Papadakis M, Raju H, Behr ER, et al. Sudden cardiac death with autopsy findings of uncertain significance: potential for erroneous interpretation. Circ. Arrhythm. Electrophysiol. 2013; 6:588-96.
- 592. Harmon KG, Drezner JA, Maleszewski JJ, et al. Pathogeneses of sudden cardiac death in national collegiate athletic association athletes. Circ. Arrhythm. Electrophysiol. 2014; 7:198-204.
- 593. Bagnall RD, Das KJ, Duflou J, et al. Exome analysis-based molecular autopsy in cases of sudden unexplained death in the young. Heart rhythm. 2014; 11:655-62.
- 594. Bagnall RD, Weintraub RG, Ingles J, et al. A prospective study of sudden cardiac death among children and young adults. N. Engl. J. Med. 2016; 374:2441-52.
- 595. Hill L, McIlfatrick S, Taylor B, et al. Patients' perception of implantable cardioverter defibrillator deactivation at the end of life. Palliat. Med. 2015; 29:310-23.

- 596. Kramer DB, Reynolds MR, Normand SL, et al. Hospice use following implantable cardioverter-defibrillator implantation in older patients: results from the National Cardiovascular Data Registry. Circulation. 2016; 133:2030-7.
- 597. Buchhalter LC, Ottenberg AL, Webster TL, et al. Features and outcomes of patients who underwent cardiac device deactivation. JAMA Intern. Med. 2014; 174:80-5.
- 598. Goldstein NE, Lampert R, Bradley E, et al. Management of implantable cardioverter defibrillators in end-of-life care. Ann. Intern. Med. 2004; 141:835-8.
- 599. Goldstein N, Carlson M, Livote E, et al. Brief communication: Management of implantable cardioverter-defibrillators in hospice: A nationwide survey. Ann. Intern. Med. 2010; 152:296-9.
- 600. Berger JT, Gorski M and Cohen T. Advance health planning and treatment preferences among recipients of implantable cardioverter defibrillators: an exploratory study. J Clin. Ethics. 2006; 17:72-8.
- 601. Dodson JA, Fried TR, Van Ness PH, et al. Patient preferences for deactivation of implantable cardioverter-defibrillators. JAMA Intern. Med. 2013; 173:377-9.
- 602. Goldstein NE, Mehta D, Siddiqui S, et al. "That's like an act of suicide" patients' attitudes toward deactivation of implantable defibrillators. J Gen. Intern. Med. 2008; 23 Suppl 1:7-12.
- 603. Habal MV, Micevski V, Greenwood S, et al. How aware of advanced care directives are heart failure patients, and are they using them? Can. J Cardiol. 2011; 27:376-81.
- 604. Kirkpatrick JN, Gottlieb M, Sehgal P, et al. Deactivation of implantable cardioverter defibrillators in terminal illness and end of life care. Am. J. Cardiol. 2012; 109:91-4.
- 605. Kramer DB, Kesselheim AS, Salberg L, et al. Ethical and legal views regarding deactivation of cardiac implantable electrical devices in patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 2011; 107:1071-5.
- 606. Lewis KB, Stacey D and Matlock DD. Making decisions about implantable cardioverter-defibrillators from implantation to end of life: an integrative review of patients' perspectives. Patient. 2014; 7:243-60.
- 607. Lewis KB, Nery PB and Birnie DH. Decision making at the time of ICD generator change: patients' perspectives. JAMA Intern. Med. 2014; 174:1508-11.
- 608. Hauptman PJ, Chibnall JT, Guild C, et al. Patient perceptions, physician communication, and the implantable cardioverter-defibrillator. JAMA Intern. Med. 2013; 173:571-7.
- 609. Stewart GC, Weintraub JR, Pratibhu PP, et al. Patient expectations from implantable defibrillators to prevent death in heart failure. Journal of cardiac failure. 2010; 16:106-13.
- 610. Ottenberg AL, Mueller PS, Topazian RJ, et al. "It's not broke, so let's not try to fix it": why patients decline a cardiovascular implantable electronic device. Pacing Clin. Electrophysiol. 2014; 37:1306-14.
- 611. Yuhas J, Mattocks K, Gravelin L, et al. Patients' attitudes and perceptions of implantable cardioverter-defibrillators: potential barriers to appropriate primary prophylaxis. Pacing Clin. Electrophysiol. 2012; 35:1179-87.

- 612. Larsen G, Hallstrom A, McAnulty J, et al. Cost-effectiveness of the implantable cardioverter-defibrillator versus antiarrhythmic drugs in survivors of serious ventricular tachyarrhythmias: results of the Antiarrhythmics Versus Implantable Defibrillators (AVID) economic analysis substudy. Circulation. 2002; 105:2049-57.
- 613. O'Brien BJ, Connolly SJ, Goeree R, et al. Cost-effectiveness of the implantable cardioverter-defibrillator: results from the Canadian Implantable Defibrillator Study (CIDS). Circulation. 2001; 103:1416-21.
- 614. Weiss JP, Saynina O, McDonald KM, et al. Effectiveness and cost-effectiveness of implantable cardioverter defibrillators in the treatment of ventricular arrhythmias among medicare beneficiaries. Am J Med. 2002; 112:519-27.
- 615. Buxton M, Caine N, Chase D, et al. A review of the evidence on the effects and costs of implantable cardioverter defibrillator therapy in different patient groups, and modelling of cost-effectiveness and cost-utility for these groups in a UK context. Health Technol. Assess. 2006; 10:iii-xi, 1.
- 616. Mark DB, Nelson CL, Anstrom KJ, et al. Cost-effectiveness of defibrillator therapy or amiodarone in chronic stable heart failure: results from the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT). Circulation. 2006; 114:135-42.
- 617. Zwanziger J, Hall WJ, Dick AW, et al. The cost effectiveness of implantable cardioverter-defibrillators: results from the Multicenter Automatic Defibrillator Implantation Trial (MADIT)-II. J Am Coll Cardiol. 2006; 47:2310-8.
- 618. Mushlin AI, Hall WJ, Zwanziger J, et al. The cost-effectiveness of automatic implantable cardiac defibrillators: results from MADIT. Multicenter Automatic Defibrillator Implantation Trial. Circulation. 1998; 97:2129-35.
- 619. Al-Khatib SM, Anstrom KJ, Eisenstein EL, et al. Clinical and economic implications of the Multicenter Automatic Defibrillator Implantation Trial-II. Ann. Intern. Med. 2005; 142:593-600.
- 620. Sanders GD, Hlatky MA and Owens DK. Cost-effectiveness of implantable cardioverter-defibrillators. N. Engl. J. Med. 2005; 353:1471-80.
- 621. Smith T, Jordaens L, Theuns DA, et al. The cost-effectiveness of primary prophylactic implantable defibrillator therapy in patients with ischaemic or non-ischaemic heart disease: a European analysis. Eur. Heart J. 2013; 34:211-9.
- 622. Cowie MR, Marshall D, Drummond M, et al. Lifetime cost-effectiveness of prophylactic implantation of a cardioverter defibrillator in patients with reduced left ventricular systolic function: results of Markov modelling in a European population. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2009; 11:716-26.