2018 ACC/AHA/HRS Guideline for the Evaluation and Management of Patients With Bradycardia and Cardiac Conduction Delay Data Supplement

Table of Contents

Abbreviations:	
Data Supplement 1. Nonrandomized Trials, Observational Studies, and/or Registries of 12-Lead Electrocardiography in Bradycardia or Condu	uction
Disturbance (Section 4.2.1)	
Data Supplement 2. Nonrandomized Trials, Observational Studies, and/or Registries of Exercise Stress Testing in Bradycardia and Conduction	n
Disturbances (Section 4.2.2)	9
Data Supplement 3. Nonrandomized Trials, Observational Studies, and/or Registries of Ambulatory Electrocardiography in Bradycardia or	
Conduction Disorders (Sections 4.2.3 and 4.2.4)	14
Data Supplement 4. Nonrandomized Trials, Observational Studies, and/or Registries of Ambulatory Electrocardiography in Bradycardia or	
Conduction Disorders (Section 4.2.4)	
Data Supplement 5. Nonrandomized Trials, Observational Studies, and/or Registries of Nocturnal / Sleeping Bradyarrhythmias and Sleep Api	nea
(Section-4.2.7)	49
Data Supplement 6. RCTs of Implantable Loop Recorder in Patients With Documented or Suspected Bradycardia or Conduction Disorders (Se	ection
4.3.1)	65
Data Supplement 7. Nonrandomized Trials, Observational Studies, and/or Registries of Electrophysiology Testing in Patients With Document	
Suspected Bradycardia or Conduction Disorders (Section 4.3.2)	
Data Supplement 8. RCTs Comparing Atropine to Placebo for Bradycardia (Section 5.3.2.1)	67
Data Supplement 9. Nonrandomized Trials, Observational Studies, and/or Registries of Atropine in SND and Hemodynamically Significant	
Bradycardia (Section 5.3.2.1)	
Data Supplement 10. Nonrandomized Trials, Observational Studies, and/or Registries of Isoproterenol Effect in Electrophysiology Laboratory	
(Section 5.3.2.1)	
Data Supplement 11. RCTs of Dopamine in Bradycardia (Section 5.3.2.1)	
Data Supplement 12. Nonrandomized Trials, Observational Studies, and/or Registries of Calcium, Glucagon and High Dose Insulin Therapy to	
Beta-Blocker and Calcium Channel Blocker Toxicity (CCB) (Section 5.3.2.2)	
Data Supplement 13. RCTs Comparing Anti-Digoxin Fab to placebo (Section 5.3.2.3)	
Data Supplement 14. Nonrandomized Trials, Observational Studies, and/or Registries of Digoxin Fab Antibody Fragments (Section 5.3.2.3)	
Data Supplement 15. Nonrandomized Trials, Observational Studies, and/or Registries of Dialysis for Digoxin Toxicity (Section 5.3.2.3 – Pattor	-
Data Supplement 16. RCTs Comparing Methylxanthines in Bradycardic Arrest (Section 5.3.2.4)	79

Data Supplement 17. Nonrandomized Trials, Observational Studies, and/or Registries of Methylxanthines for acute therapy of bradycardi	a due to
spinal cord injury or post-heart transplant (Section 5.3.2.4)	80
Data Supplement 18. Trials of Temporary Transesophageal or Transvenous Pacing (Section 5.3.3)	81
Data Supplement 19. Nonrandomized Trials, Observational Studies, and/or Registries of Temporary Transvenous Pacing (TTVP) (Section 5	5.3.3)82
Data Supplement 20. RCTs of Transcutaneous Pacing (Section 5.3.3)	87
Data Supplement 21. Nonrandomized Trials, Observational Studies, and/or Registries of Transcutaneous Pacing (Section 5.3.3)	87
Data Supplement 22. RCTs of General Principles of Chronic Therapy/Management of Bradycardia due to Sinus Node Dysfunction (Section	
Data Supplement 23. Nonrandomized Trials, Observational Studies, and/or Registries of General Principles of Chronic Therapy/Managem	ent of
Bradycardia due to Sinus Node Dysfunction (Section 5.4.1)	
Data Supplement 24. RCTs of Clinical Presentation of Bradycardia due to Sinus Node Dysfunction (Section 5.3)	
Data Supplement 25. RCTs of Permanent Pacing for Chronic Therapy/Management of Bradycardia due to Sinus Node Dysfunction (Section	
Data Supplement 26. Nonrandomized Trials, Observational Studies, and/or Registries of Reversible Causes of AV block (Section 6.3.1)	101
Data Supplement 27. RCTs Comparing Medical treatment for AV block (Section 6.3.2)	
Data Supplement 28. Nonrandomized Trials, Observational Studies, and/or Registries of Medical Treatment for AV block (Section 6.3.2)	104
Data Supplement 29. RCTs Comparing Temporary Pacing (Section 6.3.3)	
Data Supplement 30. Nonrandomized Trials, Observational Studies, and/or Registries of Temporary Pacing (Section 6.3.3)	109
Data Supplement 31. RCTs of clinical presentation of bradycardia due to AV block (Section 6.3)	116
Data Supplement 32. Nonrandomized data of Clinical Presentation of Bradycardia due to AV block (Section 6.3)	117
Data Supplement 33. RCTs of General Principles of Chronic Therapy/Management of Bradycardia due to AV block (Section 6.4.1)	135
Data Supplement 34. Nonrandomized data of General Principles of Chronic Therapy/Management of Bradycardia due to AV block (Section	-
Data Supplement 35. RCTs of meds/reversible/transient causes of bradycardia due to AVB (Section 6.4.2)	
Data Supplement 36. Nonrandomized data of Medications/Reversible/Transient Causes of Bradycardia due to AVB (Section 6.4.2)	
Data Supplement 37. RCT data of additional testing for Bradycardia due to AV block (Section 6.4.3)	
Data Supplement 38. Nonrandomized data of additional testing for Bradycardia due to AV block (Section 6.4.3)	
Data Supplement 39. RCTs for Permanent Pacing for AV block (Section 6.4.4)	
Data Supplement 40. Nonrandomized data for Permanent Pacing for AV block (Section 6.4.4)	
Data Supplement 41. Nonrandomized Trials, Observational Studies, and/or Registries of Conduction Disorders (Section 7)	
Data Supplement 42. Randomized Data for Predicting Perioperative Bradycardia (Section 8.1.1)	
Data Supplement 43. RCTs of Conduction Disorders (Section 7)	
Data Supplement 44. Nonrandomized Data for predicting perioperative bradycardia (Section 8.1.1)	
Data Supplement 45. Nonrandomized Data for predicting complete heart block with pulmonary artery catheter insertion (Section 8.1.1)	
Data Supplement 46. Nonrandomized data for Permanent Pacing for TAVI/valve surgery	176

The Birmingham Trial1	78
Data Supplement 47. Nonrandomized Trials, Observational Studies, and/or Registries of CABG (Section 8.1.2.1)	94
Data Supplement 48. Nonrandomized Trials, Observational Studies, and/or Registries of Open Surgery for Atrial Fibrillation or Valvular Surge	ery
(Section 8.1.2.2. and 8.1.2.3)	97
Data Supplement 49. Nonrandomized Trials, Observational Studies, and/or Registries of Conduction Abnormalities After TAVR (Section 8.1.2	<u>'</u> .4)
	00
Data Supplement 50. Nonrandomized Trials, Observational Studies, and/or Registries of Pacing after Heart Transplant (Section 8.1.2.5.1) 20	06
Data Supplement 51. Nonrandomized Studies for Alcohol Septal Ablation/Septal Myectomy (Section 8.1.2.5.2)	08
Data Supplement 52. Nonrandomized Studies for ICDs for Alcohol Septal Ablation/Septal Myectomy (Section 8.1.2.5.2)	15
Data Supplement 53. Nonrandomized Trials, Observational Studies, and/or Registries of Adult Congenital Heart Disease (ACHD) (Section 8.2))216
Data Supplement 54. RCTs, Nonrandomized Trials, Observational Studies, and/or Registries of Bradycardia and Pacemaker Implantation in P	atients
with an Acute MI (Section 8.3)2	21
Data Supplement 55. Nonrandomized Data for Predicting Bradycardia Associated with Seizures (Section 8.4.1)	27
Data Supplement 56. Nonrandomized Data for Device Type (Section 9)2	28
References2	36

Methodology and Evidence Review

The recommendations listed in this guideline are, whenever possible, evidence based. An extensive evidence review was conducted from January through September 2017, that included literature published through September 2017. Other selected references published through January 2018 were incorporated by the writing committee. Literature included was derived from research involving human subjects, published in English, and indexed in MEDLINE (through PubMed), EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Key search words included but were not limited to the following: adult, adult congenital heart disease, ACS, AF, AL amyloid, AL amyloidosis, alcohol septal ablation, ambulatory electrocardiography, aminophylline, amyloidosis, antiarrhythmic drugs, antibradycardia, aortic dissection, aortic valve, asystole, arrhythmia, atrial fibrillation, atrioventricular block, atropine, AV block, AV block symptoms, beta-adrenergic agonist, beta-blocker, Birmingham trial, biventricular pacemaker, bradyarrest, bradyarrhythmia, bradyasystole, bradycardia, bundle branch block, cardiac, cardiac AL amyloid, cardiac arrest, cardiac pacing, cardiac resynchronization therapy, cardiac sarcoidosis, cardiac surgery, cardiology, cardiovascular implantable electronic devices, catecholamines, cilostazol, clinical presentation, clinical trial, complications, conduction, conduction disturbance, congenital AV block, coronary artery bypass, cost, cost-effectiveness, cost-effectiveness analysis, CPAP, deactivation, defibrillator, defibrillator versus pacemaker, device, device implantation, devices, device therapy, digoxin, digoxin antibody, dialysis, dizziness, dopamine, drug therapy, drug induced, dual chamber, dyssynchrony, echocardiogram, electrocardiogram, endocarditis, English, EP study, epidemiology, epinephrine, evaluation studies, event monitor, event recorder, exercise induced, exercise test, exercise treadmill, first degree, first degree AV block, genetic variation, genetics, genotype, glucagon, health status, heart, heart block, heart transplant, hemochromatosis, Holter, Holter monitor, human, hypertrophic cardiomyopathy, ICD, ILR, implantable loop recorder, intraoperative bradycardia, isoproterenol, lamin A/C, left bundle branch block, life, LMNA, loop recorder, Lyme carditis, Lyme disease, magnetic resonance imaging, management, medical, medical therapy, medications, mitral valve, mortality, muscular dystrophies, myectomy, myocardial infarction, myocardial perfusion imaging, myocarditis, myotonic dystrophy, natural history, orthotopic heart transplant, OSA, pacemaker, pacemaker syndrome, pacing, pacing induced cardiomyopathy, patients nearing end, pauses, permanent pacemaker, PM, pregnancy, preoperative bradycardia, preoperative risk, procainamide, procedure, prognosis, prophylactic temporary pacing, pulmonary artery catheter, quality of life, radionuclide imaging, RCT, rejection, reversal, reversible causes, review, right bundle branch block, RV pacing, sarcoid, sarcoidosis, seizure, shared decision making, sick sinus syndrome, sinus, sinus arrest, sinus bradycardia, sinus node, sinus node dysfunction, sinus of Valsalva aneurysm, sleep apnea, sleep apnea syndromes, spinal cord dysfunction, spinal cord injury, steroid, sudden cardiac death, syncope, symptomatic, TAVR, temporary, temporary pacemaker, temporary pacing, theophylline, thyroid disease, tomography-emission-computed-single photon, tomography-X-ray computed, transcatheter aortic valve replacement, transcutaneous pacemaker, transesophageal echocardiogram, transient, treatment, vagal, vagally mediated, vagally mediated AV block, ventricular arrhythmia risk, ventricular remodeling

Abbreviations: 1° indicates primary; 2°, secondary; AAD, antiarrhythmic drug; ABP, atrial-based pacing; ACEI, angiotensin-converting enzyme inhibitor; ACLS, advanced cardiac life support; AED, antiepileptic drug; AF, atrial fibrillation; AMI, acute myocardial infarction; AS, aortic stenosis; ASA, American Society of Anesthesiology OR alcohol septal ablation; asx, asymptomatic; ATP, antitachycardia pacing; AV, atrioventricular; AVB, atrioventricular block; AVN, atrioventricular nodal; AVR, aortic valve replacement; BB, beta blocker; BBB, bundle branch block; BiV, biventricular; BMI, body mass index; BP, blood pressure; bpm, beats per minute; C, comparator; CABG, coronary artery bypass grafting; CAD, coronary artery disease; CCB, calcium channel blocker; ccTGA, congenitally corrected transposition of the great arteries; CEA, carotid endarterectomy; CHB, complete heart block; CHD, coronary heart disease; CHF, congestive heart failure; CI, confidence interval; CIED, cardiac implantable electronic device; CMP, cardiomyopathy; CPAP, continuous positive airway pressure; CRT, cardiac resynchronization therapy and defibrillator capabilities; CRT-P, device that provides cardiac resynchronization therapy only; CSM, carotid sinus massage; CV, cardiovascular; CVA, cerebrovascular accident; Cum%VP, cumulative percentage of ventricular pacing; Cx, circumflex coronary artery; CXR, chest X-ray; DC, dual chamber; DCCV, direct current cardioversion; DM, diabetes mellitus; DOE, dyspnea on exertion; D-TGA, d-transposition of the great arteries; Dx, diagnosis; echo, echocardiogram; ECG, electrocardiogram; ED, emergency department; EEG, electroencephalogram; EF, ejection fraction; EMD,

Page 4

electromechanical dissociation; EMS, emergency medical service; EP, electrophysiologic; EPS, electrophysiologic study; GDMT, guideline-directed medical therapy; HCM, hypertrophic cardiomyopathy; HDIT, high-dose insulin therapy; HF, heart failure; HFH, heart failure hospitalization; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; HOCM, hypertrophic obstructive cardiomyopathy; HR, hazard ratio; HTN, hypertension; HUTT, head-up tilt test; Hx, history; I, intervention; ICD, implantable cardioverter defibrillator; ICM, ischemic cardiomyopathy; ILR, implantable loop recorder; IV, intraventricular OR intravenous; LA, left atrial; LAD, left anterior descending coronary artery; LAH, left anterior hemiblock; LBBB, left bundle branch block; LHC, left heart catheterization; LMNA, Lamin A/C; LR, lower rate; LV, left ventricular OR left ventricle; LVED, left ventricular end-diastolic; LVEF, left ventricular ejection fraction; LVES, left ventricular end-systolic; LVFS, left ventricular fractional shortening; LVH, left ventricular hypertrophy; LVOT, left ventricular outflow tract; MACE, major adverse cardiovascular event; MDT, Medtronic; MI, myocardial infarction; MLHFQ, Minnesota Living with Heart Failure Questionnaire; MMSE, Mini Mental State Examination; MPHR, maximum predicted heart rate; ms, millisecond; MVP, mitral valve prolapse; N/A, not applicable; nCPAP, nasal continuous positive airway pressure; nLBBB, new left bundle branch block; NICM, nonischemic cardiomyopathy; NR, not relevant; NS, not significant; NSVT, nonsustained ventricular tachycardia; NSVT, non-sustained ventricular tachycardia; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; OR, odds ratio; OSA, obstructive sleep apnea; PA, pulmonary artery; PAF, paroxysmal atrial fibrillation; PCI, percutaneous coronary intervention; PerAF, persistent atrial fibrillation; PFO, patent foramen ovale; PM, pacemaker; postop, postoperative; PPI, permanent pacemaker implantation; PPM, permanent pacemaker; ppm, paced beats per minute; preop, preoperative; PSG, polysomnography; pt, patient; pVO₂, peak oxygen consumption; PVC, premature ventricular contraction; QOL, quality of life; QRSd, QRS duration; RBBB, right bundle branch block; RCA, right coronary artery; RCT, randomized controlled trial; ROSC, return of spontaneous circulation; RR, relative risk; RV, right ventricle; SA, sino-atrial; SAS, sleep apnea syndrome; SACT, sino-atrial conduction time; SAVR, surgical aortic valve replacement; SB, sinus bradycardia; SCD, sudden cardiac death; SD, standard deviation; SLE, systemic lupus erythematosus; SND, sinus node dysfunction; SNRT, sinus node recovery time; SR, sinus rhythm; SSS, sick sinus syndrome; STEMI, STelevation myocardial infarction; SVT, supraventricular tachycardia; sx, symptom; TAP, transesophageal atrial pacing; TAVI, transcatheter aortic valve implantation; TCP, transcutaneous pacing OR transcutaneous pacemaker; TE, thromboembolism; TIA, transient ischemic attack; TPM, temporary pacemaker; TPPM, temporary permanent pacemaker; TTT, tilt table testing; TTVP, temporary transvenous pacing; TVP, transvenous pacemaker; tx, treatment; UNOS, United Network for Organ Sharing; V, volts: VA, ventricular arrhythmia OR ventriculoatrial; VF, ventricular fibrillation; Vp, ventricular pacing; VT, ventricular tachycardia; WHO, World Health Organization.

Data Supplement 1. Nonrandomized Trials, Observational Studies, and/or Registries of 12-Lead Electrocardiography in Bradycardia or Conduction Disturbance (Section 4.2.1)

Study Acronym; Author; Year Published; PMID	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Linzer M, et al. 1997 (1) <u>9182479</u>	Study type: Literature Review- MEDLINE search and manual review of bibliographies Size: 4 population-based studies evaluating diagnostic yield of ECG in syncope were included, N=902	Inclusion criteria: English language publications from 1980– 1995 reporting on diagnostic yield of a test (e.g., Hx and physical, ECG, EEG, Holter, external LR, EPS, HUTT, SAE, ETT, carotid U/S, head CT, psych evaluation) evaluated in 10 or more subjects over 18 y with syncope (±presyncope)	<u>1° endpoint</u> : Diagnostic yield of a test analyzed separately for each test <u>Results:</u> Diagnostic yield of ECG at presentation was 5% (47/902). This compares to 45% (504/1110) for Hx and physical	 Despite low yield, authors recommend ECG at presentation for virtually all pts with syncope due to its lack of risk and relatively low expense. Further they cite the value of ECG findings indicative of structural heart disease or indicative of potentially life- threatening conditions (e.g., NSVT) in this population This review did not identify any suitable studies evaluating echocardiography in syncope
		Exclusion criteria: Review articles and case reports		
Thiruganasamb- amdamoorthy V, et al. 2012 (2) 22813399	Study type: Retrospective single-center evaluation of pt characteristics, 12- lead ECG and ED ECG	Inclusion criteria: ≥16 y with local address and syncope	<u>1° endpoint</u> : Composite of death, MI, arrhythmias, and "cardiac procedures" over 30 d	 ECG findings in pts presenting to the ED with syncope can predict adverse cardiac events in the short term.
	monitoring as predictors of adverse outcomes in consecutive adult ED pts with syncope from 8/1/05–1/30/07	Exclusion criteria: Presyncope, LOC >5 min, ongoing altered mental status, or LOC caused by ETOH or illicit drug use, seizure, head injury, or	<u>Results:</u> 49 serious outcomes including 27cardiac outcomes (including 2 deaths, 18 PPM, 7 SND, 6 3 rd degree AVB, 2 profound bradycardia) and 22 serious noncardiac outcomes. Of 19 primary ECG variables, 2 combination ECG variables	 Bradycardia or conduction disorders are an important component to the constellation of predictive ECG findings (19/132 - 14%)
	Size: 505 visits from 490 separate pts [of whom 470 (93%) had at least 1 ECG]	severe trauma requiring admission	(e.g., LBBB with 1 st degree AVB) and 8 variables based on QRS or QTc duration) 16 variables were significant predictors of adverse cardiac events at 30 d by univariate analysis. Using recursive	

Page 6

Del Rosso A, et al. 2008 (3) 18519550	Study type: Prospective cohort of consecutive pts Size: 516 (260 derivation/256 validation)	Inclusion criteria: Unexplained syncope presenting to 1 of 14 Italian EDs Exclusion criteria: <18 y, syncope of known non- cardiac cause (e.g., seizure, TIA or drop attack)	partitioning they developed ECG criteria for risk that included 5 predictors: 2 nd degree Mobitz type 2 or 3 rd degree AVB, bundle branch block +first-degree AV block, right bundle branch with either left anterior or posterior fascicular block, new ischemic changes, non-SR, left axis deviation, or ED cardiac monitor abnormalities. Using these predictors yielded a sensitivity of 96% (95% CI: 80– 100), a specificity of 76% (95% CI: 75–76) and an area under the ROC curve of 0.89 (95% CI: 0.82–0.95). 1° endpoint : Dx of cardiac syncope or death Results: A risk score composed of historical features, exam findings suggesting structural heart disease/CHF, or abnormal ECG (including but not exclusively bradycardia and conduction abnormalities) was predictive of cardiac syncope or death at an avg. Follow-up of 614 d in both derivation and validation cohorts. 56/79 (71%) pts with a defined mechanism of syncope had arrhythmic syncope. Of these, 38/56 (68%) were attributed to bradyarrhythmias or conduction disturbances and 24/38 (63%) syncopal episodes attributable to bradycardia or conduction disturbances were diagnosed on 12 lead ECG.	 12 lead ECG in the ED can identify syncope attributable to bradycardia and conduction disturbances in a majority of those with bradycardic syncope presenting to the ED. As part of the EGSYS risk score, ECG abnormalities (both those indicative of bradyarrhythmias and those indicative of other forms of heart disease) can predict cardiac causes of syncope and all-cause mortality more than 1.5 y after initial presentation. Specific ECG abnormalities predict
Perez-Rondon J, et al. 2014 (4) <u>24993462</u>	<u>Size</u> : 524 (from a total of 1,080 pts and from 14 of	214 y presenting to ED with transient LOC within 24 h for whom initial questionnaire	<u>Results:</u> 65.6% had an abnormal ECG and 6 (6.3%) died at 1 y (only 1 SCD). 22 pts	• Specific ECG abnormalities predict 1 y mortality in adolescents and adults presenting with syncope (ventricular pacing, LVH, AF, and

19 centers pa main trial)	articipating in data, presenting ECG and 1-y follow-up was available	(4.2%) manifested AV nodal conduction disturbance (13 first-degree, 2 second- degree and 7 third-degree AVB) which did not predict mortality (p=0.642). 108	 intraventricular conduction disturbance) AV nodal block is uncommon on presenting ECG (4.2%) and is not
	Exclusion criteria: N/A	(20.6%) manifested an intraventricular conduction disturbance [13 LBBB (2.5%), 28 RBBB (5.4%), 18 IRBBB (3.4%), 17 NSIVCD (3.3%), 13 LAFB (2.5%) and 19 assorted others (18%)]. Intraventricular conduction disturbances were 1 of 4 independently predictive indicators of mortality (OR: 3.8; 95% CI: 1.7–8.3; p=0.001). Other predictive variables included ventricular pacing, AF and LVH.	 predictive of mortality at 1 y. Intraventricular conduction disturbances are more common (20.8%) and do predict 1 y mortality in adolescents and adults with syncope.

Data Supplement 2. Nonrandomized Trials, Observational Studies, and/or Registries of Exercise Stress Testing in Bradycardia and Conduction Disturbances (Section 4.2.2)

Study Acronym;	Study	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author; Year	Type/Design;		(P values; OR or RR; & 95% CI)	Comment(s)
Published; PMID	Study Size			
Lauer MS, et al.	Study type:	Inclusion criteria: Referred	1° endpoint: Association of chronotropic	 Chronotropic incompetence is
1999 (5)	Prospective cohort	for sx-limited ETT thallium	incompetence with all-cause mortality at 2 y.	independently predictive of
<u>10022108</u>	study between	and with failure to achieve		mortality in those with known or
	9/90–12/93	≥85% MPHR or failure to	Results: 91 deaths (8.4%) - 22 cardiac deaths.	suspected CAD
		achieve ≥80% of	Those with chronotropic incompetence were	
	<u>Size</u> : 2953	chronotropic index*	older and sicker with more ASCVD risk factors,	
	consecutive pts		lower exercise capacity and more angina and	
	referred for sx-	Exclusion criteria: Prior	perfusion defects during the test (but not more	
	limited ETT with	coronary angiography or	ischemic ECG changes). Cox proportional	
	thallium MPI, of	PCI, cardiac surgery, CHF,	hazards analyses incorporating 13 clinical	
	whom 1078 (37%)	valvular heart disease, pre-	confounders (age, sex perfusion defects, etc.	
	manifested	excitation syndrome, ACHD,	but not EF): chronotropic incompetence	
	chronotropic	or ß-blocker therapy.	independently associated with increased risk of	
	incompetence [316		death (adjusted RR:1.85; 95% CI: 1.13–3.00;	
	(11%) by % MPHR		p=0.01) when measured by failure to achieve	
	and 762 (26%) by		85% MPHR and adjusted RR:2.19; 95% CI: 1.43–	
	low chronotropic		3.44; p<0.001) when measured by low	
	index]		chronotropic index. 612 (21%) manifested	
			perfusion defects [reversible in 311 (11%)].	
			Perfusion defects predictive of mortality with a similar magnitude as chronotropic	
			incompetence. Mortality risk of chronotropic	
			incompetence and perfusion defects were	
			additive (e.g., adjusted RR for combined low	
			chronotropic index and perfusion defect: 3.31;	
			95% CI: 1.82–6.02; p<0.001)	
Savonen KP, et al.	Study type:	Inclusion criteria: Enrolled	1° endpoint:	• Conclusion: Heart rate 40–100
2008 (6)	Prospective cohort	in KIHD with clinical CAD	1) Association of chronotropic incompetence	independently predicts long-term
18556711	study (derived	and underwent bicycle	with mortality over an average follow-up of 11 y	all-cause mortality in Finnish men
	from the Kuopio	ergometry	(0.8–14.8 y) of chronotropic incompetence	with known or suspected CAD
	Ischemic Heart		calculated during bicycle ergometry with VO ₂	 Heart rate 40–100 intended to
	Disease Risk Factor	Exclusion criteria: Cancer,	testing and defined as change in heart rate	isolate the effects of exercise-
	Study – a	heart rate-lowering Rx	_	induced increases in sympathetic

Doi A, et al. 2002	longitudinal Finnish population study- representative sample of middle- aged men from Kuopio and environs recruited 3/1984–12/1989) Size: 294 (3235 eligible/2682 participated in primary study/2240 exercise tests/294 with CAD and no exclusions)	Inclusion criteria:	between 40% of maximal workload and peak exercise (heart rate: 40–100). 2) Compared ability of heart rate 40–100 to predict death with that of other indices of chronotropic incompetence Results: 61 (20.7%) deaths. Mean (SD) heart rate 40–100 =45 (15) bpm. Risk of death increased 41% for each 1-SD (15 bpm) decrement in heart rate 40–100. Multivariate analysis identified a heart rate 40–100 value at or below the mean (<46 bpm) as a significant predictor of all-cause mortality relative to those with a heart rate 40–100 above the mean (RR: 2.9; 95% CI: 2.0–5.0). With propensity score added to model, the risk decreased to 2.0; 95% CI: 1.22–3.70. Only 1 of 6 other indices of chronotropic incompetence that were evaluated was predictive of mortality, heart rate reserve RR: 1.30; 95% CI: 1.02–1.69. (Chronotropic index not included).	 tone on CV physiology and risk from those of parasympathetic withdrawal which predominates in modulating chronotropic responses from baseline to ~100 bpm. Heart rate 40–100 was predictive of mortality in members of this same population w/o clinical evidence of CAD (separate study, Savonen, et al.) Bicycle exercise has a greater isometric component than treadmill walking and is usually associated with lower maximal workloads and brisker heart rate response, all of which may reduce generalizability of findings to other exercise modalities.
(7) <u>12368930</u>	Prospective cohort study <u>Size</u> : 44 pts and 20 normal controls	Unexplained syncope or presyncope (18 exercise- related, 26 exercise- unrelated) Exclusion criteria: Structural heart disease, PAF, thyroid disease	 <u>1° endpoint</u>: Diagnostic accuracy of HUTT and modified exercise treadmill testing according to relationship of unexplained syncope to exercise. Modified ETT included abrupt termination followed by prolonged standing (positive ETT defined as syncope or presyncope with SBP<80 mm Hg and/or heart rate<40 bpm) <u>Results:</u> HUTT: Sensitivity =84% and 77%; Specificity =84% and 85%; Accuracy= 84% and 80% in exercise-related and exercise-unrelated syncope respectively. None of these differences were statistically significant Modified Exercise Test: Sensitivity =78% and 19% (p<0.05); Specificity =95 and 95% (p=NS); Accuracy =86% and 52% (p<0.05) in exercise-related and exercise-unrelated syncope respectively. 	 Modified exercise testing may be as accurate as HUTT with provisional isoproterenol infusion to elicit syncope/presyncope with associated hemodynamic compromise in pts with suspected exercise-related neurally mediated syncope and presyncope. Modified exercise testing is less sensitive but similarly specific to HUTT with provisional isoproterenol infusion to elicit syncope/presyncope with associated hemodynamic compromise in pts with suspected neurally mediated syncope and presyncope with associated hemodynamic compromise in pts with suspected neurally mediated syncope and presyncope unrelated to exercise.

Woelfel AK, et al.	Study type: Case	Inclusion criteria: Pts with	<u>1° endpoint</u> : N/A	• Exercise testing can uncover
1983 (8)	series	exercise-related		apparent rate -related infranodal
<u>6875122</u>		palpitations or dizziness, or	Results: All had evidence of infranodal block on	conduction block in carefully
	Size: 3 pts	asx progressive	EP study. 2 of 3 underwent rapid atrial pacing	selected pts with exercise related
		intraventricular conduction	with evidence of rate related infranodal block.	symptoms or progressive
		disorder with 1:1 AV	One underwent coronary angiography revealing	intraventricular conduction
		conduction at rest who	a 90% RCA and a 60% LAD stenosis but no	disturbance w/o clinical evidence
		demonstrate rate related	ischemia on exercise, stress MUGA, no ischemic	of exercise induced ischemia.
		2:1 and 3:1 rate-related	ECG changes on exercise ECG and no angina.	 The authors suggest such pts
		conduction block on	Exercise-related symptoms were relieved with	should be considered for PPM but
		exercise treadmill testing	pacing in all 3.	acknowledge the natural Hx is
		w/o overt ischemia. 2 had		undefined. They draw correlates to
		baseline intraventricular		the high rate of subsequent
		conduction disturbance		symptomatic AVB in those with
				either spontaneous or rapid atrial
		Exclusion criteria: N/A		pacing-induced infra-nodal
				advanced AVB in previous reports.
Boran KJ, et al.	Study type:	Inclusion criteria:	<u>1° endpoint</u> : N/A	 Ischemically mediated transient
1983 (9)	Retrospective case	1) Symptom-limited ECG		intraventricular conduction
<u>6837453</u>	series	showing ischemic ST	<u>Results:</u>	disturbance elicited by exercise
		segment changes and	1) Exercise-induced conduction abnormalities:	treadmill testing is rare (<0.5%).
	<u>Size</u> : 10 of 2200	intraventricular conduction	LAFB in 4, LPFB in 2, RBBB in 2, RBBB with left	 When present in pts with
	(0.45%)	disturbance.	axis deviation in 1, and LAFB evolving to LBBB in	significant CAD, exercise-induced
	consecutive,	2) Subsequent coronary	1.	conduction abnormalities are
	clinically-referred	angiography	2) Demographics: 9/10 were men, age 37–71 y.	typically preceded by angina and
	pts who		1 prior MI. All had angina.	ischemic ECG changes
	underwent	Exclusion criteria:	3). Stress Test: All had angina and ischemic ST	 The constellation of ischemic signs,
	symptom-limited	Reproducible rate-related	segment changes on ETT that preceded	symptoms and transient
	exercise treadmill	intraventricular conduction	conduction disturbance. All conduction	conduction disturbance during
	testing (9/10 Bruce	disturbances w/o evidence	disturbances resolved in recovery as chest pain	exercise stress testing connotes a
	protocol) at a	of ischemia or a clinical Dx	and ST segment changes resolved.	high probability of advanced CAD,
	single referral	of CAD (N=4 – 3 LAFB and 1	4) Coronary angiogram: All had proximal LAD	and in particular, high-grade
	center (includes	LBBB)	stenosis [9/10 ≥90% (one=60%)].7/10 had	proximal LAD disease
	the 2 pts from		anterior and/or apical regional wall motion	 Revascularization can alleviate
	Oliveros below)		abnormalities. EF mildly to moderately reduced	ischemically mediated
			in 3. 2 had LMCA stenosis ≥50%. 3 single vessel	intraventricular conduction
			disease/3 2 V disease/4 3V disease.	disturbances

			5) Response to therapy: 9/10 repeated ETT after CABG or institution of medical Rx. Exercise duration and peak heart rate increased. None manifested angina, ischemic ST changes or conduction disturbance on the repeat ETT.	
Oliveros RA, et al. 1977 (10) <u>908218</u>	<u>Study type</u> : Case series <u>Size</u> : 2	N/A	<u>1° endpoint</u> : N/A <u>Results:</u> ETT in both revealed LAFB concomitantly with ST segment depression in the lateral leads (V5 in one and I and aVL in the other). In one, LAFB progressed to LBBB and then reverted back to LAFB in recovery before resolving. In the other LAFB resolved after 2 min of recovery.	• Exercise-induced ischemia associated with proximal LAD stenosis can be manifest as transient LAFB on treadmill stress test.
Bobba P, et al. 1972 (11) <u>5081145</u>	<u>Study type</u> : Case series <u>Size</u> : 4	Inclusion criteria: New, transient LPFB during supine bicycle ergometry in middle-aged Italian men referred for chest pain and suspicion of CAD. Exclusion criteria: N/A	<u>1° endpoint:</u> N/A <u>Results:</u> All had significant ECG changes with exercise. 3 had inferior ST elevation prior to LPFB (2 of whom had inferior Q waves on baseline ECG). 2 of those with inferior ST elevation also had significant lateral ST segment depression). A 4 th had significant inferior and lateral ST segment depression w/o inferior ST elevation or baseline Q waves. Exercise-related symptoms were not reported. All 3 who underwent coronary angiography manifested significant proximal-mid RCA stenosis.	• Exercise-related transient LPFB accompanied by ischemic ECG changes can be associated with significant, symptomatic RCA stenosis.
Bharati S, et al. 1977 (12) <u>299790</u>	Study type: Case report Size: 1	Inclusion criteria: 33 y woman with hypertensive urgency, LVH and pulmonary edema, and angina accompanied by inferior ST segment elevation and progressive AVB (normal conduction at baseline, to 1 st degree, then 2:1 2 nd degree, and ultimately CHB). Symptoms,	1° endpoint: N/A <u>Results:</u> EPS during cath revealed normal A-H and A-V intervals while asx. During an episode of chest pain with ST elevation, she manifested progressive AVB again, culminating in CHB. At all stages of conduction disturbance, the AV node was implicated with prolonged A-H intervals and normal H-V intervals. The pt died 1 d following emergent single vessel CABG to RCA. Pathology revealed slight fibrosis and	 Authors speculate right coronary vasospasm or ischemia due to fixed obstruction led to transient AV nodal block w/o evidence of infranodal block Extrapolating from other clinical scenarios, there may be a significant component of neurally—mediated AV node dysfunction at play, as well

		ST changes and conduction disturbance were all transient and resolved together. There was no ECG evidence of associated MI. Cath revealed a 90% proximal stenosis of a dominant RCA and moderate LAD and LCx disease. Normal LV systolic function and LVEDP when asx. <u>Exclusion criteria:</u> N/A	"distinct arteriosclerosis" of the AV node and HIS bundle along with advanced "fibro- elastosis" of the main left bundle w/o ECG correlate antemortem.	 Coronary vasospasm can be elicited during exercise testing and such exercise-induced vasospasm may also be manifest as progressive AVB as seen in this case
Coplan NL, et al. 1991 (13) <u>1959424</u>	<u>Study type</u> : Case report <u>Size</u> : 1	Inclusion criteria: 62 y woman underwent treadmill exercise test in evaluation of exertional chest pain.	<u>1° endpoint</u> : N/A <u>Results:</u> She exercised for only 2.5 min of a Bruce protocol and stopped due to dizziness and non-sustained VT. ECG revealed marked anterior ST elevation. 2:1 second-degree AVB	• Authors speculate that exercise- induced ischemia (more than coronary vasospasm or occult intrinsic conduction disease) was responsible for the transient exercise-induced AVB that resolved
		Exclusion criteria: N/A	developed in early recovery, evolving to complete AVB. By 8 min of recovery both the ST segment changes and the AVB had resolved. She manifested no evidence of infarction related to these events while evaluated in the hospital. Coronary angiography revealed a 90% proximal RCA stenosis w/o significant obstructive CAD elsewhere. Uncomplicated balloon angioplasty of the RCA lesion was followed 3 wk later with a normal exercise thallium myocardial perfusion study w/o ischemic ST segment changes, scintigraphic evidence of ischemia, or conduction disturbance.	 with revascularization. Cause of marked anterior ST elevation in the absence of significant LAD disease was unclear. Based on this and other case reports, exercise-induced AVB when accompanied by signs of ischemia is frequently associated with significant right CAD

* Chronotropic index = % heart rate (HR) reserve used / % of metabolic reserve used = (HR_{stage} - HR_{rest}) / (220-age - HR_{rest}) ÷ (MET_{stage} - MET_{rest}) / (MET_{peak} - MET_{rest})

Data Supplement 3. Nonrandomized Trials, Observational Studies, and/or Registries of Ambulatory Electrocardiography in Bradycardia or Conduction Disorders (Sections 4.2.3 and 4.2.4)

Study Acronym; Author; Year Published' PMID	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Gibson TC and Heitzman MR 1984 (14) <u>6702676</u>	Study type: Retrospective observational Size: 1,512 of all ages (66% >60 y) referred for Holter for syncope (7,364 total over 5 y)	Inclusion criteria: 24 h 2- channel Holter monitoring in evaluation of syncope Exclusion criteria: Unable to keep diary or technically inadequate recordings	 <u>1° endpoint</u>: Diagnostic yield of Holter for syncope and presyncope <u>Results:</u> 7 (0.5%) experienced syncope and 23 (1.5%) experienced presyncope (total=2%) associated with a significant arrhythmia. 225 (17%) had either syncope or presyncope unrelated to arrhythmia. 2/7 (29%) of syncopal episodes associated with bradyarrhythmia/conduction disorder: 1 SB, 1 AVB. 5/23 (22%) of presyncope associated with bradyarrhythmia/conduction disorder: 1 SB, 2 "sinoatrial abnormality", 2 AVB 0.5% of the 1,521 pts studied had symptoms associated with bradycardia or conduction disorder. 15 (1%) manifested Mobitz type 2 2nd degree or 3rd degree AVB. 3 (20%) were symptomatic. Of 1,004 pts >60 y, 32 (3%) had SSS: 13 SB while awake, 2 sinus pause, 2 junctional rhythm, 2 AF, 13 tachybrady. 2 (6%) were symptomatic 	 24 h Holter rarely yields evidence of bradycardia or conduction disorder temporally related to syncope or presyncope in pts who have previously experienced syncope. Findings of advanced AVB were rare in this population (1%) and symptomatic only 20% of the time. Findings of SSS increase with age but were present in only 3% of those >60 y in this cohort and symptomatic only 6% of the time
Linzer M, et al. 1997 (15) <u>9214258</u>	Study type: Literature review- MEDLINE search and manual review of bibliographies	Inclusion criteria: English language publications from 1980–1995 reporting on diagnostic yield of a test (e.g., Hx	<u>1° endpoint:</u> Diagnostic yield of prolonged ambulatory monitoring in pts with syncope or dizziness <u>Results:</u>	•Authors recommend 24-h Holter monitor (or inpatient telemetry) when symptoms suggest arrhythmic syncope, the ECG is abnormal, structural heart disease is present, or

Page 14

	Size: Identified 8 studies that evaluated pts with syncope or presyncope with at least 12 h of Holter monitoring and reported on symptoms, N=2612	and physical, ECG, EEG, Holter, external LR, EPS, HUTT, SAE, ETT, carotid U/S, head CT, psychiatric evaluation) evaluated in 10 or more subjects over 18 y with syncope (± presyncope) <u>Exclusion criteria:</u> Review articles and case reports	 15% symptoms w/o arrhythmia (range: 7–39%) 14% Arrhythmia with no symptoms (range 10–41%) 4% symptoms with arrhythmia (range 1–26%) Note: includes Gibson et al. (14), the largest study included 	the cause of syncope remains unexplained after Hx, physical and 12-lead ECG.
Reiffel JA, et al. 2005 (16) <u>15842970</u>	Study type: Retrospective observational Size: 1,800 randomly selected studies from a single year derived from ~100,000-pt ambulatory monitoring database of a commercial monitoring company. 600 studies each of 3 different classes of monitoring equipment were reviewed [24 h Holter, 30 d memory loop recording, and 30 d autotriggered loop recording]	Inclusion criteria: Referred for monitoring for known or suspected dysrhythmias Exclusion criteria: N/A	 <u>1° endpoint</u>: Relative diagnostic yield of the different monitoring devices <u>Results:</u> Groups were identical in age and symptoms that prompted monitoring Fewer women were referred for Holter 12% <20 y Majority (50%) referred for palpitations 292 (16%) referred for syncope 80 (4%) referred for dizziness 6 (0.3%) referred for dyspnea 42 (23%) pts manifested bradycardia (heart rate <40 for those >10 y). 7 detected by Holter, 4 by memory loop recording, 31 by autotriggered loop recording For other detected bradyarrhythmias/conduction disorders the events were too few and the differences too slight to suggest an advantage of 1 device over the others (7 (0.4%) pauses >3 s,15 (0.8%) 2nd degree AVB, 7 (0.4%) 3rd degree AVB) Autotriggered loop recording produced a higher yield of diagnostic events 	 Conclusions: Auto-triggered memory loop recorders detects a greater number of arrhythmias than Holter or pt- triggered memory loop recorder, including a greater number of asx events It is unclear from this analysis what the clinical impact of this enhanced detection might be in the management of bradycardia and conduction disorders due to the limited scope of this analysis and the infrequency of events Selection of monitoring device was not randomized, chosen on clinical grounds by the referring practitioner. Selection bias may influence results Statistical significance of differences in detection rates not reported – data is descriptive only. No data available regarding associated structural heart disease or medications

			(36%) than Holter (6.2%) or memory loop recording (17%).	 Timing of bradycardia not reported (asleep vs. awake) Proportion of arrhythmias that were symptomatic is not reported
Sivakumaran S, et al. 2003 (17) <u>12867227</u>	Study type: Prospective randomized observational Size: 100 pts referred for ambulatory ECG monitoring in evaluation of syncope/presyncope randomized to 48 h 2- channel Holter (N=51) or 30 d external loop recorder (N=49)	Inclusion criteria: Pts with syncope or pre- syncope referred from all sources for Holter monitor or external loop recorder Exclusion criteria: N/A	 <u>1° endpoint</u>: Relative diagnostic yield of the 2 monitoring strategies for "clinically important arrhythmias" (sinus pause >3 s, CHB, Mobitz II 2nd degree AVB, AF with slow VR, symptomatic SB <40 bpm, SVT >10 s or symptomatic, and VT). <u>Results:</u> 31/49 (63%) pts assigned initially to external loop recorder had arrhythmia diagnosed or excluded as cause of symptoms (30 symptoms w/o arrhythmia, 1 symptomatic 5-s conversion pause in AF) 12/51 (24%) assigned initially to Holter had arrhythmia excluded through symptoms w/o arrhythmia. No symptomatic or asx arrhythmia was diagnosed by Holter 29/51 randomized to initial Holter accepted cross-over to external loop recorder, while 4/18 with unrevealing initial external loop recorder accepted cross-over to Holter 13/29 (45%) of cross-over external loop recorder. None had an arrhythmia None of the 4 pts who underwent cross-over Holter following external loop recorder manifested an arrhythmia or symptoms w/o arrhythmia. 	 Conclusions: Ambulatory monitoring is more likely to document the absence of arrhythmia during symptoms than symptomatic arrhythmia In this cohort, arrhythmias, symptomatic or otherwise, were rare (1%) The diagnostic yield of 30 d external loop recorder is more than twice that of 48 h Holter, almost exclusively through its ability to document symptoms w/o arrhythmia Despite careful instructions and confirmatory test activations, 13/57 (23%) of pts who had symptoms during external loop recorder monitoring failed to successfully activate their device Limitations: Low incidence of arrhythmias in this unselected population with syncope or pre-syncope

Brown AP, et al. 1987 (18) <u>3663425</u> Cumbee SR, et al.	Study type: Retrospective observational Size: 100 unselected pts experiencing palpitations, dizziness, or syncope (collected from 106 pts who underwent external loop recorder over 3 y). 39% had some form of structural heart disease Study type:	Inclusion criteria: Unselected pts who had undergone pt-activated ambulatory electrocardiography for up to 3 wk. 42 had undergone prior 24 h Holter of which 17 (40%) were abnormal Exclusion criteria: Incomplete case notes (N=6)	 In all 55 pts had Holter. None had an arrhythmia identified as the cause of presenting symptoms, 12 (22%) had arrhythmia excluded as a cause. In all 78 pts underwent external loop recorder monitoring. 1 had an arrhythmia thought to be the cause of the presenting symptoms and 43 had arrhythmia excluded as a cause [Diagnostic yield 44/78 (56%; p<0.0001 vs. Holter)] <u>1° endpoint</u>: Diagnostic yield of external loop recorder <u>Results:</u> "Clinically useful information" was obtained in 68% Of 56 diagnostic recordings and 13 recordings "of some diagnostic value" there were 6 bradyarrhythmias (4 reflecting sinus node dysfunction and 2 implicating conduction disorder) 6 of 17 pts with paroxysmal arrhythmias had returned to SR by the time the event button was pressed 1° endpoint: 	 Early study of pt-activated external loop recorder Authors noted the advantages of a pt-activated external loop recorder over pt-activated recorders w/o a looping memory available at the time Study demonstrates the feasibility and utility of pt-activated external loop recorder in a population with a relatively high prevalence of structural heart disease and Holter- documented arrhythmias Authors suggested that the pt- activated external loop recorder was complimentary to 24 h Holter, not a substitute, in part due to the pt- activated external loop recorder's inability to capture asx events.
Cumbee SR, et al. 1990 (19) <u>2300833</u>	Retrospective observational	Unexplained syncope or presyncope, referred for pt-activated	 Diagnostic yield of external loop recorder Frequency with which external loop 	external loop recorder suggesting diagnostic utilityDiagnostic yield in this highly
	Size: N=39 Derived from first 48 pts referred for pt- activated external cardiac loop recorder	external loop recorder Exclusion criteria: No documented Hx of syncope or presyncope	recorder provided relevant information missed by preceding Holter and EPSExtent to which external loop recorder influenced pt management	selected population referred to an academic medical center for syncope and presyncope that remained unexplained after fairly extensive testing was understandably lower

	at an academic medical center (see exclusion criteria)	(1), cause of syncope already established (1), inaccessible medical record or loop recorder ongoing at the time data collection was completed (7)	 Results: 92% had prior Holter, 46% had prior EPS 35/39 (90%) wore the monitor (2 pts. declined, 1 stopped due to skin irritation, 1 device malfunctioned) 32/35 (91%) pts were able to successfully record symptomatic events (others were incapacitated) Diagnostic in 14/39 (yield=36%; 95% Cl, 21%-53%). 11/39 (28%) = syncope w/o arrhythmia and 3/39 (7.6%) symptomatic arrhythmia (asystole, junctional bradycardia, and paroxysmal atrial tachycardia) External loop recorder led to management changes in all 3 pts with symptomatic arrhythmia including PPM implantation in 2. 	 than some other studies of external loop recorder (36%). Most of the diagnostic yield was derived from those with syncope or presyncope w/o associated arrhythmia (11/14, 78.5%) 7/39 (17.9%) pts referred for external loop recorder either couldn't/wouldn't tolerate wearing the monitor, had it malfunction, or were too incapacitated to capture symptomatic events
SYNAAR-Flash Locati ET, et al. 2016 (20) <u>26519025</u>	Study type: Prospective observational multicenter Size: 392 pts; 282 (72%) enrolled for palpitations and 110 (28%) for syncope	Inclusion criteria: Recent (within 1 mo) episode of syncope or sustained palpitations (index event), after being discharged from emergency room or hospitalization w/o a conclusive Dx, and a suspected arrhythmic origin Exclusion criteria: N/A	 <u>1° endpoint</u>: Evaluate the role of 4 wk auto-triggered external loop recorder in the clinical evaluation of unexplained syncope or sustained palpitations of suspected arrhythmic origin. Analyzed rhythm at the time of symptoms and asx arrhythmias predefined as significant (sustained SVT or VT, advanced AVB, SB <30 bpm, pauses >6 s) <u>Results:</u> 27/110 (25%) of pts. evaluated for syncope had a diagnostic test. Of these 11/110 (10%) experienced a conclusive event regarding the arrhythmic nature of the symptoms and 16/110 (15%) had an asx significant arrhythmia Of the 11 pts. with a conclusive event, 5 manifested recurrence of symptoms 	 Conclusions: Authors conclude that the 4 wk external ECG monitoring can be considered as first-line tool in the diagnostic work-up of syncope and palpitation. Early recorder use, Hx of supraventricular (tachy and brady) arrhythmia, and frequent previous events increased the likelihood of diagnostic events during the 4 wk external ECG monitoring Elimitations: Reliance on pt diary in efforts to correlate rhythm and symptom introduces potential error The precise mechanism of a syncopal event associated with arrhythmias documented on external loop

			 w/o significant arrhythmia and 6 had symptomatic arrhythmia (all 6 were either bradycardia or conduction disorder) Of the 16 asx significant arrhythmias, one third (5/16) were either pauses, advanced AVB, or sinus bradycardia Predictors of diagnostic events in those evaluated for syncope were early start of recording (≤15 d between index event and enrollment vs. >15 d) (OR: 3.2; 95%CI: 1.3–26.6; p=0.021) and previous Hx of supraventricular arrhythmias (OR: 3.6; 95% CI: 1.4–9.7; p=0.018) 202/282 (72%) of pts referred for palpitations had a diagnostic test (68% conclusive event and 23% symptoms w/o arrhythmia). Less than 3% of referred pts experienced a conclusive event due to bradycardia or conduction disorder. Predictors of a diagnostic test in those evaluated for palpitations were Hx of recurrent palpitations (p<0.001) and early start of recording (p=0.001). 	recorder can be uncertain despite the associated arrhythmia • The clinical benefit of external loop recorder remains undefined in the absence of data documenting improved outcomes predicated on therapy guided by external loop recorder results
Barrett PM, et al. 2014 (21) <u>24384108</u>	Study type: Prospective observational	Inclusion criteria: Pts ≥18 y referred for evaluation of cardiac arrhythmia able to provide consent	<u>1° endpoint:</u> Comparative diagnostic utility of the 2 devices <u>Results:</u>	• Despite slightly lower sensitivity to supraventricular tachyarrhythmias during simultaneous monitoring, 14 d adhesive patch monitor provided
	Size: N=146 pts referred for ambulatory ECG monitoring who underwent simultaneous 24 h Holter monitor and a novel, single-lead 14-d	and comply with continuous ECG monitoring for 14 d <u>Exclusion criteria:</u> Skin allergies, conditions, or sensitivities to any of the components of the	 Adhesive patch monitor detected 96 pre-defined arrhythmic events over total wear time compared to 61 arrhythmia events by Holter (p<0.001) Median wear time for Holter =1.0 d (range 0.9–1.0) and for adhesive patch monitor =11.1 d (range 0.9–14) 	 greater diastolic yield than 24 h Holter monitoring, primarily through the benefit of prolonged monitoring time The adhesive patch monitor was considered preferable to wear by the pts in this study with less impact on QOL

	adhesive patch monitor (Zio Patch). 238 screened, 88 declined, 150 enrolled, 4 lost to follow-up.	adhesive patch monitor, receiving or anticipated to receive pacing or external DCCV during the monitoring period, or the anticipation of being exposed to high- frequency surgical equipment during the monitoring period	 During the 24 h period of simultaneous monitoring with both devices, Holter monitor detected more of the prespecified arrhythmias than the patch monitor. However, in nearly all such pts, the patch monitor subsequently detected the missed arrhythmia through prolonged monitoring. None of the discrepancies related to bradycardia or conduction disorders. 81% of pts preferred to wear the adhesive patch to the Holter monitor and the participants found the adhesive patch more comfortable with less impact on their activities of daily living. 	
Rosenberg MA, et al. 2013 (22) 23240827	Study type: Prospective observational Size: N=74 consecutive pts. referred for Holter monitor for the evaluation of PAF who underwent simultaneous 24 h Holter monitor and 14 d single-lead adhesive patch monitor (Zio Patch)	Inclusion criteria: PAF, referred for Holter monitor as part of clinical management Exclusion criteria: 1 potential participant was excluded because the adhesive patch monitor was inadvertently not activated during placement	 <u>1° endpoint</u>: Comparative diagnostic utility of the 2 devices <u>Results:</u> Mean wear time for adhesive patch monitor =10.8±2.8 d (range 4–14) and the mean monitoring time for the Holter was 22.5±1.8 h) All 25 AF events detected by Holter in the first 24 h were detected by the adhesive patch monitor. Recorded AF burden during simultaneous monitoring was comparable (58.4±42.7% on Holter and 54.7±41.2% on adhesive patch monitor (r=0.96; p<0.0001) During prolonged monitoring, the adhesive patch monitor identified AF in 18 (24%) additional individuals in whom it was not detected by 24 h Holter and reclassified pts' pattern of AF (i.e., persistent or paroxysmal) in 	 Conclusions: 14 d adhesive patch monitoring is a useful tool to refine assessment of PAF, due to the benefits of prolonged monitoring When compared to simultaneous Holter monitoring, the adhesive patch monitor performs in a comparable fashion in the detection of AF and in the quantitation of cumulative AF burden. The adhesive patch monitor fell off of 16 pts, was removed by 6 others, or had battery malfunction in one. In all, 23/74 (49%) of participants in this trial failed to complete 14 d of monitoring for non-medically directed reasons. Mean wear time for those whose device fell off was 7.9±1.8 d (range 5.8–12.2 d).

Turakhia MP, et al. 2013 (23) 23672988	Study type: Cross- sectional retrospective observational Size: N=26,751 consecutive pts. who underwent first-time, clinically-indicated prolonged adhesive patch monitoring (Zio Patch) during 2011. Investigators used de- identified data obtained from the manufacturer/servicer (iRhythm Technologies)	Inclusion criteria: Consecutive pts referred for first-time, clinically indicated Zio Patch monitor Exclusion criteria: Excluded data from repeated or subsequent studies	 21 (28%). The prolonged adhesive patch monitoring also documented from 1 to 99 pauses of 3.1–9.7 s in 4 pts, as well as Mobitz type 1 second-degree AVB in 1 pt. Of the pauses only 2 were >5 s and only 1 of these was only detected by prolonged adhesive patch monitoring. <u>1° endpoint</u>: Analyzed compliance, analyzable signal time, interval to arrhythmia detection and diagnostic yield of the Zio patch <u>Results:</u> Mean wear time =7.6±36 d Median analyzable time =99% of total wear time Arrhythmia was detected in 60.3% of pts. 29.9% of all arrhythmias occurred after the first 48 h of monitoring and 51.1% of symptom-triggered arrhythmias occurred after 48 h. Compared to the first 48 h, the diagnostic yield of the entire monitoring period for any arrhythmia was superior (62.2% vs. 43.9%; p<0.0001) as was the yield for any symptomatic arrhythmia (9.7% vs. 4.4%; p<0.0001) 3.7% of pts manifested pauses >3 s (42.9 % of which occurred after 48 h) and 1.4% of pts manifested Mobitz II or complete AVB (36.6% of which occurred after 48 h) 	 Conclusions: ≤14 d of Zio Patch monitoring is feasible, with high compliance, a high percentage of analyzable signal time and incremental diagnostic yield beyond 48 h for all arrhythmia types The incidence of significant bradycardia or conduction disorders in a large unselected population referred for Zio Patch monitoring on clinical grounds is very low (5.1%). Only 4% of those studied were referred for evaluation of bradycardia, pauses, or advanced AVB
	Study type:	Inclusion criteria:	1° endpoint: Diagnostic vield	 Farly evaluation of new technology at
(24)	<u>Study type</u> : Retrospective	Inclusion criteria: Referred for clinically	<u>1° endpoint</u> : Diagnostic yield	 Early evaluation of new technology at the time

	Size: First 100 consecutive pts. monitored by 2- channel MCOT for a mean of 9.9 d (range 2–28 d).	indicated MCOT monitoring <u>Exclusion criteria:</u> N/A	 "Clinically significant" arrhythmia detected in 51 (51%) pts, 25 (49%) of which were asx. 3 pts manifested "sinus node disease," 2 symptomatic sinus bradycardias, 2 2nd degree AVB, 1 CHB, 1 junctional rhythm, and 1 PM malfunction Monitoring led to a change in management in 34 (34%) pts., including implantation of PPM in 5 and ICD in 2, as well as 1 PPM replacement. 	 MCOT detected clinically significant" arrhythmias in approximately half of those referred and led to a change in management in a third Authors note that 30 of their pts had previously undergone Holter monitoring or event recorder. In 16 of these MCOT detected an arrhythmia not previously detected.
Rothman SA, et al. 2007 (25) <u>17318994</u>	Study type: Prospective, multicenter observational Size: N=266 randomized to pt- activated external loop recorder (132) or MCOT (134) in evaluation of syncope, presyncope or severe palpitations	Inclusion criteria:Symptoms of syncope,presyncope or severepalpitations (lessfrequent than once per24 h) with anondiagnostic 24 h Holteror telemetry monitorwithin 45 d ofenrollment.Exclusion criteria:NYHAclass IV HF; MI withinpast 3 mo; USA;candidate for or recentvalvular cardiac surgery;h/o sustained VT or VF;≥10 VPCs/h and EF ≤35%;<18 y; inability to	 <u>1° endpoint</u>: Confirmation or exclusion of a probable arrhythmic cause of their symptoms <u>Results:</u> 266/305 randomized pts completed at least 225 d of monitoring 114/266 (43%) presented with syncope or presyncope Overall diagnostic yield: MCOT =88%. external loop recorder =75% (p=0.008) For those presenting with syncope or presyncope, comparison of diagnostic yield was similar: MCOT =89%. external loop recorder =69% (p=0.008) MCOT was superior in confirming the Dx of clinically significant arrhythmias [55/134 (41%) vs. 19/132 (15%); p<0.001] 8/266 (3%) manifested bradycardia or conduction disorder, 6 pauses, 1 complete AVB, 1 Mobitz II 2nd degree AVB, and no symptomatic bradycardia. 	 Conclusions: MCOT provided a higher diagnostic yield than pt-activated external loop recorder in this cohort of pts referred for syncope, presyncope, and severe palpitations in a randomized head-to-head comparison Authors speculate this likely relates to pt inability to properly use the external loop recorder, compliance, and/or the ability of MCOT to detect asx arrhythmias. Limitations: external loop recorder w/o auto-trigger functionality was utilized which could bias results toward MCOT Pt and investigator unblinded Noncompliance =12.7% (23 randomized to MCOT did not complete 25 d of monitoring vs. 16 in the external loop recorder group)
Linzer M, et al. 1990	Study type:	Inclusion criteria: ≥1 episode of	<u>1° endpoint</u> :	Conclusions:
(26) <u>2371954</u>	Prospective observational	21 episode of unexplained syncope	Utility of external loop recorder after indeterminate Holter	 Early study of external loop recorder in syncope that suggests utility, but

	<u>Size</u> : N=57 pts	Exclusion criteria: Prior EPS	 <u>Results:</u> In 14 /57 (25%) of pts, external loop recorder was diagnostic. Half of these diagnoses (7/14) came from symptoms w/o associated arrhythmia Symptomatic arrhythmias include VT (1 pt), high-grade AVB (2 pts), SVT (1 pt), asystole or junctional bradycardia from neurally mediated syncope (3 pts) 	only rarely by identifying non- neurally mediated bradycardia or conduction disorder (<4% of those studied). <u>Limitations:</u> • Referral bias • Small sample size
Framingham Schneider JF, et al. 1979 (27) 154870	Study type: Prospective observational community-based study Size: N=55 cases of new LBBB. N=110 age/sex- matched controls w/o incident LBBB N=5,209 total cohort followed biennially up to 18 y	Inclusion criteria: New LBBB detected on biennial exams Exclusion criteria: 17 with LBBB at start of the study	 <u>1° endpoint</u>: Describe the incidence of new LBBB, describe the prevalence of antecedent, coincident and subsequent CV disease and risk factors in those with vs. w/o incident LBBB (HTN, CHF, CHD, DM, cardiac enlargement) <u>Results:</u> 31 men, 24 women Mean age at LBBB=62 y (36–78) Mean follow-up = 18 y (12 pre- and 6 post-LBBB) range: 4–22 y Those with LBBB had a higher prevalence of HTN (65%), cardiac enlargement (44%), CHF, CAD, DM vs. those w/o LBBB Only 27% of LBBB group was free of obvious CVD at the time of Dx 5/15 (33%) free of antecedent CVD, developed evidence thereof coincident to or following the detection of LBBB 6/15 of those with incident CVD had evidence thereof at the time of the new LBBB (all CAD) 14/55 (28%) developed new CHF with (N=4) or after (N=10) LBBB first noted 	 Strengths: Large population-based study with lengthy follow-up and rigorous data collection Limitations: Small number of incident cases of LBBB with wide confidence margins of estimated rates of events No echocardiogram or other assessment for structural heart disease with incident LBBB Conclusion: Incident LBBB in middle aged populations is often associated with antecedent or subsequent clinically apparent CV disease, and is associated with increased CV mortality in men

			 Rate of incident CAD in those with LBBB =2x controls during follow-up Rate of incident CHF in those with LBBB=7x controls during follow-up Median time to first recognized CAD=3.7 y Median time to first recognized CHF=3.3 y 11% of LBBB group and 48% of controls remained free of any evidence of CVD during follow-up (p<0.001) No advanced AVB or PPM in those with LBBB LBBB: 50% mortality at 10 y Controls 11.6% mortality at 10 y (p=not provided) Prevalence cohort (17 with LBBB at initial screening) were younger (mean age=49 y), but had similar incidence of CVD on average 3 y after initial Dx) 	
Framingham Schneider JF, et al. 1980 (28) 7350871	Study type: Prospective observational community-based study Size N=70 cases of newly diagnosed RBBB N=140 sex and age- matched controls N=5,209 total cohort followed biennially up to 18 y	Inclusion criteria: New RBBB Exclusion criteria: Extant RBBB (N=16) at first visit	 <u>1° endpoint</u>: Compare the prevalence of antecedent, coincident and subsequent CV disease and risk factors in those with incident RBBB (HTN, CHF, CHD, DM, cardiac enlargement) <u>Results:</u> Mean age at Dx of RBBB=60 y (38–77) Prevalence increased with age At all ages <70 y, RBBB more common in men than women 70% of cases of RBBB associated with antecedent CVD, most commonly HTN (60%) 	 <u>Strengths</u> Large population-based study with lengthy follow-up and rigorous data collection <u>Limitations</u>: Small number of incident cases of RBBB with wide confidence margins of estimated rates of events rendering several trends statistically insignificant No echocardiogram or other assessment for structural heart disease with incident LBBB <u>Conclusion</u>:

 Only the prevalence of HTN and valvular heart disease antecedent to the Dx of RBBB were significantly greater than controls (roughly twice as common for both) 15/53 (28%) of those w/o evidence of CHD at the time RBBB was diagnosed developed CHD subsequent to the development of RBBB, (OR: 2.5; p<0.001) 7/64 (11%) of those w/o evidence of CHF at the time RBBB was diagnosed developed CHF subsequent to the development of RBBB, (OR"4; p=0.02) Multivariate analysis suggests the relationship between RBBB and subsequent CHD and CHF remains valid for women but not men when age, SBP, and DM are considered. 20 individuals (15 men) had no evidence of CVD at the time RBBB was noted. Of these, CHD developed in 25% (2/5 women and 2/15 men), CHF developed in 5%, and 75% remained free of clinical CVD. In these 20 individuals free of apparent CVD at the time RBBB is first
developed in 5%, and 75% remained free of clinical CVD.In these 20 individuals free of
 individuals with at least 1 CV abnormality prior to the Dx of RBBB (p=not reported) Total prevalence of most CV abnormalities at any time during the
study was higher in RBBB than in controls: CHF=19% vs. 4 % (p<0.001), Cardiac Enlargement=31% vs. 14% (p<0.01), CHD=46% vs. 24% (p<0.01),

	<u>Size</u> : N=55 cases of new LBBB and N=70 cases of new RBBB. N=5,209 total cohort followed biennially up to 18 y		 Results: No difference in prevalence of HTN, CAD or DM in LBBB vs. RBBB Trend toward higher CV mortality in LBBB vs. RBBB that was stronger in men than women (p>0.05) 	 Small number of incident cases of LBBB and RBBB with wide confidence margins of estimated rates of events rendering several strong trends statistically insignificant No echocardiogram or other assessment for structural heart disease with incident LBBB
Framingham Schneider JF, et al. 1981 (29) <u>6452050</u>	Study type: Prospective observational community-based study	Inclusion criteria: New LBBB or RBBB Exclusion criteria: Extant L (N=17) or R (N=16) BBB at first visit	<u>1° endpoint</u> : Compare the prevalence of antecedent, coincident and subsequent CV disease and risk factors in those with incident LBBB vs. incident RBBB (HTN, CHF, CHD, DM, cardiac enlargement)	 <u>Strengths:</u> Large population-based study with lengthy follow-up and rigorous data collection <u>Limitations</u>:
			 valvular heart disease=6% vs.1% (p<0.05) No statistically significant difference in total prevalence of HTN, DM, or absence of all CV abnormalities. Those with RBBB had "about 3 times greater" 10 y CV mortality compared to those w/o conduction disorder (p<0.001). 34% in men and 23% in women vs. 11% in controls (p=NS for men vs women with incident RBBB). 10 y rate of SCD: RBBB=11%, controls=3% (p=0.05). RBBB was a univariate predictor of CV mortality but not by multivariate analysis incorporating age, SBP, DM, CHD, CHF. In the 50 individuals with evidence of CV abnormalities prior to or coincident with the Dx of RBBB, 10 y CV mortality=40% vs. 9% in the 20 individuals free of such abnormalities prior to or coincident with the Dx of RBBB (p=not reported) 	

Overall those with LBBB had a 4-fold	
increased 10-y CV mortality after Dx	Conclusion:
and those with RBBB had a 3-fold	 Both LBBB and RBBB are associated
increased 10 y CV mortality compared	
to those w/o conduction disorder	with increased 10-y risk of CV death in a middle aged unselected
	0
(p<0.001 for both)	population than those w/o BBB
Men with incident LBBB had a higher	Strong trend toward higher CV
cumulative prevalence of "advanced	mortality in LBBB than RBBB that was
CV abnormalities" before or after the	stronger in men than women
development of LBBB than men who	• The vast majority of individuals with
develop RBBB	incident LBBB or RBBB manifest
Women with incident LBBB had similar	some form of CV abnormality (most
prevalence of "advanced CV	commonly HTN) during follow-up.
abnormalities" before or after the	 Although LBBB and RBBB are
development of LBBB than women	univariate predictors of incident CHD
who develop RBBB	and CHF in both men and women,
 In both men and women and for both 	controlling for age, SBP, DM, CHD
RBBB and LBBB, the development of	and CHF renders LBBB and RBBB
BBB was a univariate predictor of	independently predictive of incident
incident CHD or CHF	CHD and CHF only in women but not
 Multivariate analysis: LBBB and RBBB 	in men
remained predictive for incident CHD	
and CHF in women but not men	
(p<0.05 for LBBB in women and	
P<0.001 for RBBB in women)	
 Only 11% of those with LBBB and only 	
21% of those with RBBB remained free	
of all CV abnormalities during follow-	
up	
• Multivariate analysis: LBBB in men was	
independently predictive of 10-y CV	
mortality (p<0.01). RBBB in men and	
both LBBB and RBBB in women were	
not predictive of 10 y CV mortality	
independent of age, SBP, DM, CHD and	
CHF	
Amongst the 33 individuals with LBBB	
or RBBB at first visit (excluded form	

			analysis above), there was a 2-fold higher prevalence of HTN (p<0.05) and	
			a 4-fold higher prevalence of	
			radiographic cardiac enlargement	
			(p<0.01) in LBBB vs. RBBB.	
			• 2-fold higher rate of CHD, CHF, and	
			DM was also evident in those with BBB	
			at baseline (p=NS)	
			Overall there was a trend toward	
			increased prevalence of all CV	
			abnormalities during follow-up for	
			LBBB vs. RBBB (94% vs. 75%; p=NS) in	
			those with BBB at baseline exam.	
Eriksson P, et al. 1998	Study type:	Inclusion criteria:	<u>1° endpoint</u> : Describe the cumulative	Strengths:
(30)	Longitudinal	Sample of men living in	incidence of BBB and its relationship with	Long-term prospective follow-up of
<u>9832497</u>	prospective	Göteborg, Sweden born	CV disease, risk factors, and prognosis	moderately large and homogeneous
	community-based	on days divisible by 3 in	based on ECGs obtained at baseline and	population
	study	1913 obtained from the	3 subsequent exams in 1980, 1988, and	
	C. N. 055	county census bureau's	1993.	Limitations:
	<u>Size</u> : N=855	register of names		• Too few LBBB cases rendering
		(N973)	Results:	statistical significance elusive as it
		Agreed to participate	• follow-up 98% complete	relates to underlying structural heart
		(N=855)	• Prevalence of BBB=82/855 (9.6%), 22	disease and outcomes.
		• Followed for 30 y with	(2.6%) LBBB, 60 (7.0%) RBBB, 86% after	Small number of cases also precludes
		serial exams at 4–8 y	age 50 y.	meaningful comparison between
		intervals starting in	• 26% of LBBB and 6% of RBBB showed	LBBB and RBBB.
		1963 when all were 50	LVH on ECGs prior to development of	Combining RBBB and LBBB likely
		у.	BBB (p<0.01 for comparison)	dilutes the potential impact
			• At age 80 y, cumulative incidence rate:	compared to LBBB alone
		Exclusion criteria:	LBBB=6.5% RBBB=12.9%	Limited to men
		N/A	• Prevalence of LBBB in survivors: 0.4%	
			at 50 y. and 5.7% at 80 y	Conclusion:
			• Prevalence of RBBB in survivors: 0.8%	Prevalence of LBBB and RBBB
			at 50 y and 11.3% at 80 y	increases with age
			No difference in baseline CV risk	RBBB is twice as common as LBBB
			factors between those with and w/o	Those who develop LBBB are more
			incident BBB, except greater	likely to have LVH on ECGs preceding
				the development of LBBB than those

			 radiographic heart volume in those with BBB (794 vs. 746 ml; p<0.05) Those with incident BBB: higher prevalence of CHF in follow-up (36 vs. 14%; p<0.01 vs. no BBB) and higher prevalence of DM (36 vs. 17%; p<0.05 vs. no BBB) No apparent difference between LBBB and RBBB in baseline risk factors or outcomes Trend toward increased mortality and CV mortality with BBB vs. no BBB, but p=NS. 73/262 (28%) CV deaths associated with prior Dx of CHF in those w/o BBB vs. 14/23 (61%) of CV deaths associated with prior Dx of CHF in those with BBB (p<0.01) 	 who develop RBBB (a potential indicator that underlying structural heart disease is more likely with LBBB vs. RBBB) Those who develop BBB have greater radiographic cardiac volume at baseline compared to those who do not (again suggesting greater likelihood of underlying structural heart disease in those who develop BBB) Those with BBB are more likely to develop clinically evident CHF or DM BBB associated with a trend towards higher mortality that fails to reach statistical significance.
Fahy GJ, et al. 1996	Study type:	Inclusion criteria:	1° endpoint: Determine the prevalence	Strengths:
(31) <u>8651093</u>	Prospective observational community-based study	 BBB at baseline exam (N=480, 0.44%) Age and sex matched controls w/o BBB 	of isolated BBB and the associated long-term prognosis over a 25-y period <u>Results:</u> • Prevalence of isolated BBB=0.28%	 Long-term prospective follow-up of large middle-aged population including men and at least some women (<25% in this analysis) Larger number of cases of LBBB and
	Size: • N=110,000 participants in an	 Exclusion criteria: HTN at baseline exam (N=109) 	 RBBB: N=198 (0.18%) more common than LBBB: N=112 (0.1%); p<0.001. Those with LBBB (51±13 y) older than 	RBBB compared to other studiesProtracted prospective follow-up
	Irish CV prevention screening study over 25 y.N=310 with BBB but	 H/o CVD at baseline exam (N=84) Both HTN and CVD=23 	 RBBB (44±13 y); p=0.001. RBBB but not LBBB was more common in men than women (p<0.001) Mean follow-up=9.5 y. median follow- 	 Limitations: Lack of physical exam, CXR, echo, or CAD screening at baseline
	w/o suspected CVD		 up=87.5 y. 49 total deaths No difference in mortality rate between BBB vs. no BBB and between RBBB and LBBB 	 Conclusion: RBBB and LBBB rare in middle age (~0.1–0.2%) RBBB more common than LBBB RBBB (but not LBBB) more common in men than women.

Imanishi R, et al. 2006	Study type: Case-	Inclusion criteria:	 Actuarial freedom from CV death up to 15 y worse in LBBB vs. controls (p=0.01) Actuarial freedom from CV death up to 15 y worse in LBBB vs. RBBB (p=0.001). When age included in Cox multiple regression model, differences in CV mortality were no longer significant (p=0.08) Overt CV disease developed in more individuals with LBBB than controls (21% vs. 11%; p=0.04). Not so with RBBB No increased rate of PPM implantation 	 Overt CV disease develops in ~20% in those with LBBB during follow-up (nearly twice as often) than in controls w/o conduction disorder. CV death (but not all-cause mortality) more common in combined left and right bundle branch block than in those w/o conduction disorder CV death (but not all-cause mortality) more common in those w/o conduction disorder CV death (but not all-cause mortality) more common in those w/o conduction disorder CV death (but not all-cause mortality) more common in those with LBBB vs. RBBB In multivariate analyses, the differences in CV death associated with BBB and amongst types of BBB are no longer significant when age is considered.
(32) <u>16923453</u>	control	Atomic bomb survivors in Hiroshima and Nagasaki,	LBBB	 Large population-based study with lengthy follow-up and rigorous data
	<u>Size</u> : N=17,361 (6,663 men) screened	Japan, participants in biennial health exams (including CXR and ECG)	 <u>Results:</u> Mean age at LBBB=69.6 ± 10.0 y in men and 68.3±10.9 y in women 	collection • 40-y follow-up
	N=110 incident LBBB (41 men) N=456 (156 men) randomly selected age and sex-matched controls w/o LBBB, 3–5 controls per incident case of LBBB	from 1958–2002 <u>Exclusion criteria:</u> LBBB at initial exam (N=9) Controls with PPM or AF (no cases of LBBB had AF)	 LBBB increased with age Incident LBBB associated with HTN (54.6% of LBBB vs. 43.2% of controls; p=0.033), ischemic heart disease (22.7% vs. 5.7%; p<0.001), and non-cardiac disease (43.6% vs. 33.3%; p=0.045) Incident LBBB associated with: Radiographic cardiothoracic ratio: 	 Limitations: Although larger than Framingham study, still a limited number of cases of incident LBBB to analyze Lack of echo or cath data may underestimate the prevalence of underlying CMP or valvular heart disease
			 (51.9±6.1 at Dx of LBBB vs. 50.3±5.5 in controls; p=0.010) ECG-derived LVH (60.9% of LBBB vs. 22.3% of controls; p<0.001) ST-T abnormalities (39.1% of LBBB vs. 16.2% of controls; p<0.001) 	 <u>Conclusion</u>: Incident LBBB is independently predictive of CHF-related mortality (RR >3) but not all-cause mortality Incident LBBB is associated with antecedent or coincident markers of

			 antecedent to the development of LBBB LBBB independently predictive of CHF mortality; RR: 3.08 (1.62–5.87; p<0.001) but not all-cause mortality; RR: 1.22 (0.90–1.65; p=0.206) 	structural heart disease such as increased radiographic CT ratio or electrocardiographic LVH or ST-T abnormalities
Framingham Dhingra R, et al. 2006 (33) <u>16585411</u>	Study type: Prospective, longitudinal, community-based study Size: N=1,759 (1,113 women)	Inclusion criteria: Attendees of the 16 th (1979–1981) or 17 th (1982–1984) biennial exam of the Framingham Heart Study with available ECG and echo data (2-D guided M- mode) Exclusion criteria: Prevalent HF or previous MI (N=135) Anti-arrhythmic therapy or PPM (N=187)	 1° endpoint: Assess the relationship of QRSd to CHF incidence during mean follow-up of 12.7 y; range 0.4–22.3 y. Results: 324 participants developed CHF (205 women); 231 (17.3%) of 1339 with QRS <100 ms, 62 (20.2%) of 307 with incomplete BBB (QRS=100–119 ms), and 31 (27.4%) of 113 with complete BBB (QRS ≥120 ms). Survival free of CHF decreased with increasing QRSd category (log-rank p<0.001) In multivariable time-dependent Cox models, BBB associated with a 1.74- fold risk of CHF (p<0.001) compared to the referent group. In multivariable analyses LBBB had the highest incidence of CHF during follow-up compared to QRS <100 msec. LBBB: adjusted HR: 4.45 (95% CI: 2.33–8.51; p=0.0001) Indeterminate BBB: adjusted HR: 2.18 (95% CI: 1.13–4.20; p=0.02) RBBB: adjusted HR: 1.73 (95% CI: 0.93–3.21; p=0.08) 	 Strengths: Large community-based population Long duration of follow-up (up to 22 y) Prospective, systematic data acquisition Both sexes well represented Limitations: Limited statistical power to analyze relations of BBB type to CHF incidence Single assessment of QRSd Predominantly Caucasian population Conclusion: There is a positive association between ECG QRSd with CHF risk in a large community-based population free of CHF or MI at baseline Association strongest for complete BBB who experienced a 2-fold risk of CHF compared to those with QRS <100 msec. Baseline incomplete and complete BBB accounted for only 30% of incident CHF during follow-up. In an exploratory analysis of a subgroup (N=82, 25% of CHF cases) of pts undergoing echo within 30 d of CHF Dx, incomplete and complete

				BBB both associated equally with HFrEF and HFpEF.
Rotman M, et al. 1975 (34) <u>1132086</u>	Study type: Retrospective observational cohort study Size: N=237,000 with ECGs in the United States Air Force Central Electrocardiographic Library, 1957–1972 N=394 RBBB N=125 LBBB	Inclusion criteria: Routine initial ECGs obtained on a heterogeneous group of Airforce Academy cadets and applicants for flight training and serial ECGs on rated flying personnel taken throughout their Air Force career. The population that was critically examined included only those subjects that had had either an initial clinical evaluation and/or available complete follow-up information. Exclusion criteria: N/A	 <u>1° endpoint</u>: Review clinical status and mortality of those with BBB at the United States Air Force School of Aerospace Medicine. Compare and contrast those with RBBB with LBBB and explore various combinations of fascicular blocks for their impact on findings at initial evaluation and subsequent clinical course. <u>Results:</u> Mean age=36±9 (range 17–58) y for RBBB Mean age=40±7 (range 20–56) y for LBBB (higher % of RBBB were <25 y and a higher % of LBBB was >45 y; p<0.001) 251/394 (63.7%) RBBB present on initial ECG and 143/394 (36.3%) were noted on subsequent ECG 44/125 (35.2%) LBBB present on initial ECG and 81/125 (64.8%) were noted on subsequent ECG 372/394 RBBB had complete evaluation at time of initial Dx, 97% of these were asx, 94% had a normal CV evaluation, 10/372 (2.7%) had evidence of CAD, 9/372 (2.4%) had hypertension, 5/372 (1.3%) congenital heart disease 121/125 LBBB had complete evaluation at the time of initial Dx, 95% of these were asx, 89% had a normal CV evaluation, 11/121 (9.1%) had evidence of CAD (4 confirmed by cath), 8/121 (6.6%) had hypertension 	 Strengths: Large pool of routine screening ECGs in a young, generally healthy, predominantly asx population Fairly long duration of follow-up Limitations: Exclusively male population Low prevalence of BBB and of underlying structural heart disease renders the study largely descriptive Conclusion: The majority of young airmen with right and left bundle branch block are asx and free of underlying structural heart disease/CAD. Although underpowered to allow conclusions, LBBB may be more predictive of CV death than RBBB The prognosis of BBB relates more to the underlying structural heart disease than the conduction abnormality itself. "Significant progressive electrical dysfunction is a rare occurrence" in this population (1 PPM for advanced AVB in each group, and 1 additional PPM for unexplained syncope w/o advanced AVB in the RBBB group).

Froelicher VF, et al. 1977 (35) <u>831426</u>	Study type: Retrospective cross – sectional study Size: N=34 with asx LBBB N=41 with asx RBBB Derived from 325 airmen referred for cardiac catheterization	Inclusion criteria: Airmen who underwent coronary angiography for clinical indications between 2/1971 and 12/1974. All but 27 with possible angina were asx. Exclusion criteria: Declined catheterization (N=not provided)	 54 subjects with RBBB and 29 with LBBB had a complete cardiac catheterization LBBB had a significant higher rate of CAD (p<0.01) and HTN (p<0.05) than RBBB, independent of age. Mean follow-up: RBBB=10.8±4.7 y, LBBB=8.8±4.8 y During follow-up of those with RBBB, 21 (6%) new cases of CAD and 21 new cases (6%) of HTN developed. During follow-up of those with LBBB, 6 (5%) new cases of CAD and 7(6%) new cases of HTN developed 14 (4%) of those with RBBB died, all but 3 from non-cardiac causes 9 (8%) of those with LBBB died, all but 2 from cardiac related causes. Combinations of fascicular blocks did not inform clinical status at the time of initial evaluation or subsequent prognosis. 1° endpoint: Prevalence of significant CAD (>50% stenosis) according to referral Dx (e.g., abnormal ETT, angina, BBB, etc.) Results: Mean age=42±7 y Significant CAD: LBBB=8/34 (24%) RBBB=8/41 (20%) All pts=98/325 (30%) 5/34 (14.7%) with LBBB and no significant CAD had "generalized LV dyskinesia" and LVEDP >12 mm Hg 1/34 (2.9%) with LBBB and normal coronary arteries manifested overt HFrEF subsequent to catheterization 	Strengths: • Coronary angiography performed in asx pts with isolated LBBB and no other indication of CV disease (justified by public safety concerns) Limitations: • Small size • Potential selection bias (clinically referred for cardiac evaluation) • No systematic follow-up Conclusion: ECG abnormalities are "poorer predictors of heart disease in asx apparently healthy men than in
---	--	---	--	---

Manitoba Heart Study	Study type:	Inclusion criteria:	1° endpoint: Death, including sudden	Strengths:
Manitoba Heart Study Rabkin SW, et al. 1980 (36) 6444828	Prospective, observational cohort study Size: N=29 Derived from 3,983 male pilots from the Royal Canadian Air Force or licensed by the Canadian Dept. of Transport participating in regular health exams (including ECG)	Participants in regular annual medical exams with no clinical evidence of CHD or valvular heart disease antecedent to or coincident with the discovery of LBBB <u>Exclusion criteria:</u> One participant with LBBB at entry exam was excluded from analysis of factors contributing to the development of LBBB but was included in the	 death during follow-up, association of ECG findings antecedent to the Dx of LBBB with the development of subsequent LBBB Results: Mean age at entry=30.8 y. Average follow-up=29 y Only 1 case of LBBB present at entry 13/28 (46.4%) who developed LBBB after the initial exam had some antecedent ECG abnormality (14% had LVH, 14% has ST-T abnormalities, and 14% had some form of conduction abnormality such as PR prolongation, 	 Strengths: Long period of close follow-up Limitations: Highly selected population Exclusively male Young at the start with predictably very low prevalence of LBBB Low number of cases of LBBB Low number of cases of LBBB Incident LBBB is associated with LVH on prior ECGs LBBB in a relatively young, male population is associated with a >10-fold risk of sudden cardiac death.
	every 3–5 y from 1948–1977	prognostic study	 IVCD, LAD, etc) Only the prevalence of LVH was significantly different from the population free of incident LBBB (14% vs. 3.5%; p<0.05) Risk of SCD: 6/29 (20.7%) was >10 fold higher than in those w/o LBBB (1.6%); p<0.01 	
Women's Health Initiative Zhang ZM, et al. 2012 (37) 22858187	Study type:Prospectiveobservational cohortstudySize:N=66,450 (1,739 withBBB, of which 708 hadclinical evidence of CVdisease)Derived from 68,133participants in theWomen's HealthInitiative study	Inclusion criteria: Participants in the Women's Health Initiative with interpretable ECG Exclusion criteria: • No available electronic ECG (N=960) • Inadequate quality ECG (N=614) • PPM or WPW (N=109)	 1° endpoint: CHD-related and all-cause mortality associated with L and R BBB Results: Mean follow-up=14.2 y Avg. age=63 y; 10% African American 19% had h/o CVD or ECG evidence of prior MI 2.6% BBB (714 LBBB, 832 RBBB, 122 NSIVCD, 71 RBBB with LAFB) 18% with BBB died 8% with LBBB had fatal CHD events 	Strengths: • Relatively large number of cases of LBBB and RBBB • Long systematic follow-up Limitations: • Exclusively women Conclusion: • In women with baseline CVD, after adjusting for potential confounders, LBBB and RBBB were predictive of CHD death, but only LBBB was predictive of all-cause death

			 HR for CHD death for LBBB in women with CVD: 2.92 (95% CI: 2.08–4.08; p<0.01). HR for CHD death for RBBB in women with CVD: 1.62 (95% CI: 1.08–2.43; p<0.05) HR for all-cause mortality for LBBB in women with CVD: 1.43 (95% CI: 1.11–1.83; p<0.01) HR for all-cause mortality for RBBB in women with CVD: 1.1 (95% CI: 0.84–1.44. p=NS) HR for CHD death for LBBB in women free of baseline CVD: 2.17 (1.37–3.43; p<0.01) 	 In women free of CVD, only LBBB was predictive of CHD death, and neither BBB was a predictor of all-cause death NSIVCD and RBBB with LAFB is associated with a 2.5- to 3-fold increased risk of CHD death in those with baseline CV disease. Most repolarization parameters do not predict CHD or all-cause mortality.
OPTIMAAL Bogale N, et al. 2007 (38) <u>17317365</u>	Study type: Prospective observational study derived from an RCT of losartan vs. captopril in pts with AMI and HF or asx impaired LVEF Size: N=356 (6.5%) with LBBB at baseline or subsequently developing LBBB during 2.7 y mean follow-up N=354 (6.5%) with RBBB at baseline or subsequently developing RBBB during 2.7 y mean follow-up N=5,477 in the RCT	Inclusion criteria: Acute MI (average time to enrollment=3 d), ≥50 y, HF, impaired LVEF <35%, or LVEDD >65 mm and anterior Q waves on ECG (old or new) Exclusion criteria: • Supine SBP <100 mm Hg at the time of enrollment • Rx with an ACEI or ARB • Unstable angina • Hemodynamically significant valvular stenosis • Hemodynamically significant arrhythmia • Planned revascularization • Unable/unwilling to give consent	 <u>1° endpoint</u>: All-cause death. Outcomes and crude rates were stratified according to presence of LBBB or RBBB at baseline. Kaplan–Meier curves plotted for death and SCD stratified by BBB pattern at baseline. Cox regression models assessed effect of BBB pattern at baseline on death and SCD and the effect of the development of BBB during follow-up adjusted for age, pulse rate, h/o CABG, DM, CHF or prior MI <u>Results:</u> Pts with BBB patterns were older, fewer were smokers at time of inclusion, and more had previous HTN, AMI, CABG, and DM. 946/5477 (17.3%) all-cause deaths. 442/5477 (46.7%) were SCD Baseline: 203/5477 (3.7%) had LBBB and 235/5477 (4.3%) had RBBB 	 <u>Strengths</u>: Relatively large number of cases of LBBB and RBBB Systematic follow-up for fatal outcomes <u>Limitations</u>: No core lab interpretation of ECGs No data to correlate BBB with EF No data on presence or absence of BBB before index AMI No ability to assess reversion rates of BBB back to normal after AMI (reported to be >10% after revascularization in some studies) Only 10% received PCI (54% received thrombolysis) <u>Conclusion</u>: In middle-aged and older pts with high-risk findings after acute MI, LBBB present at time of MI is independently predictive of all-cause

		Participation in another research trial	 Follow-up: additional 153 (2.8%) developed LBBB and 119 (2.2%) developed RBBB. LBBB at baseline independently predictive of all-cause death (HR: 1.48; 95% CI: 1.25–1.77; p<0.01) and CV death (HR: 1.53; 95% CI: 1.17–1.99; p<0.01), but not SCD/resuscitated cardiac arrest (HR:1.28; 95% CI: 0.96–1.71; p=NS) Late onset LBBB independently predictive of all-cause death (HR: 2.06; 95% CI: 1.49–2.90; p<0.01), CV death (HR:2.70; 95% CI: 1.68–4.35; p<0.0001), and SCD/resuscitated cardiac arrest (HR: 2.38; 95% CI, 1.48–3.83; p=0.01) RBBB at baseline independently predictive of SCD/resuscitated cardiac arrest (HR: 1.60; 95% CI: 1.25–2.04; p<0.01) but not all-cause death (HR:1.16; 95% CI, 0.96–1.39; p=NS) or CV death (HR: 1.25; 95% CI: 0.95–1.64; p=NS) Late-onset RBBB independently predictive of SCD/resuscitated cardiac arrest (HR: 1.26; 95% CI: 1.22–3.34; p=0.05) but not all-cause death (HR: 1.26; 95% CI: 0.84–1.89; p=NS) or CV death (HR: 1.42; 95% CI: 0.76–2.67; p=NS) 	 death and CV death, but not SCD/resuscitated cardiac arrest. Subsequently developing LBBB during an average of 2.7-y follow-up is associated with all 3. In middle-aged and older pts with high-risk findings after acute MI, RBBB present at time of MI and subsequently developing RBBB during an average of 2.7-y follow-up is independently predictive of SCD/resuscitated cardiac arrest but not all-cause death or CV death.
Baldasseroni S, et al. 2002 (39) <u>11868043</u>	Study type: Retrospective, observational registry	Inclusion criteria: Participants in the Italian Network CHF Registry,	<u>1° endpoint</u> : 1-y, all-cause mortality rate Results:	 <u>Strengths</u>: Large prospective outpatient registry of pts referred to cardiologists for
	study	created in 1995 by the Italian Association of	 Mean age=63±12 y 1295/5517 (23.5%) women 	management of CHF • Standardized definitions and data
	<u>Size</u> : N=5,517	Hospital Cardiologists and	 1235/5517 (23.5%) women 1544/5517 (28.0%) NYHA class 3–4 LBBB 1391/5517 (25.2%) 	collection methods (for most elements)

		derived from 150 Italian medical facilities. Exclusion criteria: • CHF due to valvular heart disease (N=745) • Inadequate quality ECG (N=270) Cardiac transplantation within the 1 st year of follow-up	 RBBB: 336/5517 (6.1%) Other forms of IVCD: 339/5517 (6.1%) Those with LBBB more likely to be female, have non-ischemic CM, NYHA 3–4 status, S3, cardiomegaly on CXR, EF <30%, or receive diuretics, ACEI, digoxin, and amiodarone, and less likely to have AF and receive nitrates, BBs, antiplatelet agents, and CCBs Overall 1-y mortality: 659/5517 (11.9%) 306/659 (46.4%) deaths attributed to sudden death LBBB 1-y all-cause mortality: 224/1391 (16.1%) RBBB 1-y all-cause mortality: 40/336 (11.9%) Other IVCD 1-y all-cause mortality: 30/339 (8.8%) By multivariable analysis, LBBB remained independently predictive of all-cause mortality (HR: 1.360; 95% CI: 1.148–1.610; p=0.0004) By multivariable analysis, LBBB remained independently predictive of sudden death (HR: 1.348; 95% CI: 1.051–1.729; p=0.0188) 	 Limitations: No core lab interpretation of ECGs Chose QRSd >140 ms to reduce likelihood of false classification of IVCD as LBBB. This may exaggerate the prognostic impact of LBBB as QRSd itself is predictive of outcome with higher mortality with longer QRSd. No systematic coronary angiogram to determine etiology of CM No systematic definition of sudden death Conclusion: Amongst outpatients referred to Italian cardiologists for HF management, LBBB is associated with both a higher risk population (as indicated by clinical status and co-morbidities) and an approximate 35% increased 1-y risk of both all-cause death and sudden death, independent of a large number of other CHF risk indicators.
Erne P, et al. 2017 (40) 28224924	Study type: Retrospective observational registry study Size: • N=29,114 in registry • N=28,421 had presenting ECG data • N=26,090 STEMI w/o LBBB	 Inclusion criteria: Participants in the AMIS Plus Registry, an ongoing Swiss nationwide prospective cohort of pts admitted with ACS, founded by the Swiss Societies of Cardiology, Internal Medicine, and Intensive Care Medicine in 1997. 	 <u>1° endpoint</u>: All-cause, in-hospital mortality <u>Results:</u> Age: STE=64.3 [SD 13.2], LBBB=75.0 [10.7]; p<0.001 Those with LBBB at the time of acute MI were more likely to be female, present later, have less chest pain and more dyspnea as chief complaint, have higher heart rate, and higher 	 <u>Strengths</u>: Largest prospective registry of unselected pts with suspected acute MI and LBBB to date Standardized definitions and data collection methods <u>Limitations</u>: No core laboratory for ECG analysis No systematic algorithm to differentiate isolated LBBB from LBBB associated with transmural

	2,295 had LBBB with or	• Definitive acute MI with	prevalence of AF, Killip class 3–4	Ischemia (e.g. Sgarbossa criteria)
	w/o concomitant STE	• Definitive acute with with either STE or new/	status, DM, HTN, hyperlipidemia, and	 No prior or subsequent ECGs after
	w/o conconntant STE	presumed to be new	prior MI, HF, CVA, PAD, or CKD	admission to know if the LBBB was
		LBBB	(p<0.001 for all)	new or not and whether the LBBB
		LDDD	 Those with LBBB had higher 	was transient
		Evelucion criterio.	-	
		<u>Exclusion criteria:</u> N/A	prevalence of impaired EF (354/1530	No assessments of clinical eligibility
		N/A	[23.1%] vs. 1582/18622 [8.5%];	for each therapeutic option.
			p<0.001).	Therefore, hard to interpret
			Those with LBBB were less	differences in treatment rendered
			aggressively treated with antiplatelet,	between those with and w/o LBBB
			antithrombotic, BB, statin, and	Conclusion:
			revascularization therapies (p<0.001	LBBB identifies a pt subset with a
			for all)	higher baseline CV risk profile and
			All-cause in-hospital mortality:	greater burden of preexisting CV
			LBBB=371/2,295 (16.2%);	diseases and comorbidities
			STE=1,707/26,090 (6.5%); p<0.001	compared with pts with STE
			 Cardiogenic shock after admission: 	 Pts with LBBB are less likely to
			LBBB=286/2252 (11.6%)	receive evidence-based
			STE=1642/25,834 (6.4%); p<0.001	antithrombotic therapy and invasive
			MACCE:	treatment strategy compared with
			LBBB=394/2244 (17.6%)	STE pts
			STE=2102/25,751 (8.2%); p<0.001	LBBB is associated with a higher
			Multivariate analysis: LBBB no longer an	incidence of unadjusted in-hospital
			independent predictor of in-hospital	MACE, mortality, and cardiogenic
			mortality, HR: 1.01 (95% CI: 0.86–1.19;	shock rates but the same adjusted
			p=NS)	risk
Yeo KK, et al., 2012	Study type:	Inclusion criteria:	<u>1° endpoint</u> :	Strengths:
(41)	Retrospective	 Participants in the 	 Prevalence of presumed nLBBB in the 	 Large prospective registry of
<u>22152973</u>	registry study	ACTION registry from	setting of AMI	unselected pts with suspected acute
	utilizing the NCDR's	January 2007 to March	 Compare characteristics and 	MI and LBBB
	ACTION registry-	2009 from 343	treatments of those with AMI and	 Standardized definitions and data
	GTWG	participating US	either nLBBB or persistent STE	collection methods
		hospitals, enrolling	 Compare the risk for adverse in- 	Limitations:
	<u>Size</u> :	117,781 pts with ACS	hospital CV outcomes in the 2 groups	 No core laboratory for ECG analysis
	• N=46,006 in registry	presenting within 24 h		 No systematic algorithm to
	with STEMI (STE or	of symptom onset	<u>Results:</u>	differentiate isolated LBBB from
	nLBBB)			LBBB associated with transmural
		Exclusion criteria:		Ischemia (e.g. Sgarbossa criteria)

 Those with nLBBB were less aggressively treated with antiplatelet therapy, beta blocker, and statin medications and were less likely to receive reperfusion therapy, including primary PCI (p<0.0001 for all) Time to primary PCI was delayed on average 33 min for those with nLBBB relative to those with STEMI (p<0.0001) More pts in the STEMI group had LVEF >50% compared to the nLBBB group (47.9% vs. 27.2%) and fewer pts with LVEF <25% (4.8% vs. 17.4%; p<0.0001) Median peak troponin and creatine kinase-MB levels were higher in pts with STEMI compared to those with nLBBB (131.9 vs. 32.3; p<0.0001, and 12.8 vs. 6.0; p<0.0001, respectively) Unadjusted all-cause in-hospital mortality: nLBBB compared to STEMI (13.3% vs. 5.6%; p<0.0001) 	• N=44,405 (96.5%) had STE w/o LBBB N=1,601 (3.5%) AMI with nLBBB	 NSTEMI (N=71,536) Missing ECG data or isolated posterior MI (N=160) Subsequent admissions in those with multiple admissions (only the index admission was used; N=79) 	 Median age: STE=60 [interquartile range 51.0, 71.0], nLBBB=74.0 [63.0, 82.0]; p<0.0001 Those with nLBBB at the time of acute MI were more likely to be female, non-smoker, have h/o DM, HTN, hyperlipidemia, prior MI, CABG, HF, CVA, PAD, or CKD, have higher heart rate, or present with signs of CHF (p<0.001 for all) Also those with nLBBB were more likely to have prior PCI (p=0.0013), or cardiogenic shock at presentation (p=0.0052) 	 Insufficient angiographic data to distinguish AMI with LBBB vs. other causes of biomarker elevation in the setting of LBBB No data on pre-existing LBBB prior to incident AMI Conclusion: LBBB identifies a pt subset with a higher baseline CV risk profile and greater burden of preexisting CV diseases and comorbidities compared with pts with STE Pts with LBBB are less likely to receive evidence-based
		index admission was	 CVA, PAD, or CKD, have higher heart rate, or present with signs of CHF (p<0.001 for all) Also those with nLBBB were more likely to have prior PCI (p=0.0013), or cardiogenic shock at presentation (p=0.0052) Those with nLBBB were less aggressively treated with antiplatelet therapy, beta blocker, and statin medications and were less likely to receive reperfusion therapy, including primary PCI (p<0.0001 for all) Time to primary PCI was delayed on average 33 min for those with nLBBB relative to those with STEMI (p<0.0001) More pts in the STEMI group had LVEF ≥50% compared to the nLBBB group (47.9% vs. 27.2%) and fewer pts with LVEF <25% (4.8% vs. 17.4%; p<0.0001) Median peak troponin and creatine kinase-MB levels were higher in pts with STEMI compared to those with nLBBB (131.9 vs. 32.3; p<0.0001, and 21.8 vs. 6.0; p<0.0001, respectively) Unadjusted all-cause in-hospital mortality: nLBBB compared to STEMI (13.3% vs. 	 LBBB identifies a pt subset with a higher baseline CV risk profile and greater burden of preexisting CV diseases and comorbidities compared with pts with STE Pts with LBBB are less likely to receive evidence-based antithrombotic therapy and invasive treatment strategy compared with STE pts LBBB is associated with a higher incidence of unadjusted in-hospital

Framingham Dhingra R, et al. 2005 (42) <u>15734611</u>	Study type: Prospective, cross- sectional, community- based study Size: N=4,534 (2,583 women)	Inclusion criteria: Attendees of the 16 th or 17 th biennial exam of the Framingham Heart Study or the 2 nd exam of the Framingham Offspring Study with available ECG and echo data (2-D guided M-mode) Exclusion criteria: • Prevalent HF (N=51) • Previous MI (N=146)	 Multivariate analysis: nLBBB no longer an independent predictor of in-hospital mortality, (OR: 0.91; 95% CI: 0.75–1.12; p=0.38) <u>1° endpoint</u>: Gender-specific linear regression models to assess the relationship of QRSd to echo parameters of LV size, mass and fractional shortening and left atrial size at end-systole. <u>Results:</u> In linear regression models, LV mass, end-diastolic dimension, and septal and posterior wall thickness were positively related to log-QRSd (p<0.001) Fractional shortening was inversely related to log-QRSd (p<0.001) 	Strengths: • Large community-based population • Long duration of follow-up • Prospective, systematic data acquisition • Both sexes well represented Limitations: • Limited statistical power to analyze relations of BBB type to LV measurements • Use of M-mode for EF estimation (reflects only basal function of 2 segments)
		 Previous MI (N=146) Digoxin or quinidine use (N=206) PPM (N=3) 	 related to log-QRSd (p<0.001) LBBB (N=32) was associated with higher LV mass and lower fractional shortening compared to a normal QRSd (p<0.001) RBBB (N=92) was not associated with significant differences in LV mass, dimensions, wall thickness or fractional shortening in men, but was associated with higher LV mass (p=0.02) and greater septal (p=0.01) and posterior (p=0.001) wall thickness in women. A stronger association of LV mass with QRSd was seen in obese men, older women, and in hypertensive women 	segments) Single assessment of QRSd Predominantly Caucasian population Conclusion: There is a positive association between ECG QRSd, as well as LBBB pattern, and LV mass, dimensions and wall thickness, and an inverse relation to systolic function in a large, community- based cohort free of MI and HF.
Talreja D, et al. 2000 (43) <u>10689252</u>	Study type: Prospective case- control study	Inclusion criteria: Consecutive inpatients referred for echocardiographic	<u>1° endpoint</u>: Predictive value of historical features, symptoms, physical findings, chest radiography and/or ECG findings to	 <u>Strengths</u>: Systematic assessment of clinical features including ECG features that might predict LVSD in those referred
	<u>Size</u> : N= 300	assessment of LV systolic	predict LVEF <45%	for echocardiography

		function of which 124 (41%) had LVEF <45%. <u>Exclusion criteria:</u> No ECG within 1 wk prior to echo (N=30)	 Results: LBBB was the most predictive ECG finding to suggest LVSD; p<0.0001 Multivariate predictors of LVSD: Radiographic cardiomegaly. OR: 3.8 (95% Cl: 1.6-4.6; p<0.01) LBBB. OR: 3.7 (3.6-67.2; p<0.01) Male sex. OR: 3.45 (1.4-4.9; p<0.01) Normal ECG: OR: 0.30 (0.02-0.45, p<0.004) 	 Limitations: Small sample size with wide confidence margins Conclusion: The presence of LBBB is an independent predictor of echocardiographically-determined LVSD in inpatients for whom LVSD is a clinical concern
Mendu ML, et al. 2009 (44) <u>19636031</u>	Study type: Retrospective observational Size: N=2106 consecutive admissions for 1920 individuals ≥65 y admitted following syncope from 7/2002 to 12/2006	Inclusion criteria: ≥65 y admitted following syncope Exclusion criteria: Documented pre- syncope, 103 cases omitted for complete lack of data	 <u>1° endpoint</u>: Diagnostic yield of a broad spectrum of clinical assessments <u>Results:</u> 163 (8.5%) had more than 1 admission 32% known CAD, 18% h/o AF, 9% h/o MI, 5% h/o AVB 980 (47%) etiology unknown, 453 (22%) vasovagal, 282 (13%) orthostatic hypo. 821 (39%) had echocardiogram, abnormal in 516 (63%), "affected Dx" in 35 (4%), "helped determine etiology" in 13 (2%)- most frequently aortic stenosis, affected management in 36 (4%) Yield in defining etiology for echocardiogram similar to ECG (3%), ETT (2%), Head MRI (2%), Carotid US (2%) but less than telemetry (5%) and orthostatic VS (15%). Of 11 tests analyzed, echo yielded the 4th lowest cost per test affecting Dx (\$6,272/ influential test) after postural BP, telemetry and ECG 	Strengths Sample size, standardized abstraction, consistent definitions, blinded re- abstraction (mean bias-adjusted κ statistic = 87% (SD 20%) for the diagnostic test variables), inclusion of effect on management not just Dx yield Limitations: Reliance on administrative database to identify cases, reliance on chart documentation to assess impact of tests on clinical management (? underestimated effect of negative tests), using charges adjusted by cost- charge ratio rather than actual costs. Test ordering was not protocol driven and at the discretion of the clinicians, likely affecting the yield of the tests (echocardiogram likely ordered more indiscriminately than some others). Conclusion: Echocardiogram was a frequent part of syncope evaluation in elderly hospitalized pts (39%) at an academic

Deschie Dietel 1005			in those who met SFSR criteria for increased risk	medical center and only occasionally provided information that affected management (4% of those studied) or established an etiology of syncope (2%). Compared to the litany of diagnostic tests used in this population, however, it was relatively cost-effective.
Recchia D, et al. 1995 (45) <u>8770716</u>	Study type: Retrospective observational Size: N=128	Inclusion criteria: All pts admitted to a university teaching hospital due to syncope over a 7 mo period Exclusion criteria: Syncope of known cause, presyncope, obvious seizure, referred for EPS	 <u>1° endpoint</u>: Dx yield of echo beyond that provided by Hx, physical, and ECG <u>Results:</u> 48/128 (37.5%) had a cause of syncope identified. Of these 37/48 (77%) were diagnosed by Hx, physical and ECG. 82/128 (64%) underwent echo Echo normal in 52% of total population and 63% of those with no clinical evidence of heart disease (46% of population had no clinical evidence of heart disease) Echo confirmatory in 48% of those with suspected heart disease and refuted it in 52% Echo provided no etiology of syncope that was unsuspected on clinical grounds 	• <u>Limitations</u> : Small sample size, test ordering at the discretion of the clinicians, did not address the impact of echo on management in those with clinically suspected heart disease in whom it was confirmatory half the time
Sarasin FP, et al. 2002 (46) <u>12231593</u>	Study type: Prospective observational with 18 mo-follow-up Size: N=650 consecutive pts presenting to the ED of a university teaching	Inclusion criteria: Syncope with clinical suspicion of cardiac valve disease or unexplained syncope after Hx, physical and ECG Exclusion criteria: Those presenting with syncope	 <u>1° endpoint</u>: Diagnostic yield of echo, either confirming a suspected Dx or revealing an unexpected one <u>Results:</u> 61/650 (9%) had a systolic murmur and severe AS was suspected in 20 (3% of total). Echo confirmed severe AS in 8 (40%). In 18 months of follow- 	 <u>Conclusions</u> Echo is most useful to assess the severity of suspected underlying cardiac disease and for risk stratification in those whose syncope is unexplained but have a Hx of heart disease or an abnormal ECG. Echo is unlikely to yield a clinically unexpected etiology of syncope in

	hospital who underwent a standardized initial clinical evaluation, and for those with syncope of undetermined etiology thereafter, a stepwise testing algorithm that started with echocardiography.	who did not complete the standardized evaluation (105) or refused to participate (33)	 up no further cases of severe AS emerged 155/650 (24%) had unexplained syncope and echo revealed no abnormalities that established a cause in them (this group was older with more comorbidities than those with an established cause of syncope) 71/155 (46%) had "abnormal but notrelevant" echo findings that include clinically relevant findings such as severe MR, moderate PH, moderate MS, LVH In those with a normal ECG (N=67), echo was normal or "non-relevant" in all In those with a cardiac Hx or abnormal ECG (88/650=13.5%), echo revealed EF ≤40% in 24/88 (27%) and minor non-relevant findings in the rest Arrhythmias were diagnosed in 12/24 (50%) of those with Hx of heart disease or abnormal ECG and low EF on echo and 12/64 (19%) of those with EF >40% on echo (P<0.01) 	 those w/o evidence of cardiac disease on initial evaluation Comment: Echo has greater relevance than these conclusions suggest due to the possibility that the clinically relevant but not definitively diagnostic abnormalities (other than low EF) will influence management
Dagres N, et al. 2013 (47) <u>24280765</u>	Study type: Descriptive survey of member institutions of the EHRA EP research network Size: 43 centers from 17 countries from Europe (and Argentina)	Inclusion criteria: EHRA members who responded to the survey Exclusion criteria: N/A	 <u>1° endpoint</u>: Define current practice habits regarding the work-up and management of pts with syncope <u>Results:</u> ECG used "always or almost always" by 98% of respondents ("in most case" =2%) Echo used "always or almost always' by 66% ("in most cases" =27%, "only if specific indication" =7%) 	 Offers little regarding appropriate use of tests but does define current practice suggesting stubborn reliance on echo in contemporary practice despite data to suggest relatively low yield in unselected pts 42% of respondents used formal diagnostic algorithms and only 26% had a dedicated syncope unit Compared to other tests, there was relative uniformity of utilization of echo, second only to ECG

Badheka AO, et al. 2013 (48) <u>23726176</u>	Study type: Retrospective cohort study on prospectively collected data from NHANES III Size: 8,527 of 8,561 individuals >40 y who underwent resting 12- lead ECG as part of NHANES III.	Inclusion criteria: NHANES III enrollee with available ECG data Exclusion criteria: Missing QRS data (N=30) Missing mortality data (N=4)	 Holter used "always or almost always" by 59% All other tests queried <50% "always or almost always" <u>1° endpoint</u>: Describe the relationship between QRSd on routine ECG and CV mortality <u>Results:</u> Mean age was 60.5±13.6 y "White" race: 87% Female: 53% Follow-up: 106,244.6 person-y HR for risk adjusted CV mortality of highest quartile of QRSd: 1.3; 95% CI: 1.01–1.7; p=0.04 LBBB HR: 2.4; 95% CI: 1.3–4.7; p=0.009) RBBB HR: 1.9; 95% CI: 1.2–3.0; p=0.008) Adding QRSd in 10-ms increments to Framingham Risk Score yielded 4.4% overall net reclassification improvement (95% CI: 0.02–0.04; p=0.00006) 	 <u>Strengths</u>: Large representative cross section of US population (part of a cohort of 72,062,796 in NHANES III). Prospectively acquired data <u>Limitations</u>: Retrospective and observational analysis Single ECG at baseline interpreted by software Diagnoses based on death certificate w/o chart review No data on SCD <u>Conclusions</u>: Increased QRSd in general and LBBB and RBBB specifically are all associated with increased risk of risk-adjusted CV death.
Chiu DT, et al. 2014 (49) <u>24698512</u>	Study type: Secondary analysis of a prospective, observational, cohort study Size: 570 consecutive ED pts aged ≥18 y presenting with	Inclusion criteria: Presented to a single, large urban teaching hospital emergency department with syncope Exclusion criteria: Near syncope Persistent altered mental	<u>1° endpoint</u> : Diagnostic yield of tests performed in ED, during hospitalization, or during 30 d of follow-up. Tests chosen at clinician discretion. Positive tests identified a serious condition deemed responsible for the index syncopal event <u>Results:</u>	 Strengths: Busy ED with 55,000 annual visits Prospectively acquired data 99% follow-up Assessed current clinical practice (tests ordered according to clinical suspicion) Limitations:
	syncope between 9/2003 and 6/2006	status Syncope due to alcohol or illicit drugs	 Mean age was 57.2 ± 24.5 y Female: 64% Admitted to hospital: 60.2% 	 Observational Testing not ordered systematically (not all pts had all tests)

		Seizure Coma due to hypoglycemia or head trauma Lost to follow-up (n=5)	 330 (58%) underwent in-hospital telemetry, 317 (55%) serum troponin, 150 (26%) echocardiography, 56 (10%) ambulatory monitoring Overall yield of all tests analyzed: 73 pts (8%; 95% CI: 7–10%) Diagnostic yield: Echo – 22% (5.8% overall yield for the entire syncope 	 Single center Small sample size Short-term follow-up Limited range of commonly employed testing studied (i.e., no head CT, routine blood tests, CXR, EEG, etc.)
			population – κ =0.78); Telemetry – 5.8% (overall yield 3.3% – κ =0.66); Ambulatory Monitoring – 3.6% (overall yield 0.4% – κ =0.5); Serum troponin – 3% (overall yield 3.3% – κ =1)	<u>Conclusions</u> : Although routine testing is prevalent in ED pts with syncope, the diagnostic yield is relatively low. Nevertheless, some testing, particularly echocardiography, may yield critical findings.
Menozzi C, et al. 1998 (50) <u>9832095</u>	Study type: Prospective observational study of the placebo arm of an RCT of oral theophylline and permanent pacing in pts with symptomatic SND (THEOPACE trial) Size: 162 screened 55 excluded (12 for "severe" SSS) N=107 randomized to 3 treatment arms 35 randomized to no treatment	 Inclusion criteria: Symptomatic SND, age ≥45 Exclusion criteria: Severe SSS (heart rate <30 bpm or sinus pauses >3 s) Refractory HF Recent MI or CVA (<3 mo) "Very severe general diseases" "Significant renal or hepatic disease" H/O sustained VT Secondary bradycardia (e.g., hypothyroidism/drugs) Need for BB or CCB Other causes of syncope besides SND Pt refusal Unable to follow up 	 <u>1° endpoint</u>: 1st episode of syncope, CHF requiring hospitalization, persistent AF, "poorly tolerated" sustained paroxysmal tachyarrhythmia requiring treatment, thromboembolic event <u>Results:</u> Mean age was 71 ± 11 y Female: 49% "Organic" heart disease: 63% H/O Syncope: 57% Mean ambulatory heart rate: 51 ± 8 bpm Follow-up: 17 ± 15 months 20 (57%) experienced CV events requiring treatment [8 (23%) syncope, 6 (17%) CHF, 4 (11%) AF, 2 (6%) paroxysmal tachyarrhythmia] Actuarial rates at 1, 2, and 4 y for any CV event: 35%, 49%, and 63% respectively Actuarial rates at 1, 2, and 4 y for syncope: 16%, 31%, and 31% respectively 	Strengths: Prospective Up to 4-y follow-up Limitations: Small sample size Conclusions: Clinical CV events occur in most untreated SSS pts during long-term follow-up. The outcome can be "partly predicted" on initial evaluation. Along with age ≥65, echocardiographic parameters of LV size and EF help identify those at risk for CV events (but not necessarily syncope per se). A prior Hx of syncope and a corrected SNRT ≥800 ms identifies those at increased risk of syncope during follow-up.

Predictors of any CV event by	
multivariate analysis: age ≥65 y (HR:	
7.80 [95% CI:1.97–30.9]; p=0.001),	
LVEDD ≥52 by echo (HR: 2.89 [1.07 to	
7.81]; p=0.04), EF <55% by echo (HR:	
3.68 [1.28 to 10.52]; p=0.01)	
Predictors of syncope by multivariate	
analysis: corrected sinus node recovery	
time ≥800 ms (HR: 7.80 [0.94–65];	
p=0.02), h/o syncope (HR: 5.96 [0.71–	
49.7]; p=0.05)	

Data Supplement 4. Nonrandomized Trials, Observational Studies, and/or Registries of Ambulatory Electrocardiography in Bradycardia or Conduction Disorders (Section 4.2.4)

Study Acronym; Author; Year Published' PMID	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
Mendu ML, et al. 2009 (44) <u>19636031</u>	Study type: Retrospective observational Size: N=2106 consecutive admissions for 1920 individuals ≥65 y admitted following syncope from 7/2002 to 12/2006	Inclusion criteria: ≥65 y. admitted following syncope Exclusion criteria: Documented pre- syncope, 103 cases omitted for complete lack of data	 <u>1° endpoint</u>: Diagnostic yield of a broad spectrum of clinical assessments <u>Results:</u> 163 (8.5%) had >1 admission 32% known CAD, 18% h/o AF, 9% h/o MI, 5% h/o AVB 980 (47%) etiology unknown, 453 (22%) vasovagal, 282 (13%) orthostatic hypotension. 821 (39%) had echo, abnormal in 516 (63%), "affected Dx" in 35 (4%), "helped determine etiology" in 13 (2%)- most frequently AS, affected management in 36 (4%) Yield in defining etiology for echo similar to ECG (3%), ETT (2%), Head MRI (2%), Carotid US (2%) but less than telemetry (5%) and orthostatic VS (15%). Of 11 tests analyzed, echo yielded the 4th lowest cost per test affecting Dx (\$6,272/ influential test) after postural BP, telemetry and ECG Diagnostic impact of echo was greater ad cost per test affecting Dx were lower in those who met SFSR criteria for increased risk 	 87% (SD 20%) for the diagnostic test variables), inclusion of effect on management not just Dx yield Limitations: Reliance on administrative database to identify cases, reliance on chart documentation to assess impact of tests on clinical management (? underestimated effect of negative tests), using charges adjusted by cost-charge ratio rather than actual costs. Test ordering was not protocol driven and at the discretion of the clinicians, likely affecting the yield of the tests (echo likely ordered more indiscriminately than some others). Conclusion: Echo was a frequent part of syncope evaluation in elderly hospitalized pts (39%) at an academic medical center and only occasionally provided information that affected management (4% of those studied) or established an etiology of syncope (2%). Compared to the litany of diagnostic tests used in this population, however, it was
Recchia D, et al.1995 (45) <u>8770716</u>	Study type: Retrospective observational	Inclusion criteria: All pts admitted to a university teaching hospital due to	<u>1° endpoint</u> : Dx yield of echo beyond that provided by Hx, physical, and ECG	 relatively cost-effective. •Limitations: Small sample size, test ordering at the discretion of the clinicians, did not address the

	<u>Size</u> : N=128	syncope over a 7 mo period <u>Exclusion criteria:</u> Syncope of known cause, presyncope, obvious seizure, referred for EPS	 <u>Results:</u> 48/128 (37.5%) had a cause of syncope identified. Of these 37/48 (77%) were diagnosed by Hx, physical and ECG. 82/128 (64%) underwent echo Echo normal in 52% of total population and 63% of those with no clinical evidence of heart disease (46% of population had no clinical evidence of heart disease) Echo confirmatory in 48% of those with suspected heart diseases and refuted it 	impact of echo on management in those with clinically suspected heart disease in whom it was confirmatory half the time
Sarasin FP, et al. 2002 (46) <u>12231593</u>	Study type: Prospective observational with 18- mo follow-up Size: N=650 consecutive pts presenting to the ED of a university teaching hospital, who underwent a standardized initial clinical evaluation, and for those with syncope of undetermined etiology thereafter, a stepwise testing	Inclusion criteria: Syncope with clinical suspicion of cardiac valve disease or unexplained syncope after Hx, physical and ECG Exclusion criteria: Those presenting with syncope who did not complete the standardized evaluation (105) or refused to participate (33)	 suspected heart diseases and reluted it in 52% Echo provided no etiology of syncope that was unsuspected on clinical grounds <u>1° endpoint</u>: Diagnostic yield of echo, either confirming a suspected Dx or revealing an unexpected one <u>Results:</u> 61/650 (9%) had a systolic murmur and severe AS was suspected in 20 (3% of total). Echo confirmed severe AS in 8 (40%). In 18 mo of follow-up no further cases of severe AS emerged 155/650 (24%) had unexplained syncope and echo revealed no abnormalities that established a cause in them (this group was older with more comorbidities than those with an established cause of syncope) 71/155 (46%) had "abnormal but not- 	 <u>Conclusions</u> Echo is most useful to assess the severity of suspected underlying cardiac disease and for risk stratification in those whose syncope is unexplained but have a Hx of heart disease or an abnormal ECG. Echo is unlikely to yield a clinically unexpected etiology of syncope in those w/o evidence of cardiac disease on initial evaluation Comment: Echo has greater relevance than these conclusions suggest due to the possibility that the clinically relevant but not definitively diagnostic
	algorithm that started with echocardiography.		relevant" echo findings that include clinically relevant findings such as severe MR, moderate PH, moderate MS, LVH	abnormalities (other than low EF) will influence management

Dagres N, et al. 2013 (47) <u>24280765</u>	Study type: Descriptive survey of member institutions of the EHRA EP research network Size: 43 centers from 17 countries from Europe (and Argentina)	Inclusion criteria: EHRA members who responded to the survey Exclusion criteria: N/A	 In those with a normal ECG (N=67), echo was normal or "non-relevant" in all In those with a cardiac Hx or abnormal ECG (88/650 =13.5%), echo revealed EF ≤40% in 24/88 (27%) and minor non-relevant findings in the rest Arrhythmias were diagnosed in 12/24 (50%) of those with Hx of heart disease or abnormal ECG and low EF on echo and 12/64 (19%) of those with EF >40% on echo (p<0.01) <u>1° endpoint</u>: Define current practice habits regarding the work-up and management of pts with syncope <u>Results:</u> ECG used "always or almost always" by 98% of respondents ("in most case" =2%) Echo used "always or almost always' by 66% ("in most cases" =27%, "only if specific indication" =7%) Holter used "always or almost always" by 59% All other tests queried <50% "always or almost always" 	 Offers little regarding appropriate use of tests but does define current practice suggesting stubborn reliance on echo in contemporary practice despite data to suggest relatively low yield in unselected pts 42% of respondents used formal diagnostic algorithms and only 26% had a dedicated syncope unit Compared to other tests, there was relative uniformity of utilization of echo, second only to ECG
--	---	--	--	---

Data Supplement 5. Nonrandomized Trials, Observational Studies, and/or Registries of Nocturnal / Sleeping Bradyarrhythmias and Sleep Apnea (Section-4.2.7)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)		
NORMALS	NORMALS					
Brodsky M, et al. 1977 (51) <u>65912</u>	Study type: Prospective observational – 24h Holter	Inclusion criteria: Healthy, Caucasian, male medical students, age 23–27 y with	<u>1° endpoint</u> : Define rates of arrhythmia on 24 h Holter in normal young Caucasian men	 Sinus bradycardia <40 bpm is common in healthy young men (none trained athletes), 		

Page 49

© 2018 American College of Cardiology Foundation, American Heart Association, Inc., and the Heart Rhythm Society.

	<u>Size</u> : 50	normal exam, ECG, cardiac silhouette on CXR, and echo <u>Exclusion criteria:</u> Of 61 volunteers, 9 excluded and 2 did not complete study. Excluded: 2 with DM,1 each with ASH on echo, MVP, WPW, h/o pericarditis, IVCD, MVP and HTN, QRS axis of -100°	Results:• 50% marked sinus arrhythmia• 24% SB <40 bpm at least once/night• 28% >1.75 s pause• 4% pause >2 s• 8% 1° AVB (1/2 exclusively nocturnal. 1/2 both d and night)• 6% type 1 2 nd degree AVB-virtually all nocturnal	 Pauses >2 s and type 1 second-degree AVB are uncommon (4%–6%) No specific screening for OSA and no information regarding obesity.
Bjerregaard P, 1983 (52) <u>7160388</u>	Study type: Prospective observational – 24 h Holter Size: 260	 Inclusion criteria: Healthy middle age and older volunteers (40–79 y). 65% male. Mean age: male =53 y; female =56 y Exclusion criteria: technically inadequate tracings (N=9) HTN (N=17) Abnormal 12-lead ECG x 2 min except for arrhythmias (N=9) CV Sx (N=7) Illness within 3 mo (N=3) Abnormal CV physical exam (N=5) CM or pul. venous congestion on CXR (N=0) 	 <u>1° endpoint</u>: Establish norms for mean 24 h heart rate, minimal HR, and pauses <u>Results:</u> Mean heart rate =74±18 bpm (range 53–95) Mean min heart rate =56±16 bpm (range 36–78) 30% had pause ≥1.5 s <1% had pause ≥2 s (longest =2.24 s) 60% of those with pauses had longest pause at night 4.6% sinus arrest 3.5% blocked PACs 0.8% Wenckebach (both nocturnal) 1.1% marked SB (heart rate <40 bpm) Males, non-smokers, and physically active had lower mean and minimal HR by ANOVA (no p value reported). Age differences NS. 	 Nocturnal pauses >2 s, marked sinus brady, and type 1 2nd degree AVB are rare in a middle aged, healthy population (1% or less) Sinus arrest is more common but still uncommon in this population (~ 5%) No information on obesity or screening for OSA
Clarke JM, et al. 1976 (53) <u>74472</u>	Study type: Prospective observational, 2 separate 24 h Holter	Inclusion criteria: Healthy volunteers (16–65 y) with normal clinical exam, ECG, and biochemical/hematologic screening	 <u>1° endpoint</u>: Describe the distribution and frequency of arrhythmias in 2 separate 24 h Holter monitors in healthy subjects (41 male, 45 female) <u>Results:</u> 	 In healthy adolescents and adults, 2nd degree AVB is rare and exclusively nocturnal (2.5%) Heart rate drops ~20 bpm during sleep relative to

	Size: 86/101 G.D. Searle & Co. employee volunteers, mostly office workers	Exclusion criteria: HTN (6), BBB (2), heart murmur (1), epilepsy (1), sedative use (3), anemia (1), anxiety (1)	 2/81 (2.5%) had nocturnal 2nd degree AVB: 1 had both type 1 and type 2 2nd degree AVB, the other had type 1 2nd degree AVB only 1 subject had 1st degree AVB 8 (10%) subjects had junctional rhythm both awake and asleep. 	 wakefulness in both men and women Average daily heart rate is higher in women than men (p<0.05) and in smokers vs. non-smokers (p<0.001) No information on obesity or screening for OSA
Fleg JL, et al. 1982 (54) <u>7056104</u>	Study type: Prospective observational – 24 h Holter Size: 98/110 healthy active subjects, ages 60–85 y (69 men). 59/98 (60%) in 60s, 32/98 (33%) in 70s and 7/98 (7%) in 80s.	 Inclusion criteria: Participants in the Baltimore Longitudinal Study on Aging >60 y No CV Hx or sx No systemic illness NL exam BP <160/95 NL CXR No MI, atrial abnormality, LVH, RVH or BBB on ECG NL PFT NL ETT No meds affecting heart rate/rhythm Exclusion criteria: 8/38 had abnormal thallium 1/38 had abnormal echo 3 technically unsatisfactory Holter 	<u>1° endpoint</u> : Describe frequency and distribution of arrhythmias in healthy elderly adults <u>Results:</u> Marked SB (heart rate <40 bpm): 2/98 (2%) Sinus pause >1.5 s: 2/98 (2%). No pause >2 s 2nd degree AVB: 1/98 (1%) All bradyarrhythmias occurred during sleep 	Conclusions • Healthy, active elderly individuals screened for significant cardiac and pulmonary disease manifest rare nocturnal bradyarrhythmias (1–2%)
		ATH	LETES	
Meytes I, et al. 1975 (55) <u>1163436</u>	Study type: Prospective observational – awake 12-lead ECG Size: 126	Inclusion criteria: Athletes from Israeli national teams Exclusion criteria: N/A	 <u>1° endpoint</u>: Frequency of conduction disturbances on awake 12-lead ECG after 15 min. of resting recumbency <u>Results:</u> 11/126 (8.7%) 1st degree AVB (P-R ≥0.21 s) 	 Wakeful type I 2nd degree AVB is rare in athletes and is presumed to be physiological Authors point out it is, nonetheless, "much more frequent than hitherto suspected."

			 3/126 (2.4%) type I 2nd degree AVB (abolished by sitting, standing, and atropine) Followed the 3 athletes with Wenckebach for 6 y – Wenckebach present only during intense training and resolved consistently within a few weeks of reducing intensity of training No heart disease or decline in performance developed over 6 y 	• By comparison: 1/67,375 asx healthy male USAF fliers manifested type I 2 nd degree AVB on awake routine ECG
Viitasalo MT, et al. 1982 (56) <u>7059398</u>	Study type: Prospective observational – Nocturnal Holter Size: 35 Finnish male "top-class" nationally competitive endurance athletes (mean age 23.1±6.1 y) and 35 controls (age 23.0±5.8 y) who were med students and army conscripts who were not engaged in regular intensive physical training, normal ECG and CXR	 Inclusion criteria: ≥5 y of intensive physical training Normal clinical exam No "changes" in resting 12-lead ECG Exclusion criteria: H/O CV disease or other disease known to affect the CV system CXR findings other than those associated with athletic heart "Permanently" under medication Taking meds at the time of the study Smoker URI within 1 mo of the study 	 <u>1° endpoint</u>: Describe the range of arrhythmias including conduction disturbances on nocturnal 2-channel ambulatory ECG monitor (4pm–8am). No training or alcohol consumption during study <u>Results:</u> Slowest heart rate =37.7±4.3 bpm (range 24–48) in athletes and 45.4±6.3 bpm (range 33–63) in controls (p<0.001) 13/35 (37.1%) of athletes and 2/35 (5.7%) of controls had sinus pause >2 s (all from 10pm–6am). Longest pause =2.76 and 2.6 s respectively 1st degree AVB (PR >0.22): 13/35 (37.1%) of athletes and 5/35 (14.3%) of controls (p<0.05) – 6 exclusively during sleep, 4 asleep and awake, 3 exclusively awake in athletes. All controls had 1st degree AVB exclusively during sleep Type 1 2nd degree AVB: 8/35 (22.9%) of athletes and 2/35 (5.7%) of controls (p<0.05) – 5 exclusively while asleep, 2 awake and asleep, and exclusively while awake in 1. All controls had type 1 2nd degree AVB exclusively during sleep 	 Heart rate slows substantially (>20 bpm) while asleep in athletes and non-athletes alike Nocturnal sinus pauses >2 s are common in young male athletes (present in >1/3) and infrequent in untrained healthy young men (<6%) 1st degree AVB at any time is common in young male athletes (present in >1/3) and occasional in untrained young men (present in ~15%) AVN Wenckebach and SB with junctional or idioventricular escape rhythm are both fairly common in young male athletes (≥20%) and occur primarily while asleep. AVN Wenckebach is infrequent in untrained young men (<6%) and occurs exclusively while asleep SB with junctional or idioventricular escape rhythm and type 2 second-degree AVB are exceedingly rare in untrained healthy young men

			 Type 2 2nd degree AVB: 3/35 (8.6%) of athletes but no controls – 1 while awake and asleep, 1 only while awake, 1 only while asleep SB with competing junctional or idioventricular rhythm in 7/35 (20%) of athletes but no controls – 3 exclusively while asleep, 3 while awake and asleep, and 1 exclusively while awake 	while awake or asleep (neither demonstrated in this study).
Northcote RJ, et al. 1989 (57) <u>2923752</u>	Study type: Prospective observational – 48 h Holter Size: 20 male Scottish veteran runners and 20 age- matched sedentary male controls	Inclusion criteria: • Age >45 y (mean =56±7) • >25 y regular running • >25 miles/wk Exclusion criteria: • Smoking • Medications • Hx CV disease.	 <u>1° endpoint</u>: Describe distribution of ECG abnormalities and arrhythmias in middle- aged male athletes detected with resting, exercise, and 48 H ambulatory ECG <u>Results:</u> Heart rate <35 bpm Athletes: 8/20 (40%) Controls: 1/20 (5%) Mean nocturnal heart rate Athletes: 51±8.5 bpm Controls: 66±13.2 bpm Sinus pauses (1.8–15 s) Athletes: 8/20 (40%) - >80% nocturnal Controls: 2/20 (10%) 1st Degree AVB (PR >220 ms) Athletes: 6/20 (30%) Controls: 0/20 (0%) Type 2 2nd Degree AVB Athletes: 4/20 (20%) Controls: 0/20 (0%) CHB Athletes: 3/20 (15%) 	 In this older cohort of distance runners, bradycardia and AVB was more common than in previously studied younger cohorts of athletes Bradycardia and AVB are more frequent in distance runners than in healthy, active age- matched controls and predominantly nocturnal in both groups
SLEEP APNEA			Controls: 0/20 (0%)	I
Tilkian AG, et al. 1977 (58) <u>331948</u>	Study type: Prospective observational	Inclusion criteria: OSA identified on PSG. All male. Mean age =44 y (30–60). Mean time in apnea	<u>1° endpoint</u> : Describe the distribution and frequency of arrhythmias while awake and asleep in pts with OSA and evaluate the	 <u>Conclusions</u> In pts with fairly profound OSA, bradycardia and conduction

	 Size: 15 pts with OSA who underwent extensive monitoring: 2 separate 24 h Holters and simultaneous PSG in all 12/15 participated in overnight invasive hemodynamic monitoring 6 underwent a third 24 h Holter to assess the effect of atropine 6 underwent awake EPS 8 underwent repeat Holter after tracheostomy 4 underwent ECG monitoring while the tracheostomy was temporarily plugged during sleep. 	=51% (35–72%). Mean duration =24 s (11–40 s) <u>Exclusion criteria:</u> N/A	 influence of atropine and tracheostomy on those arrhythmias Results: 14/15 (93.3%) marked sinus arr. (>30 bpm swing) 6/15 (40%) marked SB (heart rate <30 bpm), all nocturnal 5/15 (33%) "Asystole" (pauses of 2.5–6.3 s), all nocturnal 2/15 (13.3%) 2nd degree AVB, all nocturnal 2/15 (13.3%) VT, all nocturnal Tracheostomy eliminated arrhythmias which recurred when transiently replugged Atropine (1.2–2.4 mg) blunted degree of sinus arrhythmia but did not eliminate. It prevented marked SB in 3 of 6, 2nd degree AVB in 1 of 2, and pauses in 3 of 5. 5 with wakeful EPS had normal SNRT, A-H and H-V intervals. Of these 2 had marked SB, 2 had prolonged pauses (3–6 s), and 1 had AVN Wenckebach 	disturbances are common and can be profound • Tracheostomy can eliminate the nocturnal arrhythmias associated with OSA • The nocturnal bradycardia and conduction disturbances associated with OSA are at least partially vagally mediated based on partial suppression with atropine <u>Confounders</u> • No AHI reported • Highly selected population • Particularly unnatural sleeping environment • No normal comparator group
Guilleminault C, et al. 1983 (59) <u>6193700</u>	Study type: Retrospective observational – 24 h Holter Size: 400 pts with SAS who underwent 24 h Holter and simultaneous PSG. 384 men, median	Inclusion criteria: AHI >5 (range 25–92) and had simultaneous Holter and PSG Exclusion criteria: No simultaneous testing or no SAS. 187 excluded of which 111 did have AHI >5	 <u>1° endpoint</u>: Describe frequency and distribution of arrhythmias during sleep in pts with SAS <u>Results:</u> 193/400 (48%) had nocturnal arrhythmias 98% of arrhythmias occurred during an obstructive event 	 Conclusions In aggregate, nocturnal arrhythmias are common in pts with moderate to severe SAS and occur almost exclusively during obstructive events There appears to be an O₂ sat threshold of 72% for nocturnal bradyarrhythmias in this cohort

	age =48 y (19–71 y). 16 women, median age 59 (25–68 y)		 Arrhythmias (except for PVCs) seen only with O₂ sat <72% (93% occurred with O₂ sat ≤65%). 8/400 (2%) NSVT 43/400 (10.8%) Sinus arrest (2.5–13 s). In 32/43 (74.4%) it lasted ≥4 s 31/400 (7.8%) 2nd degree AVB (19 type 1 (5%) and 12 type 2 (3%) 29/400 (7.2%) had profound SB (<30 bpm for ≥10 s) 10/400 (2.5%) had PAF 3/400 (1%) had AFL 75 /400 (18.8%) >2 VPC/min during sleep 50 with significant arrhythmias underwent trach: repeat monitoring 3–6 mo postop: no arrhythmias except VPCs in 4 (vs. 18 prior) 	 Profound SB, sinus pauses ≥2.5 s, and 2nd degree AVB occur occasionally (~7–10% of pts) Tracheostomy eliminates nocturnal bradyarrhythmias in pts with OSA <u>Confounders</u> Highly selected population No normal comparator group
Shepard JW Jr, et al. 1985 (60) <u>2411477</u>	Study type: Prospective observational – nocturnal ECG only Size: 31	Inclusion criteria: Clinically referred males with OSA (apnea index 44±26/h and hypopnea index 1 ±24/h). Age 55±11 y (range 30–76) Exclusion criteria: N/A	 <u>1° endpoint</u>: Determine the relationship between ventricular ectopy and the severity of oxyhemoglobin desaturation during sleep <u>Results:</u> Profound SB (heart rate <30 bpm): 10% Sinus pauses (2–13 s): 10% 2nd degree AVB: 6% 	 <u>Conclusions</u> Bradycardia and AVB occur occasionally during sleep in pts with moderate to severe OSA (6%–10%) <u>Confounders</u> Primary data not reported in original study or in subsequent review article.
Hoffstein V, et al. 1994 (61) <u>7774322</u>	Study type: Prospective observational – Nocturnal ECG only Size: 458 clinically referred for PSG (214 (46.7%) with SAS – AHI >10)	Inclusion criteria: Consecutive, unselected pts referred for PSG (primarily for snoring). Age 48±13 y. BMI 31±7 kg/m ² Exclusion criteria: N/A	 <u>1° endpoint</u>: Compare the frequency of sleep-related arrhythmias in those with and w/o SAS and examine separately the relationships between arrhythmias and the severity of apnea, hypoxemia, and snoring, <u>Results:</u> 121 (26%) AHI 10–30, 41 (9%) AHI 30–50, 52 (11%) AHI >50) Arrhythmia prevalence: SAS: 58%; No SAS: 42% (X²=16.7; p<0.0001); AHI ≥40: 	 <u>Conclusions</u> AVB or junctional rhythm during sleep in adults with severe SAS is uncommon (<3%) but does not occur at all in pts referred for PSG w/o SAS Arrhythmias in aggregate are more frequent in those with more profound SAS and in those with nocturnal hypoxemia

			 70% (X² =9.2; p=0.002); mean O₂ sat <90%: 82%; mean O₂ sat >90%: 40% (X² =7.4; p=0.006) Most frequent arrhythmias in all groups = ventricular or supraventricular tachyarrhythmias 6/214 (2.8%) with SAS had some bradyarrhythmia (AVB, junctional) all associated with other arrhythmias and all with AHI >30. 0/244 (0%) had AVB or junctional rhythm with AHI ≤10. Significance for difference in prevalence of bradyarrhythmias among the groups not reported 	 <u>Confounders</u> Too few bradycardic events to correlate with AHI or hypoxemia. No data regarding profound bradycardia, sinus pauses, etc
Boudoulas H, et al. 1983 (62) <u>6580372</u>	Study type: Prospective observational - Holter Size: 120 pts with sleep disordered breathing: • SAS =61 (46 males; mean age 49.6±12 y; 15 with HTN, 4 with MI) • Narcolepsy =35 • Idiopathic hypersomnolence =24	Inclusion criteria: Pts with sleep disordered breathing previously diagnosed by PSG admitted to a clinical research center for ≥3 d to undergo echo, 24 h Holter, and 24 h urinary catecholamines on 3 successive d Exclusion criteria: N/A	 <u>1° endpoint</u>: Describe the incidence of primary cardiac abnormalities in pts with SDB <u>Results:</u> 1st degree AVB: 2/61 (3.3%) of SAS SN exit block: 2/61 (3.3%) of SAS Neither evident in other groups Malignant ventricular arrhythmias: 26% of SAS, 3% in narcolepsy, and 4% in idiopathic hypersomnolence Urinary catecholamines similarly elevated in all 3 groups 	 Conclusions First degree AVB and sinus node exit block occur occasionally in pts with SAS (~ 3%) SDB of disparate types is associated with increased urinary catecholamines
SHHS Mehra R, et al. 2006 (63) <u>16424443</u>	Study type: Prospective, cross-sectional, observational Size: 228 SAS (RDI ≥30)	 Inclusion criteria: Participant of original SHHS (N=6,441) who were alive, agreed to undergo repeat PSG 3–7 y after enrollment and who were not on CPAP (N=3,295) Age ≥40 y 	 <u>1° endpoint</u>: Examine the association between SDB and cardiac arrhythmias <u>Results:</u> Mean age 70.6±9.72 vs. 68.6±9.1 y (p=0.01) 	 In this community-based cohort, there was no evidence of an increased prevalence of conduction disturbances in those with severe SDB and those w/o SDB

		 RDI ≥30 Comparison group RDI <5 Matched for age, sex, race/ethnicity, and BMI (N=338) Exclusion criteria: BMI <18 or >40 kg/m² 	 3.1% of SDB had PPM and 0.9% of non-SDB had PPM (p=0.05) No difference in frequency of conduction delays (SDB vs. no SDB) Sinus pause ≥3 s: 11 vs. 8.6%; p=0.34 1st degree AVB: 25 vs. 22.5%; p=0.49 Type I 2nd degree AVB: 1.8 vs. 0.3%; p=0.07 Type II 2nd degree AVB: 2.2 vs. 0.9%; p=0.20 AF (OR: 4.02), NSVT (OR: 3.4), complex V ectopy (OR: 1.74) were more common in SDB than non SDB groups. No dose response relationship noted between severity of SDB and V arrhythmia SDB much more strongly associated with complex ectopy in younger members than older [OR:9.3 (2.8–30.6) at age 50 to 2.0 (1.3–3.1) at age 70 (p=0.002)] 	 The prevalence of sinus pauses, and 2nd degree AVB was ~15% in the SDB group, however.
Miller WP, et al. 1982 (64) <u>7124758</u>	Study type: Prospective observational - Holter Size: 23 SAS (AHI 12.5–62.5; 78% with AHI >43.75). Age 25– 57 y, 87% male.	Inclusion criteria: SAS severe enough to warrant referral for tracheostomy Exclusion criteria: N/A	 <u>1° endpoint</u>: Describe the frequency and distribution of arrhythmias during sleep in pts with SAS <u>Results:</u> Marked sinus arrhythmia: 18/23 (78%) Heart rate <30 bpm: 2/23 (8.7%) Sinus pause >1.8 s: 2/23 (8.7%) 1st degree AVB: 1/23 (4.3%) Type 1 2nd degree AVB: 1/23 (4.3%) Aggregate: 6/23 (26%) brady (non- sinus arrhythmia) while asleep vs. 1/23 (4.3%) while awake 	 <u>Conclusions</u> Nocturnal marked sinus arrhythmia is common in pts with SAS (predominantly severe SAS) Nocturnal profound bradycardia and sinus pauses occur occasionally in pts with SAS (~9%) Nocturnal first degree and type I 2nd degree AVN occur infrequently in pts with SAS (<5% each) Such bradyarrhythmias are far more common while asleep than awake in this cohort. <u>Comments</u>

1993 (65) <u>8368632</u> EFFECT OF CPAP ON A	Study type: Prospective observational – nocturnal Holter Size: 173 /263 consecutive pts referred for PSG and underwent complete PSG and simultaneous Holter ARRHYTHMIAS - OBSER		<u>1° endpoint</u> : Describe the frequency and distribution of arrhythmias during sleep in pts with SAS <u>Results:</u> Median AHI in SAS group =33 Age of SAS group 48.5±11.3 SAS: 87% male; mean BMI 32.9±6.1 26% of SAS had O₂ sat <80 more than 3% of the study time, 11% has O₂ sat <70 more than 1 % of the study time, and 2.7% had O₂ sat <60 more than 1% of the study time and 2.7% had O₂ sat <60 more than 1% of the study time. 2nd degree AVB: SAS =1.3% (95% CI: 0.4–6.9) vs. No SAS =4.1% (95% CI: 1.6–10.1). p=NS Sinus arrest: SAS =5.2% (95% CI: 2.2–12.6) vs. No SAS =1.0% (95% CI: 0.2–5.6) p=NS Complex ventricular ectopy: SAS =1.3% (95% CI: 0.4–6.9) vs. No SAS =4.1% (95% CI: 1.6–10.1). p=NS 	 Small sample size No comparator Highly selected Conclusions: The prevalence of nocturnal cardiac arrhythmias is low in pts w/o serious cardiac or respiratory comorbidity who are referred for assessment of sleep apnea, and no different from those w/o sleep apnea. Potential referral bias Authors speculate their population consisted of less severe SAS and less severe underlying disease (minority fell below previously suggested thresholds for arrhythmia (Guilleminault and Shepard) Only 2 prior studies=consecutive pts (Guilleminault and Boudoulas) and the others may have been subject to selection bias Only Boudoulas compared SAS to comparator group (albeit pts with other types of sleep disorder) Excluded "major medical conditions" and there may be a complex interaction between CV disease and SAS
1995 (66)	Study type: Prospective observational	Inclusion criteria: Sleep apnea and Mobitz type 2 nd degree	<u>1° endpoint</u> : Describe the frequency and distribution of arrhythmias during sleep in pts with SAS and assess the effect of nCPAP	 CPAP effectively suppresses sleep and sleep apnea

	Size: 17/239	AVB, 3 rd degree AVB or sinus pause >2 s on Holter monitor	on the 2 nd night of treatment and after 4 wk of treatment	associated "heart block" in pts with fairly advanced SA.
	consecutive pts referred to a German sleep clinic over 17 mo who manifested both SAS and "heart block" on ambulatory screening tests. They then underwent serial PSGs with Holter monitoring, w/o and subsequently with CPAP	Exclusion criteria: N/A	 Results: Mean age =50.7 (27–78) Median RDI =90/h (±36.1) at baseline Median RDI =6/h (±6.2) on nCPAP No. of HB episodes =1,575 at baseline No. of HB episodes =165 on CPAP (p<0.001 vs. baseline) – an 89% reduction 12/17 (70.6%) manifested no arrhythmia on CPAP 3/17 (17.6%) manifested a 71–97% reduction in heart block episodes on CPAP (2 of these 3: resolution of HB at 4 wk) 2/17 (11.8%) demonstrated increased heart block on CPAP but 1 demonstrated resolution of HB at 4 wk. 15/17 (88%) manifested no arrhythmia after 4 wk of CPAP 	 Comments Potential referral bias Non-randomized, observational 16/17 subjects were male
Koehler U, et al. 1998 (67) <u>9551750</u>	Study type: Prospective observational Size: 16	Inclusion criteria: Sleep apnea (AHI >10/h), no evidence of SAN or AVN dysfunction on EPS, and nocturnal "heart block" who underwent baseline PSG and PSG on CPAP the following night	<u>1° endpoint</u> : Correlate the frequency of bradyarrhythmias to stages of sleep, oxygen desaturation and apnea, as well as the effect of nCPAP/nasal bilevel positive airway pressure therapy on these arrhythmias in pts w/o EP abnormalities.	 <u>Conclusions</u> CPAP effectively suppresses sleep apnea associated "heart block" in pts with fairly advanced SA. <u>Comments</u>
		Exclusion criteria: AVN blocking or AADs	 Results: Mean age=49.6 (±10.4) y BMI 36.8 (±7.9) kg/m² 13/16 (81.3%) HTN; 0 MI; 2/16 (12.5%) DM; 11/16 (68.8%) LVH by echo; 7/16 (43.8%) COPD 651 episodes of HB; 87.9% during REM and 12.1% during stages 1 and 2 non-REM (p<0.001) 	 Potential referral bias Non-randomized, observational 14/16 subjects were male

			 609/651 (93.5%) occurred during apnea/hypopnea with desaturation ≥4% (but no correlation to nadir O₂ sat above/below 72%) Mean AHI =75.5±39.6/h at baseline and 3.0±6.6/h on nCPAP/BiPAP (p<0.01) Bradyarrhythmia: 651 at baseline (432 episodes of 2nd degree AVB, 178 sinus pauses >2 s, 41 3rd degree AVB) Bradyarrhythmia on nCPAP/BiPAP: 72 (p<0.01) – an 89% reduction in bradyarrhythmia. 	
Grimm W, et al. 2000 (68) <u>10980227</u>	Study type: Prospective observational Size: 29	 Inclusion criteria: Sleep apnea, no evidence of SAN or AVN dysfunction on EPS, and ventricular asystole of 6.7±3.3 s (3.1–16.8 s) exclusively during sleep who underwent PSG with and w/o CPAP and were followed clinically for 54±10 mo Exclusion criteria: AVN blocking or AADs "Advanced" SAN or AVN disease at EPS Symptomatic bradycardia on 24 h Holter (or symptoms of bradycardia, otherwise) 	 <u>1° endpoint</u>: Describe the long-term prognosis for symptomatic bradyarrhythmia in pts with asx bradyarrhythmias associated with sleep apnea and w/o significant conduction abnormalities on EPS. <u>Results:</u> 93% male Mean age: 49 y BMI: 36 kg/m² HTN: 19/29 (66%); CAD: 6/29 (21%); MI: 2/29 (7%) Bradyarrhythmia: 14/29 (48%) sinus arrest, 12/29 (41%) 3rd degree AVB, 3/29 (10%) both sinus arrest and 3rd degree AVB nCPAP abolished all pauses >3 s in 21/29 (72%) nCPAP failed to abolish all pauses in 8/29 (28%) with persistent pauses of 3–5 s No pt developed symptomatic bradycardia over 54±10 mo of follow-up 58% always used CPAP 10% never used CPAP 	 <u>Conclusions</u> Pts free of significant SAN or AVN dysfunction by EPS who are chronically treated with CPAP for SA c/b nocturnal bradycardia are extremely unlikely to have symptomatic bradycardia or syncope in long- term follow-up of 4.5 y. Such pts who receive a PM are unlikely to require pacing very much, at all, if PMs are set to low back-up pacing rates. <u>Comments</u> Potential referral bias Non-randomized, observational Same group as Koehler 93% of subjects were male

Harbison J, et al.	Study type:	Inclusion criteria: Previously	 23/29 had follow-up 24 h Holter: 1/14 w/o PPM had asx pauses up to 3.6 s in duration, while asleep 12/29 (41%) received PPM at discretion of their care provider during study (including 7/8 with persistent pauses on CPAP. 8 PPM programmed in VDI at 30–40 bpm: <1% paced at follow-up 3 PPM programmed in DDD at 40–50 bpm: <10% paced at follow-up 1 PPM programmed in DDD at 60 bpm: >10% paced at follow-up 1° endpoint: Establish the frequency of 	Conclusions
Harbison J, et al. 2000 (69) <u>10988177</u>	Study type: Prospective observational Size: 45 consecutive eligible pts from a university hospital's dedicated sleep disorders unit referred to initiate nCPAP	Inclusion criteria: Previously diagnosed moderate-severe OSA (AHI 50±23/h) who underwent overnight oximetry and concurrent 18 h 2-channel Holter prior to and after initiating CPAP (Becker, Koehler, within 2 nights of initiating). Studies performed in hospital. Exclusion criteria: N/A	 <u>1° endpoint</u>: Establish the frequency of pathologically significant cardiac rhythm disturbances in the group and, in particular, to determine the effect of nCPAP on these disturbances. <u>Results:</u> 91% male Mean age: 50 (SD: 13.1) y BMI: 32.7 (SD: 6.0) kg/m² 35/45 (78%) had some rhythm disturbance at baseline 8/45 (18%) manifested "pathological arrhythmia (complex ectopy, SVT other than sinus tach, or pauses >2 s, 2nd and 3rd degree AVB) 7/45 (15.6%) sinus pause >2 s (frequencies reflect individuals with more than 1 type of arrhythmia and sum is >8) 2/45 (4.4%) from among these 7 with pauses had sinus pauses >3 s (longest =10 s) 2 /45 (4.4%) had complex ventricular ectopy (1 NSVT, 1 ventricular bigeminy) 1/45 (2.2%) had 2nd degree AVB 	 Conclusions Cardiac rhythm disturbances during sleep are common in pts with OSA Potentially significant arrhythmias during sleep are relatively common (18%) Potentially significant nocturnal arrhythmias correlate with OSA severity Potentially significant arrhythmias during sleep are effectively treated by nCPAP therapy. Comments Small sample size Potential referral bias No control group Non-randomized, observational design 91% of subjects were male Absence of data to suggest the presence of arrhythmias during sleep directly influences morbidity and

			 nCPAP abolished all "pathological" arrhythmias in 7/8 (87.5%) The outlier had ischemic CM and severe AS and had both ventricular ectopy and sinus pauses with and w/o CPAP "Pathological" arrhythmias correlated with severity of OSA as indicated by AHI (p=0.04), but not to mean oxygen saturation, BMI, age, BP, glucose, or lipids 	mortality in OSA and the lack of evidence that suppression of arrhythmias with CPAP contributes to improved outcomes in OSA.
Stegman SS, et al.	AS A MARKER OF OSA - Study type:	Inclusion criteria: Referred for	<u>1° endpoint:</u> Prevalence of SAS as indicated	<u>Conclusions</u>
1996 (70) <u>8774819</u>	Prospective observational cohort study <u>Size</u> : 7 pts with clinical indications for cardiac rhythm assessment (ECG, hospital telemetry, and ambulatory monitoring) referred to an EP service for PPM for asx bradyarrhythmias	 PPM for asx profound SB, sinus pauses of 2.08–7.52 s, or 2nd or 3rd degree AVB detected on clinically indicated rhythm assessment. Screened clinically for SAS. Those with suggestive sx were referred for PSG. Exclusion criteria: Medications include beta blocker, digoxin or verapamil. None were trained athletes 	 by PSG in those with asx bradycardia and sx suggestive of SAS. Results: All had normal resting awake heart rates during all EP clinic visits before and after enrollment Bradyarrhythmias prompting referral were all nocturnal or during daytime sleep OSA diagnosed in all by PSG (1 mild, 2 moderate, and 4 severe). Mean nadir O₂ sat: 70.6% (45–88%) 6 treated with CPAP or sleep position modification 1 received tracheostomy after failing CPAP Mean follow-up: 22 mo (18–32 mo) 6/7 (86%) remained free of typical bradyarrhythmia symptoms on treatment for OSA. 7/7 reported improved sx of OSA on treatment 1 with AS and severe CHF had syncope during follow-up but also showed resolution of nocturnal bradycardia on hospital tele after tracheostomy. Authors describe 1 additional subject with daytime and nocturnal profound resting 	 Asx bradyarrhythmias occurring during sleep should prompt screening for SAS. Those with sx suggestive of SAS and significant nocturnal bradycardia have a high likelihood of OSA on PSG Such pts are likely to remain asx on treatment for OSA w/o PPM implantation during 18– 32 months of follow-up. Establishing a Dx of OSA in these pts may obviate the need for PPM by facilitating treatment of the underlying cause of the bradyarrhythmia and identify pts at (potentially modifiable) increased risk for CV events. Small sample size Potential referral bias No control group with negative response to screening questions who also underwent PSG

			sinus bradycardia in the 30s with preserved chronotropic response to exercise and no sx of SAS who did not undergo PSG and refused PPM. Remained asx over 17 mo of follow-up. They highlight the distinct pattern of persistent d and night time bradycardia in this subject vs. exclusively nocturnal bradyarrhythmias in those with SAS	 Non-randomized, observational design and size preclude conclusions regarding the impact of treatment of OSA on outcomes Most did not present definitive indications for PPM in the absence of sx
European Multicenter Polysomno-graphy Study Garrigue S, et al. 2007 (71) <u>17353437</u>	Study type: Prospective observational cohort study Size: 98 consecutive pts with PPM from 11 European centers	 Inclusion criteria: PPM for at least a month for symptomatic SND, advanced AVB, or CRT for HFrEF and QRS >120 ms. Mean spontaneous nocturnal atrial rate ≥50 bpm PPM settings during PSG = DDI at lower rate of 50 bpm in all Exclusion criteria: Recent (<6 mo) MI, USA, or coronary revascularization Permanent atrially paced rhythm 	 <u>1° endpoint</u>: Prevalence and consequence of undiagnosed SAS as indicated by PSG in those with PPM according to indication for pacing: HF, symptomatic "diurnal" bradycardia, and advanced AVB <u>Results:</u> Mean age 64±8 y Pacing indication: 29/98 (30%) DCM/CRT; 33/98 (34%) advanced AVB; 36/98 (37%) for SND 77% male BMI 26.8±5.2 kg/m² HTN: 49%; CAD: 22%; DM: 10% Mean Epworth Sleepiness Score =7±4, similar in all pacing indications. 13/98 (25%) had ESS >11. Prevalence of SAS: 59% (95% CI: 46–69), over twice the estimated prevalence in the general population in other studies SND prevalence of SAS: 58% (27% severe- AHI >30/h) AVB prevalence of SAS: 68% (27% severe) HFrEF prevalence of SAS: 50% (5% severe) V-pacing during PSG: AVB=97±4%; SND=15±12%, CRT: 0% (p<0.01 by ANOVA for AVB and CRT) A-pacing rate similar in all groups at 15– 20% (p=NS) 	 Conclusions Regardless of indication for pacing, those with PPM have a significantly higher prevalence of SAS (59%) than the general population despite relatively few symptoms of SAS (mean ESS =7) The majority of the SA is obstructive even in those with HFrEF/CRT Authors call for systematic screening of PPM recipients for SAS due to the high prevalence and potential CV consequences of SAS Comments No control group w/o PPM for comparison of ESS and PSG results Some elements inconsistent with previous observations including lack of correlation of AHI with age or BMI and the preponderance of OSA rather than CSA in the HFrEF/CRT

 Prevalence of SAS was similar in those with or w/o HTN, CAD or DM, regardless of pacing indication. 75% of SDB events were hypopneas All pts had mixed OSA and CSA. Most apneic events were obstructive, including in the CRT group 	 Although atrial pacing occurred <20% of the time with lower pacing rate of 50 bpm, it was not entirely eliminated atrial pacing has been linked in some studies to reductions in SDB
 in the CRT group <5% of pts had predominantly CSA, regardless of pacing indication No correlation between ESS and AHI (r=0.01; p=NS) 	reductions in SDB

Data Supplement 6. RCTs of Implantable Loop Recorder in Patients With Documented or Suspected Bradycardia or Conduction Disorders (Section 4.3.1)

Study Acronym; Author; Year Published; PMID	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
RAST Krahn AD, et al. 2001 (72) <u>11435336</u>	Aim: To find out whether prolonged monitoring strategy is better than conventional strategy in the evaluation of recurrent syncope <u>Study type:</u> Prospective randomized trial Size: 60 pts	Inclusion criteria: Recurrent unexplained syncope or syncope X 1 associated with injury Exclusion criteria: LVEF <35%, <1 y expected survival, unable to provide follow-up or consent, clear NMS	Intervention: ILR (MDT Reveal) monitoring for 1 y (N=27) Comparator: Conventional testing – 2 to 4 wk of external loop recorder, TTT and EP testing (SNRT, SACT, antegrade/retrograde conduction, programmed electrical stimulation) (N=30) Crossover was allowed if Dx was unable to be made.	• Dx obtained in 14 of 27 pts (ILR group) vs. 6 of 30 pts (conventional group) (52% vs. 20%; p=0.012)	
EaSyAS Farwell DJ, et al. 2004 (73) <u>15246645</u>	Aim: Investigate the impact of ILRs on unselected population of syncopal pts presenting to one institution Study type: Randomized trial Size: 201 pts	Inclusion criteria: recurrent syncope but no definitive Dx following initial clinical w/u (including CSM and TTT) Exclusion criteria: Structural heart disease	Interventions: CSM+TTT+implantation of loop recorder (N=103) Comparator: CSM+TTT+conventional investigation (N=98) Mean follow-up 276 d	EKG Dx made: 34 (33%) in ILR group vs. 4 (4%) in conventional group (HR: 8.93; 95% CI: 3.17–25; p<0.0001)	• Total medical costs: £406 in ILR group vs. £1210 in conventional group (mean difference £809; 95% Cl: 123–2730)
FRESH Podoleanu C, et al. 2014 (74) <u>25241220</u>	<u>Aim:</u> To compare conventional evaluation vs. early use of ILR in low-risk pts with syncope in France	Inclusion criteria: Any recent unexplained syncope (after basic clinical exam)	Intervention: ILR group (N=39) Comparator: Conventional evaluation strategy group (N=39) F/u 14 mo	• Identification of cause: 18 (46.2%) pts in ILR group vs. 2 (5%) pts in conventional group (p<0.001)	 Quality of life was no different between the 2 groups

Page 65

© 2018 American College of Cardiology Foundation, American Heart Association, Inc., and the Heart Rhythm Society.

	Exclusion criteria:	Days of hospitalization:
Study type:	Significant heart disease,	5.7 d in ILR group vs.
Prospective open	- EF <40%, Hx of MI or	8.0 d in conventional
label randomized	unstable CAD, Hx of	group (p=0.55)
multicenter study	arrhythmia, family Hx of	 Number of advanced
	SCD, conduction	cardiac tests needed:
<u>Size</u> : 78 pts	disturbance on EKG,	0.03/pt in ILR group vs.
	HOCM, AS, potentially	0.2/pt in conventional
	arrhythmogenic drug use	group (p=0.05)

Data Supplement 7. Nonrandomized Trials, Observational Studies, and/or Registries of Electrophysiology Testing in Patients With Documented or Suspected Bradycardia or Conduction Disorders (Section 4.3.2)

Study Acronym; Author; Year Published; PMID	Study Type/Design; Study Size (N)	Patient Population	Primary Endpoint and Results	Summary/Conclusion; Comments
Denniss AR, et al. 1992 (75) <u>1572741</u>	Aim: Electrophysiologic studies in pts with unexplained syncope Study type: Prospective cohort Size: 111 pts	Inclusion criteria: Unexplained syncope, prior general medical evaluation (H&P, CXR, echo, LHC, neuro exam, heart monitor, etc) Exclusion criteria: Documented tachy or bradyarrhythmia, Dx of vasovagal syncope, postural hypotension, AS, HOCM or prolonged QT interval Mean follow-up 20 mo	 Results: No mortality within 30 d of EPS Pts with heart disease (CAD, HTN, MVP, CMP) had higher incidence of conduction disease (26%) than those w/o heart disease (8%; p<0.05) Abnormal EPS (conduction disease, SVT, VT) findings in 42% of pts with heart disease but 16% of pts w/o heart disease (p<0.01) Syncope occurred in only 5% of treated pts with abnormal findings at EPS vs. 24% in the group not receiving any Rx (p<0.05) No recurrent syncope in 27 pts treated with PPM vs. recurrent syncope in 20 of 84 pts (24%) not given PPM (p<0.05) 	 Diagnostic yield of EPS is increased in pts with heart disease. Pts with no heart disease had no mortality.

Data Supplement 8. RCTs Comparing Atropine to Placebo for Bradycardia (Section 5.3.2.1)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Smith I, et al. 1994 (76) <u>7906108</u>	Aim: To compare the effectiveness in the treatment of intraoperative bradycardia of transesophageal atrial pacing, atropine, and glycopyrrolate Study type: RCT	Inclusion criteria: Men undergoing elective radical prostatectomy with sufentanil/N ₂ O/vecuronium anesthetic resulting in bradycardia (<50 bpm or <60 bpm and hypotension) Exclusion criteria: Pts not ASA status I–III.	Intervention: 15 patients were randomized to each group. Comparator: TAP vs. atropine vs. glycopyrrolate	<u>1° endpoint</u> : Time for heart rate to increase to >70 bpm was shortest in the temporary pacing group. There were no significant differences in postoperative course in the 3 groups. <u>Safety endpoint</u> : N/A	• N/A

	Size: N=64, of which 45 had treatment for bradycardia				
Sodeck GH et. al. 2007 (77) <u>17212976</u>	Study type: Observational, retrospective, single center Size: N= 277	Inclusion criteria: Pts presenting to ED with symptomatic bradycardia of <60 bpm Exclusion criteria: Asymptomatic bradycardia	Of 170 with persisting atropine, 92 catechol adrenaline in 24 and 0 and 7 required transc medical therapy nor 0	rtality rtality symptoms, 141 received amines (orciprenaline in 62, dopamine/dobutamine in 6), utaneous pacing. Neither cause-specific treatment could o pts, who required temporary	 Initial stabilization with bedrest and intravenous atropine or catecholamines was effective in the majority of pts.
Aghamohammadi,	Aim: To determine the	Inclusion criteria: 15–50 y old	Intervention:	1° endpoint: Frequency of	 None of the pts
H., et al. 2009 (78)	efficacy of pre-	undergoing elective urologic	Atropine sulfate 0.6	bradycardia was 28% in non-	treated with atropine
<u>19472126</u>	induction atropine in	laparoscopic surgery	mg IV	atropine group and 0 in the	had bradycardia,
	preventing bradycardia			atropine group (p<0.01)	compared to 28.1% of
	during laparoscopic	Exclusion criteria: History of	Comparator: Saline		pts in the saline group
	urologic surgery	cardiac arrhythmia, drug		Safety endpoint (if relevant):	
		induced bradycardia, cardiac		Mean systolic BP decrease	 Mean systolic and
	Study type: RCT	disease, contraindication to		was 15.7±10 mm Hg in	diastolic BP was more
		general surgery.		atropine group and 23.5±9.8	stable in the atropine
	<u>Size</u> : N=64			mm Hg in controls (p<0.01)	group.

Data Supplement 9. Nonrandomized Trials, Observational Studies, and/or Registries of Atropine in SND and Hemodynamically Significant Bradycardia (Section 5.3.2.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Brady WJ, et al. 1999 (79) <u>10459592</u>	Study type: Retrospective observational study of prehospital, emergency department, and hospital records Size: 172 pts met entry criteria, data were available for 131	Inclusion criteria: Prehospital pts with hemodynamically unstable bradycardia who received atropine by EMS. Hemodynamic instability was defined as the presence of any of the following: ischemic chest pain, dyspnea, syncope, altered mental status, and systolic BP less than 90 mm Hg. Bradycardia was defined as sinus bradycardia, junctional bradycardia, or idioventricular bradycardia (grouped as bradycardia) while AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A	<u>1° endpoint</u> : Heart rate response that occurred within one minute following each dose of atropine. <u>Results:</u> 45 pts with AVB, 86 bradycardia. 26 (19.8%)had a partial response, 36 (27.5%) complete, 65 (49.6%) none, and 4 (2.3%) had an adverse response	 One-half of pts had a complete or partial response to atropine and adverse reactions were uncommon. Pts who presented with non-AVB bradycardia received less atropine and were more likely to arrive in the emergency department with SR.
Swart, G, et al. 1999 (80) <u>10597081</u>	Study type: Retrospective observational study of	Inclusion criteria: Prehospital pts with hemodynamically	<u>1° endpoint</u> : Heart rate response that occurred within	• There were no differences in response to atropine in AMI vs. non-AMI pts with

Page 69

© 2018 American College of Cardiology Foundation, American Heart Association, Inc., and the Heart Rhythm Society.

	prehospital,	unstable bradycardia or	1 min following each dose of	hemodynamically unstable bradycardia
		AVB who received	_	or AVB.
	emergency department, and	atropine by EMS.	atropine	-
	hospital records		Results: No differences in AMI	Hemodynamically unstable AVB was
	nospital records			associated with AMI in 55.6% of pts.
	C:	Hemodynamic	vs. non-AMI groups in the	
	Size: 172 pts met	instability was defined	likelihood of achieving SR (40%	
	criteria, data available	as the presence of any	vs. 18.6%; p=0.07), amount of	
	for 131; 45 presented with AMI	of the following:	atropine, or additional	
	with Alvii	ischemic chest pain,	resuscitative therapies given.	
		dyspnea, syncope,		
		altered mental status,		
		and systolic BP less		
		than 90 mm Hg.		
		Bradycardia was		
		defined as sinus		
		bradycardia, junctional		
		bradycardia, junctional		
		idioventricular		
		bradycardia (grouped		
		as bradycardia),		
		whereas AVB included		
		first-, second- (types I		
		and II), or third-degree		
		(grouped as AVB).		
		Exclusion criteria: N/A		
Warren JV, et al. 1976	Study type:	Inclusion criteria: Pts in	1° endpoint: Mortality	 The use of atropine to treat bradycardia
(81)	Retrospective	early phase of AMI with		with and w/o hypotension was effective
<u>1244735</u>	observational study of	heart rate <60 bpm.	Results: In pts with	and safe.
	pts with AMI and		hypotension complicating	
	bradycardia	Exclusion criteria: N/A	presentation with AMI and	
			hypotension, the mortality	
	<u>Size</u> : N=70		rate was 75% w/o atropine	
			and 25% with atropine. In pt	
			with normal BP, the mortality	
			rate was 13 and 14% and did	
			not differ between groups.	

			Ventricular fibrillation occurred in 1/45 pts treated with atropine, and 2/45 pts not treated with atropine. Atropine at a dose of 0.5–1 mg was effective in increasing heart rate.	
Scheinman MM, et al.	Study type:	Inclusion criteria: Pts with	<u>1° endpoint</u> : Heart rate	 Atropine had beneficial effects in pts
1975 (82)	Observational, single	AMI and sinus bradycardia		with AMI complicated by sinus
<u>1157275</u>	center		Results: Atropine increased	bradycardia, particularly at dosages of
		Exclusion criteria:	heart rate and BP, abolished	0.5–0.6 mg. Higher doses were
	<u>Size</u> : N=56	Preterminal pts, during or	PVCs and accelerated	associated with a higher incidence of
		after CPR, AMI and AVB,	idioventricular rhythm. 7 pts	adverse effects.
		use of digitalis,	had serious adverse effects,	
		propranolol, or pre-	including ventricular	
		existing sinus bradycardia.	fibrillation and sinus	
			tachycardia.	

Data Supplement 10. Nonrandomized Trials, Observational Studies, and/or Registries of Isoproterenol Effect in Electrophysiology Laboratory (Section 5.3.2.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR RR; & 95% CI)	Summary/Conclusion Comment(s)
Ogawa H, et. al. 1991 (83) <u>2010943</u>	Study type: Single center study of IV isoproterenol, propranolol, atropine and methoxamine in electrophysiology lab Size: N=36	Inclusion criteria: SND and normal Exclusion criteria: N/A	1° endpoint:28 pts with SND, 8 normalpts. Heart rate and recovery time beforeand after IV drug administration weremeasured.Results:17 pts with SND w/o syncope hada normal heart rate response toisoproterenol compared to a significantlylower heart rate response in 11 pts withsyncope	• Many pts with SND showed heart rate increases with isuprel similar to normal controls; this was seen less often in pts with SND and syncope
Mandel WJ, et al. 1972 (84) <u>5072776</u>	Study type: Single center electrophysiology study Size: N=31	Inclusion criteria: Pts with ECG/monitor documented SND Exclusion criteria: N/A	 <u>1° endpoint</u>: Response to autonomic, exercise and pacing maneuvers, isoproterenol infusion at 1–2 mcg/min. <u>Results</u>: 12 pts underwent Isoproterenol testing, all responded with an increase in heart rate to infusion (mean 52 bpm–mean 118 bpm). Comparatively, the response to atropine was less (52 bpm–64 bpm) 	 In an SND population, response to exercise and isoproterenol was within the expected normal range. Relative unresponsiveness of heart rate to atropine was noted in several pts. The study concluded this small group of pts with SND are characterized by normal sympathetic reactivity and abnormal parasympathetic reactivity.
Strauss HC, et al. 1976 (85) <u>1260979</u>	Study type: Single center electrophysiology study Size: N=20	Inclusion criteria: Pts with ECG documented SND Exclusion criteria: N/A	<u>1° endpoint</u> : Conduction times, response to atropine and isoproterenol infusion <u>Results:</u> Graded infusion of isoproterenol resulted in 19 pts, 4 required a dosage higher than 28.3 ng/kg/min to produce a 20% decrease in sinus cycle length. 19 pts received 1 mg of atropine, resulting in a mean reduction of sinus cycle length of 19%	 Heart rate increased in response to atropine and isuprel in pts with SND. Higher doses of isoproterenol may be required.

Study Acronym; Author;	Aim of Study; Study Type;	Patient Population	Study Intervention (# patients) /	Endpoint Results (Absolute Event Rates,	Relevant 2° Endpoint (if any); Study Limitations;
Year Published	Study Size (N)		Study Comparator (# patients)	P values; OR or RR; & 95% Cl)	Adverse Events
• 'PrePACE'	Aim: To evaluate the	Inclusion criteria:	Intervention: All pts	<u>1° endpoint:</u> Survival to	• Survival to hospital discharge
Morrison LJ, et al. 2006 (86)	feasibility of a RCT of transcutaneous	Unstable bradycardia unresponsive to fluid	received 250 ml saline IV bolus. If	hospital discharge	was similar in both groups (70% vs. 69%; p=0.93), as were 2°
<u>17933452</u>	pacing vs. dopamine	and atropine: heart rate	nonresponse, pts	Safety endpoint (if	outcomes.
	for atropine and fluid	<60/min and systolic BP	received atropine 1	<u>relevant)</u> :	
	refractory	(SBP) <80 mm Hg; or	mg, repeated if	Ventricular arrhythmia,	
	bradycardia in the	heart rate <60/min and	improved. If pts failed	cutaneous burns, chest wall	
	prehospital setting.	SBP <100 mm Hg and at	to respond, they were	discomfort, cardiac arrest,	
		least one additional	randomized to	TCP failure.	
	Study type: RCT	sign/symptom	transcutaneous pacing		
			(with midazolam) vs.		
	Size: 151 met criteria,	Exclusion criteria:	dopamine		
	82 enrolled	Advance directives,			
		trauma, hyperthermia,	Comparator:		
		hypothermia or cardiac	Dopamine starting at 5		
		arrest, pts in whom it	mcg/kg/min,		
		was not possible to start	increasing the dose by		
		an intravenous line.	5 mcg/kg min every 2		
			min until an		
			improvement in signs		
			and symptoms was		
			observed, maximum		
			dose of 20 mcg/kg/min		

Data Supplement 11. RCTs of Dopamine in Bradycardia (Section 5.3.2.1)

Data Supplement 12. Nonrandomized Trials, Observational Studies, and/or Registries of Calcium, Glucagon and High Dose Insulin Therapy to treat Beta-Blocker and Calcium Channel Blocker Toxicity (CCB) (Section 5.3.2.2)

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
Howarth DM, et al.	Study type: Multi-	Inclusion criteria: Admission	1° endpoint: Clinical outcome	 Atropine was only effective after
1994 (87)	center observational	for CCB overdose		IV calcium was administered
<u>7909677</u>	study of CCB			 Calcium often reversed
		Exclusion criteria: N/A		hypotension and bradycardia, but

Page 73

	overdose in an Australian population <u>Size</u> : N=15		<u>Results</u> : All pts treated with oral activated charcoal, most required calcium, atropine, and inotropic support. 4 pts died.	atropine and inotropic support were frequently required
Ramoska EA, et al. 1993 (88) <u>8427431</u> St-Onge M, et al. 2014 (89)	Study type: Retrospective, observational, 3 poison control centers Size: N= 138 Study type: Systematic review	Inclusion criteria: Hospitalized pts with CCB ingestion Exclusion criteria: N/A	 <u>1° endpoint</u>: Clinical outcomes <u>Results:</u> There were no deaths. Ipecac (26%), lavage (40%), and activated charcoal (81%)were administered. Calcium was administered to 23 pts with sinus node suppression; 64% responded with an increased heart rate. Dopamine had no effect on bradycardia. Atropine was used in 7 pts with SND, 29% responded with an increased heart rate. Transvenous pacing was used in 4 pts. Isoproterenol increased heart rate in 2 pts with SND, but not the pt with AVB. Glucagon increased BP w/o effect on heart rate. <u>1° endpoint</u>: Efficacy of treatments for CCB poisoning with primary outcomes of 	 Hypotension, dysrhythmias, and depression of the sinus node occurred with equal frequency in verapamil, nifedipine, and diltiazem overdose. AVB was more common and severe with verapamil. Although IV calcium was not universally effective, its use was associated with clinical improvement in hemodynamic parameters in the majority. No dose response relationship for either calcium gluconate or calcium chloride was noted Evidence to support IV calcium in CCB overdose is of low quality,
25283255	Size: 216 studies	treatments for CCB poisoning for efficacy. <u>Exclusion criteria:</u> N/A	mortality and hemodynamic parameters <u>Results:</u> 117 case reports of 216 studies. 7 animal studies showing hemodynamic and mortality improvement with calcium. In humans, 11 case series and 21 case reports were inconsistent in demonstrating benefit.	but animal studies and human case reports and series often demonstrate improved hemodynamic parameters, and adverse effects (hypercalcemia) are rare.
GLUCAGON				
Love JN, et al. 1998 (90) <u>9674488</u>	Study type: Retrospective, observational, single center Size: N=9	Inclusion criteria: Pts presenting with symptomatic bradycardia who received glucagon therapy. Exclusion criteria: Clinical response to atropine	 <u>1° endpoint</u>: Clinical improvement in heart rate and perfusion. <u>Results</u>: 9 pts were receiving BB, CCB, or digoxin therapy. Heart rate and BP increased significantly in all but one pt who received glucagon. 	 8/9 pts presenting with symptomatic bradycardia, that may have been caused or exacerbated by chronic BB, CCB, or digoxin therapy demonstrated clinical improvement with glucagon after failing atropine

Bailey B 2003 (91) 14514004	Study type: Systematic review	Inclusion criteria: Studies evaluating glucagon use in	<u>1° endpoint</u> : Effect of glucagon on heart rate, arterial pressure, contractility, cardiac output	• Evidence supporting the use of glucagon in the management of
14514004	Systematic review	BB and CCB overdose.	and survival in BB or CCB overdose.	pts with BB or CCB overdose is
	<u>Size</u> : N=30 (all			limited, but demonstrates
	animal)	Exclusion criteria: Case	Results: 5 animal studies of BB overdose,	transient improvement in heart
		report or case series.	glucagon increased heart rate, but effect on	rate and conduction.
			survival was unclear. In 6 animal studies of	
			CCB overdose, glucagon transiently increased	
			heart rate and reversed AVB w/o effect on survival.	
St-Onge M, et al.	Study type:	Inclusion criteria: Studies	<u>1° endpoint</u> : Efficacy of treatments for CCB	• Evidence to support the use of
2014 (89)	Systematic review	examining effects of various	poisoning with primary outcomes of	glucagon in CCB overdose is
<u>25283255</u>		treatments for CCB	mortality and hemodynamic parameters	scant. Hyperglycemia and
	Size: 216 studies	poisoning for efficacy.		vomiting were side effects seen in
			Results: 2 of 3 animal studies, and 1 of 3	case reports.
		Exclusion criteria: N/A	human case series showed improvement in	
	THEDADY		heart rate with glucagon.	
HIGH DOSE INSULIN Engebretsen KM, et	Study type:	Inclusion criteria: N/A		
al. 2011 (92)	Systematic review	inclusion criteria. N/A	<u>1° endpoint</u> : Efficacy	 Evidence to support HDIT is of low quality, but validates safety
21563902	Systematic review	Exclusion criteria: N/A	Results: Clinical data are limited; animal	and efficacy in the treatment of
21300302	Size: 72 studies		studies and case reports demonstrate safety	BB and CCB toxicity.
			and survival in BB and CCB poisoning is	,
			superior when treated with HDIT compared	
			with calcium, glucagon, epinephrine, and	
			vasopressin.	
St-Onge M, et al.	Study type:	Inclusion criteria: Studies	<u>1° endpoint</u> : Efficacy of treatments for CCB	 Evidence to support HDIT in CCB
2014 (89)	Systematic review	examining effects of various	poisoning with primary outcomes of	overdose is of low quality, but
<u>25283255</u>	Size, 216 studios	treatments for CCB	mortality and hemodynamic parameters	observational data demonstrate
	Size: 216 studies	poisoning for efficacy.	Results: One observational study in humans	improved hemodynamics and survival.
			of HDIT showed improved hemodynamic	Survival.
		Exclusion criteria: N/A	parameters and decreased mortality with risk	
			of hypoglycemia and hypokalemia.	
Greene SL, et al.	Study type:	Inclusion criteria: Pts with	<u>1° endpoint</u> : Safety of HDIT in CCB overdose.	HDIT in the setting of
2007 (93)	Prospective, single	CCB toxicity and hypotension		hemodynamically significant CCB
<u>17622512</u>	center, observational	treated with HDIT	Results: 6/7 pts survived.	overdose was safe in a critical
				care setting. Systolic BP was

<u>Size</u> : N=7	Exclusion criteria: N/A	increased by insulin loading. Mild
		hypoglycemia and hypokalemia
		were noted.

Data Supplement 13. RCTs Comparing Anti-Digoxin Fab to placebo (Section 5.3.2.3)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Eddleston M, et al. 2000 (94) <u>10768435</u>	<u>Aim</u> : To determine effectiveness of anti- digoxin Fab fragments in reversing oleander induced arrhythmias <u>Study type</u> : RCT <u>Size</u> : N=66	Inclusion criteria: Pts with Hx of yellow oleander ingestion with sinus bradycardia <40 bpm, sinus arrest or block, atrial tachyarrhythmias, or 2 nd or 3 rd degree heart block. Exclusion criteria: Hypotension (SBP < 80 mm Hg), ventricular tachycardia with shock	Intervention: 1200 mg of anti-digoxin antibodies Comparator: Saline placebo	<u>1° endpoint</u> : Reversal of original arrhythmia in 15/24 treated pts vs. 2/32 controls. Heart rate increased from 49.1 bpm to 66.8 bpm in 2 h in treated pts, did not change in controls (p<0.001). Serum potassium decreased from 4.9 mmol/L to 4.1 mmol/L at 2 h in cases, not in controls (p< 0.001). <u>Safety endpoint (if</u> <u>relevant)</u> : N/A	 Anti-digoxin Fab antibody therapy increased heart rate and improved time to reversal of bradycardia.

Data Supplement 14. Nonrandomized Trials, Observational Studies, and/or Registries of Digoxin Fab Antibody Fragments (Section 5.3.2.3)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
Lapostolle F, et al. 2008 (95) <u>18824911</u>	Study type: Retrospective, single center, observational Size: N=141	Inclusion criteria: Pts admitted with digitalis poisoning Exclusion criteria: N/A	1° endpoint: Survival <u>Results:</u> 66/141 pts received Digoxin Fab. 5 pts died. No adverse effects were noted.	 Therapy of digitalis overdose with digoxin Fab was associated with a mortality rate of 7.6%
Lapostolle F, et al. 2008 (96) <u>18389220</u>	Study type: Retrospective, observational, multi- center (20) Size: N=838	Inclusion criteria: Pts presenting with elevated digitalis concentration. Exclusion criteria: N/A	 <u>1° endpoint</u>: Use and efficacy of digoxin antibody. <u>Results:</u> 67/838 pts received digoxin antibody. Mortality was significantly lower in Fab treated pts (6% vs. 15%) 	 Digoxin antibody therapy may be underused, and is associated with improved mortality.
Chan BS and Buckley NA, 2014 (97) <u>25089630</u>	Study type: Systematic Review Size: N= 140 studies	Inclusion criteria: N/A Exclusion criteria: Case reports w/o pharmacologic data.	 <u>1° endpoint</u>: Effectiveness, pharmacology, safety and dosage of digoxin-Fab in pts with digoxin overdose. <u>Results:</u> There were no RCT of digoxin Fab for the treatment of digoxin toxicity. 10 case series with 2080 pts were evaluated. Clinical response occurs in 50–90% of pts within 30–45 min. Exacerbation of HF, tachycardia, hypokalemia, and allergic reactions happen in <10%. 	 Digoxin Fab is safe and indicated in pts with life-threatening arrhythmias and an elevated digoxin concentration. Full neutralizing dosages may not be required. In acute toxicity, 80 mg, repeated as required, is likely to be effective. In chronic toxicity, 40 mg with repeat in 60 min (or sooner if pt is unstable) is likely to be beneficial.
Smith TW, et al. 1982 (98) <u>6752715</u>	Study type: Observational, single center Size: N=26	Inclusion criteria: Pts with digitalis toxicity and arrhythmia or hyperkalemia refractory to initial therapy Exclusion criteria: N/A	<u>1° endpoint</u> : Morality <u>Results:</u> 21/26 pts survived. Arrhythmia and hyperkalemia were rapidly reversed by digoxin Fab, and no adverse reactions were seen.	 Digoxin Fab is an effective and safe therapy for digitalis toxicity associated with arrhythmias or hyperkalemia
Wenger TL, et al. 1985 (99) <u>3886748</u>	<u>Study type</u> : Observational multi- center (20)	Inclusion criteria: Pts with life-threatening digitalis toxicity.	1° endpoint: Clinical outcome	 Life-threatening digoxin toxicity can be safely and effectively treated with digoxin Fab.

Page 77

<u>Size</u> : N=63	Exclusion criteria: N/A	<u>Results:</u> Reversal of clinical toxicity within 30 min of administration. Digoxin concentration decreased to undetectable. No adverse reactions.	
Study type: Observational multi- center (21) Size: N=150	Inclusion criteria: Pts with digitalis toxicity and life- threatening cardiac rhythm disturbances or hyperkalemia refractory or likely to be refractory to conventional therapy.	<u>1° endpoint</u> : Response to therapy. <u>Results:</u> 119/148 resolved all clinical evidence of toxicity, 14 improved, 15 showed no response. 5 pts were on hemodialysis and improved.	 Digoxin Fab is an effective antidote to digitalis toxicity.
<u>Study type</u> : Observational, retrospective. <u>Size</u> : N=717	Exclusion criteria: N/A Inclusion criteria: Adults who received digoxin Fab for digitalis intoxication. Exclusion criteria: N/A	<u>1° endpoint:</u> Clinical response <u>Results:</u> 50% complete, 24% partial, and 12% had no response. 0.8% had an allergic reaction.2.8% developed recurrent toxicity, which was associated with inadequate dosing.	• Digoxin Fab was well tolerated and effective in pts with digitalis toxicity.
Study type: observational, retrospective Size: N/A	Inclusion criteria: Pts in multicenter study of digoxin Fab, a postmarket surveillance study, and any reports in the literature of pts treated with digoxin Fab with renal dysfunction.	<u>1° endpoint:</u> Clinical response <u>Results:</u> No evidence of decreased safety or efficacy with respect to response or recurrence. 28 subjects were anephric, one of these pts possibly had recrudescent toxicity with AVB.	• Digoxin Fab was effective and safe in pts with digitalis toxicity and renal dysfunction.
	Observational multi- center (21) Size: N=150 Study type: Observational, retrospective. Size: N=717 Study type: observational, retrospective	Observational multicenter (21)digitalis toxicity and life- threatening cardiac rhythm disturbances or hyperkalemia refractory or likely to be refractory to conventional therapy.Size: N=150Exclusion criteria: N/AStudy type: Observational, retrospective.Inclusion criteria: Adults who received digoxin Fab for digitalis intoxication.Size: N=717Exclusion criteria: N/AStudy type: observational, retrospectiveInclusion criteria: N/ASize: N/AInclusion criteria: Pts in multicenter study of digoxin Fab, a postmarket surveillance study, and any reports in the literature of pts treated with digoxin Fab	Study type: Observational multi- center (21)Inclusion criteria: Pts with digitalis toxicity and life- threatening cardiac rhythm disturbances or hyperkalemia refractory or likely to be refractory to conventional therapy.1° endpoint: Response to therapy.Size: N=150Inclusion criteria: N/AResults: 119/148 resolved all clinical evidence of toxicity, 14 improved, 15 showed no response. 5 pts were on hemodialysis and improved.Study type: Observational, retrospective.Inclusion criteria: N/A1° endpoint: Clinical responseSize: N=717Exclusion criteria: N/A1° endpoint: Clinical responseStudy type: observational, retrospective.Inclusion criteria: N/A1° endpoint: Clinical responseStudy type: observational, retrospective.Inclusion criteria: N/A1° endpoint: Clinical responseStudy type: observational, retrospective.Inclusion criteria: Pts in multicenter study of digoxin Fab, a postmarket surveillance study, and any reports in the literature of pts treated with digoxin Fab with renal dysfunction.1° endpoint: Clinical responseSize: N/AN/AResults: No evidence of decreased safety or efficacy with respect to response or recurrence. 28 subjects were anephric, one of these pts possibly had recrudescent toxicity with AVB.

Data Supplement 15. Nonrandomized Trials, Observational Studies, and/or Registries of Dialysis for Digoxin Toxicity (Section 5.3.2.3 – Patton)

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
EXTRIP	Study type: Systematic	Inclusion criteria: Use of	1° endpoint: Clinical outcome	 The workgroup suggested against the use
Mowry JB, et al. 2016	review	dialysis in digitalis toxicity	and toxicokinetic data.	of dialysis in cases of digoxin toxicity,
(103)				whether or not digoxin Fab was available.
<u>26795743</u>	Size: N= 77 articles	Exclusion criteria: N/A	Results: Only in vitro, animal	
			studies, case reports, and case	
			series were identified, with a	
			total of 84 pts. Digoxin is	
			slightly dialyzable, and dialysis	
			is unlikely to improve the	
			outcome of digoxin toxicity.	

Data Supplement 16. RCTs Comparing Methylxanthines in Bradycardic Arrest (Section 5.3.2.4)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Abu-Laban RB, et al. 2006 (104) <u>16698410</u>	Aim: To determine if administration of aminophylline increases ROSC in bradycardic cardiac arrest <u>Study type</u> : RCT <u>Size</u> : N= 971	Inclusion criteria: Asystole, or PEA <60 bpm, unresponsive to epinephrine and atropine Exclusion criteria: Age <16 y, pregnancy, DNR, evidence of hemorrhage, trauma or hypothermia, dialysis, theophylline sensitivity or use.	Intervention: 250 mg aminophylline IV x2. Comparator: Placebo	<u>1° endpoint</u> : ROSC <u>Safety endpoint (if</u> <u>relevant)</u> : N/A	 There was no difference in ROSC in the group that received aminophylline adjunctive therapy. Use of aminophylline was associated with an increase in non- sinus tachycardias
Hurley KF, et al. 2015 (105) <u>26593309</u>	<u>Study type</u> : Systematic Review of effects of aminophylline in the treatment of	Inclusion criteria: All randomized trials of aminophylline vs. placebo in adults with		1° endpoint: Survival to hospital discharge.	 Prehospital administration of aminophylline in

Page 79

bradycardic cardiac	nontraumatic	Results: There was no	bradyasystolic arrest
arrest	bradycardic cardiac	survival benefit of	is not associated with
	arrest treated with ACLS	aminophylline (RR: 0.58;	improved survival,
Size: 5 trials, N=1254 pts		95% CI: 0.12–1.39); or	ROSC, or survival to
		on survival to hospital	hospital admission.
		admission (RR: 0.92;	
		95% CI: 0.61–1.39); or	
		ROSC (RR: 1.15; 95% CI:	
		0.89–1.49).	

Data Supplement 17. Nonrandomized Trials, Observational Studies, and/or Registries of Methylxanthines for acute therapy of bradycardia due to spinal cord injury or post-heart transplant (Section 5.3.2.4)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR;	Summary/Conclusion Comment(s)
Post-heart Transplant			& 95% CI)	
Redmond JM, et al. 2005 (106) <u>8443190</u>	Study type: Nonrandomized trial of oral theophylline Size: N=15	Inclusion criteria: Sinus or nodal bradycardia or sinus arrest post-heart transplant Exclusion criteria: N/A	 <u>1° endpoint</u>: restoration of normal SR <u>Results:</u> Normal SR was restored with a rate >90 bpm in 93.3% given theophylline Therapy was initiated 3–24 d after transplantation Mean duration of treatment was 57.4 d 	 Oral theophylline was effective at restoring SR at a desirable heart rate. Compared to historical controls, placement of a PPM was reduced from 16.1% to 2.6%
Bertolet BD, et al. 1996 (107) <u>8800116</u>	Study type: Nonrandomized trial of oral theophylline Size: N=29	Inclusion criteria: Bradyarrhythmia (heart rate <70 bpm) in in heart transplant recipients Exclusion criteria: N/A	 <u>1° endpoint</u>: Mean heart rate, length of stay <u>Results:</u> Mean heart rate increased from 62± 7 to 89±10 after administration of theophylline. Length of stay did not differ. 	 Theophylline was effective at increasing heart rate post-transplant
Rothman SA, et al. 1995 (108) <u>7654727</u>	<u>Study type</u> : Observational study	Inclusion criteria: Post- heart transplant pts Exclusion criteria: N/A	<u>1° endpoint:</u> Effects of IV aminophylline on heart transplant recipients	• Both groups had abnormal sinus node recovery times. Aminophylline did not correct this in transplant recipients with or w/o SND.

Page 80

Heinz G, et al. 1993	Size: N=26 (13 with and 13 w/o sinus node dysfunction) Study type:	Inclusion criteria: Pts with	Results:Sinus node testing was performed in electrophysiology lab before and after infusion of 6 mg/kg of aminophylline.1° endpoint:Changes in sinus node	Aminophylline can improve sinus node
(109) <u>8427182</u>	observational single center.	and w/o SND after heart transplant	recovery time from baseline after aminophylline infusion	function in heart transplant recipients with SND
	<u>Size</u> : N=9	Exclusion criteria: N/A	<u>Results:</u> Normalization of sinus node function was seen after aminophylline 0.48 gm IV in all 3 pts with abnormal sinus node function.	
Spinal Cord Injury	Chudu tumou Cono nomina	Inclusion exiterios Dto with	40 1 1 1 5 5 5 1 1	
Pasnoori VR, et al. 2004 (110)	Study type: Case series	Inclusion criteria: Pts with severe bradycardia and	<u>1° endpoint</u> : Effects of aminophylline	 Use of aminophylline, followed by theophylline in atropine resistant
<u>14766019</u>	<u>Size</u> : N=2	spinal cord injury Exclusion criteria: N/A	<u>Results</u>: Increased heart rate and BP with 300 mg IV aminophylline and 5 mg/kg/h infusion, changed to theophylline after 2 d	bradycardia was associated with increased heart rate and avoidance of PM placement
Sadaka F, et al. 2010 (111) <u>20878263</u>	Study type: Observational case series	Inclusion criteria: Pts with severe bradycardia due to spinal cord injury	<u>1° endpoint:</u> Heart rate response to theophylline	 Theophylline was effective and safe as a second-line agent, and potentially a first- line agent for treatment of
	<u>Size</u> : N=6	Exclusion criteria: N/A	<u>Results:</u> Heart rates improved in all 6 pts with severe bradycardias and hypotension. Theophylline was used as a second-line agent (after atropine and/or dopamine) in 4/6, and first-line in 2/6	 hemodynamically unstable bradycardia in pts with acute spinal cord injury. Effective dosages resulted in serum levels below the therapeutic range of 10–20 mcg/ml. No pt required a PM.
Schulz-Stübner S, 2005 (112) 16301263	Study type: Case series Size: N=3	Inclusion criteria: Pts with severe bradycardia due to spinal cord injury	<u>1° endpoint:</u> Heart rate response to theophylline	 Improved heart rate was seen in all 3 pts after IV theophylline, and maintained with oral theophylline
	<u></u>	Exclusion criteria: N/A	<u>Results</u>: Heart rates increased from 30–40 with pauses to 60–70 after theophylline. Increased respiratory drive was seen in one pt.	 Dosages were 200 mg IV theophylline and 50–100 mg po every 8 h

Data Supplement 18. Trials of Temporary Transesophageal or Transvenous Pacing (Section 5.3.3)

Page 81

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Smith I, et al. 1994 (76) <u>7906108</u>	Aim: To compare the effectiveness in the treatment of intraoperative bradycardia of transesophageal atrial pacing, atropine, and glycopyrrolate Study type: RCT Size: N=64, of which 45 had treatment for bradycardia	Inclusion criteria: Men undergoing elective radical prostatectomy with sufentanil/N2O/vecuronium anesthetic resulting in bradycardia (<50 bpm or <60 bpm and hypotension) Exclusion criteria: Pts not ASA status I-IFII.	Intervention: 15 pts were randomized to each group. Comparator: TAP vs. atropine vs. glycopyrrolate	<u>1° endpoint</u> : Time for heart rate to increase to >70 bpm was shortest in the temporary pacing group. There were no significant differences in postoperative course in the 3 groups. <u>Safety endpoint</u> : N/A	• Transesophageal pacing route is relevant to SND.
Ferguson JD, et.al. 1997 (113) <u>9217762</u>	Aim: To compare effectiveness of conventional TTVP with balloon floatation pacing catheters. Study type: Randomized, parallel- group trial Size: N= 40	Inclusion criteria: Pts needing TTVP. Exclusion criteria: N/A	Intervention: Balloon flotation pacing catheter. Comparator: Conventional TTVP.	<u>1° endpoint</u> : Procedural outcomes <u>Safety endpoint</u> : Complications	 Only 1/40 pts had sinus arrest. Satisfactory TTVP positions were more frequently achieved with a reduction in procedure and fluoroscopy time using the balloon catheter. Adverse event rates (crossover, dislodgement) were similar, but death and perforation did not occur in the balloon catheter group.

Data Supplement 19. Nonrandomized Trials, Observational Studies, and/or Registries of Temporary Transvenous Pacing (TTVP) (Section 5.3.3)

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	

Lopez Ayerbe J, et al.	Study type: Retrospective,	Inclusion criteria: Pts	1° endpoint: Clinical outcomes	• TTVP is effective, yet has a
2004 (114)	observational, single-center	who underwent TTVP for		complication rate of 22%,
<u>15544753</u>		symptomatic	<u>Results</u> : Indications induced symptomatic	including an associated 6%
	<u>Size</u> : N=530	bradycardia.	SSS in 7.5% of implants, use in generator	mortality rate.
			replacement in 14.7%, bradycardic drug	• Use of TTVP for treatment of
		Exclusion criteria: N/A	toxicity in 12.2%. Femoral access was used	SND is comparatively rare.
			in 99%, and duration was 4.2 d. 69.6% of	
			pts required a PPM. 6.4% of pts died, 3	
			deaths were attributable to temporary	
			pacing. There were complications in 22%,	
			including dislodgement in 9%.	
Hynes JK, et al. 1983	Study type: Retrospective,	Inclusion criteria: Pts in	1° endpoint: Clinical outcomes	• TTVP was associated with an
(115)	observational, single-center	the coronary care unit		overall risk of complications
6823157		with TTVP.	Results: Access was antecubital in 59%,	in approximately 14% of pts.
	Size: N=1022		subclavian in 17%, right internal jugular in	, .
		Exclusion criteria: N/A	11%, and femoral in 5%. Complications	
			occurred in 13.7% with no deaths. The	
			right internal jugular approach was	
			associated with a decreased risk of	
			complications.	
Murphy JJ, 1996 (116)	Study type: Retrospective,	Inclusion criteria: Pts	<u>1° endpoint</u> : Clinical outcomes	• TTVP was associated with
8620131	observational, multicenter	undergoing TTVP.		complications in 35% of pts,
	(18)		Results: 129/194 TTVP were implanted for	including vascular access
		Exclusion criteria: N/A	CHB. Immediate or delayed complications	difficulties, dislodgement,
	<u>Size</u> : N=194	,	occurred in 68 pts.	infection, and sepsis.
Austin JL, et al. 1982	Study type: Retrospective,	Inclusion criteria: Pts	1° endpoint: Complications and	• TTVP was associated with a
(117)	observational. Single center	who received TTVP.	malfunction	20% complication rate, and a
7058746				high rate of malfunction.
	Size: N=100	Exclusion criteria: N/A	Results: 113 TTVPs were placed in 100 pts.	• 21/100 subjects underwent
		· · · · · · · · · · · · · · · ·	Failure to capture or sense occurred in	TTVP for SND; 18 for PM
			37% and complications in 20%. These	failure not otherwise
			included ventricular arrhythmia, fever,	specified
			pulmonary emboli, perforation, sepsis and	speemed
			phlebitis. There were no deaths.	
Munoz Bono JM, et al.	Study type: Prospective,	Inclusion criteria: Pts in	1° endpoint: Clinical indications,	• TTVP was associated with a
2011 (118)	observational	cardiac intensive care	morbidity, mortality.	risk of complications in 40%.
21640435			noroarty, nortanty.	
21070733				

	<u>Size</u> : N=182	unit who underwent TTVP.	<u>Results</u> : Indication for TTVP was CHB in 77%, access was via the femoral vein in 02%, and complications accurred in	• TTVP was indicated for SND in 9.3%, and bradycardia
		Exclusion criteria: N/A	92%, and complications occurred in 40.11%. Predictors of complications were restlessness, CV risk factors, and jugular or subclavian access.	from drug intoxication in 12.1%
Betts TR, 2003 (119) <u>12954959</u>	Study type: Prospective, observational, multi-center (5). Size: N=111	Inclusion criteria: Pts requiring TTVP Exclusion criteria: N/A	<u>1° endpoint</u> : Procedural and pt characteristics, outcomes. <u>Results:</u> 144 procedures in 111 pts. Venous access was subclavian in 47%, jugular in 33%, and femoral in 20%. There were procedural complications in 32% of the procedures; risk was decreased for experienced operators. Infection risk increased with dwell time >48 h. Complications delayed permanent implant in 23% of pts.	 TTVP was associated with a high risk of complications. Infectious risk is increased with longer time of implant. Immediate complication risk was lower for experienced operators. Pacing indication was not described.
Jowett NI, et al. 1989 (120) <u>2594596</u>	<u>Study type</u> : Retrospective, observational, single center <u>Size</u> : N=162	Inclusion criteria: Pts admitted to coronary care unit who underwent TTVP. Exclusion criteria: N/A	<u>1° endpoint:</u> Clinical outcomes. <u>Results:</u> The majority of TTVP was for CHB and MI (84.6%). 15.4% of TTVPs were placed for symptomatic bradycardia, including SND. Complications occurred in 19.8%, including arrhythmias during insertion, dislodgement, pneumothorax, and perforation.	 TTVP was associated with a 19.8% complication rate. Some TTVP was prophylactic, and may not have been indicated. A minority of TTVP was performed for SND (15%)
Weinstein J, et al. 1973 (121) <u>4697639</u>	Study type: Prospective, observational, single center Size: N=100	Inclusion criteria: Pts with bradycardia and conduction disease in the acute setting Exclusion criteria: N/A	1° endpoint:1° endpoint:Clinical response and stability.Results:17% of placements required repositioning, 2 instances of ventricular tachycardia, 2 perforations, 2 infections.Placement and stability was improved compared with prior historical series of 100 pts with jugular and subclavian approach.	 TTVP via the femoral approach was found to be reliable, and rapid with a reasonable complication rate in critically ill pts. Pts were restricted to bedrest after dislodgements were noted to be associated with activity. 10% of TTVP were placed for sinus bradycardia

Garcia Guerrero JJ, et al. 2010 (122) <u>20667893</u>	<u>Study type</u> : Prospective, observational, single center <u>Size</u> : N=47	Inclusion criteria: Pts requiring TTVP who underwent novel active fixation femoral TTVP. Exclusion criteria: N/A	<u>1° endpoint</u> : Rate of deep venous thrombosis <u>Results:</u> Asymptomatic thrombosis was seen in 6.4%, compared with 25–39% in other observational reports. No pulmonary emboli were noted on lung scan.	 Mobility afforded by an active fixation TTVP is associated with a decreased risk of deep venous thrombosis. Pacing indications were not reported.
Nolewajka AJ, et al. 1980 (123) <u>7398027</u>	<u>Study type</u> : Prospective, observational <u>Size</u> : N=29	Inclusion criteria: Pts requiring TTVP. Exclusion criteria: N/A	 <u>1° endpoint</u>: Femoral vein thrombosis and pulmonary emboli <u>Results:</u> 34% of pts had femoral vein thrombosis, and 60% had lung scan evidence of pulmonary emboli. 	 TTVP via femoral vein access is associated with a high rate of thromboembolic complications, despite low- dose heparin. 2/29 pts received TTVP for SND.
Sodeck GH, et al. 2006 (77) <u>17212976</u>	<u>Study type</u> : Observational, retrospective, single center <u>Size</u> : N=277	Inclusion criteria: Pts presenting to ED with compromising bradycardia Exclusion criteria: Asymptomatic bradycardia	<u>1° endpoint</u> : 30 d mortality <u>Results:</u> 48% AVB, 17% SB/AVB, Sinus arrest 15%, AF 14%, PM failure 6%. 20% required transvenous pacing for stabilization, 50% permanent pacing	 Not all pts with bradycardia required temporary pacing
Jou YL, et al. 2010 (124) <u>20946290</u>	<u>Study type</u> : Observational, retrospective, single-center <u>Size</u> : N=509	Inclusion criteria: Pts presenting with bradycardia requiring temporary pacing Exclusion criteria: N/A	<u>1° endpoint</u> : Clinical characteristics and underlying etiologies <u>Results:</u> 64% of temporary pacers were for AVB. AAD use correlated with SND in 38%. Increasing AVB seen over time	 Idiopathic degeneration was related to AVB, whereas extrinsic etiologies were related to SND.
McCann P, 2006 (125) <u>17235372</u>	Study type: Systematic review of temporary cardiac pacing Size: N=15 studies, 3817 subjects	Inclusion criteria: Studies of temporary pacing wires Exclusion criteria: N/A	 <u>1° endpoint</u>: Complication by access site, outcomes <u>Results:</u> The most common indication was AVB. Mean complication rate was 26.5% (10–59.9%), including access failure, lead malposition, sepsis, arterial puncture, lung or myocardial puncture, or arrhythmia 	 Internal jugular vein access was associated with a lower complication rate compared with subclavian and femoral veins Complications appear to be lower if operator is specialized

				 Antibiotics and ultrasound access reduced the risk of complications. Methodologic limitations
Bjornstad CC, et al. 2012 (126) <u>22390277</u>	<u>Study type</u> : Observational, prospective, 5 center study <u>Size</u> : N = 50	Inclusion criteria: All pts with temporary cardiac pacing wires Exclusion criteria: N/A	<u>1° endpoint</u> : Complications, outcomes <u>Results:</u> 30% with SND. Permanent pacing required in 60%, repeat procedures in 12%, mortality 18%, bacteremia 6%.	 High rates of subsequent PPM implantation High rates of complications.

Study Acronym; Author;	Aim of Study; Study Type;	Patient Population	Study Intervention (# patients) /	Endpoint Results (Absolute Event Rates,	Relevant 2° Endpoint (if any);
Year Published	Study Size (N)		Study Comparator (# patients)	P values; OR or RR; & 95% Cl)	Study Limitations; Adverse Events
PrePACE Morrison LJ, et al. 2006 (86) <u>17933452</u>	Aim: To evaluate the feasibility of a RCT of transcutaneous pacing vs. dopamine for atropine and fluid refractory bradycardia in the prehospital setting. Study type: RCT Size: 151 met criteria, 82 enrolled	Inclusion criteria: Unstable bradycardia unresponsive to fluid and atropine: heart rate <60 per minute and systolic BP (SBP) <80 mm Hg; or heart rate <60/min and SBP <100 mm Hg and at least one additional sign/symptom Exclusion criteria: Advance directives, trauma, hyperthermia, hypothermia or cardiac arrest, pts in whom it was not possible to start an intravenous line.	Intervention: All pts received 250 ml saline IV bolus. If nonresponse, pts received atropine 1 mg, repeated if improved. If pts failed to respond, they were randomized to transcutaneous pacing (with midazolam) vs. comparator. Comparator: Dopamine starting at 5 mcg/kg min, increasing the dose by 5 mcg/kg min every 2 min until an improvement in signs and symptoms was observed, maximum dose of 20 mcg/kg min	<u>1° endpoint</u> : Survival to hospital discharge <u>Safety endpoint (if</u> <u>relevant)</u> : Ventricular arrhythmia, cutaneous burns, chest wall discomfort, cardiac arrest, TCP failure.	 Survival to hospital discharge was similar in both groups (70% vs. 69%; p=0.93), as were 2° outcomes. Paramedics chose not to enroll 20 pts due to pain concerns. 71% of TCP pts experienced chest discomfort during pacing.
Barthell E, et al. 1988 (127) <u>3056132</u>	Aim: To determine if prehospital cardiac pacing affects mortality Study type: RCT) Size: N=239; 226 pulseless (asystole and EMD); 13 with hemodynamically significant bradycardia	Inclusion criteria: Pts with hemodynamically significant bradycardia Exclusion criteria: N/A	Intervention: Transcutaneous pacing <u>Comparator</u> : ACLS	<u>1° endpoint</u> : Survival to hospital admission (21.4% in pacing group vs. 20.6%) and survival to discharge (6.8% vs. 4.4%) <u>Safety endpoint</u> : None	 Randomization by day No difference in rhythm subgroups of asystole vs. EMD Improved survival in hypotensive bradycardic group (6/6 resuscitated, 5/6 survived, vs. 2/7 and 1/7 controls)

Data Supplement 20. RCTs of Transcutaneous Pacing (Section 5.3.3)

Data Supplement 21. Nonrandomized Trials, Observational Studies, and/or Registries of Transcutaneous Pacing (Section 5.3.3)

Study	y Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
ŀ	Author;	Study Size		(P values; OR or RR;	Comment(s)
Year	r Published			& 95% CI)	

Page 87

Sherbino J, et al.	Study type: Systematic review	Inclusion criteria: Case	1° endpoint: Survival to hospital	• Evidence to support the use of
2006 (128)	of the efficacy of	series, RCTs, and one	discharge	transcutaneous pacing in the
16814446	transcutaneous pacing in the	subgroup analysis of	uisenuige	prehospital setting for symptomatic
10011110	management of symptomatic	transcutaneous pacing in	Results: No difference in survival	bradycardia is insufficient.
	bradycardia and bradyasystolic	symptomatic bradycardia	to hospital discharge was noted	Symptomatic bradycardia was
	arrest in the prehospital setting	or bradyasystolic arrest.	in bradyasystolic cardiac arrest. A	defined as a heart rate less than 60
	arrest in the prenospital setting	inclusion criteria were		
	Size: 7 studies	euthermic.	subgroup analysis in symptomatic	bpm and at least one of: systolic BP
	<u>Size</u> : 7 studies		bradycardia study showed	<80 mm Hg, change in mental
		nontraumatized adults,	borderline improved survival to	status, angina, or pulmonary edema;
		who experienced	discharge.	the relevance to acute SND is
		prehospital		therefore unclear.
		hemodynamically		
		symptomatic bradycardia		
		or bradyasystolic cardiac		
		arrest. Symptomatic		
		bradycardia was defined		
		a priori as a heart rate		
		less than 60 bpm and at		
		least one of the following:		
		systolic BP less than 80		
		mm Hg; a change in		
		mental status; angina		
		pectoris; or acute		
		pulmonary oedema.8		
		Bradyasystolic cardiac		
		arrest was defined as the		
		absence of a palpable		
		pulse in the presence of		
		an electrocardiographic		
		bradycardic or asystolic		
		rhythm.		
		Exclusion criteria: N/A		
Hedges JR, et al.	Aim: To determine the	Inclusion criteria:	1° endpoint: Survival to hospital	 Survival to hospital discharge
1991 (129)	importance of hemodynamic	Witnessed CV	discharge.	showed a trend towards
<u>1721129</u>	status and effect of prehospital	decompensation and		improvement in the pacing group
	transcutaneous pacing in pts	initial bradycardia	Safety endpoint: N/A	(15% vs. 0%; p=0.07)
	with symptomatic bradycardia			
		Exclusion criteria:		
	Study type: Observational			
		Dago 99		

	Intervention: Transcutaneous pacing <u>Comparator</u> : No pacing Size: N=51			 Pts with a palpable pulse on EMS arrival had better survival (80% in paced group vs. 0%; p= 0.02)
Zoll PM, et al., 1985	Aim: To evaluate the	Inclusion criteria: Pts	1° endpoint: Clinical outcomes	• TCP was clinically useful.
(130)	effectiveness of external	requiring or likely to		 Over 25% of enrolled subjects had
<u>3886190</u>	noninvasive TCP	require temporary	<u>Results</u> : TCP was well tolerated in	SND as an indication for pacing.
		pacing.	73/82 awake pts, and successfully	
	Study type: Prospective,		evoked response in 105/134.	
	observational, multicenter (3)	Exclusion criteria: N/A		
	<u>Size</u> : N=134			
Clinton JE, et al. 1985	Study type: Observational,	Inclusion criteria:	1° endpoint: Successful pacing	 TCP can effectively treat
(131)	single center	Emergency room pts with	capture and hemodynamic	hemodynamically significant
<u>3914511</u>		hypotension and	pacing response.	bradycardia, but does not appear to
	<u>Size</u> : N=37	bradycardia		be useful in asystole.
			<u>Results:</u> 8/37 pts were	 2/37 pts had SND as an indication
		Exclusion criteria: N/A	successfully treated with TCP.	for pacing.
			Surviving responders were more	
			likely to present with sinus	
			bradycardia, AF with bradycardia,	
			or CHB, compared to asystole.	

Data Supplement 22. RCTs of General Principles of Chronic Therapy/Management of Bradycardia due to Sinus Node Dysfunction (Section 5.4.1)

Study Acronym; Author; Year Published; PMID	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
ADEPT Lamas GA, et al. 2007 (132) <u>17765608</u>	Aim: determine whether DDDR pacing improves QOL when	Inclusion criteria: Age ≥21 y, Class I or 2A indication for pacing, demonstrated chronotropic incompetence,	Intervention: MDT Kappa 400 DDDR pacemaker programmed to DDDR (N=443)	 Total exercise time (6 mo): 7.3 vs. 7.1 min (p=0.98) Specific Activity Scale (SAS) at 1 y: 1.5 vs. 1.6 (p=0.96) 	 No differences in other 2° QOL endpoints CHF hospitalizations in DDDR group vs. DDD

	compared to DDD pacing alone	cannot exceed 80% of MPHR (220-age) at peak exercise	<u>Comparator:</u> MDT Kappa 400 DDDR		group: 7.3% vs. 3.5%; p=0.01
			pacemaker programmed		 No differences in other
	Study type: Multi-	Exclusion criteria: AF for >1	to DDD (N=429)		clinical endpoints
	center single-	mo, overt CHF, serious chronic			
	blind RCT	illness, score of <17 on MMSE,	Mean follow-up 1 y		
		inability to tolerate high-rate	64% had SND		
	Size: 872 pts	pacing, severe limitations of	Vp% >90 in both groups		
		functional capacity			
THEOPACE	<u>Aim:</u> To	Inclusion criteria: Age ≥45 y,	Intervention 1: oral	 Syncope: 6 (17%) 	 Thromboembolism:
Alboni P, et al.	prospectively	mean resting sinus rate <50	theophylline 550 mg/d	theophylline, 2(6%) PPM, 8	3(9%) theophylline, 3(9%)
1997 (133)	assess the effects	bpm and/or intermittent SA	(N=36)	(23%) control arm: p=0.02	PPM, 1(3%) control arm:
<u>9236443</u>	of PPMs and	block, symptoms attributable	Intervention 2: DDDR	(PPM vs. control); p=0.07	no difference (p=NS)
	theophylline in	to SND	PPM programmed to	(theophylline vs. control)	
	pts with SSS		lower rate of 60–70 ppm	• HF: 1(3%) theophylline, 1(3%)	
		Exclusion criteria: very severe	and prolonged AV delay	PPM, 6(17%) control arm:	
	Study type:	SSS, refractory HF, recent MI	(N=36)	p=0.05 (lower HF in PPM and	
	Randomized	or stroke, life expectancy <2 y,		theophylline vs. control arm	
	controlled trial	significant renal or hepatic	Comparator: No	 Permanent AF: 2(6%) 	
		disease, Hx of VT, prior usage	treatment (N=35)	theophylline, 3(9%) PPM,	
	Size: 107 pts	of theophylline, need for BB		4(11%) control arm: no	
		or CCB	Mean follow-up 19±14	difference (p=NS)	
			mo		

Data Supplement 23. Nonrandomized Trials, Observational Studies, and/or Registries of General Principles of Chronic Therapy/Management of Bradycardia due to Sinus Node Dysfunction (Section 5.4.1)

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
Sasaki Y, et al. 1988 (134) <u>2462243</u>	Long-term follow-up of pts with SSS <u>Study type</u> : Prospective cohort	Inclusion criteria: Pts with SSS who underwent EPS and were symptomatic from bradycardia and requiring pacing, sinus pause >3 s during EPS	 <u>Results</u>: VVI pacing – 25 pts; atrial/DC pacing – 24 pts Chronic AF: VVI vs. physiologic pacing group (36% vs. 0%; p<0.01) Thromboembolism: VVI vs. 	 In this group of pts with SSS requiring PPM, mode of pacing did not influence the survival rate; however, CV deaths were fewer in the physiologic pacing group.
	Size: 49 pts	Exclusion criteria: N/A	physiologic pacing group (20% vs. 0%; p<0.05)	• There were significantly higher incidences of chronic AF and thromboembolism in

			• No difference in HF occurrence	the VVI group although this group was followed for a significantly longer period of time than the physiologic pacing group (35.1 vs. 19.7 mo; p<0.01)
Goldberger JJ, et al. 2011 (135) <u>21757182</u>	Significance of asx bradycardia for subsequent PM implantation and mortality in pts age >60 y Study type: Retrospective cohort Size: 2,560 pts	Inclusion criteria: Age >60 y, resting heart rate <55 bpm (bradycardia group, N=470) or heart rate between 60–70 bpm (control group, N=2,090) Exclusion criteria: PPM implantation within 2 wk of initial EKG, heart rate outside the above range Mean follow-up 7.2 ± 2.9 y	 <u>Results</u>: Incidence of PPM placement: 9% in bradycardia cohort vs. 5% in control group; p<0.001 Protection against mortality in the bradycardia group (HR: 0.78; 95% Cl: 0.65–0.94; p=0.010) 	 Higher incidence of PPM implantation in the bradycardia group did not appear until after the first 4 y. Older outpatients with bradycardia not requiring urgent PPM implantation have very low rate (<1%/y) of subsequent PPM implantation. Asymptomatic bradycardia has no adverse impact on all-cause mortality and may even be protective.
Denniss AR, et al. 1992 (75) <u>1572741</u>	Electrophysiologic studies in pts with unexplained syncope <u>Study type:</u> Prospective cohort <u>Size</u> : 111 pts	Inclusion criteria: Unexplained syncope, prior general medical evaluation (H&P, CXR, echo, LHC, neuro exam, heart monitor, etc) Exclusion criteria: Documented tachy or bradyarrhythmia, Dx of vasovagal syncope, postural hypotension, AS, HOCM or prolonged QT interval Mean follow-up 20 mo	 Results: No mortality within 30 d of EPS Pts with heart disease (CAD, HTN, MVP, CMP) had higher incidence of conduction disease (26%) than those w/o heart disease (8%; p<0.05) Abnormal EPS (conduction disease, SVT, VT) findings in 42% of pts with heart disease but 16% of pts w/o heart disease (p<0.01) Syncope occurred in only 5% of treated pts with abnormal findings at EPS vs. 24% in the group not receiving any Rx (p<0.05) No recurrent syncope in 27 pts treated with PPM vs. recurrent syncope in 20 of 84 pts (24%) not given PPM (p<0.05) 	 Diagnostic yield of EPS is increased in pts with heart disease. Pts with no heart disease had no mortality.
Teichman SL, et al. 1985 (136) <u>4025122</u>	The value of EPS in syncope of undetermined origin: Report of 150 cases	Inclusion criteria: Pts with syncopal and near- syncopal events (SUO) unexplained after general	• EP abnormality that could explain SUO was demonstrated in 36% of pts	 Presence of organic heart disease increased the incidence of positive EPS finding.

	<u>Study type</u> : Prospective cohort <u>Size</u> : 150 pts	medical evaluation, neuro evaluation, CXR, orthostatic, CSM, continuous rhythm monitoring for at least 24 h <u>Exclusion criteria:</u> Heart block, bradycardia, pauses >2.5 s, PVCs, VT, SVT, orthostasis Mean follow-up 31 mo	 Presence of organic heart disease was associated with increase in the incidence of EP findings (85% with vs. 64% w/o organic heart disease; p<0.005) Pts with LBBB were more likely to have abnormal EPS than pts with RBBB (p<0.02) 	 Pts who had EPS abnormalities detected and treated had had fewer recurrence of SUO than those with negative EPS. SUO pts overall had low mortality rates during follow-up (±EPS)
Seidl K, et al. 2000 (137) <u>11227598</u>	Diagnostic assessment of recurrent unexplained syncope with a new subcutaneously ILR <u>Study type:</u> Prospective cohort Size: 133 pts	Inclusion criteria: Recurrent unexplained syncope with initial nondiagnostic investigations (resting EKG, echo, ambulatory monitor, etc) Exclusion criteria: None Mean follow-up 10.8 mo	 Device-related complications in 9% Definite determination of whether arrhythmia was the cause or not in 54% of pts. 87% diagnostic yield (72 out of 83 pts) Arrhythmic cause of syncope found in 44% of pts. 	• ILR is useful for establishing a Dx when symptoms are recurrent but too infrequent for conventional noninvasive monitoring.

Data Supplement 24. RCTs of Clinical Presentation of Bradycardia due to Sinus Node Dysfunction (Section 5.3)

Study Acronym; Author; Year Published; PMID	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
DANPACE	Aim: To	Inclusion criteria: SA	Intervention: Bipolar	 Mortality: 29.6% (AAIR) vs. 	• PAF: 28.4% (AAIR) vs. 23.0%
Nielsen JC, et al.	compare the	block or sinus arrest	atrial lead only (AAIR	27.3% (DDDR) (adjusted HR:	(DDDR) (adjusted HR: 1.24; 95% CI:
2011 (138)	efficacy of AAIR	with pauses >2 s, PR	pacing programmed to	0.94; 95% CI: 0.77–1.14;	1.01–1.52; p=0.042)
<u>21300730</u>	vs. DDDR pacing	≤260 ms, QRS <120	LR of 60 ppm) – must	p=0.52)	• Chronic AF: 11.2% (AAIR) vs. 10.7%
	in pts with SSS	ms, heart rate <40	have 1:1 AV conduction		(DDDR) (adjusted HR: 1.01; 95% CI:
	and bradycardia	while awake	at paced rate of 100 bpm		0.74–1.39; p=0.93)
			(N=707)		• Stroke: 5.5% (AAIR) vs. 4.8%
	Study type: RCT	Exclusion criteria:			(DDDR) (adjusted HR: 1.11; 95% CI:
		AVB, BBB, long-	Comparator: DDDR		0.70–1.77; p=0.65)
	<u>Size</u> : 1,415 pts	standing PerAF, and	pacing programmed to		

Page 92

carotid sinus hypersensitivity, planned cardiac	LR of 60 ppm AND to minimize V pacing (N=708) [mean Vp%=65]	 HFH: 27 pts (AAIR) vs. 28 pts (DDDR) (p=0.90) PPM reoperation: 22.1% (AAIR) vs.
surgery, life		11.9% (DDDR) (adjusted HR: 2.00;
expectancy <1 y		95% CI: 1.54–2.61; p<0.001)

Study Acronym; Author; Year Published: PMID	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
DANISH Andersen HR, et al. 1997 (139) <u>9652562</u>	Aim: Long-term follow-up of pts from a randomized trial of atrial vs. ventricular pacing for sick-sinus syndrome. To examine whether the beneficial effect of atrial pacing is maintained during extended follow-up of up to 8 y Study type: RCT Size: 225 pts	Inclusion criteria: Symptomatic bradycardia <50 bpm or pause >2 s Exclusion criteria: AVB, chronic AF, BBB, age <50, planned cardiac surgery, cancer, cerebral disease, CVA within 3 mo, major surgery, etc.	Intervention: Single chamber atrial pacing (only if 1:1 AV conduction at atrial pacing rate of 100 bpm) (N=110) Comparator: Single chamber ventricular pacing (N=115) Mean follow-up 5.5 y	 All-cause mortality: 39 atrial vs. 57 ventricular (RR: 0.66; 95% CI: 0.44–0.99; p=0.045) CV mortality: 19 atrial vs. 39 ventricular (RR: 0.47; 95% CI: 0.27–0.82; p=0.0065) AF: 26 atrial vs. 40 ventricular (RR: 0.54; 95% CI: 0.33–0.89; p=0.012) Thromboembolism: 13 atrial vs. 26 ventricular (RR: 0.47; 95% CI: 0.24–0.92; p=0.023) 	 Use of diuretics: significantly higher in the atrial group (p<0.05)
PASE Lamas GA, et al. 1998 (140) 9545357	Aim: To compare DC vs. ventricular only pacing for pts with symptomatic bradycardia Study type: RCT Size: 407 pts	Inclusion criteria: ≥65 y old, in SR, required PPM for prevention or treatment of bradycardia Exclusion criteria: Overt CHF, AF with no documentation of SR within 6 mo, serious noncardiac illnesses, cannot participate in quality-of-life assessments	Intervention: Dual chamber PPM programmed VVIR and programmed to LR limit of ≥50 bpm (N=204) Comparator: Dual chamber PPM programmed DDDR and programmed to LR limit of ≥50 bpm (N=203)	 PPM indications: AVB 49%, SND 43% 26% (53) of VVIR group crossed over to DDDR group due to PM syndrome QOL (as measured by SF-36 survey) improved significantly after PPM implantation (p<0.001) but NO difference between 2 pacing modes in QOL In SND group (but not in AVB group), DC pacing resulted in significantly better QOL and CV functional status 	 No significant differences in the rates of death from all causes, stroke or death, stroke or death or hospitalization for HF, and development of AF Risk of AF development was higher in VVIR compared to DDDR group but was not statistically significant (28% vs. 19%; p=0.06)

Data Supplement 25. RCTs of Permanent Pacing for Chronic Therapy/Management of Bradycardia due to Sinus Node Dysfunction (Section 5.4.4)

Page 94

MOST	Aim: To compare DC	Inclusion criteria: ≥21	Intervention: Dual	Death or nonfatal stroke	• Incidence of AF was 21.4% in
MOST Lamas GA, et al. 2002 (141) <u>12063369</u>	Aim: To compare DC vs. ventricular only pacing to treat pt with clinically significant bradycardia due to SND Study type: RCT Size: 2,010 pts	Inclusion criteria: ≥21 y old, in SR, undergoing DC PPM implant for symptomatic SND Exclusion criteria: Serious concurrent illnesses	Intervention: Dual chamber PPM programmed DDDR and programmed to LR limit of ≥60 bpm (N=1,014) Comparator: Dual chamber PPM programmed VVIR and programmed to LR limit of ≥60 bpm (N=996)	 Death or nonfatal stroke occurred in 21.5% of DDDR pts vs. 23.0% of VVIR pts (p=0.48) 31.4% (313) of pts in the VVIR group was crossed over to DDDR group 	 Incidence of AF was 21.4% in DDDR group vs. 27.1% in VVIR group (adjusted HR:0.77; 95% CI: 0.64–0.92; p=0.004) Hospitalization for HF was 10.3% in DDDR group vs. 12.3% in VVIR group (adjusted HR:0.73; 95% CI: 0.56–0.95; p=0.02) Combined clinical endpoint (death, stroke or HFH) was 27.6% in DDDR group vs. 29.9% in VVIR group (adjusted HR:0.85; 95% CI: 0.72–1.00; p=0.05) DDDR pacing resulted in better improvement in QOL as compared with VVIR pacing. Adverse events: Total 30 d rate of complication 4.8% (1.8% A-lead issue, 1.5% pneumothorax, 1.1% V-lead
CTOPP Connolly SJ, et al. 2000 (142) <u>10805823</u>	Aim: To assess whether physiologic pacing or ventricular pacing is better for pts with symptomatic bradycardia Study type: RCT Size: 2,568 pts	Inclusion criteria: ≥18 y old Exclusion criteria: Chronic AF, s/p AV nodal ablation, life expectancy <2 y	Intervention: Atrial-only pacing can be considered (if evidence of 1:1 AV conduction at paced rate of up to 130 bpm), o/w DC pacing (only 5.2% received atrial-only pacing) (N=1,094) Comparator: VVI pacing (N=1,474)	 PPM indications: 60% AVB, 42% SND Annual rate of stroke or death was 5.5% for VVI pacing vs. 4.9% for physiologic pacing (95% CI: 10.5–25.7; p=0.33) Subgroup analysis showed that pt with SND received no particular benefit from physiologic pacing compared to VVI pacing 	 issue) Annual rate of AF was 6.6% for VVI pacing vs. 5.3% for physiologic pacing (18% RR reduction; 95% CI: 0.3–32.6; p=0.05) Annual rate of hospitalization for HF was 3.5% for VVI pacing vs. 3.1% for physiologic pacing (95% CI: -18.5–28.3%; p=0.52) Annual rate of stroke was 1.1% for VVI pacing vs. 1.0% for physiologic pacing

					 Adverse events: More common in physiologic pacing group primarily due to atrial lead complications
SAVE PACe Sweeney MO, et al. 2007 (143) <u>17804844</u>	<u>Aim:</u> To compare DC minimal ventricular pacing vs. DC pacing only in pts with sinus node disease <u>Study type:</u> RCT Size: 1,065 pts	Inclusion criteria: Symptomatic bradycardia due to SND, >18 y old, QRSd ≤120, AV conduction of 1:1 at 100 ppm Exclusion criteria: Persistent AF, ≥2 DCCV for AF within 6 mo, 2° or 3° AVB, life expectancy <2 y	Intervention: DC- minimal ventricular pacing (N=530) Comparator: DC pacing only (N=535)	 Median % of Vp (DC-minimal ventricular pacing 9.1% vs. DC only 99.0%; p<0.001) Development of persistent AF (DC-minimal ventricular pacing 7.9% vs. DC only 12.7%; p=0.004); thus, 40% RR reduction for development of persistent AF (HR: 0.60; 95% CI: 0.41–0.88; p=0.009) Time to 1st DCCV, AV node ablation or PVI favored DC-minimal ventricular pacing (HR: 0.62; 95% CI: 0.37–1.03; p=0.06) 	 No significant difference in mortality (4.9% vs. 5.4%; HR: 0.85; 95% CI: 0.50–1.44; p=0.54) or rate of hospitalization for HF (2.8% vs. 3.1%; HR: 0.84; 95% CI: 0.42–1.68; p=0.62) Adverse events: 4.0% lead problems, 0.3% device infections requiring removal, 1 intra-op death
DANPACE Nielsen JC, et al. 2011 (138) 21300730	Aim: To compare the efficacy of AAIR vs. DDDR pacing in pts with SSS and bradycardia Study type: RCT Size: 1,415 pts	Inclusion criteria: SA block or sinus arrest with pauses >2 s, PR ≤260 ms, QRS <120 ms, heart rate <40 while awake Exclusion criteria: AVB, BBB, LS PerAF, +carotid sinus hypersensitivity, planned cardiac surgery, life expectancy <1 y	Intervention:Bipolaratrial lead only (AAIRpacing programmed toLR of 60 ppm) – musthave 1:1 AV conductionat paced rate of 100bpm (N=707)Comparator:DDDRpacing programmed toLR of 60 ppm AND tominimize V pacing(N=708) (mean Vp%=65)	• Mortality: 29.6% (AAIR) vs. 27.3% (DDDR) (adjusted HR: 0.94; 95% Cl: 0.77–1.14; p=0.52)	 PAF: 28.4% (AAIR) vs. 23.0% (DDDR) (adjusted HR: 1.24; 95% CI: 1.01–1.52; p=0.042) Chronic AF: 11.2% (AAIR) vs. 10.7% (DDDR) (adjusted HR: 1.01; 95% CI: 0.74–1.39; p=0.93) Stroke: 5.5% (AAIR) vs. 4.8% (DDDR) (adjusted HR: 1.11; 95% CI: 0.70–1.77; p=0.65) HFH: 27 pts (AAIR) vs. 28 pts (DDDR) (p=0.90) PPM reoperation: 22.1% (AAIR) vs. 11.9% (DDDR) (adjusted HR 2.00; 95% CI: 1.54–2.61; p<0.001)

Healey JS, et al.	Aim: To determine	Inclusion criteria:	Intervention:	SND subgroup:	SND subgroup:
Healey JS, et al. 2006 (144) <u>16801463</u>	Aim: To determine whether atrial-based pacing (AAI or DDD) prevents MACE as compared to VVI pacing in pts with bradycardia Study type: Meta- analysis Size: 7,231 pts	Publications since 1980, randomized controlled parallel design, have pt level data on outcomes Exclusion criteria: Post cardiac surgery or AV node ablation pts, multi-site A or V pacing, follow-up <6 mo	Studies including pts who were AAI or DDD paced (atrial-based) pacing Comparator: Studies including pts who were VVI paced (ventricular-based) pacing	 • Overall mortality: ABP vs. VVI pacing (HR 0.92; 95% Cl 0.81–1.05; p=NS • AF: ABP vs. VVI pacing (HR: 0.80; 95% Cl: 0.72–0.89; p=0.00003) • Stroke: ABP vs. VVI pacing (HR: 0.81; 95% Cl: 0.67–0.99; p=0.035) • Implant complication rate: ABP 6.2% vs. VVI pacing 3.2% 	 SND Subgroup: Composite of stroke or CV death: ABP vs. VVI pacing (HR: 0.83; 95% CI: 0.72–0.97; p=0.04) AF: ABP vs. VVI pacing (HR: 0.76; 95% CI: 0.67–0.86; p<0.0001) Stroke: ABP vs. VVI pacing (HR: 0.84; 95% CI: 0.64–1.11; p=NS) HFH: ABP vs. VVI pacing (HR: 0.92; 95% CI: 0.75–1.13; p=NS)
DANISH Andersen HR, et al. 1994 (145) 7983951	Aim: Prospective randomized trial of atrial vs. ventricular pacing in sick-sinus syndrome. To determine whether single chamber atrial or ventricular pacing is better in pts with SSS Study type: Prospective randomized Size: 225 pts	Inclusion criteria: Symptomatic bradycardia <50 bpm or pause >2 s Exclusion criteria: AVB, chronic AF, BBB, age <50 y, planned cardiac surgery, cancer, cerebral disease, CVA within 3 mo, major surgery, etc.	Intervention: Single chamber atrial pacing (only if 1:1 AV conduction at atrial pacing rate of 100bpm) (N=110) Comparator: Single chamber ventricular pacing (N=115) Mean follow-up 40±18 mo	 Death: 21 (atrial) vs. 25 (ventricular) (p=0.74) CV death: 11 (atrial) vs. 20 (ventricular) (p=0.16) AF: higher frequency in the ventricular group at follow- up Thromboembolism: 6 (atrial) vs. 20 (ventricular) (p=0.0083) HF did not differ between 2 groups 	 LA diameter increased by more in the ventricular (p=0.0001) group vs. the atrial group (p=0.037) compared with preop values 2 pts in the atrial group developed AVB Adverse events: More common in atrial group (most common, lead dislodgement) than ventricular group (most common, PPM syndrome)
MOST sub-study Sweeney MO, et al. 2003 (146) <u>12782566</u>	Aim: To examine the effect of pacing- induced ventricular desynchronization in pts with SND and normal QRSd	Inclusion criteria: SND, SR at the time of assignment, baseline QRSd <120 ms	Intervention: DDDR pacing (N=707) Comparator: VVIR pacing (N=632)	 Cum%VP: DDDR 90% vs. VVIR 58%; p=0.001 HFH: In DDDR mode, the risk increased with increased Cum VP% from 0% up to ~40% pacing then leveled out. Vp >40% of time as 	• AF: Risk increased by 1% for each 1% increase in Cum%VP up to 85%; p=0.012 (DDDR). Risk increased by 0.7% increase in Cum%VP up to 80%; p=0.039 (VVIR).

	<u>Study type:</u> Post-hoc analysis of RCT <u>Size</u> : 1,339 pts	Exclusion criteria: Baseline QRSd >120 ms	Median follow-up 33.1 mo	compared to <40% of time was associated with HR: 2.60 (p=0.040). In VVIR mode, the risk was level between 0–80% and increased from 80–100%. Vp >80% of time as compared to <80% of time was associated HR: 2.50 (p=0.0012)	
Nielsen JC, et al. 2003 (147) <u>12932590</u>	Aim: A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with SSS. To compare AAI and DDD pacing in pts with SSS Study type: RCT Size: 177 pts	Inclusion criteria: SSS, normal AV conduction, symptomatic bradycardia <40 b symptomatic QRS pause of >2 s, age>18 y Exclusion criteria: BBB, AVB, chronic AF, cerebral disease, planned cardiac or major surgery, cancer	Intervention 1: AAIR (N=54) Intervention 2: DDDR with short AV delay (<150 ms) (DDDR-s) (N=60) Intervention 3: DDDR with fixed long AV delay (300 ms) (DDDR-I) (N=63) Mean follow-up 2.9 y	 LA diameter increased significantly in both DDDR groups (p<0.05) LVES diameter increased significantly in both DDDR groups (p<0.05) LVED diameter increased significantly in DDDR-I group (p<0.01) LVFS decreased significantly in DDDR-s group (p<0.01) Percent Vp: 90% in DDDR-s vs. 17% in DDDR-I 	 AF incidence at follow-up: AAIR 7.4%, DDDR-s 23.3%, DDDR-I 17.5% (p=0.03) Stroke: AAIR 5.6%, DDDR-s 11.7%, DDDR-I 6.3% (p=0.32) Death: AAIR 16.7%, DDDR-s 23.3%, DDDR-I 22.2% (p=0.51) CV death: AAIR 7.4%, DDDR-s s 11.7%, DDDR-I 14.3% (p=0.43)
DANPACE Brandt NH, et al. 2016 (148) 28039212	Aim: To present a long-term outcome of initial DANPACE trial Study type: Long- term follow-up of RCT Size: 1,384 pts	Inclusion criteria: SA block or sinus arrest with pauses >2 s, PR ≤260 ms, QRS <120 ms, heart rate <40 while awake Exclusion criteria: AVB, BBB, long- standing PerAF, with carotid sinus hypersensitivity, planned cardiac surgery, life expectancy <1 y	Intervention: Bipolar atrial lead only (AAIR pacing programmed to LR of 60 ppm) – must have 1:1 AV conduction at paced rate of 100 bpm (N=696) Comparator: DDDR pacing programmed to LR of 60 ppm AND to minimize V pacing (N=688) Mean follow-up 8.9 y	 All-cause mortality: 59.3% AAIR vs. 53.3% DDDR (HR: 1.03; 95% Cl: 0.90–1.19; p=0.65) 	 AF: 28.6% AAIR vs. 29.1% DDDR (aHR: 0.98; 95% CI: 0.80–1.19; p=0.82) Ischemic stroke: 9.0% AAIR vs. 8.6% DDDR (Ahr: 1.00; 95% CI: 0.69–1.43; p=0.99) HFH: 12.0% AAIR vs. 11.5% DDDR (aHR: 1.01; 95% CI: 0.74–1.38; p=0.95) Annual rate of pacing mode change from AAIR to DDDR 4.5%

ADEPT	Aim: To determine	Inclusion criteria: Age	Intervention: MDT	• Total exercise time (6 mo):	• No differences in other 2°
Lamas GA, et al.	whether DDDR pacing	≥21 y, Class I or 2A	Kappa 400 DDDR	7.3 vs. 7.1 min (p=0.98)	QOL endpoints
2007 (132)	improves QOL when	indication for pacing,	pacemaker programmed	• Specific Activity Scale (SAS)	CHF hospitalizations in
17765608	compared to DDD	demonstrated	to DDDR (N=443)	at 1 y: 1.5 vs. 1.6 (p=0.96)	DDDR group vs. DDD group:
	pacing alone	chronotropic			7.3% vs. 3.5%; p=0.01
		incompetence, cannot	Comparator: MDT		No differences in other
	Study type: Multi-	exceed 80% of MPHR	Kappa 400 DDDR		clinical endpoints
	center single-blind	(220-age) at peak	pacemaker programmed		enneur enapoints
	RCT	exercise	to DDD (N=429)		
	Size: 872 pts	Exclusion criteria: AF			
	· ·	for >1 mo, overt CHF,	Mean follow-up 1 y		
		serious chronic illness,	64% had SND		
		score of <17 on	Vp% >90% in both		
		MMSE, inability to	groups		
		tolerate high-rate	8,000		
		pacing, severe			
		limitations of			
		functional capacity			
RAST	Aim: To find out	Inclusion criteria:	Intervention: ILR (MDT	• Dx obtained in 14 of 27 pts	N/A
Krahn AD, et al.	whether prolonged	Recurrent unexplained	Reveal) monitoring for 1	(ILR group) vs. 6 of 30 pts	N/A
2001 (72)	monitoring strategy is	syncope or syncope X	y (N=27)		
11435336	better than	1 associated with	y (N-27)	(conventional group) (52%	
11435330			Commentan	vs. 20%; p=0.012)	
	conventional strategy	injury	Comparator:		
	in the evaluation of	Fuelucies esiteries	Conventional testing – 2		
	recurrent syncope	Exclusion criteria:	to 4 wk of external loop		
	Church a transmission	LVEF <35%, <1 y	recorder, TTT and EP		
	Study type:	expected survival,	testing (SNRT, SACT,		
	Prospective	unable to provide	antegrade/retrograde		
	randomized trial	follow-up or consent,	conduction,		
		clear NMS	programmed electrical		
	<u>Size</u> : 60 pts		stimulation) (N=30)		
			Crossover was allowed if		
			Dx was unable to be		
			made.		
EaSyAS	Aim: Investigate the	Inclusion criteria:	Interventions: CSM +	• EKG Dx made: 34 (33%) in	• Total medical costs: £406 in
Farwell DJ, et al.	impact of ILRs on	Recurrent syncope but	TTT + implantation of	ILR group vs. 4 (4%) in	ILR group vs. £1210 in
2004 (73)	unselected	no definitive Dx	loop recorder (N=103)		

<u>15246645</u>	population of syncopal pts presenting to one institution <u>Study type:</u> Randomized trial <u>Size</u> : 201 pts	following initial clinical w/u (including CSM and TTT) <u>Exclusion criteria</u> : Structural heart disease	Comparator: CSM + TTT + conventional investigation (N=98) Mean follow-up 276 d	conventional group (HR: 8.93; 95% Cl: 3.17–25; p<0.0001)	conventional group (mean difference £809; 95% CI: 123–2730)
FRESH Podoleanu C, et al. 2014 (74) 25241220	Aim: To compare conventional evaluation vs. early use of ILR in low-risk pts with syncope in France Study type: Prospective open- label randomized multicenter study Size: 78 pts	Inclusion criteria: Any recent unexplained syncope (after basic clinical exam) Exclusion criteria: Significant heart disease, EF <40%, Hx of MI or unstable CAD, Hx of arrhythmia, family Hx of SCD, conduction disturbance on EKG, HOCM, AS, potentially arrhythmogenic drug use	Intervention: ILR group (N=39) Comparator: Conventional evaluation strategy group (N=39) F/u 14 mo	 Identification of cause: 18 (46.2%) pts in ILR group vs. 2 (5%) pts in conventional group (p<0.001) Days of hospitalization: 5.7 d in ILR group vs. 8.0 d in conventional group (p=0.55) Number of advanced cardiac tests needed: 0.03/pt in ILR group vs. 0.2/pt in conventional group (p=0.05) 	• Quality of life was no different between the 2 groups
THEOPACE Alboni P, et al. 1997 (133) <u>9236443</u>	Aim: To prospectively assess the effects of PPMs and theophylline in pts with SSS Study type: Randomized controlled trial Size: 107 pts	Inclusion criteria: Age ≥45 y, mean resting sinus rate <50 bpm	Intervention 1: oral theophylline 550 mg/d (N=36) Intervention 2: DDDR PPM programmed to lower rate of 60–70 ppm and prolonged AV delay (N=36) <u>Comparator:</u> No treatment (N=35)	 Syncope: 6(17%) theophylline, 2(6%) PPM, 8(23%) control arm: p=0.02 (PPM vs. control); p=0.07 (theophylline vs. control) HF: 1(3%) theophylline, 1(3%) PPM, 6(17%) control arm: p=0.05 (lower HF in PPM and theophylline vs. control arm Permanent AF: 2(6%) theophylline, 3(9%) PPM, 	• Thromboembolism: 3(9%) theophylline, 3(9%) PPM, 1(3%) control arm: no difference (p=NS)

VT, prior usage of theophylline, need for	Mean follow-up 19±14 mo	4(11%) control arm: no difference (p=NS)	
BB or CCB			

Data Supplement 26. Nonrandomized Trials, Observational Studies, and/or Registries of Reversible Causes of AV block (Section 6.3.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
Year Published Kenneback G, et al. 2007 (149) <u>17255148</u>	Study type: Single- center, prospective cohort (Sweden) Size: N=17 (53% men), mean age 77 y	Inclusion criteria: Pts admitted with high-degree AVB on antiarrhythmic therapy (88% beta blocker) who received PPM, who then had AAD withdrawn with return of AV conduction. Exclusion criteria: Valve surgery in past year, permanent AF	<u>8</u> 95% CI) <u>1° endpoint</u> : Recurrence of AVB detected by PM algorithm over 2 y <u>Results:</u> 9/12 pts (75%) with QRS ≥120 ms and 1/5 pts (20%) developed recurrent AVB. 6/17 pts (35%) developed atrial tachyarrhythmias requiring AAD tx	 Appropriate to place PPM in pts with AVB and QRS ≥120 ms w/o further delay or evaluation.
Knudsen MB, et al. 2013 (150) <u>23869746</u>	Study type: Single- center, retrospective cohort (Denmark) Size: N=55 (55% male, mean age 77 y)	Inclusion criteria: Pts admitted with 2/3 AVB, had temporary wire, were on class II-IV AADs or digoxin. Exclusion criteria: No ECG documentation, AVB due to other identified cause, prior PPM explant, died within several days	<u>1° endpoint</u> : Need for PPM; complications of TPM <u>Results:</u> 47/55 (85%) required PPM in hospital. 2/55 had recurrent AVB and required PPM. 11% of pts had complication of TPM (infection/ dislodgment), also prolonged hospital stay	 Pts with AVB on AADs /digoxin do not benefit from TPM and drug washout. Should proceed to PPM w/o delay. "In the elderly, the drug is virtually never the sole culprit; rather, it just exposes the underlying weakness of the aging conduction system"
Osmonov D, et al. 2012 (151) <u>22530749</u>	Study type:Single- center retrospective cohort (Turkey)Size:N=108 (16% of all 668 pts admit with 2/3 AVB).30/108 (28%) had AF with SVR	Inclusion criteria: All pts admitted with 2/3 AVB who were on AV nodal blocking drugs 2008–9 Exclusion criteria: MI, electrolyte disturbances, digoxin toxicity, vasovagal syncope	 <u>1° endpoint</u>: Resolution/ recurrence AVB, need for PPM <u>Results</u>: Resolution of AVB with 72 h in 78/108 (72%). 21/78 (27%) had recurrence of AVB. Overall 51/108 (48%) had persistent of recurrent AVB despite drug withdrawal. 	 Half of pts with AVB on nodal- blocking drugs require PPM before discharge despite drug withdrawal. Limited follow-up – other pts may have required PPM at later date

Page 101

Zeltser D, et al. 2004 (152) <u>15234417</u>	Study type: Single- center retrospective cohort (Israel) Size: N=169 (60% male, mean age 78 y). 92/169 (54%) receiving AV nodal blockers	Inclusion criteria: All pts admitted with 2/3 AVB 1999– 2003. Exclusion criteria: MI, digoxin toxicity, vasovagal syncope	 <u>1° endpoint</u>: Resolution/ recurrence AVB, need for PPM <u>Results:</u> 79/92 (86%) had drug discontinued. 32/79(41%) had resolution of AVB. 18/32 had relapse of AVB within 3 wk 	 Overall, only 15% of pts with AVB on nodal blocking drugs had AVB "caused by drugs" F-u limited to 3 wk
Risgaard B, et al. 2012 (153) <u>22333242</u>	Study type: Retrospective single- center/region cohort study (Denmark) Size: N=259 (mean age 78 y, 46% male). 49.7% had 2/3 AVB. 15% had AF-slow ventricular response	Inclusion criteria: All pts referred for urgent PPM in 2009 Exclusion criteria: Discharged from hospital before implant, referred from outpatient department	<u>1° endpoint</u> : d to implant, complications during wait <u>Results:</u> Mean 8.3 d hospitalization to implant (3.2 d to Dx; 5.1 d waiting for PPM). 83/259 pts (32%) had complications while waiting – Infection (11%), asystole (20%), NSVT (5%), cardiac arrest (3%), death (1%)	• Pt harm results from delay to PPM for capacity issues.
Farre N, et al. 2014 (154) <u>24491864</u>	Study type: Retrospective single- center cohort (Spain) <u>Size</u> : N=79; mean age 72 y, 50% male	Inclusion criteria: Consecutive pts with "reversible" 3 rd degree AVB not undergoing initial PPM implant Exclusion criteria: None stated	 <u>1° endpoint</u>: Persistence/recurrence of AVB, PPM implant <u>Results:</u> 39% of pts w/o ischemic/infarction developed recurrent AVB, had PPM 	 Outside setting of MI/ischemia, high proportion of pts with 3rd degree AVB and "reversible causes" develop recurrent AVB. Close f-u warranted Study was research letter with little data presented
Antman EM, et al. 1990 (100) <u>2188752</u>	Study type: Open-label, 21-center prospective cohort study 1974–86 Size: N=150 pts (79=53% with high- degree AVB). 46% male, mean age 65 y	Inclusion criteria: Pts who received digoxin-specific Fab fragments in trial 1974–86. Exclusion criteria: None stated	<u>1° endpoint</u> : Clinical "response" <u>Results:</u> 80% complete resolution of signs/sx. 10% partial response, 10% complete response.	AVB pts not separately analyzed
Hickey AR, et al. 1991 (101) <u>1993775</u>	Study type: Multi- center US national prospective cohort	Inclusion criteria: All pts in US receiving anti-digoxin Fab fragments Exclusion criteria: None stated	<u>1° endpoint</u>: Resolution of symptoms of digoxin toxicity	 No separate analysis of AVB pts

	<u>Size</u> : N=717; 40% men,		Results: 50% complete response, 24%	
	mean age 74 y		partial response; 12 % no response. 3%	
			recurrence rate. 1% allergy to therapy	
Sadek MM, et al.	Study type: Systematic	Inclusion criteria: English	1° endpoint: Reversal or improvement	 Considerable study
2013 (155)	review	language, original outcome data	in AVB	heterogeneity
<u>23623644</u>		on pts with cardiac sarcoidosis		• "Improvement" in AV conduction
	Size: 10 publications;	tx with steroids.	Results: 27/57 (47%) cases treated	not defined
	299 pts		with steroids had improved or	• Outcome not defined in terms of
		Exclusion criteria: Reports less	recovered AV conduction vs. 0/16 pts.	need for PM
		than 5 subjects or less than 3-	w/o steroid treatment.	
		mo follow-up		
Kandolin R, et al.	Study type: Single-	Inclusion criteria: Pts. 18–55 y	<u>1° endpoint</u> : Dx of cardiac sarcoidosis;	 Selected population, tertiary
2011 (156)	center retrospective	who had PPM implant for	reversal of AVB with treatment.	referral center
<u>21427276</u>	cohort (Finland)	unexplained 2 nd /3 rd -degree AVB		 Little data about AVB described
			<u>Results:</u> 18/72 (25%) had probable (4)	 Overall suggests low chance of
	<u>Size</u> : N=133; 72 pts	Exclusion criteria: None	or definite (14) cardiac sarcoidosis AVB	reversing AVB with steroid
	with unexplained AVB	described	reversed in only 2/16 pts (13%) treated	treatment
			with steroids	
Ozcan KS, et al. 2012	Study type: Single-	Inclusion criteria: All pts. with	1° endpoint: Persistent AVB despite	 Thyroid abnormalities are rarely
(157)	center retrospective	2 nd /3 rd degree AVB who had	treatment of thyroid abnormalities	a cause of reversible AVB.
<u>22738687</u>	cohort (Turkey)	hyper- or hypothyroidism		
			<u>Results:</u> 46/50 (92%) pts required	
	<u>Size</u> : N=50 (29	Exclusion criteria: MI,	PPM; 2 additional pts had persistent	
	hypothyroid, 21	electrolytes abnormalities,	AVB. 22/29 (76%) with hypothyroidism	
	hyperthyroid)	digoxin toxicity, vasovagal	and 18/21 (86%) with hyperthyroidism	
		syncope, on AADs	had irreversible AVB.	
Forrester JD, et al.	Study type: Systematic	Inclusion criteria: English	<u>1° endpoint</u> : Outcomes, need for PPM,	 AVB with Lyme carditis almost
2014 (158)	review of case reports	language case reports or series	persistence of AVB	always resolves with treatment
<u>24879781</u>	and case series	in peer-reviewed journal of pts		
		with Lyme disease and ECG-	Results: 18/45 (40%) required TPM,	
	Size: 34 manuscripts	documented 3 rd degree AVB	2/45 (4%) had PPM, both in 1980s. All	
	reporting 45 cases		other cases resolved, median time to	
		Exclusion criteria: Not in	resolution 6 d (range 1–42 d).	
		English, pt not US, no pt		
<u> </u>		variables reported		
Van der Linde, MR,	Study type: Review of	Inclusion criteria: Published	<u>1° endpoint:</u> Outcome, resolution of	PPM rarely needed after episode
1991 (159)	published case reports	case reports 1977–90,	AVB, need for PPM	of Lyme carditis
<u>1947815</u>	in Europe and North			

America, European questionnaire, personal communication,	questionnaire, personal communication, observations	<u>Results:</u> 49% had 3 rd degree AVB, 16% had 2 nd degree AVB. 35% required TPM, 94% with complete recovery of	
observations <u>Size</u> : 105 cases	Exclusion criteria: None	AV conduction, only 1 pt (1%) had persistent 3 rd degree AVB	

Data Supplement 27. RCTs Comparing Medical treatment for AV block (Section 6.3.2)

Study Acronym;	Aim of Study;	Patient Population	Study Intervention	Endpoint Results	Relevant 2° Endpoint
Author;	Study Type;		(# patients) /	(Absolute Event Rates,	(if any);
Year Published	Study Size (N)		Study Comparator	P values; OR or RR; &	Study Limitations;
			(# patients)	95% CI)	Adverse Events
Abu-Laban RB, et al.	Aim: To determine	Inclusion criteria: Pts over 16	Intervention: 500	1° endpoint: ROSC:	 Did not call out pt
2006 (104)	whether	y in British Columbia 2001–3	mg IV aminophylline	24.5% I vs. 23.7% C (0.8%, -	with AVB
<u>16698410</u>	aminophylline	with brady-asystolic arrest	bolus	4.6–6.2; p=0.778)	 Prehospital setting
	increases rate of	refractory to intubation,		Survival to hospital admission:	only
	ROSC after out of	atropine and epinephrine	Comparator:	6.6% l vs. 7.6% C (-1.0%, -4.3–	
	hospital cardiac		Matching placebo	2.2; p=0.527)	
	arrest	Exclusion criteria: Do-not-		Survival to hosp. discharge:	
		resuscitate order, pregnancy,		0.4% l vs. 0.6% C (-0.2%, -1.1–	
	Study type: RCT	hemorrhage/trauma or		0.7%; p=0.653)	
		hypothermia, end-stage			
	<u>Size</u> : N=971	renal disease, on		Safety endpoint (if relevant):	
		theophylline		None	
PrePACE	Aim: To compare	In Inclusion criteria: Pts ≥18	Intervention: TCP	<u>1° endpoint</u> : Survival to	 Half of eligible pts
Morrison, LJ, et al.	outcome of pts with	y presenting to Toronto EMS	80 bpm	hospital discharge	not randomized
2008 (86)	prehospital unstable	with hemodynamically		69% I vs. 70% C (p=NS)	 This was a pilot
<u>17933452</u>	bradycardia with	unstable bradycardia	Comparator:		study for potential
	TCP vs. dopamine	unresponsive to fluids and	Dopamine 5–20	Safety endpoint:	larger RCT
		atropine	mcg/kg/min	VT/VF/cardiac arrest/burn:	 Dopamine
	Study type: RCT			7.1% C vs. 7.5% C (p=NS)	equivalent to TCP
		Exclusion criteria: Trauma,			in this small pilot
	<u>Size</u> : N=82; mean	hyperthermia, hypothermia,			study
	age 71 y; 57% male	cardiac arrest			

Data Supplement 28. Nonrandomized Trials, Observational Studies, and/or Registries of Medical Treatment for AV block (Section 6.3.2)

Page 104

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Brady WJ, et al. 1999 (79) <u>10459592</u>	Study type: Single-EMS system retrospective cohort in US	Inclusion criteria: All nontraumatized pts from 1990– 1993 who experienced bradycardia with associated	<u>1° endpoint:</u> "Response" in 4 categories – adverse, none, partial, complete <u>Results:</u> Mean dose 1.1 mg. Of 37 pts with	 Limited methodology, results poorly described
	Size: N=131; 45 with AVB; Mean age 69 y; 53% male	hemodynamic instability who received atropine in field. <u>Exclusion criteria:</u> Not stated,	3 rd degree AVB in field, 21 arrived in ED with 3 rd degree AVB and only 9 left ED with 3 rd degree AVB. Of all pts, 27% had complete response, 20% partial, 50%	
		but presumably cardiac arrest. Also excluded pre-hospital deaths (N=16)	none; 3% adverse	
Feigl D, et al. 1984 (160) <u>6736451</u>	Study type: Single center retrospective cohort study in Israel 1978–1982	Inclusion criteria: 2 nd or 3 rd degree AVB developing in course of IMI who survived >72 h	<u>1° endpoint</u> : Outcomes, response to atropine <u>Results:</u> Of 15 pts with early AVB (<6 h). Atropine normalized conduction in 20%,	 Descriptive, uncontrolled study No adverse events to drug therapy reported
	<u>Size</u> : N=34; mean age 62 y; 82% male	Exclusion criteria: None	increased V rate in others. 5 had normalization with isoproterenol. 14 pts had late AVB – less response to atropine (mean 16 bpm). 50% required TPM	
Sclarovsky S, 1984 (161) <u>6731277</u>	Study type: Single center retrospective cohort study in Israel 1972–1982	Inclusion criteria: All pts with acute inferior MI who developed 2 nd or 3 rd degree AVB in hospital	<u>1° endpoint:</u> Description of outcomes, response to atropine and isoproterenol <u>Results:</u> 6/14 (36%) of pts with early AVB improved vs. 13/17 (77%) pts with late	 Descriptive uncontrolled study No adverse events to drug therapy reported
	<u>Size</u> : N=76	Exclusion criteria: Combined AMI and IMI	AVB (p<0.05). 2/8 (25%) of pts with early block and 2/6 (33%). 50% of pts had TPM	
Chihrin SM, et al. 2008 (162) <u>18308011</u>	Study type: Single center prospective cohort in Canada	Inclusion criteria: Consecutive pts from 2003–2006 undergoing PPM generator change who were PM dependent	<u>1° endpoint:</u> Elicitation of escape rhythm with PM stepdown to 30 bpm or isoproterenol 1–2 mcg/min	• Suggests that isoproterenol can be used to elicit faster escape rate in pts with AVB
	Size: N=100; mean age 75 y; 56% male	Exclusion criteria: None	Results: 59% demonstrated intrinsic rhythm with stepdown alone. Of remaining 41 pts, 28 (68%) demonstrated	

			intrinsic rhythm with isoproterenol. No adverse events.	
Hurley KF, et al. 2015 (105) 26593309	Study type: Systematic review of 5 RCTs	Inclusion criteria: RCTs of aminophylline used for pre- hospital resuscitate of	<u>1° endpoint:</u> Survival to discharge/admission, ROSC	 Aminophylline not useful in out of hospital bradyasystolic arrest
	<u>Size</u> : N=1254	bradyasystolic cardiac arrest Exclusion criteria: N/A	Results: No improvement in outcome by any measure with aminophylline. Overall survival extremely low	
Sodeck GH, et al. 2007 (77) <u>17212976</u>	Study type: Retrospective analysis of single ED registry from tertiary center in Austria Size: N=277; mean age 68 y; 62% male; about 50% AVB	Inclusion criteria: Consecutive pts admitted to ED 1994–2004 with symptomatic, hemodynamically significant bradycardia Exclusion criteria: Asymptomatic and terminally ill pts	 <u>1° endpoint</u>: Use of drugs for bradycardia, use of pacing <u>Results</u>: IV medications given to 170 pts (61%) – Atropine in 141 (51%), orciprenaline 62 (22%), epi 24 (9%), dopamine 6 (2%). 7 pts had TCP (4 successful); 54 (20%) had temporary TVP. 137/277 (50%) received PPM 	 Descriptive study with no control group Pts with AVB not separately reported or analyzed Minimal information on clinical effects of intervention given
Bertolet BD, et al. 1995 (163) <u>7661495</u>	Study type: Single- center observational cohort in US <u>Size</u> : N=8; 3 with complete AVB	Inclusion criteria: Pts with significant AVB developing within 4 h of admission for acute inferior MI, resistant to atropine, given IV theophylline up to 250 mg Exclusion criteria: Pts who received BBs or CCBs prior	<u>1° endpoint</u> : Restoration of 1-1 AV conduction <u>Results:</u> All 8 pts had restoration of 1-1 AV conduction within 3 min lasting at least 24 h	 No controls Very small, single-center experience
Altun A, et al. 1998 (164) <u>9789698</u>	Study type: Single- center observational cohort in Turkey Size: N=8; 6 with complete AVB; mean age 68 y	Inclusion criteria: Pts with 2 nd or 3 rd degree AVB after IMI for at least 1 h, resistant to atropine. Given 2 doses of aminophylline 240 mg 1 h apart Exclusion criteria: Pts in hyperacute phase of MI, received AV nodal blocking drugs	 <u>1° endpoint</u>: Restoration of AV conduction <u>Results:</u> Aminophylline restored 1-1 AV conduction in 7 pts and Mobitz I AVB in 1. No adverse effects. AVB relapsed in 1 pt only 	 No controls Very small, single-center experience

Goodfellow J, et al.	Study type: Single-	Inclusion criteria: Pts with	1° endpoint: Restoration of 1-1 AV	No controls
1995 (165)	center case series in	atropine-resistant AVB with	conduction	 Very small case series
<u>7588933</u>	United Kingdom	acute inferior MI treated with		
		streptokinase. All had	Results: 1-1 AV conduction restored	
	<u>Size</u> : N=3	hypotension	promptly with resolution of hypotension	
			in all	
		Exclusion criteria: None		
Love, JN, et al. 1998	Study type: Single	Inclusion criteria: Pts presenting	1° endpoint: Improvement in bradycardia	 Most pts had BBs and/or CCBs
(90)	center case series in US	with symptomatic bradycardia	and hemodynamics	as significant co-factors
<u>9674488</u>		resistant to atropine 1 mg who		 Unknown how many had AVB
	<u>Size</u> : N=9	received IV glucagon 1–7 mg	Results: All pts improved at least	
		then 3–5 mg/h	transiently	
		Exclusion criteria: None		
Dhingra RC, et al.	Study type: Single	Inclusion criteria: 42 pts with	<u>1° endpoint</u> : Improvement in AV	 Very small study
1973 (166)	center cohort	heart disease undergoing	conduction and change in ventricular rate	 Bias in reflects those able to
<u>4744693</u>	undergoing invasive EP	invasive EPS w/o and with		undergo EPS
	study in US	isoproterenol	Results: 2/8 pts with 3 rd degree AVB had	 Hemodynamics/ BP not
			improved conduction with isoproterenol,	measured
	Size: N=42; 8 with 3rd	Exclusion criteria: None	as did 3/3 pts with 3 rd degree AVB.	 Suggests isoproterenol useful
	degree AVB, 3 with 2 nd		Ventricular rate improved in all subjects	to augment heart rate in 2 nd
	degree AVB		from mean of 45 bpm to 62 bpm,	and 3 rd degree AVB
			regardless of site of block	
Hatle L, et al. 1971	Study type: Single	Inclusion criteria: Pts with acute	<u>1° endpoint</u> : Improvement in heart rate	 Very early cohort when there
(167)	center prospective	MI treated 1966–1970 with 2 nd		was minimal treatment for
<u>5557475</u>	cohort from Norway	or 3 rd degree AVB treated with	Results: In hospital mortality 48%. 60 pts	acute MI
		isoproterenol, generally 1–3	received isoproterenol: 38 (63%) had	 Extremely high mortality
	Size: N=105 pts with	mcg/min	increase in heart rate and BP; 12 (20%)	 In this group, isoproterenol
	2nd or 3 rd degree AVB		had increased in heart rate but minimal	appeared safe compared with
	in setting of acute MI	Exclusion criteria: None stated	change in BP; 8 (13%) had minimal	TVP
			change; 2 (3%) isoproterenol terminated	 Uncontrolled cohort study
			due to ventricular ectopy. 3 pts had	
			ventricular fibrillation on isoproterenol, 1	
			of which died. 14 pts treated with TVP, 3	
			of whom died from ventricular fibrillation	

Data Supplement 29. RCTs Comparing Temporary Pacing (Section 6.3.3)

Page 107

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Ferguson JD, et al. 1997 (113) <u>9217762</u>	Aim: Compare 2 types of TVP catheters for success and complication rates Study type: Unblinded RCT Size: 40 pts, mean age 72 y. 85% with AVB	Inclusion criteria: Undergoing temporary VVI pacing (85% with AVB) guided by fluoroscopy Exclusion criteria: None stated	Intervention: Use of balloon-tipped electrode (N=20) Comparator: Use of semi-rigid electrode (N=20)	1° endpoint:Procedureduration (264 vs. 540 s;p<0.002), fluoroscopy time (87	 When guided by fluoroscopy, balloon- tipped catheters are easier to place successfully than semi- rigid catheters Use of balloon-tipped catheter associated with trend toward lower complication rate
Barthell E, 1988 (127) <u>3056132</u>	Aim: Compared TCP added to ACLS vs. ACLS alone for pre-hospital pts with asystole, EMD, or hypotensive bradycardia Study type: Unblinded RCT (alternate d randomization) Size: N=239; 142 with asystole; 84 with EMD; 13 with hypotensive bradycardia	Inclusion criteria: All adult, nontraumatic bradyasystolic episodes or arrests treated by Milwaukee County Paramedic System Oct 1986–May 1987 Exclusion criteria: None stated	Intervention: TCP + ACLS Comparator: ACLS alone	Death (0 vs. 2) 1° endpoint: Survival to hospital admission: Asystole/EMD 17% I vs. 20% C (p=NS) Hypo-brady 100% I vs. 29% C (p=0.01) Survival to hospital discharge: Asystole/EMD 2% I vs. 4% C (p=NS) Hypo-brady 83% I vs. 14% C (p=0.01) Safety endpoint: None	 Limited form of randomization Overall, no effect of TCP for pre-hospital use for asystole/EMD arrest Possible benefit for hypotensive bradycardia, but number of pts very small

Cummins RO, et	Aim: Determine efficacy	Inclusion criteria: All	Intervention: 16	1° endpoint: Survival to	No improvement for pts
al. 1993 (168)	of TCP of asystolic out of	cardiac arrests in	EMS/fire districts given	hospital admission/ primary	with initial VF
<u>8474514</u>	hospital cardiac arrest	Seattle area over 3 y	TCP and trained in use	asystole:	• Limited form of
		period; Primary group		8% I vs. 8% C (p=NS)	randomization
	Study type: Modified	was those with asystole	Comparator: 23	Survival to discharge:	
	RCT by center	as first rhythm	EMS/fire districts given	4% I vs. 2% C (OR: 2.05; p=NS)	
			TCP and trained in use		
	Size: N=1056 cardiac	Exclusion criteria:		Safety endpoint: None	
	arrests; N=537 with	None			
	asystole as first rhythm;				
	N=305 with asystole				
	after VF				
Hedges JR, et al.	Aim: Determine efficacy	Inclusion criteria: All	Intervention: On odd	<u>1° endpoint</u> :	• Limited form of
1987 (169)	of TCP added to ACLS for	pts over 14 y treated by	calendar days, EMS	Survival to hospital admission:	randomization
<u>3315295</u>	prehospital	Thurston County, EMS	used TCP 100 bpm at	17% I vs. 17% C (p=NS)	 No improvement with
	hemodynamically	for hemodynamically-	max output for pts	Survival to hospital discharge:	ТСР
	significant bradycardia	significant bradycardia		6% I vs. 4% C (p=NS)	
	or asystole	with decreased mental	Comparator: On even		
		status (Glasgow coma	calendar days, TCP was	Safety endpoint: None	
	Study type: RCT	score ≤12)	not used		
	(alternate day)				
		Exclusion criteria:			
	<u>Size</u> : N=202	None stated			
PrePACE	Aim: To compare	Inclusion criteria: Pts	Intervention: TCP 80	<u>1° endpoint</u> : Survival to	 Half of eligible pts not
Morrison, LJ, et	outcome of pts with	18 y or older	bpm	hospital discharge	randomized
al. 2008 (86)	prehospital unstable	presenting to Toronto		69% l vs. 70% C (p=NS)	 This was a pilot study for
<u>17933452</u>	bradycardia with TCP vs.	EMS with	Comparator: Dopamine		potential larger RCT
	dopamine	hemodynamically	5–20 mcg/kg/min	Safety endpoint:	 No benefit to TCP seen
		unstable bradycardia		VT/VF/cardiac arrest/burn:	
	Study type: RCT	unresponsive to fluids		7.1% C vs. 7.5% C (p=NS)	
		and atropine			
	Size: N=82; mean age 71				
	y; 57% male	Exclusion criteria:			
		Trauma, hyperthermia,			
		hypothermia, cardiac			
		arrest			

Data Supplement 30. Nonrandomized Trials, Observational Studies, and/or Registries of Temporary Pacing (Section 6.3.3)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
Sodeck GH, et al. 2006 (77) <u>17212976</u>	Study type: Single center retrospective cohort in Austria Size: 277 pts (62% male, 48% AVB)	Inclusion criteria: Pts >18 y presenting to ED with "compromising bradycardia from 1994–2004; mean heart rate 33 bpm Exclusion criteria: Asymptomatic bradycardia, terminal illness	<u>1° endpoint</u> : 30 d mortality <u>Results:</u> 5% mortality at 30 d. 20% of pts treated with temporary TVP. 50% of those pts went on to have permanent pacing	 Temporary TVP required in about 20% of pts presenting to ED with symptomatic bradycardia Half of those pts go on to PPM
Brikhahn RH, et al. 2004 (170) <u>15039689</u>	Study type: Single- center retrospective cohort in US Size: 154 pts, 117 meeting inclusion/ exclusion criteria. Mean age 78 y, 38% male, 51% AVB)	Inclusion criteria: All pts with temporary TVP placed in ED, intensive care unit, or ward 1999–2002. Only 3% placed under fluoroscopy Exclusion criteria: Indication asystole, TVP placed in cath or EP lab, no attending supervision	 <u>1° endpoint</u>: Successful temporary TVP placement. Complication rate. <u>Results:</u> 88% success on first attempt. 17% serious complication rate. 96% placed by cephalic approach. 67% had PPM. 23% in-hospital mortality 	 Similar success rates between ED physicians and cardiologists High overall success rate of implantation of TVP Cephalic route rarely used in general practice today
Betts TR, 2003 (119) <u>12954959</u>	Study type: Prospective registry in 5 regional hospitals in England in 1999 Size: 144 procedures in 111 pts; mean age 75 y.; 63% male; 51% AVB	Inclusion criteria: All TVPs placed over 9 mo period in 1999 Exclusion criteria: None cited	<u>1° endpoint</u> : General overview of procedure technique, outcomes, complications <u>Results:</u> Procedure times shorter for cardiologists, 28% complication rate. Immediate complication rates lower with experience (1/81) vs. inexperienced (5/59) operators. Infection occurred more in wires left in >48 h (17/86) than <48 h (2/55). 23% of comps resulted in delayed PPM	 Suggests benefit to TVP implant by cardiologists/ experienced operators Greater infection risk for TVP wires left in >48 h High rate of overall complications seen 23% of comps delayed PPM implantation

Mahapatra S, et al. 2005 (171) <u>16171740</u>	Study type: Case- control derived from prospective database 1995–2003 at Mayo Clinic Size: 50 pts with cardiac perforation after PPM vs. 100 controls	Inclusion criteria: Pts undergoing PPM 1995–2003 with perforation and new effusion. Exclusion criteria: Age <18 y, prior effusion or cardiac surgery within 4 wk of PPM	<u>1° endpoint</u> : Risk factors for perforation after PPM <u>Results:</u> 1.2% of all pts had perforation. Predictors of perforation in multivariate analysis included prior TVP (HR: 2.7; 95% CI: 1.4–3.9], helical screw leads (HR: 2.5), steroid use (HR: 3.2)	 Suggests benefit to avoiding TVP prior to permanent pacing unless essential
Lang R, et al. 1981 (172) <u>6169032</u>	Study type: Single- center nonrandomized controlled study comparing balloon- tipped, flow-guided TVP vs. standard semi- rigid catheter Size: 111 consecutive pts (67 flow-guided, 44 semi-rigid)	Inclusion criteria: Consecutive pts requiring emergency or semi-urgent temporary TVP at a single Israeli center Exclusion criteria: None stated	<u>1° endpoint</u> : Successful implant, procedure time, threshold, multiple safety endpoints <u>Results:</u> Flow-guided TVP had 1) shorter insertion time (7 min vs. 14 min); less dislodgement (13% vs. 32%), lower incidence of serious ventricular arrhythmia (1.5 vs. 20.4%) Thresholds similar.	• Superiority of balloon-tipped, flow guided electrode catheter for temporary TVP demonstrated.
Hynes JK, et al. 1983 (115) <u>6823157</u>	Study type: Retrospective single- center cohort at Mayo Clinic Size: 1022 pts, mean age 68 y, (65% male)	Inclusion criteria: Consecutive pts undergoing temporary TVP wire in Mayo Clinic coronary care unit 1976–81. Exclusion criteria: None stated	<u>1° endpoint</u> : Complications <u>Results:</u> Implanted mean 3.1 d, 64% placed antecubital route, 19% subclavian vein, 12 % internal jugular vein. 13.7% complication rate, increasing with duration of TVP. Lowest comp rate with internal jugular vein 5.3% pericarditis. PPM implanted in 58% of pts.	 Preference for internal jugular rand subclavian vein access sites confirmed
Winner S and Boon N, 1989 (173) <u>2769615</u>	Study type: Retrospective single region cohort study	Inclusion criteria: Consecutive pts referred to regional center for PPM Exclusion criteria: Missing records	<u>1° endpoint</u> : Complications, defined as "major problems": dislodgement, infection, pericarditis/perforation, thrombosis, wire in left ventricle	 Advise avoiding TVP before PPM unless absolutely necessary

	Size: 266 ptc/ 159		Bogulto: 26% rate of major problems	
	Size: 266 pts/ 158		<u>Results:</u> 36% rate of major problems,	
	(59%) had temporary		much higher rate at smaller referral	
	TVP		hospitals. 6% infection; 30% failure to	
			pace, 4% pericarditis	
López Ayerbe J, et	Study type:	Inclusion criteria: Pts receiving	<u>1° endpoint</u> : Complications,	Complication rates improved
al.	Retrospective single	TVP 1997–2003. All via femoral	outcomes	compared with series from
2004 (114)	center cohort in	route (99%) with fluoroscopic		1980s and 1990s (18–43%)
<u>15544753</u>	Barcelona, Spain	guidance	Results: Mean duration 4.2 d. 22%	 Lower use in pts with acute MI
			complication rate: 1% death (3	seen
	<u>Size</u> : N=530; mean age	Exclusion criteria: Pts	tamponade, 1 asystole, 1 PE, 1	
	74 y, 54% male; 51%	transferred out with no	sepsis). 9% migration/dislodgement'	
	AVB.	available f-u (N=38)	9% other (VTE, effusion, infection)	
Bjornstad CC, et al.	<u>Study type</u> :	Inclusion criteria: All pts with	<u>1° endpoint</u> : Complications,	 Fewer TVPs being performed by
2012 (126)	Prospective regional 5	TVP in 5 hospitals March 2010–	outcomes	more physicians with less
<u>22390277</u>	hospital study in	March 2011. All with		experience
	Norway 2010–11.	fluoroscopy	Results: 96% TVP; 4% TCP. 60%	 Lower complication rate with
			received PPM; 14% died. 30% rate of	more experienced implanters
	<u>Size</u> : N=50; 45% AVB;	Exclusion criteria: None stated	"serious complications" including 6%	
	mean age 79 y, 62%		death from sepsis	
	male			
McCann P, 2006	Study type:	Inclusion criteria: Cohort	1° endpoint: Complications,	 Methodologically limited
(125)	Systematic review	studies of TVP published 1973–	outcomes	systematic review
<u>17235372</u>	1973–2004	2004		 Higher complication rate in
			Results: Overall complication rate	older pts
	Size: 15 studies;	Exclusion criteria: None stated	26.5%: 15% failed access, 10% failed	Lower complication rate when
	N=3737; mean age 71		placement, 9% sepsis, 4% arterial	implanted by specialists
	у		puncture, 2% lung/myocardium	• Trend toward greater use of
			puncture	right internal jugular access
				over time
Jou YL, et al. 2010	Study type: Single	Inclusion criteria: All pts with	<u>1° endpoint</u> : Trends in use	 High rate of PPM for
(124)	center retrospective	TVP 2002 8 at single center	<u></u>	degenerative AVB
20946290	cohort in Taiwan		<u>Results:</u> Greater use for AVB with	
	2002-8	Exclusion criteria: None stated	intrinsic disease, less for sinus node	
	•	Marca	dysfunction and MI over time. 48%	
	<u>Size</u> : N=509; mean age		had PPM implant within 30 d (mean 6	
	77 y, 74% male; 64%		d) with increasing rate over time.	
	AVB			

Knudsen MB, et al. 2013 (150) <u>23869746</u>	Study type: Retrospective single- center cohort at academic medical center in Denmark 2000–11. Size: N=575 with TVP. N=55 with AVB and potential culprit drug. Mean age 77 y, 56% male	Inclusion criteria: Pts getting TVP wire 2000–11 who had AVB and potential culprit drug discontinued Exclusion criteria: No ECG documentation; other etiology of bradycardia documented; PPM infection; in hospital death	 <u>1° endpoint</u>: Indication for PPM despite drug discontinuation; complications and outcomes <u>Results:</u> 49/55 (89%) ultimately required PPM, including 26/27 (96%) on BBs. 11% comp rate from TVP. PPM postponed mean of 7 d for drug withdrawal 	 Authors conclude that: "Primary PPM implantation should be considered in pts with high-degree AVB and concomitant AV blocking therapy, unless other reversible causesexist." "In the elderly, the drug is virtually never the sole culprit; rather, it just exposes the underlying weakness of the aging conduction system
Murphy JJ, 1996 (116) <u>8620131</u>	Study type: Prospective cohort in 18 hospitals in Northern England over 6 mo Size: N=194. Mean age 71 y; AVB (67%). Acute MI in 53%	Inclusion criteria: All TVP implants in 18 hospitals. Exclusion criteria: None stated	<u>1° endpoint</u> : Complications <u>Results:</u> Immediate complications in 12/194 (6%) – VT/VF in 6, arterial puncture (3), pneumothorax (2), brachial plexus injury (1). Late comps in 22/194 (11%) – VT/VF 10, definite/possible sepsis in 10 (5.2%) – almost all had TVP>48 h. 38/194 (20%) needed repositioning. Total comps 35%. 11/194 (5.5%) died within 1 h of procedure. 56/194 (29%) had PPM	 High rate of implant by junior staff (residents) Continued high rate of complications in British medical system in 1990s
Pinneri F, et al. 2013 (174) <u>22240748</u>	Study type: Single- center nonrandomized controlled study. Size: N=106; mean age 77 y, 51% male; 75% had AVB; 59% ultimately required PPM	Inclusion criteria: Consecutive pts requiring TVP 2003–2010. Pts underwent TVP guided by echo (N=53) or fluoroscopy (N=53) based on operator preference. Exclusion criteria: Incomplete follow-up (N=4)	 <u>1° endpoint</u>: The primary efficacy endpoints were time to pacing, pacing threshold, changes in threshold and need for catheter replacement. The primary safety endpoints were overall complications and death related to TVP implant. <u>Results:</u> Successful in all but 1 in each group (98%). Time to pacing and 24 h threshold better in echo-guided group. TVP repositioned in 6% of echo-guided and 22% of fluoroscopy- 	 Echo-guided TVP was safer and more effective in this single center cohort with cardiologists comfortable with technique. Not clear why dislodgment rate and thresholds would be worse in fluoroscopy group.

			guided groups (p<0.001), Comp rate lower in echo (11%) than fluoroscopy (41%) group; p<0.001).	
Braun MU, et al. 2006 (175) <u>16923004</u>	Study type:Non- randomized prospective controlled study comparing externalized active- fixation lead vs. standard temporary TVP wire)Size:49 pts, mean age 72 y, 63% male	Inclusion criteria: Pts with systemic infection requiring VVI pacing >48 h Exclusion criteria: None stated	<u>1° endpoint</u> : Implant success, pacing thresholds, acute complications, dislodgement rate <u>Results:</u> 100% implant success in both groups, paced median 8 d, similar procedure time, acute comps, pacing threshold. There were 24 dislodgments in 12 pts in control group, only 1 in active-fixation lead group (p<0.01)	 Externalized active fixation TVP lead associated with much lower dislodgment rate than standard TVP wire. Equally safe to implant Externalized active fixation TVP preferred if pacing >48 h is anticipated.
de Cock CC, et al. 2003 (176) <u>12765453</u>	Study type: Non- randomized single- center comparison of TVP by femoral route with active vs. passive fixation wire in Netherlands 1998– 2001 Size: N=72 pts; mean age 70 y, 51% male	Inclusion criteria: Consecutive pts requiring TVP at single center requiring prolonged temporary pacing (>48 h) – mean 6 d Exclusion criteria: None stated	<u>1° endpoint</u>: Implant parameters, dislodgments, other adverse events <u>Results:</u> Threshold higher in active (1.38V) than passive (0.7V). Dislodgement lower in active (2/36) than passive (12/36) groups (p<0.001). Other comps similar	 Fewer dislodgments using an active fixation lead using femoral approach
Kawata H, et al. 2013 (177) <u>23482613</u>	Study type:Single center retrospective cohort study of temp active fix lead (TPPM) after lead extraction at UCSDSize:N=23; mean age 72 y, 70% male; 87% AVB	Inclusion criteria: 23/47 pts undergoing extraction for CIED infection who were PM- dependent 2010–12 Exclusion criteria: None stated	<u>1° endpoint</u> : Duration of TPPM, complications <u>Results:</u> Duration of TPPM mean 12 d. 12/23 discharged to home or SNF. 1 pt died of sepsis from primary infection; 1 pt developed vegetation on TPPM lead – removed and replaced. No dislodgements. One pts had late pocket infection after reimplant.	 TPPM is a safe and effective option for PM-dependent pts awaiting reimplant after CIED infection Allows earlier mobilization and potential discharge to home/nursing facility to await CIED reimplant

Chihrin SM, et al.	Study type: Single	Inclusion criteria: Pts	<u>1° endpoint</u> : Pacing duration,	• Despite higher lead cost, TPPM
2006 (178)	center retrospective	implanted with TPPM via left	complications, costs	cost-effective after 24 h due to
<u>17145220</u>	cohort in Canada	subclavian vein or right internal		lower complications and less
	2001–5	jugular vein over 5 y period	Results: Duration median 2 d (1–83	intensive bed use
			d); 1 dislodgement requiring	
	<u>Size:</u> N=20 pts;	Exclusion criteria: None stated	repositioning (5%). Using economic	
	median 2 d; mean age		modeling, costs lower with TPPM	
	62 y; 75% male		than conventional TVP at 48 h	
Lever N, et al.	Study type: Single	Inclusion criteria: Consecutive	1° endpoint: Pacing duration,	• TPPM safe and effective, allows
2003 (179)	center cohort in	pts requiring prolonged temp	outcome, complications	early mobility for pts requiring
<u>12527682</u>	United Kingdom	pacing due to infection or drug		prolonged temporary pacing
		washout who had tunneled	Results: Duration median 28 d (9–81	
	Size: N=20; mean age	TPPM	d); no dislodgments or repositioning;	
	66 y, 85% male		2 minor local site infections, no	
		Exclusion criteria: None stated	systemic infection. One pt died from	
			sepsis unrelated to TPPM	
Kornberger A, et	Study type: Single	Inclusion criteria: Consecutive	1° endpoint: Duration of pacing,	• TPPM safe and effective option
al. 2013 (180)	center cohort in	pts implanted with TPPM for	outcomes, complications at 30 d	for prolonged temporary pacing
<u>23718817</u>	Germany	CIED infection (70%) or other		
		reasons (30%) 2000–2009	Results: Successful in 98% - VVI in 56,	
	Size: N=60; mean age		DDD in 3) Duration mean 15 d.	
	73 y, 73% male	Exclusion criteria: None stated	Intraoperative comps in 2 pts (3.3% -	
			one venous thromboembolism and	
			tamponade, one dislodgement during	
			lead extraction). 4 late comps (6.7%)	
			 – 3 possible lead infections, 1 	
			dislodgement.	
Zei P, et al. 2006	Study type: Single-	Inclusion criteria: All pts	1° endpoint: Duration of pacing,	• TPPM safe and effective option
(181)	center cohort in	getting TPPM for prolonged	outcomes, complications	for prolonged temporary
<u>16580542</u>	Boston MA	temp pacing at BWH 2000–		pacing.
		2004	Results: Median duration 7.5 d. 66%	 Allows management in lower
	Size: N=62 pts; mean		went on to have PPM. No deaths	cost less intensive setting
	age 68 y; 60% male	Exclusion criteria: None stated	from arrhythmia, no complications	
			from TPPM, no dislodgements	

Zoll PM, et al. 1985	Study type:	Inclusion criteria: All ED and	1° endpoint: Stimulation	Methodology for data
(130)	Prospective 5-center	hospital pts in whom TCP	effectiveness, clinical usefulness,	collection not described
<u>3886190</u>	cohort study in US	applied	survival in-hospital	No controls
				• Endpoints not well described or
	Size: 134 pts; mean	Exclusion criteria: None stated	Results: QRS response to TCP in 78%,	documented
	age 70 y; 65% men		deemed clinically useful in 61%,	• "This extensive experience with
			survival in 62%	134 pts treated by several
				investigators in 5 institutions
				under varied circumstances
				confirms the safety and efficacy
				of this new technique of
				noninvasive temporary pacing."
Sherbino J, et al.	Study type:	Inclusion criteria: Euthermic,	1° endpoint: Survival to hospital	Limited systematic review:
2006 (128)	Systematic review of 7	nontraumatized adults who	discharge	Heterogeneity of study designs
<u>16814446</u>	studies of TCP for	experience prehospital		precluded statistical analysis
	prehospital	hemodynamically symptomatic	Results: No benefits to TCP for	
	bradyasystole	bradycardia or bradyasystolic	bradyasystolic cardiac arrest. Data	
		cardiac arrest	inadequate to determine efficacy of	
	Size:7 studies, N=	Fuchasian anita dia Managatata d	TCP for SB	
	1487	Exclusion criteria: None stated		
Hedges JR, et al.	Study type: Single	Inclusion criteria: Pt >17 y with	<u>1° endpoint</u> : Arrival to ED with	Non-randomized
1991 (129)	EMS-system cohort in	hemodynamically	palpable pulse:	Potential for confounding by
<u>1721129</u>	US	compromised bradycardia with	26% paced group vs. 13% control	indication
	C :	witness collapse	Survival to hospital discharge:	
	Size: N=51; mean age	Evelusion exiterior Trauma	15% paced group vs. 0% control	
	73 y, 67% male;	Exclusion criteria: Trauma,	Describes Alexan	
		hypothermia, initial rhythm	<u>Results:</u> Above	
		asystole, VT, VF		

Data Supplement 31. RCTs of clinical presentation of bradycardia due to AV block (Section 6.3)

Study	Aim of Study;	Patient Population	Study Intervention (#	Endpoint Results	Relevant 2° Endpoint (if any);		
Acronym;	Study Type;		patients) /	(Absolute Event Rates, P value;	Study Limitations;		
Author;	Study Size (N)		Study Comparator (#	OR or RR; & 95% Cl)	Adverse Events		
Year Published			patients)				
PMID							

PRESS	Aim: Assess	Inclusion criteria:	Intervention: All pts got	1° combined endpoint: Syncope,	• 5% developed a new PM
Santini M, et	whether PM in pts	LBBB or	PM; DDD 60 or DDI 30	presyncope, or other symptoms	indication with AVB
al. 2013 (182)	with bifascicular	RBBB+LPFB/LAFB and		due to AVB occurred in 23%.	
23390123	block+syncope	syncope.	Comparator: DDI 30 pts		
	reduces symptoms	Negative EKG, Holter,		Results: Reduction in combined	
		TTT, EPS		events (HR: 0.32; p=0.042) but	
	Study type: RCT			syncope alone not reduced.	
		Exclusion criteria:			
	<u>Size</u> : N=101	Known PM indication			

Data Supplement 32. Nonrandomized data of Clinical Presentation of Bradycardia due to AV block (Section 6.3)

Aim of Study;	Patient Population	Study Intervention (#	Endpoint Results
Study Type;		patients) /	(Absolute Event Rates, P value; OR or RR; & 95% CI)
Study Size (N)		Study Comparator (#	
		patients)	
<u>Aim:</u> To write a	Inclusion criteria: N/A	Intervention: N/A	 Idiopathic AVB is paroxysmal 3rd degree heart block
featured review of			(sudden CHB) with no other rhythm abnormal pre or post
paroxysmal AVB	Exclusion criteria: N/A	Comparator: N/A	in pts with NL heart and EKG
			 Etiology unknown
Study type: Review			 Intrinsic AVB occurs in pts with underlying HD due to
			phase 3 or phase 4 block, degeneration of HP or valve
<u>Size</u> : N/A			disease, ACS (infant MI)
			 Other causes of AVB; extrinsic vagal effect, Lev-Lenegre
			disease, SLE, bacterial endocarditis with abscess, sarcoid,
			Lyme disease, sickle cell
Aim: Follow 18 pts	Inclusion criteria:	Intervention: EPS,	PPM relieved symptoms in all pts
with unexplained	Normal EKG, no SHD ,	Adenosine plasma level,	None progressed to perm AVB
syncope	parox CHB per	ATP test, TTT, CSM	
	monitoring		
Aim: Determine	Inclusion criteria: 52	Intervention: ILR	Results: Most frequent cause of recurrent finding was
			sudden onset AVB with pauses (63%); CHB typically lasts
	• • • • •		2–10 d
EPS			
prospective			
	Study Type; Study Size (N) Aim: To write a featured review of paroxysmal AVB Study type: Review Size: N/A Aim: Follow 18 pts with unexplained syncope Aim: Determine mechanism of syncope in pts with BBB and neg	Study Type; Study Size (N)Inclusion criteria: N/AAim: To write a featured review of paroxysmal AVBInclusion criteria: N/AStudy type: ReviewExclusion criteria: N/AStudy type: ReviewInclusion criteria: N/ASize: N/AInclusion criteria: N/AAim: Follow 18 pts with unexplained syncopeInclusion criteria: Normal EKG, no SHD , parox CHB per monitoringAim: Determine mechanism of syncope in pts with BBB and neg EPSInclusion criteria: 52 pts with syncope, BBB, QRS >100, neg EPSStudy type: Single armStudy type: Single arm	Study Type; Study Size (N)Inclusion criteria: N/AIntervention: N/AAim: To write a featured review of paroxysmal AVBInclusion criteria: N/AIntervention: N/AStudy type: ReviewExclusion criteria: N/AComparator: N/AStudy type: ReviewIntervention: N/AStudy comparator: N/ASize: N/AInclusion criteria: N/AIntervention: N/AAim: Follow 18 pts with unexplained syncopeInclusion criteria: Normal EKG, no SHD , parox CHB per monitoringIntervention: EPS, Adenosine plasma level, ATP test, TTT, CSMAim: Determine mechanism of syncope in pts with BBB and neg EPSInclusion criteria: 52 pts with syncope, BBB, QRS >100, neg EPSIntervention: ILRStudy type: Single armInclusion criteria: 52 pts with syncope, BBB, QRS >100, neg EPSIntervention: ILR

	<u>Size</u> : N=52			
Carano N, et al. 2012 (186) <u>23110777</u>	Aim: Case report and review of RHD and CHB	Inclusion criteria: Case report and PubMed search	Intervention: Amoxicillin	Results: Resolution of CHB
	<u>Size</u> : N=1			
Ando G, et al. 2005 (187) <u>16091145</u>	Aim: Assess hemodynamic of long AVD	Inclusion criteria: Case report	Intervention: PPM	<u>Results</u> : AVD from 290 to 150 and improved symptoms
Koehler U, et al. 1998 (67) <u>9551750</u>	Aim: Assess effect of OSA Rx on brady Size: N=651	Inclusion criteria: Mod- sec OSA, neg EPS, echo, EKG, stress test	Intervention: CPAP	Results: 651 brady episodes in 16 pts- 73% were 2 nd and 3 rd AVB; reduced to 72 episodes post CPAP, 3 got PPM for >5 s pauses despite good Rx
Maeno K, et al. 2009 (188) <u>19466526</u>	Aim: Report the interaction of hypoxia and bradyarrhythmia Study type: Case report, literature review	Inclusion criteria: N/A	Intervention: CPAP	Results: Profound AVB resolved
Moya A, et al. 2011 (189) <u>21444367</u>	Size: N=1 Aim: Ability of protocol to Dx etiology of syncope Study type: Prospective nonrandomized study using 3 phases; EKG/echo/Holter, EPS/CSM, ILR	Inclusion criteria: Syncope +BBB, preserved EF	Prospective nonrandomized study using 3 phases; EKG/echo/Holter, EPS/CSM, ILR	Results: 158 (about 50%) were due to paroxysmal AVB or infraHisian abnormalities on EPS
Panic G, et al. 2011 (190) <u>20226549</u>	Size: N=323 Aim: Case report	N/A	N/A	Results: • Presented with high-grade AVB, resolution after 12 d abx

				• 5% of pts with Lyme will have cardiac involvement, typically AVB
Carroz P, et al. 2010 (191) <u>19946114</u>	Aim: Discuss pseudo PM syndrome	Inclusion criteria: Case report	Case report	<u>Results</u>: PR was 480 ms, had intermittent cannon A waves, symptoms of fatigue due to atrial contraction before complete A filling, increase PCWP, decrease CO, improved with PPM
Marti-Almor J, et al. 2009 (192) <u>19578058</u>	Aim: N=259 with BFB, 82% had syncope or presyncope, 18% no symptoms; 61% on EPS had conduction abnormal and received PPM Study type: Observational Size; N=259	Inclusion criteria: LBBB or RBBB+LAFB or RBBB+LPFB 82% had syncope	Prospective consecutive observational study	Results: 82% had symptoms (syncope, presyncope) 61% had pos. EPS (HV >70 if sx, HV>100 if asx, or infraHisian with RAP) and almost all got PPM, 2/3 had progression of AVB
Barold SS, et al. 1996 (193) <u>8734740</u>	Aim: Editorial Study type: N/A	Inclusion criteria: N/A		Opinion: PMs can be used especially in pts with normal LVEF
	<u>Size</u> : N=N/A			
Barold SS, et al. 2006 (194) <u>17334913</u>	Aim: Describe clinical manifestations of 1 st AVB	Inclusion criteria: N/A	Intervention: PM, CRT	<u>Results</u> : Pacing addresses symptoms, CRT response is less than in those with normal PR
	<u>Study type:</u> Review paper			
	<u>Size</u> : N=N/A			
Barra SN, et al. 2012 (195) <u>22897386</u>	Aim: Review the more common and rarer causes of AVB in young adults	Inclusion criteria: N/A	<u>Recommendations</u>: Work up for underlying cause based on family Hx and symptoms and risk factors	<u>Results</u> : More common causes in young adults: CAD, degenerative diseases, cardiomyopathies, infection, rheumatic, autoimmune, infiltrative, vagally induced, drugs

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Kenneback G, et al. 2007 (149) <u>17255148</u>	Study type: Single- center, prospective cohort (Sweden) Size: N=17 (53% men), mean age 77 y	Inclusion criteria: Pts admitted with high-degree AVB on antiarrhythmic therapy (88% beta blocker) who received PPM, who then had AAD withdrawn with return of AV	<u>1° endpoint</u> : Recurrence of AVB detected by PM algorithm over 2 y <u>Results:</u> 9/12 pts (75%) with QRS ≥120 ms and 1/5 pts (20%) developed recurrent AVB. 6/17 pts (35%)	 Appropriate to place PPM in pts with AVB and QRS <a>>120 ms w/o further delay or evaluation.
		conduction. Exclusion criteria: Valve surgery in past year, permanent AF	developed atrial tachyarrhythmias requiring AAD tx	
Knudsen MB, et al. 2013 (150) <u>23869746</u>	Study type: Single- center, retrospective cohort (Denmark) Size: N=55 (55% male,	Inclusion criteria: Pts admitted with 2/3 AVB, had temporary wire, were on class II-IV AADs or digoxin.	<u>1° endpoint</u> : Need for PPM; complications of TPM <u>Results:</u> 47/55 (85%) required PPM in hospital. 2/55 had recurrent AVB and	 Pts with AVB on AADs /digoxin do not benefit from TPM and drug washout. Should proceed to PPM w/o delay. "In the elderly, the drug is
	mean age 77 y)	Exclusion criteria: No ECG documentation, AVB due to other identified cause, prior PPM explant, died within several days	required PPM. 11% of pts had complication of TPM (infection/ dislodgment), also prolonged hospital stay	virtually never the sole culprit; rather, it just exposes the underlying weakness of the aging conduction system"
Osmonov D, et al. 2012 (151) <u>22530749</u>	Study type: Single- center retrospective cohort (Turkey) Size: N=108 (16% of all 668 pts admit with 2/3 AVB). 30/108 (28%) had AF with SVR	Inclusion criteria: All pts admitted with 2/3 AVB who were on AV nodal blocking drugs 2008–9 Exclusion criteria: MI, electrolyte disturbances, digoxin toxicity, vasovagal syncope	<u>1° endpoint:</u> Resolution/ recurrence AVB, need for PPM <u>Results:</u> Resolution of AVB with 72 h in 78/108 (72%). 21/78 (27%) had recurrence of AVB. Overall 51/108 (48%) had persistent of recurrent AVB despite drug withdrawal.	 Half of pts with AVB on nodal- blocking drugs require PPM before discharge despite drug withdrawal. Limited follow-up – other pts may have required PPM at later date
Zeltser D, et al. 2004 (152) <u>15234417</u>	Study type: Single- center retrospective cohort (Israel)	Inclusion criteria: All pts admitted with 2/3 AVB 1999– 2003.	1° endpoint: Resolution/ recurrence AVB, need for PPM <u>Results:</u> 79/92 (86%) had drug discontinued. 32/79(41%) had	 Overall, only 15% of pts with AVB on nodal blocking drugs had AVB "caused by drugs" F-u limited to 3 wk

	Size: N=169 (60% male, mean age 78 y). 92/169 (54%) receiving AV nodal blockers	Exclusion criteria: MI, digoxin toxicity, vasovagal syncope	resolution of AVB. 18/32 had relapse of AVB within 3 wk	
Risgaard B, et al. 2012 (153) 22333242	Study type:Retrospective single- center/region cohort study (Denmark)Size: N=259 (mean age 78 y, 46% male). 49.7% had 2/3 AVB. 15% had AF-slow ventricular response	Inclusion criteria: All pts referred for urgent PPM in 2009 Exclusion criteria: Discharged from hospital before implant, referred from outpatient department	<u>1° endpoint</u> : d to implant, complications during wait <u>Results:</u> Mean 8.3 d hospitalization to implant (3.2 d to Dx; 5.1 d waiting for PPM). 83/259 pts (32%) had complications while waiting – Infection (11%), asystole (20%), NSVT (5%), cardiac arrest (3%), death (1%)	 Pt harm results from delay to PPM for capacity issues.
Farre N, et al. 2014 (154) <u>24491864</u>	Study type: Retrospective single- center cohort (Spain) Size: N=79; mean age 72 y, 50% male	Inclusion criteria: Consecutive pts with "reversible" 3 rd degree AVB not undergoing initial PPM implant Exclusion criteria: None stated	 <u>1° endpoint</u>: Persistence/recurrence of AVB, PPM implant <u>Results:</u> 39% of pts w/o ischemic/infarction developed recurrent AVB, had PPM 	 Outside setting of MI/ischemia, high proportion of pts with 3rd degree AVB and "reversible causes" develop recurrent AVB. Close f-u warranted Study was research letter with little data presented
Antman EM, et al. 1990 (100) <u>2188752</u>	Study type: Open-label, 21-center prospective cohort study 1974–86 Size: N=150 pts (79=53% with high- degree AVB). 46% male, mean age 65 y	Inclusion criteria: Pts who received digoxin-specific Fab fragments in trial 1974–86. Exclusion criteria: None stated	<u>1° endpoint</u> : Clinical "response" <u>Results:</u> 80% complete resolution of signs/sx. 10% partial response, 10% complete response.	AVB pts not separately analyzed
Hickey AR, et al. 1991 (101) <u>1993775</u>	Study type: Multi- center US national prospective cohort Size: N=717; 40% men, mean age 74 y	Inclusion criteria: All pts in US receiving anti-digoxin Fab fragments Exclusion criteria: None stated	 <u>1° endpoint</u>: Resolution of symptoms of digoxin toxicity <u>Results:</u> 50% complete response, 24% partial response; 12 % no response. 3% recurrence rate. 1% allergy to therapy 	 No separate analysis of AVB pts
Sadek MM, et al. 2013 (155) <u>23623644</u>	Study type: Systematic review	Inclusion criteria: English language, original outcome data	<u>1° endpoint</u> : Reversal or improvement in AVB	 Considerable study heterogeneity

	Size: 10 publications; 299 pts	on pts with cardiac sarcoidosis tx with steroids. <u>Exclusion criteria:</u> Reports less than 5 subjects or less than 3- mo follow-up	Results: 27/57 (47%) cases treated with steroids had improved or recovered AV conduction vs. 0/16 pts. w/o steroid treatment.	 "Improvement" in AV conduction not defined Outcome not defined in terms of need for PM
Kandolin R, et al. 2011 (156) <u>21427276</u>	Study type: Single- center retrospective cohort (Finland) Size: N=133; 72 pts with unexplained AVB	Inclusion criteria: Pts. 18–55 y who had PPM implant for unexplained 2 nd /3 rd -degree AVB <u>Exclusion criteria:</u> None described	 <u>1° endpoint</u>: Dx of cardiac sarcoidosis; reversal of AVB with treatment. <u>Results:</u> 18/72 (25%) had probable (4) or definite (14) cardiac sarcoidosis AVB reversed in only 2/16 pts (13%) treated with steroids 	 Selected population, tertiary referral center Little data about AVB described Overall suggests low chance of reversing AVB with steroid treatment
Ozcan KS, et al. 2012 (157) <u>22738687</u>	Study type: Single- center retrospective cohort (Turkey) Size: N=50 (29 hypothyroid, 21 hyperthyroid)	Inclusion criteria: All pts. with 2 nd /3 rd degree AVB who had hyper- or hypothyroidism Exclusion criteria: MI, electrolytes abnormalities, digoxin toxicity, vasovagal syncope, on AADs	1° endpoint:Persistent AVB despite treatment of thyroid abnormalitiesResults:46/50 (92%) pts required PPM; 2 additional pts had persistent AVB. 22/29 (76%) with hypothyroidism and 18/21 (86%) with hyperthyroidism had irreversible AVB.	 Thyroid abnormalities are rarely a cause of reversible AVB.
Forrester JD, et al. 2014 (158) <u>24879781</u>	Study type: Systematic review of case reports and case series Size: 34 manuscripts reporting 45 cases	Inclusion criteria: English language case reports or series in peer-reviewed journal of pts with Lyme disease and ECG- documented 3 rd degree AVB Exclusion criteria: Not in English, pt not US, no pt variables reported	 <u>1° endpoint</u>: Outcomes, need for PPM, persistence of AVB <u>Results:</u> 18/45 (40%) required TPM, 2/45 (4%) had PPM, both in 1980s. All other cases resolved, median time to resolution 6 d (range 1–42 d). 	 AVB with Lyme carditis almost always resolves with treatment
Van der Linde, MR, 1991 (159) <u>1947815</u>	Study type: Review of published case reports in Europe and North America, European questionnaire, personal communication, observations	Inclusion criteria: Published case reports 1977–90, questionnaire, personal communication, observations Exclusion criteria: None	1° endpoint:Outcome, resolution of AVB, need for PPMResults:49% had 3rd degree AVB, 16% had 2nd degree AVB. 35% required TPM, 94% with complete recovery of AV conduction, only 1 pt (1%) had persistent 3rd degree AVB	 PPM rarely needed after episode of Lyme carditis

<u>Size</u> : 105 cases		

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator	Endpoint Results (Absolute Event Rates, P values; OR or RR; &	Relevant 2° Endpoint (if any); Study Limitations;
			(# patients)	95% CI)	Adverse Events
Abu-Laban RB, et al. 2006 (104) <u>16698410</u>	Aim: To determine whether aminophylline increases rate of ROSC after out of hospital cardiac arrest Study type: RCT Size: N=971	Inclusion criteria: Pts over 16 y in British Columbia 2001–3 with brady-asystolic arrest refractory to intubation, atropine and epinephrine Exclusion criteria: Do-not- resuscitate order, pregnancy, hemorrhage/trauma or hypothermia, end-stage renal disease, on theophylline	Intervention: 500 mg IV aminophylline bolus Comparator: Matching placebo	1° endpoint: ROSC: 24.5% I vs. 23.7% C (0.8%, - 4.6–6.2; p=0.778) Survival to hospital admission: 6.6% I vs. 7.6% C (-1.0%, -4.3– 2.2; p=0.527) Survival to hosp. discharge: 0.4% I vs. 0.6% C (-0.2%, -1.1– 0.7%; p=0.653) Safety endpoint (if relevant): None	 Did not call out pt with AVB Prehospital setting only
PrePACE Morrison, LJ, et al. 2008 (86) <u>17933452</u>	Aim: To compare outcome of pts with prehospital unstable bradycardia with TCP vs. dopamine Study type: RCT Size: N=82; mean age 71 y; 57% male	In Inclusion criteria: Pts ≥18 y presenting to Toronto EMS with hemodynamically unstable bradycardia unresponsive to fluids and atropine Exclusion criteria: Trauma, hyperthermia, hypothermia, cardiac arrest	Intervention: TCP 80 bpm Comparator: Dopamine 5–20 mcg/kg/min	<u>1° endpoint</u> : Survival to hospital discharge 69% I vs. 70% C (p=NS) <u>Safety endpoint</u> : VT/VF/cardiac arrest/burn: 7.1% C vs. 7.5% C (p=NS)	 Half of eligible pts not randomized This was a pilot study for potential larger RCT Dopamine equivalent to TCP in this small pilot study

Study Acronym; Author;	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values: OR or RR:	Summary/Conclusion Comment(s)
Year Published			& 95% CI)	(-)

Brady WJ, et al. 1999 (79) <u>10459592</u>	Study type: Single-EMS system retrospective cohort in US Size: N=131; 45 with AVB; Mean age 69 y; 53% male	Inclusion criteria: All nontraumatized pts from 1990– 1993 who experienced bradycardia with associated hemodynamic instability who received atropine in field. Exclusion criteria: Not stated, but presumably cardiac arrest. Also excluded pre-hospital deaths (N=16)	<u>1° endpoint</u> : "Response" in 4 categories – adverse, none, partial, complete <u>Results:</u> Mean dose 1.1 mg. Of 37 pts with 3 rd degree AVB in field, 21 arrived in ED with 3 rd degree AVB and only 9 left ED with 3 rd degree AVB. Of all pts, 27% had complete response, 20% partial, 50% none; 3% adverse	• Limited methodology, results poorly described
Feigl D, et al. 1984 (160) <u>6736451</u>	Study type: Single center retrospective cohort study in Israel 1978–1982 Size: N=34; mean age 62 y; 82% male	Inclusion criteria: 2 nd or 3 rd degree AVB developing in course of IMI who survived >72 h Exclusion criteria: None	<u>1° endpoint</u> : Outcomes, response to atropine <u>Results:</u> Of 15 pts with early AVB (<6 h). Atropine normalized conduction in 20%, increased V rate in others. 5 had normalization with isoproterenol. 14 pts had late AVB – less response to atropine (mean 16 bpm). 50% required TPM	 Descriptive, uncontrolled study No adverse events to drug therapy reported
Sclarovsky S, 1984 (161) <u>6731277</u>	Study type: Single center retrospective cohort study in Israel 1972–1982 Size: N=76	Inclusion criteria: All pts with acute inferior MI who developed 2 nd or 3 rd degree AVB in hospital Exclusion criteria: Combined AMI and IMI	<u>1° endpoint</u> : Description of outcomes, response to atropine and isoproterenol <u>Results:</u> 6/14 (36%) of pts with early AVB improved vs. 13/17 (77%) pts with late AVB (p<0.05). 2/8 (25%) of pts with early block and 2/6 (33%). 50% of pts had TPM	 Descriptive uncontrolled study No adverse events to drug therapy reported
Chihrin SM, et al. 2008 (162) <u>18308011</u>	Study type: Single center prospective cohort in Canada Size: N=100; mean age 75 y; 56% male	Inclusion criteria: Consecutive pts from 2003–2006 undergoing PPM generator change who were PM dependent Exclusion criteria: None	 <u>1° endpoint</u>: Elicitation of escape rhythm with PM stepdown to 30 bpm or isoproterenol 1–2 mcg/min <u>Results:</u> 59% demonstrated intrinsic rhythm with stepdown alone. Of remaining 41 pts, 28 (68%) demonstrated intrinsic rhythm with isoproterenol. No adverse events. 	• Suggests that isoproterenol can be used to elicit faster escape rate in pts with AVB

Hurley KF, et al.	Study type: Systematic	Inclusion criteria: RCTs of	1° endpoint: Survival to	Aminophylline not useful in
2015 (105)	review of 5 RCTs	aminophylline used for pre-	discharge/admission, ROSC	out of hospital bradyasystolic
<u>26593309</u>		hospital resuscitate of		arrest
	<u>Size</u> : N=1254	bradyasystolic cardiac arrest	Results: No improvement in outcome by	
			any measure with aminophylline. Overall	
		Exclusion criteria: N/A	survival extremely low	
Sodeck GH, et al.	Study type:	Inclusion criteria: Consecutive	1° endpoint: Use of drugs for bradycardia,	 Descriptive study with no
2007 (77)	Retrospective analysis	pts admitted to ED 1994–2004	use of pacing	control group
<u>17212976</u>	of single ED registry	with symptomatic,		 Pts with AVB not separately
	from tertiary center in	hemodynamically significant	Results: IV medications given to 170 pts	reported or analyzed
	Austria	bradycardia	(61%) – Atropine in 141 (51%),	Minimal information on clinical
			orciprenaline 62 (22%), epi 24 (9%),	effects of intervention given
	Size: N=277; mean age	Exclusion criteria:	dopamine 6 (2%). 7 pts had TCP (4	
	68 y; 62% male; about	Asymptomatic and terminally ill	successful); 54 (20%) had temporary TVP.	
	50% AVB	pts	137/277 (50%) received PPM	
Bertolet BD, et al.	Study type: Single-	Inclusion criteria: Pts with	1° endpoint: Restoration of 1-1 AV	No controls
1995 (163)	center observational	significant AVB developing	conduction	 Very small, single-center
<u>7661495</u>	cohort in US	within 4 h of admission for acute		experience
		inferior MI, resistant to	Results: All 8 pts had restoration of 1-1 AV	
	<u>Size</u> : N=8; 3 with	atropine, given IV theophylline	conduction within 3 min lasting at least 24	
	complete AVB	up to 250 mg	h	
		Exclusion criteria: Pts who		
		received BBs or CCBs prior		
Altun A, et al. 1998	Study type: Single-	Inclusion criteria: Pts with 2 nd or	1° endpoint: Restoration of AV	No controls
(164)	center observational	3 rd degree AVB after IMI for at	conduction	 Very small, single-center
<u>9789698</u>	cohort in Turkey	least 1 h, resistant to atropine.		experience
		Given 2 doses of aminophylline	Results: Aminophylline restored 1-1 AV	
	<u>Size</u> : N=8; 6 with	240 mg 1 h apart	conduction in 7 pts and Mobitz I AVB in 1.	
	complete AVB; mean		No adverse effects. AVB relapsed in 1 pt	
	age 68 y	Exclusion criteria: Pts in	only	
		hyperacute phase of MI,		
		received AV nodal blocking		
		drugs		
Goodfellow J, et al.	Study type: Single-	Inclusion criteria: Pts with	1° endpoint: Restoration of 1-1 AV	No controls
1995 (165)	center case series in	atropine-resistant AVB with	conduction	 Very small case series
7588933	United Kingdom	acute inferior MI treated with		,

Love, JN, et al. 1998 (90) <u>9674488</u>	Size: N=3 Study type: Single center case series in US Size: N=9	streptokinase. All had hypotension <u>Exclusion criteria:</u> None <u>Inclusion criteria</u> : Pts presenting with symptomatic bradycardia resistant to atropine 1 mg who received IV glucagon 1–7 mg	Results: 1-1 AV conduction restored promptly with resolution of hypotension in all 1° endpoint: Improvement in bradycardia and hemodynamics Results: All pts improved at least	 Most pts had BBs and/or CCBs as significant co-factors Unknown how many had AVB
		then 3–5 mg/h <u>Exclusion criteria:</u> None	transiently	
Dhingra RC, et al. 1973 (166) <u>4744693</u>	Study type: Single center cohort undergoing invasive EP study in US	Inclusion criteria: 42 pts with heart disease undergoing invasive EPS w/o and with isoproterenol	<u>1° endpoint:</u> Improvement in AV conduction and change in ventricular rate <u>Results:</u> 2/8 pts with 3 rd degree AVB had improved conduction with isoproterenol,	 Very small study Bias in reflects those able to undergo EPS Hemodynamics/ BP not measured
	Size: N=42; 8 with 3 rd degree AVB, 3 with 2 nd degree AVB	Exclusion criteria: None	as did 3/3 pts with 3 rd degree AVB. Ventricular rate improved in all subjects from mean of 45 bpm to 62 bpm, regardless of site of block	 Suggests isoproterenol useful to augment heart rate in 2nd and 3rd degree AVB
Hatle L, et al. 1971 (167) <u>5557475</u>	Study type: Single center prospective cohort from Norway Size: N=105 pts with 2nd or 3 rd degree AVB in setting of acute MI	Inclusion criteria: Pts with acute MI treated 1966–1970 with 2 nd or 3 rd degree AVB treated with isoproterenol, generally 1–3 mcg/min Exclusion criteria: None stated	<u>1° endpoint:</u> Improvement in heart rate <u>Results:</u> In hospital mortality 48%. 60 pts received isoproterenol: 38 (63%) had increase in heart rate and BP; 12 (20%) had increased in heart rate but minimal change in PD: 8 (12%) had minimal	 Very early cohort when there was minimal treatment for acute MI Extremely high mortality In this group, isoproterenol appeared safe compared with TVP
	in setting of acute MI	Exclusion criteria: None stated	change in BP; 8 (13%) had minimal change; 2 (3%) isoproterenol terminated due to ventricular ectopy. 3 pts had ventricular fibrillation on isoproterenol, 1 of which died. 14 pts treated with TVP, 3 of whom died from ventricular fibrillation	TVP • Uncontrolled cohort study

Study Acronym;	Aim of Study;	Patient Population	Study Intervention	Endpoint Results	Relevant 2° Endpoint (if
Author;	Study Type;		(# patients) /	(Absolute Event Rates,	any);
Year Published	Study Size (N)		Study Comparator	P values; OR or RR; &	Study Limitations;
			(# patients)	95% CI)	Adverse Events

Ferguson JD, et	Aim: Compare 2 types of	Inclusion criteria:	Intervention: Use of	1° endpoint: Procedure	• When guided by
al. 1997 (113)	TVP catheters for	Undergoing temporary	balloon-tipped	duration (264 vs. 540 s;	fluoroscopy, balloon-
<u>9217762</u>	success and	VVI pacing (85% with	electrode (N=20)	p<0.002), fluoroscopy time (87	tipped catheters are
	complication rates	AVB) guided by		vs. 189 s; p<0.01), suitability of	easier to place
		fluoroscopy	Comparator: Use of	final position (0 unacceptable	successfully than semi-
	Study type: Unblinded	nacroscopy	semi-rigid electrode	vs. 7; p<0.0001). Thresholds	rigid catheters
	RCT	Exclusion criteria:	(N=20)	similar	• Use of balloon-tipped
		None stated	(-)		catheter associated with
	Size: 40 pts, mean age			Safety endpoint (if relevant):	trend toward lower
	72 y. 85% with AVB			Dislodgement (1 vs. 3)	complication rate
	,			Death (0 vs. 2)	
Barthell E, 1988	Aim: Compared TCP	Inclusion criteria: All	Intervention: TCP +	<u>1° endpoint</u> : Survival to	• Limited form of
(127)	added to ACLS vs. ACLS	adult, nontraumatic	ACLS	hospital admission:	randomization
<u>3056132</u>	alone for pre-hospital	bradyasystolic episodes		Asystole/EMD 17% I vs. 20% C	• Overall, no effect of TCP
	pts with asystole, EMD,	or arrests treated by	Comparator: ACLS	(p=NS)	for pre-hospital use for
	or hypotensive	Milwaukee County	alone	Hypo-brady 100% I vs. 29% C	asystole/EMD arrest
	bradycardia	Paramedic System Oct		(p=0.01)	 Possible benefit for
		1986–May 1987			hypotensive bradycardia,
	Study type: Unblinded			Survival to hospital discharge:	but number of pts very
	RCT (alternate d	Exclusion criteria:		Asystole/EMD 2% I vs. 4% C	small
	randomization)	None stated		(p=NS)	
				Hypo-brady 83% I vs. 14% C	
	<u>Size</u> : N=239; 142 with			(p=0.01)	
	asystole; 84 with EMD;				
	13 with hypotensive			Safety endpoint: None	
	bradycardia		-		
Cummins RO, et	Aim: Determine efficacy	Inclusion criteria: All	Intervention: 16	<u>1° endpoint</u> : Survival to	 No improvement for pts
al. 1993 (168)	of TCP of asystolic out of	cardiac arrests in	EMS/fire districts given	hospital admission/ primary	with initial VF
<u>8474514</u>	hospital cardiac arrest	Seattle area over 3 y	TCP and trained in use	asystole:	 Limited form of
		period; Primary group		8% I vs. 8% C (p=NS)	randomization
	Study type: Modified	was those with asystole	Comparator: 23	Survival to discharge:	
	RCT by center	as first rhythm	EMS/fire districts given	4% I vs. 2% C (OR: 2.05; p=NS)	
	Size: N=10E6 cordice	Evolucion critorio.	TCP and trained in use		
	Size: N=1056 cardiac	Exclusion criteria:		Safety endpoint: None	
	arrests; N=537 with	None			
	asystole as first rhythm;				
	N=305 with asystole				
<u>I</u>	after VF				

Hedges JR, et al. 1987 (169) <u>3315295</u>	Aim: Determine efficacy of TCP added to ACLS for prehospital hemodynamically significant bradycardia or asystole Study type: RCT (alternate day)	Inclusion criteria: All pts over 14 y treated by Thurston County, EMS for hemodynamically- significant bradycardia with decreased mental status (Glasgow coma score ≤12)	Intervention: On odd calendar days, EMS used TCP 100 bpm at max output for pts Comparator: On even calendar days, TCP was not used	<u>1° endpoint</u> : Survival to hospital admission: 17% I vs. 17% C (p=NS) Survival to hospital discharge: 6% I vs. 4% C (p=NS) <u>Safety endpoint</u> : None	 Limited form of randomization No improvement with TCP
	<u>Size</u> : N=202	Exclusion criteria: None stated			
PrePACE Morrison, LJ, et al. 2008 (86) <u>17933452</u>	Aim: To compare outcome of pts with prehospital unstable bradycardia with TCP vs. dopamine <u>Study type</u> : RCT <u>Size</u> : N=82; mean age 71 y; 57% male	Inclusion criteria: Pts 18 y or older presenting to Toronto EMS with hemodynamically unstable bradycardia unresponsive to fluids and atropine Exclusion criteria: Trauma, hyperthermia, hypothermia, cardiac arrest	Intervention: TCP 80 bpm Comparator: Dopamine 5–20 mcg/kg/min	<u>1° endpoint</u> : Survival to hospital discharge 69% I vs. 70% C (p=NS) <u>Safety endpoint</u> : VT/VF/cardiac arrest/burn: 7.1% C vs. 7.5% C (p=NS)	 Half of eligible pts not randomized This was a pilot study for potential larger RCT No benefit to TCP seen

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
Sodeck GH, et al. 2006 (77) <u>17212976</u>	Study type: Single center retrospective cohort in Austria Size: 277 pts (62% male, 48% AVB)	Inclusion criteria: Pts >18 y presenting to ED with "compromising bradycardia from 1994–2004; mean heart rate 33 bpm Exclusion criteria: Asymptomatic bradycardia, terminal illness	 <u>1° endpoint</u>: 30 d mortality <u>Results:</u> 5% mortality at 30 d. 20% of pts treated with temporary TVP. 50% of those pts went on to have permanent pacing 	 Temporary TVP required in about 20% of pts presenting to ED with symptomatic bradycardia Half of those pts go on to PPM

Brikhahn RH, et al. 2004 (170) <u>15039689</u> Betts TR, 2003 (119) <u>12954959</u>	Study type: Single- center retrospective cohort in US Size: 154 pts, 117 meeting inclusion/ exclusion criteria. Mean age 78 y, 38% male, 51% AVB) Study type: Prospective registry in 5 regional hospitals in England in 1999 Size: 144 procedures in 111 pts; mean age 75 y.; 63% male; 51% AVB	Inclusion criteria: All pts with temporary TVP placed in ED, intensive care unit, or ward 1999–2002. Only 3% placed under fluoroscopy Exclusion criteria: Indication asystole, TVP placed in cath or EP lab, no attending supervision Inclusion criteria: All TVPs placed over 9 mo period in 1999 Exclusion criteria: None cited	 <u>1° endpoint</u>: Successful temporary TVP placement. Complication rate. <u>Results:</u> 88% success on first attempt. 17% serious complication rate. 96% placed by cephalic approach. 67% had PPM. 23% in-hospital mortality <u>1° endpoint</u>: General overview of procedure technique, outcomes, complications <u>Results:</u> Procedure times shorter for cardiologists, 28% complication rate. Immediate complication rates lower with experience (1/81) vs. inexperienced (5/59) operators. Infection occurred more in wires left in >48 h (17/86) than <48 h (2/55). 23% of comps resulted in delayed PPM 	 Similar success rates between ED physicians and cardiologists High overall success rate of implantation of TVP Cephalic route rarely used in general practice today Suggests benefit to TVP implant by cardiologists/ experienced operators Greater infection risk for TVP wires left in >48 h High rate of overall complications seen 23% of comps delayed PPM implantation
Mahapatra S, et al. 2005 (171) <u>16171740</u>	Study type: Case- control derived from prospective database 1995–2003 at Mayo Clinic Size: 50 pts with cardiac perforation after PPM vs. 100 controls	Inclusion criteria: Pts undergoing PPM 1995–2003 with perforation and new effusion. Exclusion criteria: Age <18 y, prior effusion or cardiac surgery within 4 wk of PPM	<u>1° endpoint</u> : Risk factors for perforation after PPM <u>Results:</u> 1.2% of all pts had perforation. Predictors of perforation in multivariate analysis included prior TVP (HR: 2.7; 95% CI: 1.4–3.9], helical screw leads (HR: 2.5), steroid use (HR: 3.2)	 Suggests benefit to avoiding TVP prior to permanent pacing unless essential
Lang R, et al. 1981 (172) <u>6169032</u>	<u>Study type</u> : Single- center nonrandomized controlled study	Inclusion criteria: Consecutive pts requiring emergency or semi-urgent temporary TVP at a single Israeli center	<u>1° endpoint</u> : Successful implant, procedure time, threshold, multiple safety endpoints	 Superiority of balloon-tipped, flow guided electrode catheter for temporary TVP demonstrated.

	comparing balloon- tipped, flow-guided TVP vs. standard semi- rigid catheter <u>Size</u> : 111 consecutive pts (67 flow-guided, 44 semi-rigid)	Exclusion criteria: None stated	<u>Results:</u> Flow-guided TVP had 1) shorter insertion time (7 min vs. 14 min); less dislodgement (13% vs. 32%), lower incidence of serious ventricular arrhythmia (1.5 vs. 20.4%) Thresholds similar.	
Hynes JK, et al. 1983 (115) <u>6823157</u>	Study type: Retrospective single-center cohort at Mayo Clinic Size: 1022 pts, mean age 68 y, (65% male)	Inclusion criteria: Consecutive pts undergoing temporary TVP wire in Mayo Clinic coronary care unit 1976–81. Exclusion criteria: None stated	<u>1° endpoint</u> : Complications <u>Results:</u> Implanted mean 3.1 d, 64% placed antecubital route, 19% subclavian vein, 12 % internal jugular vein. 13.7% complication rate, increasing with duration of TVP. Lowest comp rate with internal jugular vein 5.3% pericarditis. PPM implanted in 58% of pts.	 Preference for internal jugular rand subclavian vein access sites confirmed
Winner S and Boon N, 1989 (173) <u>2769615</u>	Study type: Retrospective single region cohort study Size: 266 pts/ 158 (59%) had temporary TVP	Inclusion criteria: Consecutive pts referred to regional center for PPM Exclusion criteria: Missing records	 <u>1° endpoint</u>: Complications, defined as "major problems": dislodgement, infection, pericarditis/perforation, thrombosis, wire in left ventricle <u>Results</u>: 36% rate of major problems, much higher rate at smaller referral hospitals. 6% infection; 30% failure to pace, 4% pericarditis 	 Advise avoiding TVP before PPM unless absolutely necessary
López Ayerbe J, et al. 2004 (114) <u>15544753</u>	Study type:Retrospective singlecenter cohort inBarcelona, SpainSize: N=530; mean age74 y, 54% male; 51%AVB.	Inclusion criteria: Pts receiving TVP 1997–2003. All via femoral route (99%) with fluoroscopic guidance Exclusion criteria: Pts transferred out with no available f-u (N=38)	<u>1° endpoint</u> : Complications, outcomes <u>Results:</u> Mean duration 4.2 d. 22% complication rate: 1% death (3 tamponade, 1 asystole, 1 PE, 1 sepsis). 9% migration/dislodgement' 9% other (VTE, effusion, infection)	 Complication rates improved compared with series from 1980s and 1990s (18–43%) Lower use in pts with acute MI seen

Bjornstad CC, et al.	<u>Study type</u> :	Inclusion criteria: All pts with	1° endpoint: Complications,	• Fewer TVPs being performed by
2012 (126)	Prospective regional 5	TVP in 5 hospitals March 2010–	outcomes	more physicians with less
<u>22390277</u>	hospital study in	March 2011. All with		experience
	Norway 2010–11.	fluoroscopy	<u>Results:</u> 96% TVP; 4% TCP. 60%	 Lower complication rate with
			received PPM; 14% died. 30% rate of	more experienced implanters
	<u>Size</u> : N=50; 45% AVB;	Exclusion criteria: None stated	"serious complications" including 6%	
	mean age 79 y, 62%		death from sepsis	
	male			
McCann P, 2006	Study type:	Inclusion criteria: Cohort	<u>1° endpoint</u> : Complications,	 Methodologically limited
(125)	Systematic review	studies of TVP published 1973–	outcomes	systematic review
<u>17235372</u>	1973–2004	2004		 Higher complication rate in
			Results: Overall complication rate	older pts
	<u>Size</u> : 15 studies;	Exclusion criteria: None stated	26.5%: 15% failed access, 10% failed	 Lower complication rate when
	N=3737; mean age 71		placement, 9% sepsis, 4% arterial	implanted by specialists
	У		puncture, 2% lung/myocardium	 Trend toward greater use of
			puncture	right internal jugular access
				over time
Jou YL, et al. 2010	Study type: Single	Inclusion criteria: All pts with	1° endpoint: Trends in use	 High rate of PPM for
(124)	center retrospective	TVP 2002 8 at single center		degenerative AVB
<u>20946290</u>	cohort in Taiwan		Results: Greater use for AVB with	
	2002–8	Exclusion criteria: None stated	intrinsic disease, less for sinus node	
			dysfunction and MI over time. 48%	
	Size: N=509; mean age		had PPM implant within 30 d (mean 6	
	77 y, 74% male; 64%		d) with increasing rate over time.	
	AVB			
Knudsen MB, et al.	<u>Study type</u> :	Inclusion criteria: Pts getting	1° endpoint: Indication for PPM	Authors conclude that:
2013 (150)	Retrospective single-	TVP wire 2000–11 who had	despite drug discontinuation;	"Primary PPM implantation
<u>23869746</u>	center cohort at	AVB and potential culprit drug	complications and outcomes	should be considered in pts
	academic medical	discontinued		with high-degree AVB and
	center in Denmark		Results: 49/55 (89%) ultimately	concomitant AV blocking
	2000–11.	Exclusion criteria: No ECG	required PPM, including 26/27 (96%)	therapy, unless other reversible
		documentation; other etiology	on BBs. 11% comp rate from TVP.	causesexist."
	Size: N=575 with TVP.	of bradycardia documented;	PPM postponed mean of 7 d for drug	• "In the elderly, the drug is
	N=55 with AVB and	PPM infection; in hospital	withdrawal	virtually never the sole culprit;
	potential culprit drug.	death		rather, it just exposes the
	Mean age 77 y, 56%			underlying weakness of the
	male			aging conduction system

Murphy JJ, 1996	Study type:	Inclusion criteria: All TVP	1° endpoint: Complications	• High rate of implant by junior
(116)	Prospective cohort in	implants in 18 hospitals.		staff (residents)
<u>8620131</u>	18 hospitals in		Results: Immediate complications in	 Continued high rate of
	Northern England	Exclusion criteria: None stated	12/194 (6%) – VT/VF in 6, arterial	complications in British medical
	over 6 mo		puncture (3), pneumothorax (2),	system in 1990s
			brachial plexus injury (1). Late comps	
	<u>Size</u> : N=194. Mean		in 22/194 (11%) – VT/VF 10,	
	age 71 y; AVB (67%).		definite/possible sepsis in 10 (5.2%) –	
	Acute MI in 53%		almost all had TVP>48 h. 38/194	
			(20%) needed repositioning. Total	
			comps 35%. 11/194 (5.5%) died	
			within 1 h of procedure. 56/194 (29%)	
			had PPM	
Pinneri F, et al.	Study type: Single-	Inclusion criteria: Consecutive	1° endpoint: The primary efficacy	• Echo-guided TVP was safer and
2013 (174)	center	pts requiring TVP 2003–2010.	endpoints were time to pacing, pacing	more effective in this single
<u>22240748</u>	nonrandomized	Pts underwent TVP guided by	threshold, changes in threshold and	center cohort with cardiologists
	controlled study.	echo (N=53) or fluoroscopy	need for catheter replacement. The	comfortable with technique.
		(N=53) based on operator	primary safety endpoints were overall	• Not clear why dislodgment rate
	Size: N=106; mean age	preference.	complications and death related to	and thresholds would be worse
	77 y, 51% male; 75%		TVP implant.	in fluoroscopy group.
	had AVB; 59%	Exclusion criteria: Incomplete		
	ultimately required	follow-up (N=4)	Results: Successful in all but 1 in each	
	PPM		group (98%). Time to pacing and 24 h	
			threshold better in echo-guided	
			group. TVP repositioned in 6% of	
			echo-guided and 22% of fluoroscopy-	
			guided groups (p<0.001), Comp rate	
			lower in echo (11%) than fluoroscopy	
			(41%) group; p<0.001).	
Braun MU, et al.	Study type: Non-	Inclusion criteria: Pts with	<u>1° endpoint</u> : Implant success, pacing	• Externalized active fixation TVP
2006 (175)	randomized	systemic infection requiring	thresholds, acute complications,	lead associated with much
<u>16923004</u>	prospective controlled	VVI pacing >48 h	dislodgement rate	lower dislodgment rate than
	study comparing			standard TVP wire. Equally safe
	externalized active-	Exclusion criteria: None stated	Results: 100% implant success in both	to implant
	fixation lead vs.		groups, paced median 8 d, similar	• Externalized active fixation TVP
	standard temporary		procedure time, acute comps, pacing	preferred if pacing >48 h is
	TVP wire)		threshold. There were 24	anticipated.
			dislodgments in 12 pts in control	

	Size: 49 pts, mean age 72 y, 63% male		group, only 1 in active-fixation lead group (p<0.01)	
de Cock CC, et al. 2003 (176) <u>12765453</u>	Study type: Non- randomized single- center comparison of TVP by femoral route with active vs. passive fixation wire in Netherlands 1998– 2001 Size: N=72 pts; mean age 70 y, 51% male	Inclusion criteria: Consecutive pts requiring TVP at single center requiring prolonged temporary pacing (>48 h) – mean 6 d Exclusion criteria: None stated	<u>1° endpoint:</u> Implant parameters, dislodgments, other adverse events <u>Results:</u> Threshold higher in active (1.38V) than passive (0.7V). Dislodgement lower in active (2/36) than passive (12/36) groups (p<0.001). Other comps similar	 Fewer dislodgments using an active fixation lead using femoral approach
Kawata H, et al. 2013 (177) <u>23482613</u>	Study type: Single center retrospective cohort study of temp active fix lead (TPPM) after lead extraction at UCSD Size: N=23; mean age 72 y, 70% male; 87% AVB	Inclusion criteria: 23/47 pts undergoing extraction for CIED infection who were PM- dependent 2010–12 Exclusion criteria: None stated	<u>1° endpoint</u> : Duration of TPPM, complications <u>Results:</u> Duration of TPPM mean 12 d. 12/23 discharged to home or SNF. 1 pt died of sepsis from primary infection; 1 pt developed vegetation on TPPM lead – removed and replaced. No dislodgements. One pts had late pocket infection after reimplant.	 TPPM is a safe and effective option for PM-dependent pts awaiting reimplant after CIED infection Allows earlier mobilization and potential discharge to home/nursing facility to await CIED reimplant
Chihrin SM, et al. 2006 (178) <u>17145220</u>	Study type: Single center retrospective cohort in Canada 2001–5 Size: N=20 pts; median 2 d; mean age 62 y; 75% male	Inclusion criteria: Pts implanted with TPPM via left subclavian vein or right internal jugular vein over 5 y period Exclusion criteria: None stated	<u>1° endpoint</u> : Pacing duration, complications, costs <u>Results:</u> Duration median 2 d (1–83 d); 1 dislodgement requiring repositioning (5%). Using economic modeling, costs lower with TPPM than conventional TVP at 48 h	• Despite higher lead cost, TPPM cost-effective after 24 h due to lower complications and less intensive bed use

Lever N, et al.	Study type: Single	Inclusion criteria: Consecutive	1° endpoint: Pacing duration,	• TPPM safe and effective, allows
2003 (179)	center cohort in	pts requiring prolonged temp	outcome, complications	early mobility for pts requiring
<u>12527682</u>	United Kingdom	pacing due to infection or drug		prolonged temporary pacing
		washout who had tunneled	Results: Duration median 28 d (9–81	
	Size: N=20; mean age	ТРРМ	d); no dislodgments or repositioning;	
	66 y, 85% male		2 minor local site infections, no	
		Exclusion criteria: None stated	systemic infection. One pt died from	
			sepsis unrelated to TPPM	
Kornberger A, et	Study type: Single	Inclusion criteria: Consecutive	<u>1° endpoint:</u> Duration of pacing,	• TPPM safe and effective option
al. 2013 (180)	center cohort in	pts implanted with TPPM for	outcomes, complications at 30 d	for prolonged temporary pacing
<u>23718817</u>	Germany	CIED infection (70%) or other		
		reasons (30%) 2000–2009	Results: Successful in 98% - VVI in 56,	
	Size: N=60; mean age		DDD in 3) Duration mean 15 d.	
	73 y, 73% male	Exclusion criteria: None stated	Intraoperative comps in 2 pts (3.3% -	
			one venous thromboembolism and	
			tamponade, one dislodgement during	
			lead extraction). 4 late comps (6.7%)	
			 – 3 possible lead infections, 1 dislodgement. 	
Zei P, et al. 2006	Study type: Single-	Inclusion criteria: All pts	1° endpoint: Duration of pacing,	• TPPM safe and effective option
(181)	center cohort in	getting TPPM for prolonged	outcomes, complications	for prolonged temporary
16580542	Boston MA	temp pacing at BWH 2000–	outcomes, complications	pacing.
10300342	Doston Witt	2004	Results: Median duration 7.5 d. 66%	 Allows management in lower
	Size: N=62 pts; mean		went on to have PPM. No deaths	cost less intensive setting
	age 68 y; 60% male	Exclusion criteria: None stated	from arrhythmia, no complications	
			from TPPM, no dislodgements	
Zoll PM, et al. 1985	Study type:	Inclusion criteria: All ED and	<u>1° endpoint</u> : Stimulation	 Methodology for data
(130)	Prospective 5-center	hospital pts in whom TCP	effectiveness, clinical usefulness,	collection not described
3886190	cohort study in US	applied	survival in-hospital	No controls
				• Endpoints not well described or
	Size: 134 pts; mean	Exclusion criteria: None stated	<u>Results:</u> QRS response to TCP in 78%,	documented
	age 70 y; 65% men		deemed clinically useful in 61%,	• "This extensive experience with
			survival in 62%	134 pts treated by several
				investigators in 5 institutions
				under varied circumstances
				confirms the safety and efficacy
				of this new technique of
				noninvasive temporary pacing."

Sherbino J, et al.	Study type:	Inclusion criteria: Euthermic,	1° endpoint: Survival to hospital	• Limited systematic review:
2006 (128)	Systematic review of 7	nontraumatized adults who	discharge	Heterogeneity of study designs
<u>16814446</u>	studies of TCP for	experience prehospital		precluded statistical analysis
	prehospital	hemodynamically symptomatic	Results: No benefits to TCP for	
	bradyasystole	bradycardia or bradyasystolic	bradyasystolic cardiac arrest. Data	
		cardiac arrest	inadequate to determine efficacy of	
	<u>Size</u> :7 studies, N=		TCP for SB	
	1487	Exclusion criteria: None stated		
Hedges JR, et al.	Study type: Single	Inclusion criteria: Pt >17 y with	1° endpoint: Arrival to ED with	 Non-randomized
1991 (129)	EMS-system cohort in	hemodynamically	palpable pulse:	 Potential for confounding by
<u>1721129</u>	US	compromised bradycardia with	26% paced group vs. 13% control	indication
		witness collapse	Survival to hospital discharge:	
	<u>Size:</u> N=51; mean age		15% paced group vs. 0% control	
	73 y, 67% male;	Exclusion criteria: Trauma,		
		hypothermia, initial rhythm	<u>Results:</u> Above	
		asystole, VT, VF		

Data Supplement 33. RCTs of General Principles of Chronic Therapy/Management of Bradycardia due to AV block (Section 6.4.1)

Study Acronym; Author;	Aim of Study; Study Type;	Patient Population	Study Intervention (# patients) /	Endpoint Results (Absolute Event Rates, P value;	Relevant 2 ⁰ Endpoint (if any); Study Limitations;
Year Published	Study Size (N)		Study Comparator (#	OR or RR; & 95% CI)	Adverse Events
			patients)		
THEOPACE	Aim: Compare the	Inclusion criteria: Pts	Intervention: PM or	Results: Syncope reduced in PM	 PM and theophylline groups
Alboni P et al.	effects of PM to	with SND	theophylline	group but not in theophylline	had lower incidence of HF
1997 (133)	oral theophylline			group compared to control	compared to control (p=0.05)
<u>9236443</u>	and to control	<u>Exclusion criteria:</u> Heart rate <30 bpm,	Comparator: Control	(p=0.02 and 0.07 respectively)	 Theophylline stopped for side effects in 11%
	Study type: RCT	pauses >3 s.			
	(3 arms)				
	<u>Size:</u> 107				

Data Supplement 34. Nonrandomized data of General Principles of Chronic Therapy/Management of Bradycardia due to AV block (Section 6.4)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Dhingra RC, et al. 1974 (196) <u>4817704</u>	Aim: Describe natural Hx of 2 nd AVB+ BBB Study type: Prospective observational Size: 15	Inclusion criteria: BBB+ 2 nd degree AVB Exclusion criteria: Acute MI	Intervention: EPS Comparator: N/A	<u>Results:</u> At EPS, type I (Wenckebach) block pts had block proximal to the His and those with type II block or 2:1 block had block distal to the His	 Syncope more common in those with block distal to the His All 9 pts with infra-His block implanted with PM for syncope, CHF LBBB, but not RBBB, was associated with block distal to the His
Shaw DB and Eraut D 1970 (197) <u>5413952</u>	Aim: Follow 2nd and 3 rd degree HB pts for symptoms and mortality Study type: Observational Size: 100	Inclusion criteria: 2 nd 3 rd degree HB Exclusion criteria: Digoxin or propranolol use, acute MI	Intervention: None	<u>Results:</u> Prevalence of heart block increases with age.	 About 50% had syncopal events About 10% had CHF No reported deaths
Simon AB, et al. 1978 (198) <u>626128</u>	Aim: Follow natural Hx of AVB pts with PMs Study type: Observational Size: 246	Inclusion criteria: 2 nd or 3 rd degree AVB Exclusion criteria: SND	Intervention: PM implant	<u>Results: S</u> urvival at 1 and 5 y was 88% and 61% mostly due to underlying cardiac disease and age	 Using historical data (50% mortality in first year), authors conclude large mortality benefit with PM Most common mode of death was SCD 3 deaths clearly attributable to PM failure
Strasberg B, et al. 1981 (199) <u>7471363</u>	<u>Aim:</u> Assess natural Hx of 2 nd AVB <u>Study type:</u> Prospective observational <u>Size:</u> 56	Inclusion criteria: 2 nd AVB that is chronic, and shown by EPS Exclusion criteria: Acute AVB in setting of MI	Intervention: None	Results: 2/3 had Hx of heart disease which conferred worse survival. Causes of death were CHF, MI, and SCD	 All ECGs showed type I AVB. None progressed to CHB 3 deaths were attributed to PM failure

Edhag O, et al. 1976 (200) <u>1015354</u>	Aim: Report natural Hx of pts with CHB or arrhythmic syncope Study type: Retrospective Size: 101	Inclusion criteria: PM not implanted Exclusion criteria: PM implantation	Intervention: None	<u>Results</u>: CHB with Adams-Stokes had worse survival than asx CHB	• Survival at 1 y=68%, at 5 y=37%
Shaw DB, et al. 1985 (201) <u>4005079</u>	Aim: Compare outcomes in pts with type I and type II 2 nd degree AVB Study type: Observational Size: 214 (77 Mobitz I, 86 Mobitz II, 51 2:1)	Inclusion criteria: 2 nd degree AVB	Intervention: PM Comparator: No PM	<u>Results:</u> 5-y survival for pts with PM=78%; survival for those w/o a PM=41%	• Pts with Mobitz I and Mobitz II had similar prognosis
Wahbi K, et al. 2012 (202) <u>22453570</u>	Aim: Determine whether EPS+ prophylactic PM improves survival in MD Study type: Retrospective study using DM1 Heart Registry Size: 486	Inclusion criteria: PR >200, QRS >100, or both Exclusion criteria: High-grade AVB or already have PM	Intervention: EPS and implant PM if HV >70 ms Comparator: Noninvasive strategy	<u>Results:</u> Overall survival 74.4% (95% CI: 69.2–79.9%) The EPS+PM group survival was 76.7% and the noninvasive group was 69.2%; when adjusted for clinical variables the HR=0.61 (95% CI: 0.38–0.98; p=0.04)	 The HR of dying suddenly was 75% lower in the invasive group The noninvasive group had an incidence if SCD of 18% (95% CI: 10.2–27.4%)
Buckley AE, et al. 1999 (203) <u>10377322</u>	Aim: Describe cardiac involvement in Emery Dreifuss Study type: Small case series	Inclusion criteria: Pts with Emery Dreifuss and cardiac involvement	Intervention: PM	Results: The pts exhibited atrial tachycardia, AF, and atrial standstill with junctional bradycardia.	• N/A

	Size: 3				
Kitaguchi T, et al. 2001 (204) <u>11525883</u>	<u>Aim:</u> Describe a proband and his family	Inclusion criteria: Family members with limb girdle MD	Intervention: PM	Results: All family members had AVB and arrhythmias requiring PM	• N/A
	Study type: Observational Size: 14				
Finsterer J, et al. 2016 (205) <u>27014341</u>	<u>Aim:</u> Thorough review of all neuromuscular disease and cardiac involvement <u>Study type:</u> <u>C</u> omprehensive literature search	Inclusion criteria: Comprehensive list of search terms and manual searches Exclusion criteria: Abstracts	Intervention: N/A	<u>Results:</u> Several aspects of cardiac involvement were including hypertrophic CM, DCM, CHF, SCD, arrhythmias	• N/A
Ha AH, et al. 2012 (206) <u>22385162</u>	Size: 224 papers <u>Aim:</u> Determine predictors of AVB in MD pts <u>Study type:</u> Observational single center <u>Size:</u> 236	Inclusion criteria: MD type I and II	Intervention: PM and ICD Comparator: No device	Results: 23.8% of DM I and 16.7% of DM II pts had a severe ECG abnormality (defined as PR ≥240 ms or QRS ≥120 ms). PMs and ICDs were implanted in 14% overall but in 65% of those with severe ECG abnormality	 Over 44 months of follow-up mean rates of ventricular pacing in device pts was 24% and 13% developed CHB 3 pts died of SCD, 2 of whom had functioning PMs (1.3%)
Lazarus A, et al. 2002 (207) <u>12427418</u>	Aim: Document incidence of AVB in MD pts with HV>70 but no symptoms Study type: Single arm, prospective	Inclusion criteria: MD pts with HV >70 regardless of symptoms	Intervention: PM	<u>Results:</u> 43% developed CHB, 51% had atrial tachyarrhythmias and 26.5% had VA.	 No deaths due to AVB 4 sudden deaths; 2 of which did not have arrhythmia cause per PM interrogation

	<u>Size:</u> 49				
Facenda-Lorenzo M, et al. 2013 (208) <u>24775453</u>	Aim: Document frequency of arrhythmias in MD type I pts Study type: Retrospective observational study	Inclusion criteria: Pts with genetic tested Dx of type I MD pts referred to cardiology	Intervention: EPS, PM, ICD per physician discretion	Results: At baseline visit, 71.6% had a normal ECG. At follow-up, 48.8% had sinus bradycardia and 31.3% had PR ≥220 ms	 8.6% developed 2nd or 3rd degree AVB during follow-up Holter found 2nd or 3rd AVB ir 9 pts 2 pts required an ICD
Bhakta D, et al. 2011 (209) <u>22035077</u>	Size: 81 <u>Aim:</u> Assess implantation of PM and ICD rates in type I MD pts <u>Study type:</u> Prospective multicenter registry	Inclusion <u>criteria</u> : Pts seen at 23 different neuromuscular clinics in US	Intervention: PM or ICD per physician discretion	 <u>Results:</u> 11.3% implanted with a PM, 5.2% with an ICD 52% of PM pts died in follow- up. PM pts often died of respiratory failure or sudden death Name of pts implanted for 	 PR interval >240 or QRSd >120 ms appear to predict 2nd or 3rd degree AVB (NPV 99.6% and PPV of 10.3%) Almost 1/3 of PM pts were PM dependent by last follow-up
Groh WJ, et al. 2008 (210) <u>18565861</u>	Size: 406 <u>Aim:</u> Assess if ECG can predict SCD in MD type I pts <u>Study type:</u> Prospective multicenter registry Size: 406; of which	Inclusion criteria: Pts seen at 23 different neuromuscular clinics in US; including those with either non-SR, PR ≥240 ms, QRS ≥120 ms, 2 nd /3 rd degree AVB (termed "severe ECG	Intervention: PM or ICD per physician discretion	 None of pts implanted for isolated 1st AVB progressed to CHB <u>Results:</u> 20% died; 33% were sudden death. 41 received PM; 27 were prophylactic Severe EKG abnormality had sensitivity =74.1%, specificity =61.7% for prediction of SCD 	 Atrial tachyarrhythmias were common (30%) Risk factors for sudden death were severe ECG abnormalities and atrial tachyarrhythmias
Groh WJ, 2012 (211) <u>22760083</u>	<u>Size:</u> 406; of which 96 had severe ECG abnormality <u>Aim:</u> Contemporary review and expert opinion	abnormality") <u>Exclusion criteria:</u> N/A <u>Inclusion criteria:</u> N/A	Intervention: N/A	 Reviews role of PM and ICD Conduction abnormalities are frequent 	• N/A

	<u>Study type:</u> N/A Size: N/A			 ICDs are often needed to treat VA and SCD 	
Kabunga P, et al. 2015 (212) <u>25540845</u>	Aim: Systematic review of arrhythmias in Kearns-Sayre pts Study type: Literature review Size: 54 studies	Inclusion criteria: Specific search terms	Intervention: PM or ICD	 <u>Results:</u> 57% of Kearns Sayre pts develop cardiac disease SCD has been reported in up to 20% Most common is conduction disease which can progress to CHB, or PMVT/torsade 	 Most common ECG abnormality is LAFB +/-RBBB Progression to high-grade AVB can be sudden VA are often bradycardia related
Saxon LA, et al. 1990 (213) <u>1695352</u>	Aim: Look at Holter and correlate to cerebral symptoms Study type: Retrospective Size: 411	Inclusion criteria: All Holters with persistent AF	Intervention: N/A	 <u>Results:</u> There was no difference between the group with symptoms and 2-s pauses and the group with no symptoms and 2-s pauses Many pts had resolution of symptoms w/o PM implant 	 2 s did not appear to correlate to cerebral symptoms
Hilgard J, et al. 1985 (214) <u>3984858</u>	Aim: Look at 3 s pauses on Holter and correlate clinical outcomes Study type: Retrospective Size: 52	Inclusion criteria: 6470 Holters screened; 52 had pauses ≥3 s.	Intervention: Per the physician discretion to implant PM	<u>Results:</u> Of 52 Holters with pauses, 18 showed AF with slow ventricular response, and 12 had AVB.	 26 of 52 received a PM 5 out of 52 pts had symptoms during the pause
Ector H, et al. 1983 (215) <u>6191291</u>	<u>Aim:</u> Assess etiology of pauses and indications for PM <u>Study type</u> : Retrospective	Inclusion criteria: Consecutive Holters, 53 had a pause ≥3 s.	Intervention: None	<u>Results:</u> Of the 53 Holters with pauses, 5 had AVB and 29 had slow AF. Symptoms were reported in 45 of 53	Authors propose pauses of 3 s as the cutoff for PM

	Size: 2350 Holters; 53 had pauses				
Michaelsson M, et al. 1995 (216) <u>7634461</u>	Aim: Assess long- term outcome of adults with CCHB Study type: Prospective observational Size: 102	Inclusion criteria: Isolated CCHB diagnosed in pts 15 y or younger; mean age at follow-up was 38 y	Intervention: 54 implanted with a PM	 <u>Results:</u> Stokes Adams attacks occurred in 27, 8 of whom died 24 women w/o PM gave birth, 6 had syncope during pregnancy 	 There were 11 deaths; 2 died of PM failure and 6 died suddenly 2 pts required an ICD 8 had BBB, QRS not a predictor of syncope/death
Sholler GF, et al. 1989 (217) 2480059	Aim: Identify factors that predict need for PM in congenital CHB pts Study type: Retrospective chart review Size: 43	Inclusion criteria: Children with isolated CCHB 1955– 1985 at Boston Children's Hospital	Intervention: PM for symptoms only, not EKG or Holter findings	 <u>Results:</u> 29 remained free of symptoms 14 had symptoms (near syncope, exercise intolerance), 1 had CHF at birth, 1 had cardiac arrest 	• Heart rate on ECG or Holter did not predict need for PM
Ando G, et al. 2005 (187) <u>16091145</u>	Aim: Assess hemodynamics of long AV delay Study type: Case report Size: 1	Inclusion criteria: Case report	Intervention: PM	<u>Results:</u> During a hemodynamic assessment, atrial contraction was seen to occur while AV valves are closed, similar to PM syndrome	• AV delay decreased from 290 to 150 with PM improved symptoms
Carroz P, et al. 2010 (191) <u>19946114</u>	Aim: Report pseudo PM syndrome Study type: Case report Size: 1	Inclusion criteria: Case report of pt with marked 1 st degree AV block	Intervention: Rapid atrial pacing and atropine injection	Results: At baseline, pt had PR= 480 ms, intermittent cannon A waves. Symptoms of dizziness and dyspnea improved with PM	• N/A

Kim YH, et al.	Aim: Describe	Inclusion criteria:	Intervention: Fast PW	<u>Results</u>: Marked 1 st degree AVB,	• N/A
1993 (218)	symptoms of	C ase report of	ablation	very symptomatic. Symptoms	
8269289	pseudo-PM	pseudo-PM		improved with PM	
	syndrome	syndrome after fast			
		PW ablation and			
	Study type: Case	resultant long PR			
	report				
	<u>Size:</u> 1				
Barold SS, 1996	Aim: Editorial to	Inclusion criteria:	Intervention: PM	Opinion: PMs can be used	• N/A
(193)	discuss role of PM in	N/A	implant	especially in pts with normal	
<u>8734740</u>	1 st degree AVB			LVEF	
	<u>Study type</u> : N/A				
	<u>Size</u> : N/A				
Alboni P, et al.	Aim: Describe	Inclusion criteria:	Intervention: None	PMs are not warranted in asx	• N/A
2013 (219)	vagally mediated	N/A		pts with vagally mediated AVB	
<u>23286970</u>	AVB			 Typically, these pts have normal AV conduction 	
	<u>Study type:</u> N/A				
	<u>Size:</u> N/A				
Massie B, et al.	Aim: Describe EPS	Inclusion criteria:	Intervention: EPS; PM	Results: Mobitz type II with sinus	• These episodes of
1978 (220)	findings in pts with	Mobitz type II with	for persistent symptoms	slowing appears related to vagal	bradycardia were responsive
<u>668079</u>	Mobitz II AVB	concomitant sinus		tone	to atropine
		slowing			• Dx of Mobitz type II best
	Study type: Case				when sinus rate is stable
	series	Exclusion criteria: No			
		associated sinus			
	<u>Size:</u> 13	slowing			
Mosqueda-	Aim: Attempt to	Inclusion criteria:	Intervention: N/A	Conclusions: neurally mediated	• N/A
Garcia, R et al.	explain the	N/A		syncope is not a uniform	
2000 (221)	pathophysiology of			syndrome in all pts and involves	
<u>11104751</u>	neurally mediated			baroreceptor reflex	
	syncope			abnormalities and neurohumoral	
				mechanisms	

Guerrero- Marquez FJ, et al. 2016 (183) <u>28496928</u>	Study type: Comprehensive reviewSize: N/AAim: To write a featured review of paroxysmal AVBStudy type: Review	Inclusion criteria: N/A	Intervention: N/A	<u>Conclusions:</u> Idiopathic AVB is paroxysmal 3 rd degree heart block with no other rhythm abnormalities pre or post in pts with normal heart and EKG	Other causes of AVB include; extrinsic vagal effect, Lev- Lenegre disease, SLE, bacterial endocarditis with abscess, sarcoid, Lyme disease, sickle cell
Kato Y, et al. 2003 (222) <u>12870723</u>	Size: N/A <u>Aim:</u> Assess efficacy of steroids for resolution of AVB in sarcoidosis <u>Study type:</u> retrospective Size: 20	Inclusion criteria: Pts with cardiac sarcoid, AVB and normal EF	Intervention: Steroids per physician discretion	• <u>Results:</u> Of the 7 treated with steroids 4 had resolution of AVB, 6 had steroid side effects	• None of the 13 untreated pts resolved the AVB
Takaya Y, et al. 2015 (223) <u>25529542</u>	Aim: Assess outcomes of sarcoid pts with AVB as initial manifestation Study type: Retrospective observational study Size: 53	Inclusion criteria: Consecutive cardiac sarcoid pts with either AVB or VT or CHF	Intervention: PM or ICD per physician	 in general pts presenting with AVB have fewer cardiac adverse events than those with VT/HF (mostly HFH) however cardiac mortality is about the same Of the 17 with high-grade AVB treated with steroids, 7 responded 	 Of the 17 pts with AVB, 7 died of fatal SCD including 3 who responded to steroids for AVB
Padala SK, et al. 2017 (224) <u>27836297</u>	Aim: Assess impact of steroids given early on AVB, VA, and LVEF Study type: retrospective	Inclusion criteria: Cardiac sarcoid pts given steroids early after Dx	Intervention: Steroids	 Results: Only those where steroids started within 30 d had improvement in LVEF Some with early steroid treatment had no VT or AVB recurrence 	 Pts who did not receive early steroid treatment did not have any improvement

	<u>Size</u> : 30				
Birnie DH, et al. 2016 (225) <u>27443438</u>	Aim: Review literature on cardiac sarcoid	<u>Inclusion criteria</u> : N/A	Intervention: N/A	• Results: RBBB is more common than LBBB. Epsilon waves are rare.	 Sarcoidosis with cardiac involvement portends a worse prognosis
	<u>Study type</u> : N/A				
	<u>Size</u> : N/A				
Sadek MM, et al. 2013 (155) <u>23623644</u>	<u>Aim</u> : Systematic review and meta- analysis of cardiac sarcoidosis and steroids	Inclusion criteria: Published studies on steroids for cardiac sarcoidosis	Intervention: Steroids	• Results: Overall steroids beneficial for recovery of AVB with 47.4% of pts improved	 There are no RCT looking at steroid use in cardiac sarcoid
	<u>Study type</u> : N/A				
	<u>Size</u> : 10 studies				
Zhou Y, et al. 2017 (226) <u>27614001</u>	<u>Aim</u> : Determine outcome of cardiac sarcoidosis in a single institution	Inclusion criteria: All pts who met criteria for sarcoid	Intervention: Per physician discretion	• Results: Heart block was present in 19.2% of pts. 5-y survival overall was 95.5%.	 Lack of ICD or PM predicted increased mortality
	<u>Study type</u> : Retrospective				
Sayed RH, et al. 2015 (227) <u>25549725</u>	Size: 73 Aim: Characterize the bradyarrhythmias in cardiac AL amyloid pts	Inclusion criteria: AL amyloidosis + (pre) syncope symptoms	Intervention: All pts received ILR	Results: 13 of the 20 died with median survival 60 d • 8 of the 13 had bradycardia (heart rate <35 bpm) preceding PEA	Baseline ECG showed 1 st degree AVB in 45% and 1 pt had Mobitz type I at baseline
	<u>Study type:</u> Single arm prospective				
	<u>Size</u> : 20				

Reisinger J, et al. 1997 (228) <u>9316537</u>	Aim: Assess spectrum of EP abnormalities in AL amyloid Study type: Case series Size: 25	Inclusion criteria: AL amyloid	Intervention: EPS. ICD or PM per physician discretion	 Results: All 25 had abnormal EKG with conduction disease present 23 of 25 had HV >55ms (most had narrow QRS) 	• 23 died; 10 died of SCD (of which 2 had PM and 1 had ICD)
Panic G, et al. 2011 (190) <u>20226549</u>	Aim: Case report of AVB due to Lyme disease Study type: Case report Size: 1	Inclusion criteria: Pt with Lyme disease and high-grade 2 nd degree AVB	Intervention: Antibiotics	<u>Results</u>: Pt presented with high- grade AVB which resolved after 12 d of antibiotics	Pt presented for symptoms of fatigue and heart rate of 31 bpm
Maeno K, et al. 2009 (188) <u>19466526</u>	Aim: Report the interaction of OSA and bradyarrhythmia Study type: Case report and literature review Size: 1	Inclusion criteria: N/A	Intervention: CPAP	• <u>Results</u> : Profound AVB resolved with CPAP	 In this case, AVB was seen prior to hypoxia and was not simultaneous
Benditt DG, et al. 1983 (229) <u>6359850</u>	Aim: Assess EP effects of IV and PO theophylline Study type: Single arm Size: 10	Inclusion criteria: No significant structural heart disease and bradycardia with symptoms. All had prior syncope	Intervention: Acute IV theophylline, then chronic PO theophylline	• <u>Results</u> : Chronic treatment with level 9–12 tolerated in 8/10 (80%); suppression of symptoms achieved in 6 of the 8	• N/A
Nimura A, et al. 2011 (230) <u>21921376</u>	Aim: Discuss possible mechanisms of AVB	Inclusion criteria: Case report	Intervention: Cilostazol	• <u>Results</u> : In an elderly pt with high-grade AVB, the AVB	• N/A

resolution with cilostazol	resolved after cilostazol treatment	
<u>Study type</u> : Case report		
<u>Size</u> :		

Data Supplement 35. RCTs of meds/reversible/transient causes of bradycardia due to AVB (Section 6.4.2)

Study Acronym;	Aim of Study; Study Type;	Patient Population	Study Intervention (# patients) /	Endpoint Results (Absolute Event Rates, P	Relevant 2 ⁰ Endpoint (if any); Study Limitations;
Author;	Study Size (N)		Study Comparator (#	value; OR or RR; & 95% CI)	Adverse Events
Year			patients)		
Published					
Birmingham	Aim: Determine if	Inclusion criteria:	Intervention: Ventricular	• <u>Results</u> : At 5-y follow-up, 61%	 Over 5-y follow-up no
Trial	PM in post MI pts	Survived 14 d post	PM (27)	of PM pts had died compared	progression of AVB
Watson RD, et	with conduction	MI, have RBBB or		to 41% of control pts	 PM of no benefit
al. 1984 (231)	disease reduces	RBBB+ left	Comparator: Control (23)		• VT was an important cause of
<u>6475712</u>	mortality	hemiblock			death
	Study type: RCT	Exclusion criteria:			
		Prior conduction			
ł	<u>Size</u> : 50	disease, PM			

Data Supplement 36. Nonrandomized data of Medications/Reversible/Transient Causes of Bradycardia due to AVB (Section 6.4.2)

Study Acronym; Author; Year Published PMID	Study Type/Design; Study Size (N)	Patient Population	Primary Endpoint and Results	Summary/Conclusion; Comments
Tans AC, et al. 1980 (232) <u>7350750</u>	Aim: Prognosis of acute inferior MI with heart block Study type: Observational	Inclusion criteria: Acute inferior MI, 2 nd and 3 rd AVB, AF with rate <60, 2:1 AVB, AVB lasted >30 min	1° endpoint: AVB was associated with increased mortality (22% vs. 9%) <u>Results:</u> AVB developed between 1 and 5 d after MI	 94 had CHB, 84 recovered 1:1 conduction, 10 died Duration of AVB was 30 min–16 d AVB after MI typically resolves
	<u>Size</u> : 144			

Ginks WR, et al.	Aim: Determine the need for	Inclusion criteria:	1° endpoint: Of the 25 survivors, 4	• Of the surviving 25 pts, 1 remained
1977 (233)	permanent PM in pts with	Anterior MI, CHB	required permanent pacing	in CHB and underwent PM before
<u>836733</u>	Anterior MI and temp.	2 had CHB, narrow QRS 50 had QRS >120	Beaulter 27 of the 52 diad	discharge and 2 pts developed CHB
	pacing for CHB	50 Had QRS >120	Results: 27 of the 52 died	months later
	Study type: Observational			 Do not recommend PM if CHB resolves
	<u>Study type</u> . Observational			Tesolves
	<u>Size</u> : 52			
Singh SM, et al.	Aim: Determine incidence of	Inclusion criteria:	1° endpoint: 2.9% of subjects had high-	 46% present initially with AVB and
2015 (234)	high-grade AVB in ACS	GRACE Registry subject	grade AVB	54% developed in hospital
<u>25205530</u>		with high-grade AVB		• 23% of high-grade AVB pts died in
	Study type: Global registry		Results: Rate of high-grade AVB	the hospital (OR: 4.2; 95% CI: 3.6–
	(GRACE)	Exclusion criteria: Lack	decreased over time.	4.9; p<0.001)
		of high-grade AVB		• Of the 1701, 100 (5.9%) required
	<u>Size</u> : 1701 (of 59,229			permanent PM
	subjects in GRACE)			
Osmonov D, et al.	Study type: Single-center	Inclusion criteria: All	<u>1° endpoint</u> : Resolution/ recurrence	 Half of pts with AVB on nodal-
2012 (151)	retrospective cohort of pts	pts admitted with	AVB, need for PPM	blocking drugs require PM before
<u>22530749</u>	with drug induced AVB	Mobitz type II or 3 rd		discharge despite drug withdrawal.
		degree AVB or 2:1 AVB	Results: Resolution of AVB within 72 h in	 Limited follow-up – other pts may
	<u>Size</u> : N=108 (16% of all 668	who were on AV nodal	72%. 21/78 (27%) had recurrence of AVB.	have required PPM at later date
	pts admit AVB).	blocking drugs	Overall 51/108 (48%) had persistent of	
			recurrent AVB despite drug withdrawal.	
		Exclusion criteria: MI,		
		electrolyte		
		disturbances, digoxin		
		toxicity		
Zeltser D, et al.	Study type: Single-center	Inclusion criteria: All	1° endpoint: Resolution/ recurrence	 Overall, only 15% of pts with AVB
2004 (152)	retrospective cohort	pts admitted with 2 nd	AVB, need for permanent PM	on nodal blocking drugs had AVB
<u>15234417</u>		or 3 rd degree AVB		"caused by drugs"
	<u>Size</u> : N=169 (60% male,	1999–2003.	Results: 92/169 (54%) were receiving AV	 AVB may recur despite remaining
	mean age 78 y).		nodal blockers; 79/92 (86%) had drug	off the drug
		Exclusion criteria: MI,	discontinued. 41% had resolution of AVB	
		digoxin toxicity	with stopping drug; 56% had relapse of	
			AVB	
Knudsen MB, et al.	Study type: Single-center,	Inclusion criteria: Pts	<u>1° endpoint</u> : Need for permanent PM	• Pts with AVB on AADs or digoxin do
2013 (150)	retrospective cohort	admitted with 2 nd or 3 rd	after drug discontinuation; complications	not benefit from temp. PM and
<u>23869746</u>		degree AVB, had	of TPM	

Page 147

	<u>Size</u> : N=55	temporary pacing wire, were on class II-IV AADs or digoxin. <u>Exclusion criteria:</u> AVB due to other identified cause, prior PM explant, died within several days	<u>Results:</u> 47/55 (85%) required permanent PM in hospital. 2/55 had recurrent AVB and required PPM. 11% of pts had complication of temp. PM (infection/ dislodgment)	drug washout. Should proceed to PPM w/o delay.
Ozcan KS, et al. 2012 (157) <u>22738687</u>	Study type: Single-center retrospective cohort Size: N=50 (29 hypothyroid, 21 hyperthyroid)	Inclusion criteria: All pts. with 2 nd /3 rd degree AVB who had hyper- or hypothyroidism Exclusion criteria: MI, electrolytes abnormalities, digoxin toxicity, on AADs	<u>1° endpoint</u> : Persistent AVB despite treatment of thyroid abnormalities <u>Results:</u> 46/50 (92%) pts required permanent PM; 2 additional pts had persistent AVB. 76% of hypothyroid and 86% of hyperthyroid had irreversible AVB.	Thyroid abnormalities are rarely a cause of reversible AVB.
Farre N, et al. 2014 (154) <u>24491864</u>	Aim: Assess outcome of CHB due to ACS and other causes Study type: Retrospective Size: 79 pts with reversible AVB; grp A=ACS, N=52 Grp B=non-ACS, N=27	Inclusion criteria: reversible CHB, no indwelling PM Exclusion criteria: Felt not to be reversible	<u>Results</u>: For the ACS group 1/52 received a permanent PM. For the non-ACS, AVB was due to hyperkalemia, AVN blockers, acute infection, 1 PE; 9/27 had recurrent AVB and required permanent PM	 If ACS, syncope presenting symptom of CHB 6%; for non-ACS 33%. 39% of reversible non-ACS pts had recurrent AVB requiring permanent PM 2% of ACS had recurrent AVB Many non-ACS had residual LBBB
Panic G, et al. 2011 (190) <u>20226549</u>	Aim: Case report of AVB due to Lyme disease Study type: Case report Size: 1	Inclusion criteria: Pt with Lyme disease and high-grade 2 nd degree AVB	<u>Results</u>: Pt presented with high-grade AVB which resolved after 12 d of antibiotics	 Pt presented with high-grade AVB, resolution after 12 d antibiotics 5% of pts with Lyme will have cardiac involvement, typically AVB
Kostic T, et al. 2017 (235) <u>28082088</u>	<u>Study type</u> : Review of Lyme carditis and clinical course	Inclusion criteria: N/A	<u>Results</u>: AVB is the most common conduction disorder with Lyme carditis	 Manifestations of AVB may progress rapidly in hours or days

Robinson ML, et al. 2015 (236) 25999222	<u>Study type</u> : Review <u>Size: </u> N/A	Inclusion criteria: N/A	<u>Results</u>: 1.1% of Lyme disease reported to CDC between 2000–2010 included cardiac manifestations	• N/A
Carano N, et al. 2012 (186) <u>23110777</u>	Aim: Case report and review of rheumatic HD and CHB Study type: Literature review and case report Size: 1	Inclusion criteria: N/A	<u>Results:</u> Pt presented with acute rheumatic carditis and CHB; CHB resolved within 24 h of antibiotics	 Of the 25 cases found in the literature, the AVB lasted from minutes to several days PM implant typically not needed (in 7 of 25 cases)
Koehler U, et al. 1998 (67) <u>9551750</u>	Aim: Assess effect of OSA Rx on brady Study type: Prospective single arm Size: 16	Inclusion criteria: Pts with OSA, and negative EPS, echo, EKG, stress test	 <u>1° endpoint</u>: Assess effect of CPAP or BiPAP on nocturnal AVB <u>Results:</u> CPAP and BiPAP reduced the number of AVB episodes from 651 to 72 (p<0.01) 	• 4 pts received PM for continued pauses despite effective OSA therapy
Maeno K, et al. 2009 (188) <u>19466526</u>	Aim: Report the interaction of hypoxia and AVB <u>Study type</u> : Case report, literature review <u>Size</u> : 1	Inclusion criteria: N/A	 <u>1° endpoint</u>: Resolution of AVB with CPAP <u>Results:</u> AVB occurred prior to oxygen desaturation and resolved with CPAP 	 AVB may be due to increased vagal tone
Becker H, et al. 1995 (66) <u>7812557</u>	Aim: Assess effect of CPAP on AVB and bradycardia Study type: Prospective single arm observational Size: 17	Inclusion criteria: All referrals for sleep apnea and if 2 nd or 3 rd degree AVB or asystole >2 s. noted during sleep study	 <u>1° endpoint</u>: CPAP reduced incidence of heart block <u>Results:</u> 12 of 17 had AVB eliminated with CPAP, 3 had substantial reduction in AVB, and 2 had persistent bradycardia 	 7.1% of sleep apnea pts referred for sleep study had AVB during sleep Most had normal baseline EKG (1 RBBB, 1 1st AVB) Mean duration of 3rd AVB was 8.4 s
Grimm W, et al. 2000 (68) <u>10980227</u>	Aim: Assess outcomes of pts with OSA-related bradycardia Study type: Prospective single arm	Inclusion criteria: Negative EPS and Holter for AVB Exclusion criteria: Taking digoxin/BB/CCB	<u>1° endpoint</u> : Effect of CPAP <u>Results:</u> CPAP resolved >3 s pauses in 21/29	 7 out of 8 with continued pauses received a PM PM had no effect on outcomes (syncope) and prognosis is good

	<u>Size</u> : 29			
Unterberg C, et al. 2005 (237) <u>16126716</u>	Aim: Compare CPAP to atrial overdrive pacing Study type: Prospective crossover Size: 10	Inclusion criteria: Pts on CPAP for OSA, no PM indication	1° endpoint:Assess if atrial overdrivepacing or CPAP is superior for reducingapneic episodesResults:The apneas were significantlyreduced with CPAP but not with atrialpacing	 CPAP improved apneas but pacing did not despite elimination of bradycardia or asystole episodes
Garrigue S, et al. 2002 (238) <u>11832528</u>	Aim: Assess utility of PM overdrive pacing for OSA and central sleep apnea Study type: Prospective crossover study Size: 15	Inclusion criteria: Pts with DC pacemakers with symptoms of OSA and had positive test for OSA	 <u>1° endpoint</u>: Compare ventricular back up pacing to atrial overdrive pacing <u>Results:</u> The hypopnea index was reduced from 9 to 3 with atrial overdrive pacing (p<0.001) 	 Atrial overdrive pacing reduced the number of apneic episodes >50% in majority of pts
Stegman SS, et al. 1996 (70) <u>8774819</u>	Aim: Determine if asx bradycardia during sleep is due to OSA Study type: Prospective single arm Size: 8	Inclusion criteria: Pts with asx bradycardia referred for PM	 <u>1° endpoint</u>: Determine incidence of OSA in these pts <u>Results:</u> 7 of 8 had a positive sleep study for OSA and did not receive PM 	 Pts remained asx and improved sleep symptoms

Data Supplement 37. RCT data of additional testing for Bradycardia due to AV block (Section 6.4.3)

Study Acronym; Author; Year Published PMID	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Sivakumaran S, et al. 2003 (17) <u>12867227</u>	<u>Aim</u> : Compare utility of loop recorder vs. Holter	Inclusion criteria: Syncope or presyncope	Intervention: 48 h Holter (n=51) vs. 30 d event (n=49)	Diagnostic yield was 63% for loop vs. 24 % for Holter (p<0.0001)	 23% of loop recorder pts failed to activate during symptoms

	Study type: RCT				
	Size: 100				
Kinlay S, et al. 1996 (239) <u>7503472</u>	<u>Aim</u> : Compare 3- month event monitor to 48-h Holters	Inclusion criteria: Pts with palpitations and no prior testing	Intervention: Received a 90-d Event monitor	<u>Results</u>: Event monitors were more likely to provide a Dx (67% vs. 35%; p<0.001). Holter not a good test for intermittent symptoms or events	• The event monitor is more cost effective due to higher yield (\$213 per additional rhythm strip)
	Study type:				
	Randomized				
	Crossover trial				
	<u>Size</u> : 43				
Giada F, et al. 2007 (240)	<u>Aim</u> : Compare Holter+event+ EPS	<u>Inclusion criteria</u> : Infrequent	Intervention: ILR	Results: ILR more effective in establishing etiology of	 The event monitor is more cost effective
<u>17498580</u>	to ILR for	palpitations that last	Control: 24-h Holter, 4-	palpitations (73% vs. 21%;	
	diagnostic yield	>1 min	wk external monitor, and if negative, an EPS	p<0.001)	
	Study type: RCT	Exclusion criteria: Abnormal H&P, ECG,			
	<u>Size</u> : 50	echo			
FRESH	Aim: Role of ILR	Inclusion criteria:	Intervention: ILR	Results: ILR yield is superior	 The ILR was more cost
Podoleanu C, et al.	for syncope	Syncope		(cause of syncope identified in	effective with fewer
2014 (74)	evaluation		Control: Standard of	46.2% vs. 5%; p<0.001)	hospitalization days and
<u>25241220</u>			care, per physician		fewer tests
	<u>Study type</u> : RCT		discretion		
	<u>Size</u> : 78				

Data Supplement 38. Nonrandomized data of additional testing for Bradycardia due to AV block (Section 6.4.3)

	Study Acronym;	Aim of Study;	Patient Population	Study Intervention (#	Endpoint Results
	Author;	Study Type;		patients) /	(Absolute Event Rates, P value; OR or RR; & 95%
	Year Published	Study Size (N)		Study Comparator (#	CI)
	PMID			patients)	
F	Katritsis DG, et al.	Aim: Review the role of	Inclusion criteria: N/A	Intervention: N/A	 30% of Mobitz II blocks have narrow QRS
	2017 (241)	EPS in bradycardia			• 20% of 2:1 AVB is in the AV Node
	<u>28507743</u>		Exclusion criteria: N/A	<u>Comparator</u> : N/A	

Page 151

	<u>Study type</u> : N/A <u>Size</u> : N/A			 HV >70 is nonspecific, HV >100 is specific but insensitive Proposed indications for EPS of AV Block: (1) Asymptomatic 2nd degree AVB with BBB (type I or not sure) (2) suspect phase 4 infranodal block (3) suspect type II but QRS narrow (4) symptomatic type I block and BBB
Mangiardi LM, et al. 1982 (242) <u>7064840</u>	Aim: Assess utility of CSM and atropine Study type: Prospective, nonrandomized Size: 25 (15 with intraHis block and 10 with intranodal block)	Inclusion criteria: Documented AVB at EPS and narrow QRS	Intervention: Carotid sinus massage × 10 s., 2 mg atropine, EPS	 Atropine and carotid massage yielded a Dx in 22 (13/15 and in 9/10) pts Atropine and carotid sinus did yield differing results at bedside vs. EPS in some pts
Twidale N, et al. 1988 (243) <u>2462213</u>	Aim: Determine use for assessing AVB Study type: Prospective, nonrandomized Size: 89	Inclusion criteria: 51 with bifascicular block and syncope or transient high- grade AVB or tachyarrhythmia; 38 with no syncope and normal ECG (control group)	Intervention: EPS with IV procainamide	 In those with bifascicular block, procainamide prolonged HV, developed high-grade AVB; in control group HV only minimally prolonged and no AVB seen
Bogossian H, et al. 2017 (244) <u>28294370</u>	Aim: Assess role of EPS in BBB pts Study type: Prospective single arm Size:30	Inclusion criteria: Symptomatic bifascicular block (RBBB+LAFB) and 1 st AVB	Intervention: EPS	 All pts had long HV, mean 82 ms 1st AVB in symptomatic pts with bifascicular block likely due to infraHisian delay
Kalscheur MM, et al. 2016 (245) • <u>27565449</u>	Aim: Examine the IIa indication for PM for bifascicular block +syncope Study type: Retrospective Size: 43	Inclusion criteria: Pts with bifascicular block and syncope who underwent PM Exclusion criteria: vasovagal, orthostatic cause of syncope	Intervention: Negative EPS, and empiric PM Implant (n=26) Comparator: Positive EPS or ILR findings for AVB and PM implant (n=17)	 Primary endpoint: time to 1st recurrence of syncope Syncope recurrence was 18%/5 y in empiric grp vs. 0% in pos. EPS/ILR group Progression to high-grade AVB in 53% of the pos. EPS/ILR group vs. 27% of the empiric group (p=0.11)

Morady F, et al.	Aim: Assess role of EPS in	Inclusion criteria: BBB and	Intervention: EPS	• 12/32 had HV ≥70 ms
1984 (246)	pts with BBB and syncope	syncope		• 44% had inducible VT
6475778				
	Study type: Prospective,	Exclusion criteria: 2nd or 3rd		
	nonrandomized	degree AVB or SVT, SND		
	<u>Size</u> : 32			
Click RL, et al. 1987	Aim: Assess role of EPS	Inclusion criteria: Chronic	Intervention: EPS	 34 received PM for long HV
(247)		BBB, with symptoms		 39 had ventricular arrhythmias induced and 21
<u>3825942</u>	Study type: Retrospective			had conduction disease and VT
	S = = 112			
Drignolo M. at al	Size: 112 Aim: Look at role of EPS			
Brignole M, et al. 1995 (248)		Inclusion criteria: Unexplained syncope who	Intervention: EPS, TTT, CSM	• EPS useful for AVB Dx
7618623	in syncope pts	during monitoring had		 Carotid massage and TTT useful for neurally mediated Dx
7010025	Study type: Prospective	documented bradycardia		 These 3 tests are complimentary when done
	study type. Hospective	causing syncope		• These 3 tests are complimentary when done together; if all 3 are negative bradycardia
	Size: 25			unlikely as cause of syncope
Dhingra RC, et al.	Aim: Role of EPS in	Inclusion criteria:	Intervention: EPS with atrial	Pacing induced infraHisian block during
1979 (249)	bifascicular block	Bifascicular block w/o 2nd or	pacing	Wenckebach was functional but if occurred
498473		3rd degree block		during normal AV conduction, was pathologic
	Study type: Prospective	0		
	nonrandomized			
	<u>Size</u> : 531			
Zipes DP, et al.	Aim: Physiology review of	Inclusion criteria: N/A	Intervention: N/A	 Described maneuvers to distinguish type I vs.
1979 (250)	2 nd degree AVB			type II 2 nd degree AVB
<u>378457</u>				
	<u>Study type</u> : N/A			
	Circo NI/A			
Chatty DK at al	<u>Size</u> : N/A	Inclusion exiterios Drusith		A 4.4 AV and dusting groups at at goat. CUD
Shetty RK, et al. 015 (251)	<u>Aim</u> : Describe worsening AVB with exercise	Inclusion criteria: Pt with RBBB, LAFB and 1st degree	Intervention: Treadmill which induced complete	• 1:1 AV conduction present at rest; CHB seen
	AVD WILL EXCLUSE	AVB	AVB	during treadmill testing
25819829	<u>Study type</u> : Case report			
	Juny type. Case report			
	<u>Size</u> : 1			
	I ——			1

Toeda T, et al. 2000 (252) <u>10793447</u>	Aim: Assess for exercise induced AVB Study type: Case report	Inclusion criteria: Pt with exercise induced AVB	Intervention: EPS showed infranodal AVB	• EPS showed gap phenomenon with AV conduction
Chokshi SK, et al. 1990 (253) <u>2360528</u>	Size: 1 <u>Aim</u> : Assess importance of exercise induced AVB <u>Study type</u> : Case series Size: 3	Inclusion criteria: AVB during exercise testing	Intervention: EPS showed prolonged HV and block distal to His	 All 3 had negative Holter monitoring All 3 had prolonged HV interval and infraHisian block at EPS
Bakst A, et al. 1975 (254) <u>1191459</u>	Aim: Assess exercise induced AVB Study type: Case report and discussion Size: 1	Inclusion criteria: Pt with exertional dyspnea and EKG with 1:1 conduction	Intervention: Treadmill and atropine	 Exercise improves Mobitz type I AVB and worsens AV conduction if underlying Mobitz type II AVB Atropine similarly worsens AV conduction when underlying Mobitz type II
Egred M, et al. 2004 (255) <u>15561349</u>	Aim: Assess importance of exercise induced AVB Study type: Case report Size: 1	Inclusion criteria: Syncope during walking	Intervention: Treadmill	 Treadmill testing can be an important diagnostic tool when evaluating exertional syncope
Fisher JD, 1981 (256) <u>7019962</u>	<u>Aim</u> : Assess role of EPS <u>Study type</u> : Review of EPS, its role in SSS, AVN disease	Inclusion criteria: N/A	Intervention: Detailed account of how to do EPS	 Reviews role of CSM, exercise testing, breath holding

Data Supplement 39. RCTs for Permanent Pacing for AV block (Section 6.4.4)

Study Acronym;	Aim of Study;	Patient Population	Study Intervention (#	Endpoint Results	Relevant 2° Endpoint
Author;	Study Type;		patients) /	(Absolute Event Rates, P value; OR RR;	(if any);
Year Published	Study Size (N)		Study Comparator (#	& 95% CI)	Study Limitations;
			patients)		Adverse Events

UKPace Toff WD, et al. 2005 (257) <u>16014884</u>	Aim: Assess mortality benefit from dual vs. ventricular pacing in pts with AVB Study type: RCT Size: 2,021	Inclusion criteria: Age >70 y, 2 nd or 3 rd degree AVB (73.3% had CHB) Exclusion criteria: AF, NYHA class IV	Intervention: Randomized to dual PM, or ventricular PM-fixed rate, or to ventricular PM-adaptive rate <u>Comparator</u> : Compare DC pacing to ventricular pacing	<u>1° endpoint:</u> No all-cause mortality benefit for DC pacing at 3 y (7.2% vs. 7.4%; p=NS; CI: 0.83–1.11)	 More procedural complications in the DC group Slightly higher risk of CVA/TIA/TE event in fixed rate ventricular pacing group (p=0.04) but not in the rate adaptive ventricular pacing group
PASE Lamas GA, et al. 1998 (140) <u>9545357</u>	<u>Aim</u> : Determine difference in health related QOL in ventricular vs. DC pacing in pts >65 y <u>Study type</u> : RCT Size: 407	Inclusion criteria: >65 y, SR (49% had AVB at baseline) Exclusion criteria: AF	Intervention: Implanted with DC PM; randomized to ventricular or DC pacing <u>Comparator:</u> Ventricular pacing	<u>1° endpoint:</u> QOL improved for both groups compared to baseline (p<0.001) but no difference between pacing modes.	 No difference in death, stroke, AF rates AVB subgroup did not experience better QOL or functional status
MOST Lamas GA, et al. 2002 (141) <u>12063369</u>	Aim: Assess mortality and stroke benefit with DC pacing Study type: RCT Size: 2,010	Inclusion criteria: SND (21% with concomitant AVB) Exclusion criteria: Non-SR	Intervention: Implanted with DC PM, randomized to pacing mode Comparator: Ventricular pacing	<u>1° endpoint:</u> All-cause mortality+ nonfatal stroke in DC pacing (21.5%) vs. ventricular pacing (23%) was not significant (p=0.48)	No subgroup analysis of AVB group done
MOST Vp40% Sweeney MO, et al. 2003 (146) <u>12782566</u>	Aim: Use MOST database to assess whether RV pacing increases HFH and AF Study type: Reanalysis of RCT data Size: 1,339	Inclusion criteria: MOST trial subjects with % ventricular pacing data Exclusion criteria: MOST trial subjects w/o ventricular pacing data	Intervention: Implanted DC PM, randomized to pacing mode Comparator:	<u>1° endpoint:</u> Ventricular pacing >40% of the time increases risk of a HFH (HR 2.56–2.99) and AF risk linearly increases as % ventricular pacing increases regardless of pacing mode	The increasing risk of HFH with increasing ventricular pacing levels off after 40%

CTOPP Connolly SJ, et al. 2000 (142) <u>10805823</u>	Aim: Assess for reduction in stroke and CV mortality with DC pacing vs. ventricular pacing Study type: RCT Size: 2,568	Inclusion criteria: Indicated for PM (60% had AVB) Exclusion criteria: AF	Intervention: Randomized to ventricular or DC PM <u>Comparator</u> : Ventricular pacing	 <u>1° endpoint:</u> First occurrence of CVA or CV mortality over 3 y was 5.5% in the ventricular group and 4.9% in the DC group (p=0.33) Less AF with DDD (p=0.05) 	 All-cause mortality was 6.6% vs6.3% (p=0.92) Annual AF rates were lower in the dual pacing group (5.3% vs. 6.6%; p=0.5) No difference in HFH or stroke
CTOPP Extended Kerr CR, et al. 2004 (258) <u>14707022</u>	Aim: Reassess primary endpoint of stroke and CV mortality at 6 y of follow-up Study type: RCT Size: 1995	Inclusion criteria: Undergoing PM for bradycardia (60% had AVB) Exclusion criteria: AF	Intervention: Randomized to ventricular or DC PM <u>Comparator:</u> Ventricular pacing	<u>1° endpoint</u> : No change from above (combined endpoint of CV mortality+ stroke 6.1% vs. 5.5%; p=0.26)	Annual risk of AF was less with DC pacing (4.5% vs. 5.7%; p=0.009)
BLOCK-HF Curtis AB, et al. 2013 (259) 23614585	Aim: Whether BiV pacing reduces mortality+ morbidity or LV remodeling in AVB pts Study type: RCT Size: 691	Inclusion criteria: Pts with AVB indicated for PM, LVEF ≤50% Exclusion criteria: Indicated for CRT	Intervention: BiV PM or ICD, randomized to RV or BiV pacing Comparator: Dual chamber pacing	<u>1° endpoint</u> : Composite of all-cause mortality, HF event, or 15% increase in LVESV was met (HR: 0.74; 95% CI: 0.6– 0.9)	• <u>2° endpoint:</u> Composite of death or HFH was met (HR: 0.78; 95% CI: 0.61– 0.99)
Gierula J, et al. 2013 (260) <u>23736807</u>	Aim: Assess benefit of CRT upgrade in CHB PM pts Study type: RCT Size: 50	Inclusion criteria: PM dep pts (pacing >80%), LVEF <50% Exclusion criteria: Symptomatic HF or recent HFH	Intervention: Upgrade to BiV PM Comparator: DC pacing	<u>1° endpoint</u> : Change in LVEF at 6 months was significantly improved in the CRT group (9% vs1.5%; p<0.0001)	 <u>2[°] endpoints:</u> pVO₂, QOL, and NT- proBNP improved with CRT (p≤0.03 for all 3 outcomes) Reduction in LVEDD did not reach statistical significance
HOBIPACE Kindermann M, et al. 2006 (261)	<u>Aim</u> : Assess benefit of CRT in pts with depressed LVEF who	Inclusion criteria: LVEF ≤40%, LVEDD	Intervention: CRT devices implanted	1° endpoints: (1) With CRT, LVESV decreased 17% (p<0.001), (2) LVEF	• NT-proBNP reduced 31% with CRT (p<0.002)

<u>16697307</u>	are indicated for pacing Study type: Prospective randomized crossover Size: 30	≥60 mm, PM indication with AVB <u>Exclusion criteria:</u> Not meeting inclusion criteria	<u>Comparator:</u> After 3- month run in period, 3 months of RV pacing compared to 3 months of CRT	increased 22% (p<0.0002), (3) pVO ₂ increased 12% (p<0.0003)	
DAVID Wilkoff BL, et al. 2002 (262) <u>12495391</u>	Aim: Compare DC pacing to VVI backup pacing in ICD indicated pts with no pacing indication Study type: RCT Size: 506	Inclusion criteria: ICD indicated, LVEF ≤40% Exclusion criteria: Any PM indication	Intervention: All pts were implanted with a DC ICD Comparator: Ventricular back up pacing vs. DC pacing	<u>1° endpoint:</u> Freedom from composite of time to death or 1st HFH at 1 y (83.9% for ventricular backup vs. 73.3% for DC pacing; HR: 1.61; 95% CI: 1.06–2.44)	HFH was 13.3% in the ventricular back up group vs. 22.6% (HR: 1.54; 95% CI: 0.97– 2.46)
PAVE Doshi RN, et al. 2005 (263) <u>16302897</u>	Aim: Compare RV to BiV pacing in pts with AVN ablation for AF Study type: RCT Size: 184	Inclusion criteria: Any LVEF, AF, AVN ablation, Exclusion criteria: NYHA class IV	Intervention: AVN ablation +dual or BiV PM Comparator: RV pacing	<u>1° endpoint:</u> BiV group had a greater improvement at 6 months in 6MHW (31% increase vs. 24%; p=0.04)	 No difference in QOL No difference in LVEF The benefit of BiV with 6MHW more pronounced in those with LVEF <45%
APAF Brignole M, et al. 2011 (264) <u>21606084</u>	<u>Aim</u> : Compare RV pacing to CRT in pts undergoing AV node ablation <u>Study type</u> : RCT <u>Size</u> : 186	Inclusion criteria: Permanent AF undergoing AV node ablation with or w/o refractory HF and reduced EF Exclusion criteria: NYHA class IV with systolic BP ≤80 mm Hg, prior PM	Intervention: All subjects implanted with CRT Comparator: RV pacing to CRT pacing 1:1 randomization	<u>1° endpoint</u> : Composite endpoint of death due to HF, HFH, worsening HF was lower with CRT (11% vs. 26% event rate p=0.005; 95% CI: 0.18–0.73)	 <u>2^o endpoint:</u> CRT had lower rates of worsening HF (p=0.001; 95% CI: 0.12–0.58) and HFH (p=0.013; 95% CI: 0.06–0.72) No mortality difference between groups CRT benefit evident in LVEF >35% subgroup

OPSITE Brignole M, et al. 2005 (265) 15618036	Aim: Compare RV to LV and to BiV pacing in pts with permanent AF and	Inclusion criteria: Permanent AF and AV node ablation	Intervention: AV node ablation and CRT implant	<u>1° endpoint</u> : QOL measures were minimally improved with BiV (MLHFQ up 10%, NYHA improved 11%, LVEF	 Large interpatient variability present LV only pacing did not confor on much
15018030	AV node ablation <u>Study type</u> : Prospective	Exclusion criteria: NYHA class IV, unsuccessful AV node ablation	Comparator: Each subject paces RV, LV, and BiV	increased 5%; all with p<0.05) but exercise capacity at 3 months did not improve.	confer as much benefit as BiV pacing
	randomized crossover <u>Size</u> : 56				

Data Supplement 40. Nonrandomized data for Permanent Pacing for AV block (Section 6.4.4)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% Cl)
Brignole M, et al. 2012 (266) <u>22095616</u>	Aim: Identify predictors of improvement after AV node ablation Study type: Prospective observational study of RCT cohort	Inclusion criteria: Subjects enrolled in APAF with 2-y follow-up Exclusion criteria: Inadequate follow-up	Intervention: CRT vs. RV pacing after AV node ablation Comparator: Compared responders and nonresponders	 <u>1° endpoint</u>: RV 63% responder rate and 83% responder rate for CRT (p=0.003) On multivariate Cox regression analysis, the only predictor of response was CRT mode and having CRT echo optimized
Dretzke J, et al. 2004 (267) <u>15106214</u>	Size: 171 <u>Aim:</u> Cochrane review: compare clinical effectiveness of VVI and DC PMs in pts with SND or AVB <u>Study type</u> : Review of RCT and crossover Size: N= 31 studies	Inclusion criteria: RCT and crossover studies comparing DDD and VVI PMs Exclusion criteria: Atrial single chamber pacing	Intervention: N/A Comparator: N/A	 There is significantly less AF with DDD pacing Dual chamber pacing is favored for PM syndrome Trend (NS) for less stroke, HF, mortality and improved exercise capacity

Dhingra RC, et al.	Aim: Natural Hx of 2 ⁰	Inclusion criteria: BBB+	Intervention: EPS; follow-	Only 3 were asx at presentation
1974 (196)	AVB+BBB	2 nd degree AVB	up	 Permanent PM indicated for severe bradycardia,
<u>4817704</u>				syncope, CHF
	Study type: Prospective	Exclusion criteria: Acute	Comparator: N/A	• All 9 pts with infra-His block got PM for syncope, CHF
	observational	MI		 2 of 4 with supra-Hisian block got PM for syncope,
	Since NI-1E			CHF, 1 developed interim CHB but refused PM, 1 asx
Shaw DB, et al.	Size: N=15 Aim: Determine	Inclusion criteria: 2 nd 3 rd	Intervention: None	48% had syncopal events
1970 (197)	prevalence of pts with	degree AVB	mervention. None	• 9% had CHF
5413952	2 nd and 3 rd degree AVB		Comparator: N/A	No reported deaths
<u>5415552</u>	pts and record their	Exclusion criteria: Digoxin	<u>comparator</u> . N/A	• No reported deaths
	symptoms	or propranolol use, acute		
	o,p.oo	MI		
	Study type:			
	Observational			
	<u>Size</u> : N=100			
Simon AB, et al.	Aim: Follow natural Hx	Inclusion criteria: 2 nd or	Intervention: Ventricular	Natural Hx of CHB is 50% mortality in the first year
1978 (198)	and survival of AVB pts	3 rd degree AVB	PM	based on prior historical literature
<u>626128</u>	who underwent PM			 Survival improved to 61% at 5 y with a PM
	implant	Exclusion criteria: SND	Comparator: Historical	• Post PM, new CV events were common including MI,
			reports of pts w/o a PM	CHF, and stroke and SCD was the most common
	Study type:			mode of death
	Retrospective			
	Size: N=246			
Strasberg B, et al.	Aim: Assess natural Hx of	Inclusion criteria:	Intervention: None	• All had 2 nd degree type I (Wenckebach) on baseline
1981 (199)	2 nd AVB	Consecutive pts with		ECG (none had type II)
<u>7471363</u>		chronic 2 nd AVB and EPS		• 34% did not have heart disease and had a normal HV
	Study type:	positive for 2 nd AVB		interval; none died of cardiac cause
	Retrospective,			 66% had heart disease, some had prolonged HV; 25%
	observational	Exclusion criteria: Acute		received a PM
		AVB in setting of MI or		 No one progressed to CHB
	<u>Size</u> : N=56	digoxin toxicity		

Vatankulu MA, et al. 2009 (268) <u>19406272</u>	Aim: Assess LV remodeling in CHB PM pts after PM upgrade to CRT Study type: Prospective single arm Size: N=26	Inclusion criteria: CHB, upgraded PM to CRT, on optimal GDMT Exclusion criteria: Asymptomatic, medications stable <1 month	Intervention: BiV upgrade+/- defibrillator <u>Comparator:</u> None	 NYHA improved by one class in most subjects Mean EF increased from 39% to 46% 25% decrease in mean LVESV 18% decrease in mean LVEDV No clinical hard endpoints such as HFH or mortality
Kiehl EL, et al. 2016 (269) <u>27855853</u>	Aim: Determine incidence of PM-induced CM, and identify predictors of RV-pacing induced CM Study type: Retrospective Size: N=823	Inclusion criteria: Consecutive pts receiving PM between 2000–2014 for CHB; LVEF >50%; many pts had procedural/surgical AVB Exclusion criteria: Generator change procedure, no echo within 6 months of implant	Intervention: CRT upgrade in some PM pts Comparator: Compared those with RV-induced CM and those w/o	 12.3% developed PM-induced CM with mean EF 34% Of the 25 CRT upgrades with post CRT echo, 84% were responders with mean LVEF increase 18%, LVESV decreased by 45% RV pacing burden of 20% seemed to delineate increased risk of developing HF
MOST Ellenbogen KA, et al. 2003 (270) <u>12972124</u>	Aim: Characterize complications from DC PM implants using the MOST database Study type: Retrospective analysis of RCT Size: N=2010	Inclusion criteria: DDDR PM implanted for SND; SR Exclusion criteria: Serious comorbidities	Intervention: Dual chamber PM <u>Comparator:</u> Ventricular single chamber PM	 Most common complication in the DC PM group was atrial lead dislodgement (1.7%) Female sex seemed to predict risk of complication
FOLLOWPACE Udo EO, et al. 2012 (271) 22182495	Aim: Determine incidence and predictors of PM complications Study type: Prospective, multicenter Size: N=1517	Inclusion criteria: All pts undergoing initial PM implant Exclusion criteria: Generator change procedures;	Intervention: PM implant	 69% of implanted PMs were DC There were 5.54% lead related problems in the 1st 2 months 12.4% of pts had a complication within 2 months of implant Multivariate analysis showed a HR of 3.09 for DC devices compared to single chamber devices for complications within 2 months of implant

Ellenbogen KA, et al. 2000 (272) <u>10867093</u>	Aim: Determine predictors of PM syndrome in the PASE study Study type: Retrospective analysis of RCT	investigational PM implanted Inclusion criteria: Indication for PM implant; in SR Exclusion criteria: Severe CHF; AF	Intervention: Randomized to single or DC PM <u>Comparator:</u> Compare the 2 arms	 Predictors of PM syndrome in a Cox multivariate regression model include: reduced systolic BP with VVI pacing, use of BB, DCM 26% crossed over from ventricular to DC pacing
MOST Link MS, et al. 2004 (273) <u>15172414</u>	Size: N= 407 Aim: Determine incidence and predictors of PM syndrome in SND pts treated with ventricular pacing using the MOST database Study type: Retrospective analysis of RCT	Inclusion criteria: Randomized to ventricular pacing and meet criteria for PM syndrome Exclusion criteria: Not meeting pre-defined criteria for PM syndrome	Intervention: PM syndrome pts crossed over to DC pacing Comparator: Pts compared to themselves pre-crossover	 18.3% met criteria for PM syndrome Predictors of PM syndrome include lower sinus rate, higher paced rate, higher % paced beats
Arbustini E, et al. 2002 (274) <u>11897440</u>	Size: N= 996 <u>Aim:</u> Assess prevalence of LMNA mutations in a DCM cohort <u>Study type</u> : Prospective <u>Size</u> : N=73 and 107 controls	Inclusion criteria: DCM (familial and sporadic) with and w/o AVB. Control group=29 with ischemic or valvular disease and 107 blood donors w/o known heart disease Exclusion criteria: DCM pts who do not meet WHO criteria	Intervention: Genetic testing (73) Comparator: Genetic testing (107)	 LMNA gene mutations accounted for 33% of the pts with DCM with AVB AVB associated with DCM is a reason for LMNA gene molecular screening None of the DCM pts with intact AV conduction had any LMNA defects

Anselme, F, et al. 2013 (275) <u>23811080</u>	Aim: Assess utility of primary prevention ICD placement in pts with LMNA mutation and AVB	Inclusion criteria: Consecutive pts with LMNA mutation and either a (1) PM, or an (2) indication for PM, or (3)	Intervention: ICD (n=21) <u>Comparator:</u> Standard of care w/o ICD (n=24); 2° prevention ICD (n=2)	 None of the ICD pts died of SCD over median follow- up of 62 months 52% of primary prevention ICD recipients experienced sustained VAs requiring ICD therapy Conduction disorders was a predictor of VA
	Study type: Prospective, single arm	PR interval>240 ms and either LBBB or NSVT		Conduction disorders was a predictor of VA
	<u>Size</u> : N=47	Exclusion criteria: LMNA pts w/o the 3 additional criteria were enrolled but did not receive an ICD		
Hasselberg, NE, et al. 2014 (276)	<u>Aim:</u> To look for predictors of VA in pts	Inclusion criteria: LMNA mutation positive	Intervention: ECG, Holter, echo, CMRI, genetic	• 7 of the 41 (27%) lamin A/C mutation positive
24058181	with lamin A/C mutation	mutation positive	testing	subjects had AVB • 21 (51%) had VA
	,	Exclusion criteria:		• All 8 pts with sustained VT had AVB and markedly
	Study type: Prospective	Inability to consent	Comparator: N/A	prolonged AVB (median 310 ms)
	observational			 Prolonged PR interval and any type of AVB were the strongest predictors of sustained VA
	<u>Size</u> : N= 41			

Data Supplement 41. Nonrandomized Trials, Observational Studies, and/or Registries of Conduction Disorders (Section 7)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
The Framingham Study	Aim: Assess the clinical implications of LBBB	Inclusion criteria: LBBB and age- and sex-matched	<u>1° endpoint</u> : Development of CV disease	 Comparison with age- and sex- matched control subjects free from
Schneider JF, et al. 1979 (27)	Study type: Nested case-	control pts who did not develop LBBB from	Results: 55/5209 people	LBBB suggests that newly acquired LBBB is most often a hallmark of
<u>154870</u>	control in Framingham cohort	Framingham cohort	developed LBBB in 18 y of follow- up	advanced hypertensive or ischemic heart disease, or both
	Size: 55 pts who developed LBBB, 110 matched controls Mean age at study onset =50 y Mean age at onset of LBBB =62	Exclusion criteria: N/A	48% of these develop CAD or HF for the 1 st time with or following Dx of LBBB Only 11% remained free of	
	У		clinically apparent CV abnormal In men, the appearance of LBBB contributed independently to an	

			increased risk of CV disease mortality	
Fahy GJ, et al. 1996 (31) 8651093	<u>Aim:</u> Determine the long-term outcome of pts with BBB and no clinical evidence of CV	Inclusion criteria: BBB/age- and sex-matched controls	1° endpoint: Long-term "outcome" of BBB pts	 Isolated left BBB is associated with an increased risk of developing overt CV disease and increased cardiac
8051055	disease	Exclusion criteria: Suspected heart disease	Results: BBB did not impact overall mortality	mortality.
	Study type: Nested case- control		Cardiac mortality was significantly increased in the LBBB group	
	<u>Size</u> : 310 pts with BBB, 310 matched controls out of		compared to their controls LBBB, but not RBBB, was associated with an increased	
	110,000 participant screening program in Ireland		prevalence of CV disease at the follow-up (21% vs. 11%; p=0.04).	
Talreja D, et al. 2000 (43) <u>10689252</u>	Aim: Assess ability to predict LV dysfunction on echo, by historic, clinical, radiographic, and ECG parameters Study type: Cross-sectional Size: 300	Inclusion criteria: Consecutive inpatients referred for the echocardiographic assessment of LV function	<u>1° endpoint</u> : LVER <45% <u>Results:</u> 124 (41%) had LVEF <45% Presence of LBBB, male sex, and CM on CXR were associated with presence of LV dysfunction Only 2 pts with LVSD had a normal ECG More than 50% of the predictive power of the model rested on the discriminatory ability of a normal ECG	 When ECG is normal, it is extremely unlikely to have LV systolic dysfunction. It can be argued that such pts should not be referred for echocardiography.
Eriksson P, et al. 1998 (30) <u>9832497</u>	Aim: Assess prevalence of BBB, its impact on mortality and coexisting CV conditionsStudy type: Prospective cohortSize: 855 men who were 50 y old in 1963 followed for 30 y 82 developed BBB 22 of those were LBBB	Inclusion criteria: Random sampling of Swedish men Exclusion criteria: N/A	1° endpoint: Mortality and CV disease Results: The prevalence of BBB increases from 1% at age 50 y to 17% at age 80 y, resulting in a cumulative incidence of 18%. BBB did not predict ischemic heart disease or mortality Men who developed BBB had	 BBB correlates strongly to age and is common in elderly men. BBB is a marker of a slowly progressing degenerative disease that affects the myocardium. BBB is not associated with increased mortality I could not find data broken down by LBBB vs. RBBB; vast majority were RBBB*
			bigger LV volume at baseline and greater incidence of DM and HF	

Mahmod M, et al.	Aim: Evaluate the diagnostic	Inclusion criteria:	1° endpoint: Pathologic findings	• CMR detects subclinical CMP in 1/3
2012 (277)	value of CMR in asx pts with	Asymptomatic adults with	on MR	of asx pts with LBBB and normal echo
<u>21805313</u>	LBBB	complete LBBB referred for		CMR provides additional clinically
		cardiac MR	Results: 9/29 (31%) had abnormal	relevant data in over 50% of pts
	Study type: Cross-sectional		MR despite normal echo: 6 with	• CMR is valuable adjuvant diagnostic
		Exclusion criteria: Absence	DCM, 2 with LVH	tool for pt with asx LBBB
	<u>Size</u> : 54 pts	of echo	19/25 (76%) with abnormal echo	
			also had abnormal MR; in 13 of	
			them (52%) the MR provided new	
			"clinically relevant" findings: 8	
			DCM, 1 cardiac sarcoid	
Brignole M, et al.	Study type: Prospective	Inclusion criteria: BBB and	<u>1° endpoint</u> : Rhythm at syncope	In pts with BBB and negative EPS, most
2001 (185)	Observational	negative conventional	recurrence as assessed by ILR	syncopal recurrences result from
<u>11673344</u>		workup		prolonged asystolic pauses, mainly
	<u>Size</u> : 52 pts		Safety endpoint: N/A	attributable to paroxysmal AVB.
Moya A, et al.	Aim: To analyze the clinical	Inclusion criteria: ≥1	1° endpoint: Clinical Dx	 In pts with syncope, BBB, and
2011 (189)	outcomes of pts with syncope	syncope in the last 6 mo. and	(established in 267 patients	preserved LVEF, a systematic
<u>21444367</u>	and BBB following a systematic	BBB on EGG with a QRSd of	(82.7%)	diagnostic strategy (ESC guidelines)
	diagnostic approach: 3-phase:	≥120 ms	-recurrent syncope: in 15/215 (7%)	achieves a high rate of Dx (82.6%)
	clinical evaluation, EPS, ILR	Exclusion criteria: Indication	after phase 1/2; 36 of 108	with a low rate of mortality (6%),
		for prophylactic ICD due to	(33% after phase 3	allowing clinicians to institute
	Study type: Multicentered	low	-documented spontaneous	etiology-specific treatment.
	prospective observational trial	LVEF; pre-excitation; long QT	arrhythmias	• The most common cause of syncope
		syndrome; Brugada	-death due to any cause: no	was bradyarrhythmia, mostly due to
	Size: 323 patients (after	syndrome; acute MI;	difference in mortality rate	paroxysmal A-V block. Other
	exclusions)	pregnancy; life expectancy	between pts diagnosed at Phase I	etiologies of syncope were
		<1 y due to noncardiac	or II,	recognized in 17.6%
		cause; geographically or	compared with those who had	 initial clinical evaluation achieved a
		otherwise inaccessible for	implanted ILR (6.0 vs. 6.5%)	Dx in 25%; the most frequent Dx at
		follow-up; unwilling or		EPS was a bradyarrhythmia (76%), VT
		unable to give informed	Safety endpoint: N/A	or SVT was induced in 14%.
		consent		 The study was not designed to
				determine whether this diagnostic
				strategy was better than implanting
				a PM in the majority of pts
McAnulty JH, et al.	Study type: Prospective	Inclusion criteria:	<u>1° endpoint</u> : Major clinical events,	 A higher percentage of pts with
1982 (278)	Observational	Bifascicular or trifascicular	death, heart block, need for PPM,	syncope were shown to develop CHB
<u>7088050</u>		block	syncope	(17%) vs. those w/o syncope (2%)

	<u>Size</u> : 554 pts 351 had EPS and 203 refused it	Exclusion criteria: Terminal non-cardiac disease; symptoms already documented as due to bradycardia prior to study	<u>Safety endpoint</u> : N/A	 Heart block occurred in 4.9% of those with long HV compared to 1.9% with normal HV A prolonged PR interval (found in 13%) was associated with and increased risk of all death, sudden death, major clinical events or HF, but not development of heart block. Bundle branch block occurs in 1% of population, and requires no special evaluation in asx pts
Kwok CS, et al. 2016 (279) <u>26879241</u>	Aim: Determine if prolonged PR interval is associated with adverse CV outcomes and mortality. Study type: Systemic review + meta-analysis Size: 14 studies, 400,750 pts	Inclusion criteria: Studies that evaluated clinical outcomes associated with prolonged and normal PR intervals Exclusion criteria: From main analysis: Studies of pts with specific cardiac pathologies (such as AS, sinus nodal dysfunction and HF) or of pts who had received intervention (angiography or CRT)	<u>1° endpoint</u> : Mortality <u>Results</u> : Increased risk of mortality with prolonged PR interval risk ratio (RR: 1.24; 95% Cl: 1.02–1.51, 5 studies. Prolonged PR interval was associated with significant risk of HF or LV dysfunction (RR: 1.39; 95% Cl: 1.18–1.65, 3 studies) and AF (RR: 1.45; 95% Cl: 1.23–1.71, 8 studies) but not CV mortality, coronary heart disease or MI or stroke or TIA.	 Possible association between prolonged PR interval and significant increases in AF, HF and mortality.
Boriani G, et al. 2003 (280) <u>12649505</u>	Size: 18 pts (age 42.8±19.6 y) with genetically confirmed X- linked (N=10) or autosomal dominant (N=8) EDMD	Inclusion criteria: N/A Exclusion criteria: N/A	Results: Pacemakers were required by 10 of 18 (56%) pts for bradyarrhythmia	 >50% of pts with muscular dystrophy (EDMD) require PM implant. Survival after PM implant is very reasonable
Mymin D, et al. 1986 (281) <u>3762641</u>	Study type: Longitudinal, Observational Size: 3983 healthy men	Inclusion criteria: Healthy males Exclusion criteria: Females	<u>1° endpoint</u> : 1°AVB <u>Results:</u> 52 initial cases plus 124 new cases over 30 y. No difference in all-cause mortality	 Primary first-degree heart block with moderate PR prolongation is a benign condition may not apply to more marked prolongation of the PR interval
Huhta JC, et al. 1983 (282) <u>6851033</u>	Study type: Retrospective review	107 pts with ccTGA	23 of 107 (21%) developed naturally occurring AVB at a rate of 2% per yr. 12 of 49 (24%) developed AVB at VSD closure.	 Pts with ccTGA are at a constant and elevated risk of developing complete AVB throughout their lives.

Connelly MS, et al. 1996 (283) <u>8609349</u>	<u>Study type</u> : Retrospective review	52 pts with ccTGA	9 or 52 (17.3%) developed spontaneous AVB; 9 of 52 (17.3%) developed postoperative AVB	• 17% of pts developed progressive AVB unrelated to surgery
Weindling SN, et al. 1998 (284) <u>9723647</u>	Study type: Retrospective review	54 pts with postoperative heart block following congenital heart surgery	31 of 32 pts who recovered AV conduction did so by the 9 th postoperative day.	 43% did not recover conduction 97% of those who recovered conduction – did so by d 9
Meune C, et al. 2006. (285) <u>16407522</u>	Study type: Prospective observational	19 pts with lamin A mutations referred for pacing and receiving an ICD	9 pts (46%) received an appropriate shock for ventricular tachyarrhythmias	• The implantation of an ICD, rather than a PM, should be considered for these pts
van Rijsingen, IA, et al. 2012. (286) <u>22281253</u>	Study type: Retrospective multicentered cohort	269 pts with LMNA mutations	Malignant ventricular arrhythmias occurred (5%/y) in pts with ≥2 of: NSVT, LVEF <45% at the first clinical contact, male sex, and non- missense mutations	 Specific risk factors portend a higher risk of ventricular arrhythmia in carriers of LMNA mutations
Maury P, et al. 2013. (287) <u>24011739</u>	<u>Study type</u> : Retrospective review	325 pts	First degree AVB was independently associated with sudden death or implantable cardioverter-defibrillator appropriated therapies (OR: 2.41; 95% CI: 1.01–0.73; p=0.046)	• First degree AVB is independently linked to outcome and may be proposed to be used for individual risk stratification
O'Mahony C, et al. 2011. (288) <u>21856674</u>	Study type: Observational, longitudinal, retrospective cohort study	204 pts; 12 had device implant during follow-up for bradyarrhythmias	Independent predictors of future antibradycardia pacing were (in a multivariable Cox model): QRSd and PR interval duration	 Pacing for AV and sinus node disease is common (±8%) Pts with QRS ≥110 ms should be closely monitored for bradyarrhythmias
Polak PE, et al. 1989 (289) <u>2707275</u>	Study type: Case series	2 pts	Pts with fascicular block progressed to PM-dependent complete block	• N/A
Khambatta S, et al. 2014 (290) <u>25061332</u>	<u>Study type</u> : Retrospective review	35 pts	PM/ICD required in 31 % (11 pts) 4 pts (11%) in the series died, but all deaths were from sudden cardiac events.	 High incidence of device implantation implant and sudden death
Ali H, et al. 2017 (291) <u>28583850</u>	Study type: Systematic Review	Case reports on CHB following blunt cardiac injury were available for 50 pts	PPM implantation was indicated in ~50% of early survivors because of recurrent or permanent CHB. BBB was present in >70% of pts A fatal outcome occurred in 20% of pts; structural damage of AV	 CHB secondary to blunt cardiac injury is associated with 20% mortality mainly occurring in the early post-traumatic period and most of the deaths are due to arrhythmia.

conduction system in 50% of necropsies	 Recurrent or permanent CHB requiring PM implantation occurs in ~50% of survivors. A structural damage of the AV conductive system can be found in
	50% of victims

Data Supplement 42. Randomized Data for Predicting Perioperative Bradycardia (Section 8.1.1)

Study Acronym; Author;	Aim of Study; Study Type;	Patient Population	Study Intervention (# patients) /	Endpoint Results (Absolute Event Rates,	Relevant 2° Endpoint (if any); Study Limitations;
Year Published	Study Size (N)		Study Comparator (# patients)	P values; OR or RR; & 95% Cl)	Adverse Events
Chierichini A, et al. 2015 (292) <u>25953222</u>	<u>Aim</u> : Evaluate the use of irrigation fluid using norepinephrine or epinephrine in pts undergoing arthroscopy for rotator cuff surgery	Inclusion criteria: ASA status 1 or 2, >18 y, scheduled for rotator cuff surgery with interscalene brachial plexus block Exclusion criteria: CAD,	Intervention: Norepinephrine (0.66 mg/L) to the irrigation bag Comparator: Epinephrine (0.33 mg/L) to the irrigation	<u>1° endpoint</u> : Development of hypotension or bradycardia (<30 bpm in ≤5 min or <50 bpm <u>Safety endpoint</u> : Timing and safety of events	 Hypotension and/or bradycardia NE: 5/60 (8%) E: 15/59 (25%) Did not separate bradycardia events Timing similar (30–35 min)
	Study type: Prospective randomized double blind controlled study Size: 120 pts	cardiac conduction defects, BB or ACEI:	bag		

Data Supplement 43. RCTs of Conduction Disorders (Section 7)

Data Supplement 44. Nonrandomized Data for predicting perioperative bradycardia (Section 8.1.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
Marrocco-Trischitta	Aim: Evaluate use of	Inclusion criteria: Database	1° endpoint: 4/34 CEA surgeries with TTVP had	 Temporary transvenous
MM, et al. 2016 (293)	temporary transvenous	searched for pts with CEA	PM activation	pacing may be useful in
<u>27177706</u>	pacing (TTVP) for pts with	and TTVP		pts undergoing CEA

Page 167

	trifascicular block		Results:	
	undergoing CEA	Exclusion criteria: None	Adverse events were	
	5 5		• Defined as follows: PM activation, occurrence	
	Study type: Retrospective		• Of block progression to 2 nd degree AVB of	
	with historical controls		Mobitz type II, or third-degree A-V block,	
	(other pts with vascular		 bradycardia 40 bpm with a minimum duration 	
	surgery and TTVP		10 s and/or a hemodynamic compromise (i.e.,	
			systolic BP <90 mm Hg), asystole with a	
	Size: 31 CEAs compared		duration >5 s	
	to 37 other vascular		• 4 pts with PM activation	
	surgery (68 total)		• In 2 pts procedure stopped due to asystole	
Cheung CC, et al.	Aim: Evaluate prevalence	Inclusion criteria: Post-hoc	1° endpoint: 67 pts developed intraoperative	Surgical risk for
2015 (294)	of hypotension and	analysis of prospectively	bradycardia (< 60 bpm for 2 sequential	hypotension and
<u>25541033</u>	bradycardia during	acquired data from a study	measurements >5 min apart)	bradycardia can be
	elective noncardiac	evaluating		assessed preoperatively
	surgery	withdrawal/management	<u>Results</u> : Developed a HEART score for predicting	
		of a loop diuretic prior to	hypotension or bradycardia based on baseline	
	Study type: Retrospective	surgery	heart rate and BP, Age, Drug Rx, Cardiac	
			complications score, and complexity of surgery	
	Size: 193 pts undergoing	Exclusion criteria: None	(OR: 2.51; 95% CI: 1.79–3.53; C-statistic: 0.75)	
	noncardiac elective			
	surgery			
Bauer AM, et al. 2014	<u>Aim</u> :	Inclusion criteria: N/A	<u>1° endpoint</u> : N/A	Single pt with a carotid
(295)				body tumor who became
<u>24651937</u>	Study type:	Exclusion criteria: None	Results:	asystolic during surgery
	Case report		Single pt with a carotid body tumor who became	
Fritzah C. at al. 2012	<u>Size</u> :	Inducion criterio: 1.202	asystolic during surgery	
Fritsch G, et al. 2012 (296)	Aim: Identify factors associated with surgical	Inclusion criteria: 1,363 consecutive pts in a 3 mo	<u>1° endpoint</u> : 86 pts (6.3%) developed some	Did not specifically
22188223	complications	period scheduled for	complication. Hypotension most common but 20	analyze pts with
22100223		elective surgery	pts (1.5%) developed hemodynamically relevant bradycardia	bradycardia
	Study type: Retrospective	elective surgery		 Age, type of surgery and medical Hx were
	analysis	Exclusion criteria: None		predictors for
		<u></u>		complications in general
	Size: 1,363 consecutive			complications in general
	pts			
	1			1

Perreira ID, et al.	Aim: Identify factors	Inclusion criteria: >18 y old	<u>1° endpoint</u> : Sinus bradycardia	• Sinus bradycardia more
2011 (297)	associated with			common with age, sex,
<u>21920207</u>	intraoperative	Exclusion criteria: None	<u>Results</u> :	anesthesia, and physical
	bradycardia		Sinus bradycardia more common with age	status
			• 18–40 y: 2.5%	
	Study type: Retrospective		• 41–60 y: 4.1%	
			• >61 y: 5.2%	
	<u>Size</u> : 80,660 pts with		Sinus bradycardia dependent on anesthesia	
	neuraxial anesthesia from		 SSA (single puncture subarachnoid): 3.4% 	
	a single center		 CSA (continuous subarachnoid): 3.5% 	
			• SE (single puncture epidural): 1.3%	
			• CE (continuous epidural): 3.4%	
			• DB (double block): 1.5%	
			• Variables associated with sinus bradycardia:	
			• Age	
			• Gender (0.74 for women)	
			 Physical status (ASA III/IV 2.49/1.94) 	
			• Type of surgery (Emergency 1.98)	
Mitar MD, et al. 2015	Aim: Evaluate pacing	Inclusion criteria:	1° endpoint: (2 nd degree AVB or asystole >2 s in	 Pacemaker activated in
(298)	requirement for	Consecutive pts undergoing	the no PM group	PM group or AVB in no
<u>25746023</u>	rotational atherectomy	rotational atherectomy		PM group in pts with RCA
			Results: Pacemaker activated in PM group or	or Cx PCI
	Study type: Retrospective	Exclusion criteria: None	AVB in no PM group:	
			• LM: 1/19 (5%)	
	<u>Size</u> : 138 pts		• LAD: 2/38 (5%)	
	Temporary pacing in 67		• Cx: 10/25 (40%)	
	No temporary pacing in		• RCA: 28/51 (55%)	
	67			
Im SH, et al. 2008	Aim: Evaluate utility of	Inclusion criteria:	1° endpoint: Transcutaneous pacing use	 Pacing support often
(299)	transcutaneous pacing	Consecutive pts who		required with elective
<u>18254669</u>	with carotid angioplasty	underwent elective carotid	<u>Results</u> :	carotid angioplasty and
	and stenting	angioplasty and stenting	• 24/31 required transcutaneous pacing (77%)	stenting
		and placement of a	• Continuous pacing for 10–30 min required in	
	Study type: Retrospective	transcutaneous pacing	5/31 pts (16%)	
	cohort	system.		
	Size: 30 pts and 31	Exclusion criteria: None		
	procedures			

Bush RL, et al. 2004 (300) <u>15181504</u>	Aim: Evaluate incidence of bradycardia with carotid stenting procedures Study type: Retrospective Size: 48 pts who underwent 51 procedures	Inclusion criteria: Carotid artery stenting procedures in consecutive pts who were thought to be of unacceptable risk for carotid artery endarterectomy. Exclusion criteria: None	 <u>1° endpoint</u>: Clinically significant bradycardia or hypotension <u>Results</u>: Access site hematomas in 2 pts (4%) Significant bradycardia or asystole in 11/49 (22%) of procedures Mean time of pacing was 6.6±1.2 min (range: 2.2–20.1 min) No correlation between preprocedural cardiac status (History of MI or CABG) and development 	 Significant bradycardia or asystole in 11/49 in carotid stenting procedures
			of bradycardia and hypotension	
Harrop JS, et al. 2001 (301) <u>11564241</u>	Aim: Evaluate hypotension and bradycardia associated with carotid artery interventional procedures	Inclusion criteria: All pts undergoing carotid artery procedures Exclusion criteria: 10 pts excluded; no reasons given	1° endpoint: Use of pacing for bradycardia and hypotension <u>Results:</u> • Pacemaker activation in 23/37 procedures (73%)	 Pacemaker activation common with CEA
	Study type: Retrospective Size: 43 pts underwent 47 carotid artery angioplasty and stenting procedures		 No correlation between PM activation and sex, etiology of stenosis, severity of stenosis, number of inflations 	
Gauss A, et al. 1999 (302) <u>10456813</u>	Aim: Evaluation of transcutaneous pacing in pts thought to be at risk for bradycardia (trifascicular block) Study type: Consecutive, prospective Size: 39 pts	Inclusion criteria: Consecutive pts with asx chronic 1st degree AVB and LBBB or bifascicular block. Exclusion criteria: None	 <u>1° endpoint</u>: Progression of AVB, asystole >5 s or bradycardia <40 bpm >10 s) <u>Results</u>: 37 of 39 pts could be paced transcutaneously 0/39 had progression of AVB 9 pts had bradycardia <40 bpm (6 intraoperatively and 3 postoperatively) No pts absolutely required pacing for rate support 	 No pts absolutely required pacing for rate support
Killeavey ES, et al. 1990 (303) <u>15227187</u>	Aim: Evaluate the use of transvenous pacing during PCI	Inclusion criteria: Consecutive pts undergoing PCI	<u>1° endpoint</u> : Requirement for pacing <u>Results</u> :	 Requirement for pacing low
		Page	170	

Page 170

	Study type: Retrospective Size: 778 pts (398 w/o transvenous pacing and 379 with prophylactic pacing and 1 emergent pacing)	Exclusion criteria: None	 2 pts developed ventricular arrhythmias associated with prophylactic pacing (0.5%) 8/379 had pacing required (2%) Overall incidence for pacing for hemodynamically significant bradycardia in prophylactic situations was 7/777 (0.8%) 	
Chowdhury T, et al. 2015 (304) <u>26656339</u>	Aim: Propofol boluses aborted the trigeminal cardiac reflex (TCR) induced severe bradycardia during dural manipulation. Study type: Case report Size: 1 pt	Inclusion criteria: N/A Exclusion criteria: N/A	<u>1° endpoint</u> : N/A <u>Results</u> : During dural stimulation, propofol 50 mg IV terminated sinus bradycardia	 Case report discussing that during dural stimulation, propofol 50 mg IV terminated sinus bradycardia
Yong J, et al. 2015 (305) <u>26424701</u>	Aim: Evaluate development of cardiac arrest during laparoscopic surgery Study type: Retrospective analysis of the Australian Incident Monitoring Study (AIMS) database Size: 14 cases from >11,000 pt database	Inclusion criteria: Cardiac arrest pts Exclusion criteria: N/A	 <u>1° endpoint</u>: Cardiac arrest (bradycardia) <u>Results</u>: 9/14 bradycardia 2 critical points for cardiac arrest: insufflation or establishment of pneumoperitoneum (12/14; 86%) Anesthesia induction (2/14; 14%) 	Bradycardia common during laparoscopy
Vimala S, et al. 2016 (306) <u>26114985</u>	Aim: Case report of asystole during dural manipulation Study type: Case report Size: 1 pt	Inclusion criteria: N/A Exclusion criteria: N/A	 <u>1° endpoint</u>: N/A <u>Results</u>: Bradycardia and asystole during dural manipulation and excision of a temporal lobe meningioma (near the left insula) 	 Case report of bradycardia during dural manipulation

Mohan S, et al. 1990	Aim: Evaluate the use of	Inclusion criteria: 60 y	1° endpoint: N/A	
(307)	transvenous pacing	undergoing maxillectomy	<u> </u>	
			Results:	
24788865 Ishii D, et al. 1990 (308) 23834853	during PCI Study type: Case report Size: 1 Aim: Evaluate the use of cilostazol for preventing bradycardia during carotid artery stenting Study type: Retrospective Size: 53 pts who underwent 54 carotid artery stenting procedures divided into procedures where pts	for squamous cell cancer Exclusion criteria: N/A Inclusion criteria: Pts who underwent carotid artery stenting at a single institution Exclusion criteria: None	Results: • Asystole during posterior osteotomy • Bradycardia again during manipulation of the posterior maxillary tuberosity • Treatment by atropine and minimizing surgical manipulation 1° endpoint: Bradycardia (<50 bpm or hypotension (<90 mm Hg)	• Cilostazol reduced intraoperative bradycardia
	received cilostazol (26) and those who did not			
Cabialia ID at al	(28)			
Schipke JD, et al.	Aim: 1 pt who developed	Inclusion criteria: N/A	<u>1° endpoint</u> : N/A	• Asystole with
2013 (309)	asystole during paranasal	Fuchación exiterio: N/A	Describer	instrumenting the
<u>23332411</u>	sinus surgery	Exclusion criteria: N/A	Results:	paranasal sinuses
	Church a third and Canada managert		• 15 s of asystole with instrumenting the	
	Study type: Case report		paranasal sinuses	
	<u>Size</u> : 1			
Haldar R, et al. 2013	Aim: 1 pt who developed	Inclusion criteria: N/A	<u>1° endpoint</u> : N/A	Heart rate decreased
(310)	bradycardia during skull			with skull fixation pin
<u>23242253</u>	pin fixation	Exclusion criteria: N/A	Results:	tightening that stopped
	Study type: Case report		• Heart rate decreased from 88 to 44 bpm with skull fixation pin tightening that stopped when instrumentation stopped and recurred with	when instrumentation stopped and recurred with tightening again.
	<u>Size</u> : 1		tightening again.	

Seo KC, et al. 2010 (311) 20498810	Aim: Identify possible factors contributing to bradycardia and hypotension during shoulder surgery Study type: Retrospective Size: 63	Inclusion criteria: ASA I/II pts who received interscalene block for arthroscopic shoulder surgery in the sitting position Exclusion criteria: N/A	 <u>1° endpoint</u>: Bradycardia (<50 bpm) and/or hypotension (<100 mm Hg or use of ephedrine) <u>Results</u>: 13/63 with bradycardia and hypotension Bradycardia and hypotension more likely with: Right sided procedures (R: 27% vs. L: 5%) Higher use of fentanyl (54% vs. 0.4%) 	 Bradycardia and hypotension more common with tight sided procedures
Jeyabalan G, et al. 2010 (312) <u>20557186</u>	Aim: Identify factors associated with bradycardia during pharmacomechanical thrombectomy for deep vein thrombosis Study type: Retrospective Size: 57 pts	Inclusion criteria: Consecutive pts who underwent pharmacomechanical (AngioJet) therapy for deep vein thrombosis Exclusion criteria: N/A	 <u>1° endpoint</u>: Bradycardia <u>Safety endpoint</u>: 7/57 (12.3%) had bradyarrhythmias asystole 2 sinus bradycardia: 5 More than 1 episode: 4 Bradycardia resolved in 5/7 pts with cessation of therapy. 2 pts received atropine 	 Bradycardia observed with AngioJet procedures
Usami K, et al. 2010 (313) <u>20448432</u>	Aim: Describe 3 pts who developed bradycardia with surgery for cerebellopontine angle meningiomas Study type: Case series Size: 3	Inclusion criteria: Case series of pts with bradycardia during meningioma surgery Exclusion criteria: N/A	 <u>1° endpoint</u>: Bradycardia <u>Results:</u> Transient bradycardia/asystole and hypotension apparently due to activation of the trigeminocardiac reflex by direct stimulation of the trigeminal nerve or branches in the dura mater or cerebellar tentorium Remifentanil suggested as a possible contributor 	 Transient bradycardia/asystole and hypotension apparently due to activation of the trigeminocardiac reflex by direct stimulation of the trigeminal nerve or branches in the dura mater or cerebellar tentorium
Lubbers HT, et al. 2010 (314) <u>20347202</u>	Aim: Describe 3 pts who developed bradycardia with craniomaxillofacial surgery.Study type: Case seriesSize: 3	Inclusion criteria: Case series, N/A Exclusion criteria: N/A	 <u>1° endpoint</u>: Bradycardia <u>Results</u>: Describe 3 pts identified from a single center surgical database with bradycardia during craniomaxillofacial surgery 	Purely descriptive with no specific recommendations or findings

Christensen RE, et al. 2010 (315) <u>19933174</u>	Aim: Describe outcomes in pts with surgically corrected D transposition of the great arteries (D- TGA) undergoing noncardiac surgery Study type: Retrospective Size: 50 procedures (34 pts)	Inclusion criteria: Consecutive pts with surgically corrected D-TGA undergoing noncardiac surgery (43 pediatric and 7 adults) Exclusion criteria: N/A	 <u>1° endpoint</u>: Adverse events including bradycardia <u>Results</u>: 4 adverse events. 1 pt with severe bradycardia during abdominal insufflation 	 4 adverse events observed in pts with congenital heart disease and noncardiac surgeries.
Jacques F, et al. 2009 (316) <u>18657390</u>	Aim: Compare regional anesthesia and general anesthesia for CEA surgery Study type: Retrospective Size: 72 Regional anesthesia: 25 General anesthesia: 47	Inclusion criteria: Consecutive pts undergoing CEA from a single center Exclusion criteria: None	 <u>1° endpoint</u>: Hypotension and bradycardia (<60 bpm) <u>Results</u>: Regional anesthesia associated with less intraoperative bradycardia (4%) when compared to general anesthesia (63%) 	 Regional anesthesia associated with less intraoperative bradycardia
Hanss R, et al. 2008 (317) <u>18211442</u>	Aim: Evaluate heart rate variability as a tool to identify pts who will have hypotension or bradycardia during surgery Study type: Retrospective model followed by a prospective study Size: 100	Inclusion criteria: High perioperative risk (ASA III/IV) undergoing major vascular or abdominal surgery Exclusion criteria: Not in SR, <18 y, emergency surgery	 <u>1° endpoint</u>: Bradycardia and hypotension <u>Results</u>: No specific data on bradycardia but those pts with lower heart rate variability (stratified by a total power <500 Ms²Hz⁻¹) were more likely to develop hypotension and bradycardia 4/50 pts in the retrospective model development group had bradycardia (<50 bpm) 	 Small numbers of bradycardia (mostly hypotension)
Reddy MK, et al. 2008 (318) <u>18157036</u>	Aim: Describe a pt who developed bradycardia during surgical positioning of an unstable cervical spine	Inclusion criteria: N/A Exclusion criteria: N/A	 <u>1° endpoint</u>: Bradycardia <u>Results</u>: Bradycardia (35 bpm) and hypotension (50 mm Hg) with initial skull positioning 	 Case report of bradycardia with skull positioning

	<u>Study type</u> : Case report <u>Size</u> : 1		• Atropine and beta agonists not successful but surgical repositioning of the spine led to resolution and development of a heart rate 100 bpm	
Ardesch JJ, et al. 2007 (319) <u>17825483</u>	Aim: Describe cardiac responses with vagal nerve stimulation <u>Study type</u> : Retrospective <u>Size</u> : 111	Inclusion criteria: Pts who received a vagal nerve stimulator for treatment of epilepsy Exclusion criteria: None	<u>1° endpoint</u> : Bradycardia <u>Results</u> : 3 cases of bradycardia during intraoperative testing. Not subsequently observed on postoperative testing.	 Transient bradycardia can be observed with vagal stimulation.
Jones PM and Soderman RM, 2007 (320) <u>17223834</u>	Aim: Describe a pt on 2 cholinesterase inhibitors who developed intraoperative bradycardia <u>Study type</u> : Case report <u>Size</u> : 1	Inclusion criteria: N/A Exclusion criteria: N/A	<u>1° endpoint</u> : Bradycardia <u>Results: Bradycardia (35 bpm) with induction of anesthesia</u>	 Bradycardia (35 bpm) with induction of anesthesia
Wijeysundera DN, et al. 2014 (321) <u>25091545</u>	Aim: ERC report on perioperative BB use Study type: Meta-analysis Size: N/A	Inclusion criteria: Varied among studies Exclusion criteria: Varied among studies	<u>1° endpoint</u> : Bradycardia <u>Results</u> : Perioperative beta blockade started within 1 d or less before noncardiac surgery increases risks of intraoperative bradycardia (RR: 2.61; 95% CI: 2.18– 3.12).	 Perioperative beta blockade started within 1 d or less before noncardiac surgery increases risks of intraoperative bradycardia

Data Supplement 45. Nonrandomized Data for predicting complete heart block with pulmonary artery catheter insertion (Section 8.1.1)

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	

Morris D, et al. 1987 (322) <u>3675104</u>	Aim: Evaluate the incidence of CHB in pts with LBBB undergoing PA catheter placement Study type: Retrospective Size: 47 pts who underwent 82 PA catheter placements	Inclusion criteria: All pts with LBBB who underwent PA catheter placement Exclusion criteria: None	 <u>1° endpoint</u>: CHB <u>Results:</u> 5 episodes of CHB in the setting of old LBBB but none temporally related to PA catheter placement 2 episodes of CHB in the setting of new LBBB but none temporally related to PA catheter insertion-though occurred while the catheter was in place 	 Authors do not recommend prophylactic temporary transvenous pacing
Elliott CG, et al. 1979 (323) <u>510002</u>	Aim: Evaluate complications associated with PA catheter placement Study type: Prospective Size: 116 PA catheters	Inclusion criteria: Consecutive pts undergoing PA catheter placement Exclusion criteria: None	<u>1° endpoint</u> : Arrhythmias, ECG changes, or complications <u>Results</u> : Transient RBBB in 3% of pts	• Transient RBBB fairly rare
Unnikrishnan D, et al. 2003 (324) <u>14570803</u>	Aim: Describe complications associated with PA catheter placement Study type: Case report Size: 1	Inclusion criteria: N/A Exclusion criteria: N/A	<u>1° endpoint</u> : N/A <u>Results:</u> Complete heart block with central venous line placement in a pt with LBBB	 Transient CHB may occur with placement of central venous catheter

Data Supplement 46. Nonrandomized data for Permanent Pacing for TAVI/valve surgery

		U		
Study Acronym;	Aim of Study;	Patient Population	Study Intervention (# patients)	Endpoint Results
Author;	Study Type;		/	(Absolute Event Rates, P value; OR or RR;
Year Published	Study Size (N)		Study Comparator (# patients)	& 95% CI)
Mouillet G, et al.	Aim: Predict which pts need	Inclusion criteria: Pts	Follow for 2 nd or 3 rd degree AVB	 All pts got temp pacing x 72 h; of 90 pts,
2013 (325)	PPM after Core Valve	getting Core Valve		11 had immediate AVB and PPM; 21
<u>22972678</u>				subsequently needed PPM, mostly in
				the first wk.

	Study type: Prospective Observational study of pts getting Core Valve			 Post TAVI QRSd <128 ms predicted no PM needed
Rabinovitz, E et al. 2016 (326) <u>26936468</u>	Size: N=90 Aim: Assess need for PM Study type: Observational	Inclusion criteria: Consecutive TAVI pts	Intervention: TAVI	• 20% required PPM
PARTNER Leon MB, et al. 2010 (327) <u>20961243</u>	Size: N=302 Aim: Assess TAVI in severe AS pts	Inclusion criteria: Severe AS N=358	TAVI vs. medical Rx	• 3.4% underwent PPM after TAVI
Kogan A, et al. 2015 (328) <u>25583151</u>	Aim: Assess incidence of PPM with SAVR pre and post TAVI Study type: Retrospective	Inclusion criteria: SAVR pre and post 2008 and TAVI pts, single center	Retrospective observational study	 Results: 2.48% got PPM within 7 d, over half of these had CHB. Pre TAVI, was 3.79% and post TAVI was 1.47%. PARTNER trial: SAVR had 3.6% PPM
Rivard L, et al. 2015 (329) <u>25446155</u>	Size: N=290 Aim: Determine if EPS helps predict PM post TAVI Study type: Retrospective Size: N=75	Inclusion criteria: 75 consecutive TAVI pts with no prior PM	EPS, assess HV interval	 Delta HC >13 ms (pre-post TAVI) and new LBBB with HV >65 were predictive of PM 13 ms delta is 100% sensitivity and 84% specificity
Rene AG, et al. 2013 (330) <u>24028584</u>	Aim: Assess recovery of AV conduction after valve surgery Study type: Observational Size: N=98	Inclusion criteria: S/P valve surgery and received PPM same hospital.	Intervention: PPM	 Of the 98 with CHB, 77% became PM dependent 40% who received a PM had no evidence of high-grade AVB during PM follow-up 26% of those who recovered AV conduction in 30 d had recurrent AVB
Steyers CM, et al. 2015 (331) <u>26470027</u>	Aim: Comprehensive review of AVB post cardiac surgery Study type: Review	Inclusion criteria: AVR, MVR, CABG, CABG/valve	N/A	 PM dependency was highly variable Recovery of AV conduction highly variable

	Size: N=10 studies, 780 pts			• Optimal timing for PM (how long to wait for recovery) not established
Dawkins S, et al.	Aim: Identify incidence and	Inclusion criteria: Surgical	Intervention: PM	• 7% needed PM in AS pts
2008 (332) <u>18154792</u>	predictors of AVB after AVR	AVR		• 16% needed PM in AI pts
	Study type: Retrospective			
	observational			
	<u>Size</u> : N=354			
Viles-Gonzalez	Aim: Observe natural Hx of AVB	Inclusion criteria: 290 MVR	Retrospective observational	• Results: 2% got PPM mostly for AVB,
JF, et al. 2014	after MVR	pts	study	55% recovered conduction abnormal,
(333)				some had residual 1 st AVB; mean time to
<u>24526511</u>				recover was 3 d. Predictors include
				RBBB
Merin O, et al.	<u>Aim:</u>	Inclusion criteria: CABG,	Intervention: PM	• 81% had a CABG
2009 (334)		AVR, MVR		 Predictor for PM=LBBB
<u>19140907</u>	<u>Study type</u> :			• 1.5% got a PM
				• 1/3 recovered AV conduction at late
	<u>Size</u> : N=4,999			follow-up

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
The Birmingham Trial Watson RD, et al. 1984 (231) <u>6475712</u>	Aim: To determine whether permanent pacing reduces mortality in pts with fascicular block ≥14 d post-MI, and whether measurement of intracardiac conduction times predicts later death. Study type: RCT	Inclusion criteria: Survived at least 14 d after AMI; RBBB alone or in combination with left anterior or left posterior hemiblock or left posterior hemiblock alone Exclusion criteria: Age ≥70 y; previous ECG evidence of conduction disorder (before infarction)	Intervention: Permanent pacing Comparator: No permanent pacing Resting intracardiac conduction times were measured in both groups prior to pacing	<u>1° endpoint:</u> No difference in mortality <u>Safety endpoint (if</u> <u>relevant)</u> : N/A	 Progression of conduction disease was not observed Measurement of infranodal conduction time (HV interval) did not predict outcome Ventricular arrhythmia was an important cause of death

Page 178

	<u>Size</u> : 50 pts	Pts with left bundle branch block were not included due to the difficulty in identifying the ECG features of AMI.			
PACE Petrac, D., et al. 1996 (335) <u>8734745</u>	<u>Aim</u> : <u>Study type</u> :	Inclusion criteria: Exclusion criteria:	Intervention: His bundle recording during atrial pacing	<u>1° endpoint:</u> In pts with chronic BBB and syncope, a nonfunctional infraHisian AVB induced by	 Incremental atrial pacing identified pts at high risk of development of spontaneous infraHisian AVB
	<u>Size</u> : 192 pts.		<u>Comparator</u> : Nonfunctional infraHisian 2° AVB	incremental atrial pacing identified pts with particularly high risk of development of spontaneous infraHisian AVB. <u>Safety endpoint</u> : N/A	
The PRESS	Aim: To demonstrate	Inclusion criteria:	Intervention:	<u>1° endpoint:</u> (1) syncope,	• DDD60 led to a significant
Study Santini M, et al.	a reduction in symptomatic events	Exclusion criteria:	Permanent DDD pacing with a low rate	(2) symptomatic presyncopal	reduction of syncope or symptomatic events associated
2013 (182) 23390123	in pts with bifascicular block and syncope of		of 60 bpm	episodes associated with a device intervention	with a cardioinhibitory origin, compared with DDI30
	undetermined origin implanted with PPM.		<u>Comparator</u> : Permanent DDI pacing with a low rate of 30	(ventricular pacing), and (3) symptomatic episodes associated with	programming
	<u>Study type</u> : Randomized		bpm	intermittent or permanent AVB (any degree).	
	<u>Size</u> : 100 pts				

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
The Framingham	Aim: Assess the clinical	Inclusion criteria: LBBB and	<u>1° endpoint</u> : Development of CV	 Comparison with age- and sex-
Study	implications of LBBB	age- and sex-matched	disease	matched control subjects free from
Schneider JF, et al.		control pts who did not		LBBB suggests that newly acquired

1979 (27)	Study type: Nested case-	develop LBBB from	Results: 55/5209 people	LBBB is most often a hallmark of
154870	control in Framingham cohort	Framingham cohort	developed LBBB in 18 y of follow-	advanced hypertensive or ischemic
	5	5	up	heart disease, or both
	Size: 55 pts who developed	Exclusion criteria: N/A	48% of these develop CAD or HF	
	LBBB, 110 matched controls		for the 1 st time with or following	
	Mean age at study onset =50 y		Dx of LBBB	
	Mean age at onset of LBBB =62		Only 11% remained free of	
	У		clinically apparent CV abnormal	
			In men, the appearance of LBBB	
			contributed independently to an	
			increased risk of CV disease	
			mortality	
Fahy GJ, et al.	Aim: Determine the long-term	Inclusion criteria: BBB/age-	<u>1° endpoint</u> : Long-term	 Isolated left BBB is associated with an
1996 (31)	outcome of pts with BBB and	and sex-matched controls	"outcome" of BBB pts	increased risk of developing overt CV
<u>8651093</u>	no clinical evidence of CV			disease and increased cardiac
	disease	Exclusion criteria: Suspected	Results: BBB did not impact	mortality.
		heart disease	overall mortality	
	Study type: Nested case-		Cardiac mortality was significantly	
	control		increased in the LBBB group	
	Since 210 stawith DDD 210		compared to their controls	
	Size: 310 pts with BBB, 310 matched controls out of		LBBB, but not RBBB, was	
	110,000 participant screening		associated with an increased prevalence of CV disease at the	
	program in Ireland		•	
Talreja D, et al.	Aim: Assess ability to predict	Inclusion criteria:	follow-up (21% vs. 11%; p=0.04).	a When FCC is named, it is automaky
2000 (43)	LV dysfunction on echo, by	Consecutive inpatients	<u>1° endpoint</u> : LVER <45%	 When ECG is normal, it is extremely unlikely to have LV systolic
10689252	historic, clinical, radiographic,	referred for the	<u>Results:</u> 124 (41%) had LVEF <45%	dysfunction.
10089232	and ECG parameters	echocardiographic	Presence of LBBB, male sex, and	 It can be argued that such pts should
	and Lee parameters	assessment of LV function	CM on CXR were associated with	not be referred for
	Study type: Cross-sectional		presence of LV dysfunction	echocardiography.
			Only 2 pts with LVSD had a normal	echocardiography.
	Size: 300		ECG	
			More than 50% of the predictive	
			power of the model rested on the	
			discriminatory ability of a normal	
			ECG	

Eriksson P, et al.	Aim: Assess prevalence of BBB,	Inclusion criteria: Random	1° endpoint: Mortality and CV	• BBB correlates strongly to age and is
1998 (30)	its impact on mortality and	sampling of Swedish men	disease	common in elderly men.
<u>9832497</u>	coexisting CV conditions			 BBB is a marker of a slowly
		Exclusion criteria: N/A	Results: The prevalence of BBB	progressing degenerative disease
	Study type: Prospective cohort		increases from 1% at age 50 y to	that affects the myocardium.
			17% at age 80 y, resulting in a	BBB is not associated with increased
	<u>Size</u> : 855 men who were 50 y		cumulative incidence of 18%.	mortality
	old in 1963 followed for 30 y		BBB did not predict ischemic heart	• I could not find data broken down by
	82 developed BBB		disease or mortality	LBBB vs. RBBB; vast majority were
	22 of those were LBBB		Men who developed BBB had	RBBB*
			bigger LV volume at baseline and	
			greater incidence of DM and HF	
Mahmod M, et al.	Aim: Evaluate the diagnostic	Inclusion criteria:	<u>1° endpoint</u> : Pathologic findings	• CMR detects subclinical CMP in 1/3
2012 (277)	value of CMR in asx pts with	Asymptomatic adults with	on MR	of asx pts with LBBB and normal echo
<u>21805313</u>	LBBB	complete LBBB referred for		 CMR provides additional clinically
		cardiac MR	<u>Results:</u> 9/29 (31%) had abnormal	relevant data in over 50% of pts
	Study type: Cross-sectional		MR despite normal echo: 6 with	 CMR is valuable adjuvant diagnostic
		Exclusion criteria: Absence	DCM, 2 with LVH	tool for pt with asx LBBB
	<u>Size</u> : 54 pts	of echo	19/25 (76%) with abnormal echo	
			also had abnormal MR; in 13 of	
			them (52%) the MR provided new	
			"clinically relevant" findings: 8	
	-		DCM, 1 cardiac sarcoid	
Brignole M, et al.	Study type: Prospective	Inclusion criteria: BBB and	<u>1° endpoint</u> : Rhythm at syncope	In pts with BBB and negative EPS, most
2001 (185)	Observational	negative conventional	recurrence as assessed by ILR	syncopal recurrences result from
<u>11673344</u>		workup		prolonged asystolic pauses, mainly
	<u>Size</u> : 52 pts		Safety endpoint: N/A	attributable to paroxysmal AVB.
Moya A, et al.	Aim: To analyze the clinical	Inclusion criteria: ≥1	<u>1° endpoint</u> : Clinical Dx	 In pts with syncope, BBB, and
2011 (189)	outcomes of pts with syncope	syncope in the last 6 mo. and	(established in 267 patients	preserved LVEF, a systematic
<u>21444367</u>	and BBB following a systematic	BBB on EGG with a QRSd of	(82.7%)	diagnostic strategy (ESC guidelines)
	diagnostic approach: 3-phase:	≥120 ms	-recurrent syncope: in 15/215 (7%)	achieves a high rate of Dx (82.6%)
	clinical evaluation, EPS, ILR	Exclusion criteria: Indication	after phase 1/2; 36 of 108	with a low rate of mortality (6%),
		for prophylactic ICD due to	(33% after phase 3	allowing clinicians to institute
	Study type: Multicentered	low	-documented spontaneous	etiology-specific treatment.
	prospective observational trial	LVEF; pre-excitation; long QT	arrhythmias	• The most common cause of syncope
		syndrome; Brugada	-death due to any cause: no	was bradyarrhythmia, mostly due to
	Size: 323 patients (after	syndrome; acute MI;	difference in mortality rate	paroxysmal A-V block. Other
	exclusions)	pregnancy; life expectancy		

		<1 y due to noncardiac cause; geographically or otherwise inaccessible for follow-up; unwilling or unable to give informed consent	between pts diagnosed at Phase I or II, compared with those who had implanted ILR (6.0 vs. 6.5%) <u>Safety endpoint</u> : N/A	 etiologies of syncope were recognized in 17.6% initial clinical evaluation achieved a Dx in 25%; the most frequent Dx at EPS was a bradyarrhythmia (76%), VT or SVT was induced in 14%. The study was not designed to determine whether this diagnostic strategy was better than implanting a PM in the majority of pts
McAnulty JH, et al.	Study type: Prospective	Inclusion criteria:	1° endpoint: Major clinical events,	A higher percentage of pts with
1982 (278)	Observational	Bifascicular or trifascicular	death, heart block, need for PPM,	syncope were shown to develop CHB
<u>7088050</u>	Since 554 ato	block	syncope	(17%) vs. those w/o syncope (2%)
	Size: 554 pts 351 had EPS and 203 refused it	Exclusion criteria: Terminal non-cardiac disease;	Safety endpoint: N/A	 Heart block occurred in 4.9% of those with long HV compared to 1.9% with normal HV
		symptoms already		• A prolonged PR interval (found in
		documented as due to bradycardia prior to study		13%) was associated with and increased risk of all death, sudden
				death, major clinical events or HF,
				but not development of heart block.
				Bundle branch block occurs in 1% of
				population, and requires no special evaluation in asx pts
Kwok CS, et al.	Aim: Determine if prolonged	Inclusion criteria: Studies	1° endpoint: Mortality	 Possible association between
2016 (279)	PR interval is associated with	that evaluated clinical		prolonged PR interval and significant
<u>26879241</u>	adverse CV outcomes and mortality.	outcomes associated with prolonged and normal PR	<u>Results</u> : Increased risk of mortality with prolonged PR interval risk	increases in AF, HF and mortality.
	mortanty.	intervals	ratio (RR: 1.24; 95% CI: 1.02–1.51,	
	Study type: Systemic review +		5 studies.	
	meta-analysis	Exclusion criteria: From main	Prolonged PR interval was	
		analysis: Studies of pts with	associated with significant risk of	
	Size: 14 studies, 400,750 pts	specific cardiac pathologies	HF or LV dysfunction (RR: 1.39;	
		(such as AS, sinus nodal dysfunction and HF) or of pts	95% CI: 1.18–1.65, 3 studies) and AF (RR: 1.45; 95% CI: 1.23–1.71, 8	
		who had received	studies) but not CV mortality,	
		intervention (angiography or	coronary heart disease or MI or	
		CRT)	stroke or TIA.	

Boriani G, et al. 2003 (280)	Size: 18 pts (age 42.8±19.6 y) with genetically confirmed X-	Inclusion criteria: N/A	Results: Pacemakers were required by 10 of 18 (56%) pts for	 >50% of pts with muscular dystrophy (EDMD) require PM implant.
<u>12649505</u>	linked (N=10) or autosomal dominant (N=8) EDMD	Exclusion criteria: N/A	bradyarrhythmia	Survival after PM implant is very reasonable
Mymin D, et al. 1986 (281) <u>3762641</u>	<u>Study type</u> : Longitudinal, Observational <u>Size</u> : 3983 healthy men	Inclusion criteria: Healthy males Exclusion criteria: Females	<u>1° endpoint</u> : 1°AVB <u>Results:</u> 52 initial cases plus 124 new cases over 30 y. No difference	 Primary first-degree heart block with moderate PR prolongation is a benign condition may not apply to more marked
Huhta JC, et al.	Study type: Retrospective	107 pts with ccTGA	in all-cause mortality 23 of 107 (21%) developed	prolongation of the PR intervalPts with ccTGA are at a constant and
1983 (282) <u>6851033</u>	review		naturally occurring AVB at a rate of 2% per yr. 12 of 49 (24%) developed AVB at VSD closure.	elevated risk of developing complete AVB throughout their lives.
Connelly MS, et al. 1996 (283) <u>8609349</u>	Study type: Retrospective review	52 pts with ccTGA	9 or 52 (17.3%) developed spontaneous AVB; 9 of 52 (17.3%) developed postoperative AVB	 17% of pts developed progressive AVB unrelated to surgery
Weindling SN, et al. 1998 (284) <u>9723647</u>	Study type: Retrospective review	54 pts with postoperative heart block following congenital heart surgery	31 of 32 pts who recovered AV conduction did so by the 9 th postoperative day.	 43% did not recover conduction 97% of those who recovered conduction – did so by d 9
Meune C, et al. 2006. (285) <u>16407522</u>	Study type: Prospective observational	19 pts with lamin A mutations referred for pacing and receiving an ICD	9 pts (46%) received an appropriate shock for ventricular tachyarrhythmias	• The implantation of an ICD, rather than a PM, should be considered for these pts
van Rijsingen, IA, et al. 2012. (286) <u>22281253</u>	<u>Study type</u> : Retrospective multicentered cohort	269 pts with LMNA mutations	Malignant ventricular arrhythmias occurred (5%/y) in pts with ≥2 of: NSVT, LVEF <45% at the first clinical contact, male sex, and non- missense mutations	• Specific risk factors portend a higher risk of ventricular arrhythmia in carriers of LMNA mutations
Maury P, et al. 2013. (287) <u>24011739</u>	<u>Study type</u> : Retrospective review	325 pts	First degree AVB was independently associated with sudden death or implantable cardioverter-defibrillator appropriated therapies (OR: 2.41; 95% CI: 1.01–0.73; p=0.046)	 First degree AVB is independently linked to outcome and may be proposed to be used for individual risk stratification
O'Mahony C, et al. 2011. (288) <u>21856674</u>	Study type: Observational, longitudinal, retrospective cohort study	204 pts; 12 had device implant during follow-up for bradyarrhythmias	Independent predictors of future antibradycardia pacing were (in a multivariable Cox model): QRSd and PR interval duration	 Pacing for AV and sinus node disease is common (±8%) Pts with QRS ≥110 ms should be closely monitored for bradyarrhythmias

Polak PE, et al. 1989 (289)	Study type: Case series	2 pts	Pts with fascicular block progressed to PM-dependent	• N/A
<u>2707275</u>			complete block	
Khambatta S, et al. 2014 (290) <u>25061332</u>	Study type: Retrospective review	35 pts	PM/ICD required in 31 % (11 pts) 4 pts (11%) in the series died, but all deaths were from sudden cardiac events.	 High incidence of device implantation implant and sudden death
Ali H, et al. 2017 (291) <u>28583850</u>	Study type: Systematic Review	Case reports on CHB following blunt cardiac injury were available for 50 pts	PPM implantation was indicated in ~50% of early survivors because of recurrent or permanent CHB. BBB was present in >70% of pts A fatal outcome occurred in 20% of pts; structural damage of AV conduction system in 50% of necropsies	 CHB secondary to blunt cardiac injury is associated with 20% mortality mainly occurring in the early post-traumatic period and most of the deaths are due to arrhythmia. Recurrent or permanent CHB requiring PM implantation occurs in ~50% of survivors. A structural damage of the AV conductive system can be found in 50% of victims

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Chierichini A, et al. 2015 (292) <u>25953222</u>	Aim: Evaluate the use of irrigation fluid using norepinephrine or epinephrine in pts undergoing arthroscopy for rotator cuff surgery Study type: Prospective randomized double blind controlled study	Inclusion criteria: ASA status 1 or 2, >18 y, scheduled for rotator cuff surgery with interscalene brachial plexus block Exclusion criteria: CAD, cardiac conduction defects, BB or ACEI:	Intervention: Norepinephrine (0.66 mg/L) to the irrigation bag Comparator: Epinephrine (0.33 mg/L) to the irrigation bag	<u>1° endpoint</u> : Development of hypotension or bradycardia (<30 bpm in ≤5 min or <50 bpm <u>Safety endpoint</u> : Timing and safety of events	 Hypotension and/or bradycardia NE: 5/60 (8%) E: 15/59 (25%) Did not separate bradycardia events Timing similar (30–35 min)

<u>Size</u> : 120 pts		

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Marrocco-Trischitta MM, et al. 2016 (293) <u>27177706</u>	<u>Aim</u> : Evaluate use of temporary transvenous pacing (TTVP) for pts with trifascicular block undergoing CEA	Inclusion criteria: Database searched for pts with CEA and TTVP Exclusion criteria: None	 <u>1° endpoint</u>: 4/34 CEA surgeries with TTVP had PM activation <u>Results:</u> Adverse events were 	 Temporary transvenous pacing may be useful in pts undergoing CEA
	Study type:Study type:Retrospectivewith historical controls(other pts with vascularsurgery and TTVPSize:S1 CEAs comparedto 37 other vascularsurgery (68 total)		 Defined as follows: PM activation, occurrence Of block progression to 2nd degree AVB of Mobitz type II, or third-degree A-V block, bradycardia 40 bpm with a minimum duration 10 s and/or a hemodynamic compromise (i.e., systolic BP <90 mm Hg), asystole with a duration >5 s 4 pts with PM activation In 2 pts procedure stopped due to asystole 	
Cheung CC, et al. 2015 (294) 25541033	Aim: Evaluate prevalence of hypotension and bradycardia during elective noncardiac surgery Study type: Retrospective Size: 193 pts undergoing noncardiac elective surgery	Inclusion criteria: Post-hoc analysis of prospectively acquired data from a study evaluating withdrawal/management of a loop diuretic prior to surgery Exclusion criteria: None	 <u>1° endpoint</u>: 67 pts developed intraoperative bradycardia (< 60 bpm for 2 sequential measurements >5 min apart) <u>Results</u>: Developed a HEART score for predicting hypotension or bradycardia based on baseline heart rate and BP, Age, Drug Rx, Cardiac complications score, and complexity of surgery (OR: 2.51; 95% CI: 1.79–3.53; C-statistic: 0.75) 	 Surgical risk for hypotension and bradycardia can be assessed preoperatively

Bauer AM, et al. 2014 (295)	<u>Aim</u> :	Inclusion criteria: N/A	<u>1° endpoint</u> : N/A	Single pt with a carotid body tumor who became
24651937	Study type:	Exclusion criteria: None	Results:	asystolic during surgery
24031337	Case report	Exclusion citteria. None	Single pt with a carotid body tumor who became	asystone during surgery
	Size:		asystolic during surgery	
Fritsch G, et al. 2012	Aim: Identify factors	Inclusion criteria: 1,363	1° endpoint: 86 pts (6.3%) developed some	Did not specifically
(296)	associated with surgical	consecutive pts in a 3 mo	complication. Hypotension most common but 20	analyze pts with
22188223	complications	period scheduled for	pts (1.5%) developed hemodynamically relevant	bradycardia
22100225	complications	elective surgery	bradycardia	-
	Study type: Retrospective	elective surgery		 Age, type of surgery and medical Hx were
	analysis	Exclusion criteria: None		
	allalysis	Exclusion citteria. None		predictors for
	Size: 1,363 consecutive			complications in general
	<u>size</u> . 1,505 consecutive			
Perreira ID, et al.	Aim: Identify factors	Inclusion criteria: >18 y old	<u>1° endpoint</u> : Sinus bradycardia	• Sinus bradycardia more
2011 (297)	associated with	inclusion enteria. 210 y old	<u> - enapoint</u> . Sinds bradycardia	common with age, sex,
21920207	intraoperative	Exclusion criteria: None	Results:	anesthesia, and physical
<u></u>	bradycardia		 Sinus bradycardia more common with age 	status
	brudycarala		 18–40 y: 2.5% 	Status
	Study type: Retrospective		• 41–60 y: 4.1%	
	<u></u>		 41-60 y. 4.1% >61 y: 5.2% 	
	<u>Size</u> : 80,660 pts with		 Sinus bradycardia dependent on anesthesia 	
	neuraxial anesthesia from			
	a single center		• SSA (single puncture subarachnoid): 3.4%	
			• CSA (continuous subarachnoid): 3.5%	
			• SE (single puncture epidural): 1.3%	
			• CE (continuous epidural): 3.4%	
			• DB (double block): 1.5%	
			• Variables associated with sinus bradycardia:	
			• Age	
			Gender (0.74 for women)	
			 Physical status (ASA III/IV 2.49/1.94) 	
			Type of surgery (Emergency 1.98)	
Mitar MD, et al. 2015	Aim: Evaluate pacing	Inclusion criteria:	<u>1° endpoint</u> : (2 nd degree AVB or asystole >2 s in	 Pacemaker activated in
(298)	requirement for	Consecutive pts undergoing	the no PM group	PM group or AVB in no
<u>25746023</u>	rotational atherectomy	rotational atherectomy		PM group in pts with RCA
			<u>Results</u> : Pacemaker activated in PM group or	or Cx PCI
	Study type: Retrospective	Exclusion criteria: None	AVB in no PM group:	
			• LM: 1/19 (5%)	

	Size: 138 pts Temporary pacing in 67 No temporary pacing in 67		 LAD: 2/38 (5%) Cx: 10/25 (40%) RCA: 28/51 (55%) 	
Im SH, et al. 2008 (299) <u>18254669</u>	Aim: Evaluate utility of transcutaneous pacing with carotid angioplasty and stenting Study type: Retrospective cohort Size: 30 pts and 31	Inclusion criteria: Consecutive pts who underwent elective carotid angioplasty and stenting and placement of a transcutaneous pacing system. Exclusion criteria: None	 <u>1° endpoint</u>: Transcutaneous pacing use <u>Results</u>: 24/31 required transcutaneous pacing (77%) Continuous pacing for 10–30 min required in 5/31 pts (16%) 	 Pacing support often required with elective carotid angioplasty and stenting
Bush RL, et al. 2004 (300) <u>15181504</u>	procedures <u>Aim</u> : Evaluate incidence of bradycardia with carotid stenting procedures <u>Study type</u> : Retrospective <u>Size</u> : 48 pts who underwent 51 procedures	Inclusion criteria: Carotid artery stenting procedures in consecutive pts who were thought to be of unacceptable risk for carotid artery endarterectomy. Exclusion criteria: None	1° endpoint:Clinically significant bradycardia or hypotensionResults:• Access site hematomas in 2 pts (4%)• Significant bradycardia or asystole in 11/49 (22%) of procedures• Mean time of pacing was 6.6±1.2 min (range: 2.2–20.1 min)• No correlation between preprocedural cardiac status (History of MI or CABG) and development of bradycardia and hypotension	• Significant bradycardia or asystole in 11/49 in carotid stenting procedures
Harrop JS, et al. 2001 (301) <u>11564241</u>	Aim: Evaluate hypotension and bradycardia associated with carotid artery interventional procedures Study type: Retrospective Size: 43 pts underwent 47 carotid artery angioplasty and stenting procedures	Inclusion criteria: All pts undergoing carotid artery procedures Exclusion criteria: 10 pts excluded; no reasons given	 <u>1° endpoint</u>: Use of pacing for bradycardia and hypotension <u>Results</u>: Pacemaker activation in 23/37 procedures (73%) No correlation between PM activation and sex, etiology of stenosis, severity of stenosis, number of inflations 	• Pacemaker activation common with CEA

Gauss A, et al. 1999 (302) <u>10456813</u>	Aim: Evaluation of transcutaneous pacing in pts thought to be at risk for bradycardia (trifascicular block) Study type: Consecutive, prospective Size: 39 pts	Inclusion criteria: Consecutive pts with asx chronic 1st degree AVB and LBBB or bifascicular block. Exclusion criteria: None	 <u>1° endpoint</u>: Progression of AVB, asystole >5 s or bradycardia <40 bpm >10 s) <u>Results</u>: 37 of 39 pts could be paced transcutaneously 0/39 had progression of AVB 9 pts had bradycardia <40 bpm (6 intraoperatively and 3 postoperatively) No pts absolutely required pacing for rate support 	 No pts absolutely required pacing for rate support
Killeavey ES, et al. 1990 (303) <u>15227187</u>	Aim: Evaluate the use of transvenous pacing during PCIStudy type: RetrospectiveSize: 778 pts (398 w/o transvenous pacing and 379 with prophylactic pacing and 1 emergent pacing)	Inclusion criteria: Consecutive pts undergoing PCI Exclusion criteria: None	 <u>1° endpoint</u>: Requirement for pacing <u>Results</u>: 2 pts developed ventricular arrhythmias associated with prophylactic pacing (0.5%) 8/379 had pacing required (2%) Overall incidence for pacing for hemodynamically significant bradycardia in prophylactic situations was 7/777 (0.8%) 	 Requirement for pacing low
Chowdhury T, et al. 2015 (304) <u>26656339</u>	Aim: Propofol boluses aborted the trigeminal cardiac reflex (TCR) induced severe bradycardia during dural manipulation. <u>Study type</u> : Case report <u>Size</u> : 1 pt	Inclusion criteria: N/A Exclusion criteria: N/A	<u>1° endpoint</u> : N/A <u>Results</u> : During dural stimulation, propofol 50 mg IV terminated sinus bradycardia	 Case report discussing that during dural stimulation, propofol 50 mg IV terminated sinus bradycardia
Yong J, et al. 2015 (305) <u>26424701</u>	Aim: Evaluate development of cardiac arrest during laparoscopic surgery	Inclusion criteria: Cardiac arrest pts Exclusion criteria: N/A	 <u>1° endpoint</u>: Cardiac arrest (bradycardia) <u>Results</u>: 9/14 bradycardia 2 critical points for cardiac arrest: 	 Bradycardia common during laparoscopy

	Study type: Retrospective analysis of the Australian Incident Monitoring Study (AIMS) database Size: 14 cases from >11,000 pt database		insufflation or establishment of pneumoperitoneum (12/14; 86%) Anesthesia induction (2/14; 14%)	
Vimala S, et al. 2016 (306) <u>26114985</u>	Aim: Case report of asystole during dural manipulation Study type: Case report Size: 1 pt	Inclusion criteria: N/A Exclusion criteria: N/A	 <u>1° endpoint</u>: N/A <u>Results</u>: Bradycardia and asystole during dural manipulation and excision of a temporal lobe meningioma (near the left insula) 	• Case report of bradycardia during dural manipulation
Mohan S, et al. 1990 (307) <u>24788865</u>	Aim: Evaluate the use of transvenous pacing during PCI <u>Study type</u> : Case report <u>Size</u> : 1	Inclusion criteria: 60 y undergoing maxillectomy for squamous cell cancer Exclusion criteria: N/A	1° endpoint: N/AResults:• Asystole during posterior osteotomy• Bradycardia again during manipulation of the posterior maxillary tuberosity• Treatment by atropine and minimizing surgical manipulation	
Ishii D, et al. 1990 (308) <u>23834853</u>	Aim: Evaluate the use of cilostazol for preventing bradycardia during carotid artery stenting Study type: Retrospective Size: 53 pts who underwent 54 carotid artery stenting procedures divided into procedures where pts received cilostazol (26) and those who did not (28)	Inclusion criteria: Pts who underwent carotid artery stenting at a single institution Exclusion criteria: None	 <u>1° endpoint</u>: Bradycardia (<50 bpm or hypotension (<90 mm Hg) <u>Results</u>: Intraprocedural bradycardia: Cilostazol: 4/26 (15%) No cilostazol: 15/28 (54%) Postprocedure bradycardia Cilostazol: 0/26 No cilostazol: 3/28 (11%) 	Cilostazol reduced intraoperative bradycardia

Schipke JD, et al.	Aim: 1 pt who developed	Inclusion criteria: N/A	<u>1° endpoint</u> : N/A	Asystole with
2013 (309)	asystole during paranasal			instrumenting the
<u>23332411</u>	sinus surgery	Exclusion criteria: N/A	<u>Results</u> :	paranasal sinuses
			 15 s of asystole with instrumenting the 	
	Study type: Case report		paranasal sinuses	
	<u>Size</u> : 1			
Haldar R, et al. 2013	Aim: 1 pt who developed	Inclusion criteria: N/A	1° endpoint: N/A	Heart rate decreased
(310)	bradycardia during skull		/	with skull fixation pin
23242253	pin fixation	Exclusion criteria: N/A	Results:	tightening that stopped
		/	Heart rate decreased from 88 to 44 bpm with	when instrumentation
	Study type: Case report		skull fixation pin tightening that stopped when	stopped and recurred
			instrumentation stopped and recurred with	with tightening again.
	Size: 1		tightening again.	
Seo KC, et al. 2010	Aim: Identify possible	Inclusion criteria: ASA I/II	<u>1° endpoint</u> : Bradycardia (<50 bpm) and/or	Bradycardia and
(311)	factors contributing to	pts who received	hypotension (<100 mm Hg or use of ephedrine)	hypotension more
20498810	bradycardia and	interscalene block for		common with tight sided
	hypotension during	arthroscopic shoulder	Results:	procedures
	shoulder surgery	surgery in the sitting	• 13/63 with bradycardia and hypotension	procedures
	shoulder surgery	position	• Bradycardia and hypotension more likely with:	
	Study type: Retrospective	position	Right sided procedures (R: 27% vs. L: 5%)	
	tudy type net objective	Exclusion criteria: N/A	Higher use of fentanyl (54% vs. 0.4%)	
	Size: 63	<u>Exclusion enterior</u> (17)		
Jeyabalan G, et al.	Aim: Identify factors	Inclusion criteria:	1° endpoint: Bradycardia	Bradycardia observed
2010 (312)	associated with	Consecutive pts who	/	with AngioJet procedures
20557186	bradycardia during	underwent	Safety endpoint:	5 1
	pharmacomechanical	pharmacomechanical	• 7/57 (12.3%) had bradyarrhythmias	
	thrombectomy for deep	(AngioJet) therapy for deep	asystole 2	
	vein thrombosis	vein thrombosis	sinus bradycardia: 5	
			More than 1 episode: 4	
	Study type: Retrospective	Exclusion criteria: N/A	Bradycardia resolved in 5/7 pts with cessation	
			of therapy. 2 pts received atropine	
	<u>Size</u> : 57 pts			
Usami K, et al. 2010	Aim: Describe 3 pts who	Inclusion criteria: Case	<u>1° endpoint</u> : Bradycardia	Transient
(313)	developed bradycardia	series of pts with		bradycardia/asystole and
20448432	with surgery for	bradycardia during	Results:	hypotension apparently
	cerebellopontine angle	meningioma surgery	Transient bradycardia/asystole and	due to activation of the
	meningiomas		hypotension apparently due to activation of the	trigeminocardiac reflex

	Study type: Case series Size: 3	Exclusion criteria: N/A	 trigeminocardiac reflex by direct stimulation of the trigeminal nerve or branches in the dura mater or cerebellar tentorium Remifentanil suggested as a possible contributor 	by direct stimulation of the trigeminal nerve or branches in the dura mater or cerebellar tentorium
Lubbers HT, et al. 2010 (314) <u>20347202</u>	Aim: Describe 3 pts who developed bradycardia with craniomaxillofacial surgery. Study type: Case series Size: 3	Inclusion criteria: Case series, N/A Exclusion criteria: N/A	 <u>1° endpoint</u>: Bradycardia <u>Results</u>: Describe 3 pts identified from a single center surgical database with bradycardia during craniomaxillofacial surgery 	 Purely descriptive with no specific recommendations or findings
Christensen RE, et al. 2010 (315) <u>19933174</u>	Aim: Describe outcomes in pts with surgically corrected D transposition of the great arteries (D- TGA) undergoing noncardiac surgery Study type: Retrospective Size: 50 procedures (34 pts)	Inclusion criteria: Consecutive pts with surgically corrected D-TGA undergoing noncardiac surgery (43 pediatric and 7 adults) Exclusion criteria: N/A	 <u>1° endpoint</u>: Adverse events including bradycardia <u>Results</u>: 4 adverse events. 1 pt with severe bradycardia during abdominal insufflation 	 4 adverse events observed in pts with congenital heart disease and noncardiac surgeries.
Jacques F, et al. 2009 (316) <u>18657390</u>	Aim: Compare regional anesthesia and general anesthesia for CEA surgery Study type: Retrospective Size: 72 Regional anesthesia: 25 General anesthesia: 47	Inclusion criteria: Consecutive pts undergoing CEA from a single center Exclusion criteria: None	<u>1° endpoint</u> : Hypotension and bradycardia (<60 bpm) <u>Results</u> : Regional anesthesia associated with less intraoperative bradycardia (4%) when compared to general anesthesia (63%)	 Regional anesthesia associated with less intraoperative bradycardia

Hanss R, et al. 2008 (317) <u>18211442</u>	Aim: Evaluate heart rate variability as a tool to identify pts who will have hypotension or bradycardia during surgery Study type: Retrospective model followed by a prospective study Size: 100	Inclusion criteria: High perioperative risk (ASA III/IV) undergoing major vascular or abdominal surgery Exclusion criteria: Not in SR, <18 y, emergency surgery	 <u>1° endpoint</u>: Bradycardia and hypotension <u>Results</u>: No specific data on bradycardia but those pts with lower heart rate variability (stratified by a total power <500 Ms²Hz⁻¹) were more likely to develop hypotension and bradycardia 4/50 pts in the retrospective model development group had bradycardia (<50 bpm) 	 Small numbers of bradycardia (mostly hypotension)
Reddy MK, et al. 2008 (318) <u>18157036</u>	Aim: Describe a pt who developed bradycardia during surgical positioning of an unstable cervical spine Study type: Case report Size: 1	Inclusion criteria: N/A Exclusion criteria: N/A	 <u>1° endpoint</u>: Bradycardia <u>Results</u>: Bradycardia (35 bpm) and hypotension (50 mm Hg) with initial skull positioning Atropine and beta agonists not successful but surgical repositioning of the spine led to resolution and development of a heart rate 100 bpm 	 Case report of bradycardia with skull positioning
Ardesch JJ, et al. 2007 (319) <u>17825483</u>	Aim: Describe cardiac responses with vagal nerve stimulation Study type: Retrospective Size: 111	Inclusion criteria: Pts who received a vagal nerve stimulator for treatment of epilepsy Exclusion criteria: None	<u>1° endpoint</u> : Bradycardia <u>Results</u> : 3 cases of bradycardia during intraoperative testing. Not subsequently observed on postoperative testing.	 Transient bradycardia can be observed with vagal stimulation.
Jones PM and Soderman RM, 2007 (320) <u>17223834</u>	Aim: Describe a pt on 2 cholinesterase inhibitors who developed intraoperative bradycardia <u>Study type</u> : Case report <u>Size</u> : 1	Inclusion criteria: N/A Exclusion criteria: N/A	<u>1° endpoint</u> : Bradycardia <u>Results: Bradycardia (35 bpm) with induction of anesthesia</u>	 Bradycardia (35 bpm) with induction of anesthesia

Wijeysundera DN, et al. 2014 (321)	Aim: ERC report on perioperative BB use	Inclusion criteria: Varied among studies	1º endpoint: Bradycardia	 Perioperative beta blockade started within 1
25091545	<u>Study type</u> : Meta-analysis <u>Size</u> : N/A	Exclusion criteria: Varied among studies	<u>Results</u>: Perioperative beta blockade started within 1 d or less before noncardiac surgery increases risks of intraoperative bradycardia (RR: 2.61; 95% CI: 2.18– 3.12).	d or less before noncardiac surgery increases risks of intraoperative bradycardia

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
Morris D, et al. 1987	Aim: Evaluate the	Inclusion criteria: All pts with	<u>1° endpoint</u> : CHB	 Authors do not recommend
(322)	incidence of CHB in pts	LBBB who underwent PA		prophylactic temporary
<u>3675104</u>	with LBBB undergoing PA	catheter placement	<u>Results:</u>	transvenous pacing
	catheter placement		 5 episodes of CHB in the setting of 	
		Exclusion criteria: None	old LBBB but none temporally	
	Study type: Retrospective		related to PA catheter placement	
			 2 episodes of CHB in the setting of 	
	Size: 47 pts who		new LBBB but none temporally	
	underwent 82 PA		related to PA catheter insertion-	
	catheter placements		though occurred while the catheter	
			was in place	
Elliott CG, et al. 1979	Aim: Evaluate	Inclusion criteria:	1° endpoint: Arrhythmias, ECG	• Transient RBBB fairly rare
(323)	complications associated	Consecutive pts undergoing	changes, or complications	
510002	with PA catheter	PA catheter placement		
	placement		Results: Transient RBBB in 3% of pts	
		Exclusion criteria: None		
	Study type: Prospective			
	Size: 116 PA catheters			
Unnikrishnan D, et al.	Aim: Describe	Inclusion criteria: N/A	<u>1° endpoint</u> : N/A	 Transient CHB may occur with
2003 (324)	complications associated			placement of central venous
<u>14570803</u>	with PA catheter	Exclusion criteria: N/A	Results: Complete heart block with	catheter
	placement		central venous line placement in a pt	
			with LBBB	
	Study type: Case report			

	<u>Size</u> : 1		

Data Supplement 47. Nonrandomized Trials, Observational Studies, and/or Registries of CABG (Section 8.1.2.1)

Study Acronym; Author; Year Published' PMID	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Bougioukas I, et al. 2017 (336) <u>28122567</u>	Aim: Correlation of temporary pacing wire removal and bleeding Study type: Observational Size: 4244	Inclusion criteria: Pts undergoing cardiac surgery	Intervention: Cardiac surgery <u>Comparator</u> : Pts who underwent re-exploration unrelated to pacer removal <u>1° endpoint</u> : 0.18% bleeding after temporary pacing wire removal <u>Safety endpoint</u> : 2 pts died after removal from	 Retrospective review Not clear of decision to leave in and cut wires instead of removal
Bethea BT, et al. 2005 (337) <u>15620924</u>	Aim: Determine need for temporary pacing Study type: Observational Size: 222	Inclusion criteria: CABG Exclusion criteria: OP- CABG	tamponade Intervention: CABG <u>1° endpoint</u> : 3 risk factors related to need for pacing: DM, need for pacing at CPB separation, preop arrhythmia	 Small, retrospective Even after risk factors eliminated 2.6% still needed wires.
Puskas JD, et al. 2003 (338) <u>14721993</u>	Aim: Compare off- pump vs. on pump CABG Study type: RCT sub- analysis Size: 200	Inclusion criteria: Pts undergoing CABG Exclusion criteria: Addition of valve surgery recognized at time of operation	 <u>Intervention</u>: Temporary pacing wires only placed if needed before chest closure <u>1° endpoint</u>: Only 17% of pts need wires <u>Safety endpoint</u>: No adverse event in the non-pacing wire group 	 Not intervention randomized Small, retrospective Does not discuss any need for pacing Swann No adverse event reported from pulling wires

Caspi Y, et al.	Aim: Identify	Inclusion criteria: Pts	Intervention: CABG	Small. retrospective
1987 (339)	incidence of	undergoing CABG		 Potentially dated due to changes
<u>3493391</u>	conduction block		<u>Comparator</u> : Pts who did not have conduction block	in surgical technique
	after CABB			
			<u>1° endpoint:</u> 17% had new bundle branch block	
	Study type:		associated with preop MI, low cardiac output and	
	Observational		death	
	Size: 316			
Zeldis SM, et al.	Aim: Identify	Inclusion criteria:	Intervention: CABG	Small, retrospective
1978 (340)	frequency of new	Isolated CABG		• Potentially dated due to changes
306190	fascicular conduction		Comparator: Pts who did not have conduction block	in surgical technique
	disturbances after			
	CABG		<u>1° endpoint</u> : 20% new disturbances, 6% RBBB, 6% LAH.	
l			Pts with transient or persistent LBB or L anterior	
l	Study type:		hemiblock had increased late mortality and MI	
	Observational			
Cook DJ, et al.	Aim: Assess	Inclusion criteria:	Intervention: CABG	Small, retrospective
2005 (341)	incidence of n ew	Isolated CABG pts		
16242447	conduction defects		<u>Comparator</u> : Pts whose operations were performed in	
	over time after	Exclusion criteria: Pre-	1991 vs. 2001	
l	isolated CABG	existing conduction		
		defect, PM, peri-op AF	1° endpoint: Decline in conduction defects from 19%	
l	Study type:	, ,, ,	to 6%. Associated with year of operation, age, IABP	
l	Observational		use, number of vessels bypassed and crystalloid	
			cardioplegia	
	<u>Size</u> : 800			
Tuzcu EM, et al.	Aim: Identify	Inclusion criteria:	Intervention: CABG	Small, retrospective
1990 (342)	incidence and	Isolated elective CABG		
2387933	significance of new	ISUIDICU CICLIVE CADU	<u>Comparator</u> : Matched pts w/o conduction defects	
<u>230/333</u>	conduction defects		Comparator : Matched pts w/o conduction defects	
l	after CABG		19 and points E E% new conduction black SE% PPPP	
	arter CADO		<u>1° endpoint</u> : 5.5% new conduction block, 85% RBBB,	
l	Study type:		4% LBBB. No difference in late mortality or need for	
l	Study type:		PM with matched group	
l	Observational,			
	matched			

	<u>Size</u> : 2,000			
Ngaage DL, et al. 2007 (343) <u>17198809</u>	Aim: Influence of preop AF on outcomes after CABG Study type: observational, matched Size: 526	Inclusion criteria: Pts undergoing CABG with preop AF	Intervention: CABG Comparator: Matched pts <u>1° endpoint</u> : AF pts: higher MACE, late mortality and late PM implantation (RR: 2.1)	• Small, retrospective
Yesil M, et al. 2008 (344) <u>18855876</u>	Aim: Determine effect of revascularization on present conduction disturbances Study type: Observational Size: 53	Inclusion criteria: Pts with CAD and 3 rd degree block Exclusion criteria: Acute coronary syndrome	Intervention: Revascularization Comparator: Medical management of CAD <u>1° endpoint</u> : 81% in medical arm vs. 73% in revascularized arm still in 3 degree heart block	• Small, retrospective
Satinsky JD, et al. 1974 (345) <u>4843620</u>	Study type: Retrospective case series Size: 280 pts	Inclusion criteria: Pts undergoing cardiac surgery	 <u>1° endpoint</u>: New conduction defects after cardiac surgery <u>Results:</u> 6% of all pts had new conduction defects, 12% after valve surgery-only 0.7% of total, both valve pts required PM 	 Small, retrospective, mixed group

Data Supplement 48. Nonrandomized Trials, Observational Studies, and/or Registries of Open Surgery for Atrial Fibrillation or Valvular Surgery (Section 8.1.2.2. and 8.1.2.3)

Study Acronym; Author; Year Published' PMID	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Dawkins S, et al. 2008 (332) <u>18154792</u>	Aim: Determine incidence and predictors of PPM after AVR Study type: Observational Size: 354	Inclusion criteria: Pts undergoing AVR Exclusion criteria: Pts with preop pacer	Intervention: PM placement <u>Comparator</u> : No pacer required <u>1° endpoint</u> : 8.5% required permanent pacer. Only predictor: preop conduction system disease (RR: 2.88).	Small, retrospective
Limongelli G, et al. 2003 (346) <u>12860869</u>	Aim: Identify incidence and predictors of PPM after AVR Study type: Observational cohort Size: 276	Inclusion criteria: Pts undergoing AVR	Intervention: PPM Comparator: No PPM <u>1° endpoint</u> : 3.2% required PPM. Risk factors: preop AI, MI, PHTN, and postop electrolyte abnormalities.	 Small, retrospective Did not control for preop conduction abnormalities
Bagur R, et al. 2011 (347) <u>21828221</u>	Aim: Identify incidence and predictors of PPM after AVR in elderly Study type: Observational cohort Size: 780	Inclusion criteria: Pts ≥70 y undergoing isolated AVR Exclusion criteria: Age <70 y, preop PPM/AICD, ascending aortic replacement	Intervention: PPM <u>Comparator</u> : NO PPM <u>1° endpoint</u> : 3.2% needed PPM, predicted by preop LBB or RBB. PPM associated with longer hospital stay but no survival difference at 30d or 5 y.	Small, retrospective
Baraki H, et al. 2013 (348) <u>23300203</u>	Aim: Determine if AVN function recovers after PPM post AVR Study type: Observational cohort Size: 138/2,106	Inclusion criteria: PPM post AVR Exclusion criteria: Death	Intervention: PM interrogation <u>1° endpoint</u> : only 10% of survivors were no longer pacer-dependent	Small, retrospective

Greason KL, et al. 2017 (349) <u>28433222</u>	Aim: Determine if PPM after AVR effects survival Study type: Observational cohort Size: 5,482	Inclusion criteria: Pts undergoing AVR	Intervention: PPM within 30 d of surgery (N=146) Comparator: No PPM <u>1° endpoint</u> : PPM associated with increased mortality (HR: 1.49).	• Small, retrospective
Berdajs D, et al. 2008 (350) <u>18482844</u>	Aim: Identify cause of conduction block after MV surgery Study type: Observational cohort, autopsy Size: 391/92/55	Inclusion criteria: 2 populations: (1) those undergoing MV operations and (2) cadaver dissection	Intervention: (1) MVR +/- PPM: (2) dissection <u>1° endpoint</u> : (1) 23% AVB, 4% needed PPM. (2) 23% of cadavers had AV nodal artery running near MV annulus	 Amiodarone, sotalol, cross-clamp time risk factors for PPM; digoxin protective AV nodal artery injury possible mechanism for block Small, retrospective, dissections not on surgical pts.
Goldstein D, et al. 2016 (351) <u>26550689</u>	Aim: Compare outcomes between chordal-sparing mitral replacement and mitral repair Study type: RCT sub-analysis Size: 256	N/A	Intervention: Mitral valve repair or replacement <u>1° endpoint</u> : Readmission higher in MV repair group largely due to higher rate of PPM/AICD placement (59 vs. 38)	 Small Not designed to answer question
Saint LL, et al. 2013 (352) <u>23998785</u>	Aim: Identify incremental risk of adding a maze operation in MV surgery Study type: Observational cohort Size: 213	N/A	Intervention: MV surgery plus MazeComparator: MV surgery w/o Maze1° endpoint: No difference in mortality, no differencein PMSafety endpoint: Pts not offered a Maze had more	 Small, retrospective PPM 11% in Maze vs. 6% w/o-study likely not powered to show difference Pts not offered a Maze had more serious comorbidities

Gammie JS, et al.	Aim: Identify if AF surgery	Inclusion criteria: All pts	Intervention: MV surgery + preop AF + AF correction	 Non-randomized, no
2008 (353)	increased risk in pts	in database		propensity match,
<u>18291169</u>	undergoing mitral surgery		Comparator: MV surgery + preop AF - AF correction	probable selection bias
		Exclusion criteria: Non-		
	Study type: STS Database	mitral surgery	<u>1° endpoint</u> : Mortality same: PPM higher in Maze	
	sub-analysis		group (AOR: 1.26)	
	Size: 12,235			
Gillinov AM, et	Aim: Determine if the	Inclusion criteria: Pre-op	Intervention: MV+ AF surgery	 Not standardized AF
al.	addition of AF surgery to MV	AF + MV surgery		surgery
2015 (354)	surgery is effective		Comparator: MV – AF surgery	• No analysis of repair vs.
<u>25853744</u>	surgery is encetive			replace
23033744	Study type: RCT		1° endpoint: Lower rate of AF post maze (63% vs.	• Unclear if powered for
	<u>Study type</u> . Not			
	Size: 260		24%), Higher need for PPM (21 vs. 8 per 100 pt y)	PPM endpoint
	<u>Size</u> : 200		Cofety and sints No differences in montality	
			Safety endpoint: No difference in mortality	
Phan K, et al.	Aim: Determine efficacy of AF	Inclusion criteria: RCT	Intervention: AF surgery	 Not standardized lesion
2014 (355)	surgery			set
<u>24650881</u>		Exclusion criteria: RCT	Comparator: No AF surgery	 Subgroup analysis on
	Study type: Meta-analysis of	that did not include		cardiac surgery type not
	16 RCT	sinus restoration or AF-	<u>1° endpoint</u> : No difference in mortality, no difference	available
		free survival	in PPM, higher prevalence of SR in Maze group	 Follow-up ECG or 24 h
	<u>Size</u> : 1,082			Holter
Chikwe J, et al.	Aim: To assess long-term	Inclusion criteria: Mitral	Intervention: Tricuspid repair	Selection Bias
2015 (356)	effect of TV repair	surgery		• 99% MV repair, likely
25936265		0,	Comparator: No TV repair	avoided anterior leaflet
	Study type: Observational	Exclusion criteria: 3 V		Likely not powered for
	cohort	CAD, AV surgery	<u>1° endpoint</u> : No difference in morbidity, mortality or	difference in PPM
			PPM (2.4% vs. 1.3%)	
	Size: 645			
Scully HE, et al		Inclusion criteria: Pts	Intervention: Tricuspid replacement	• Small retrospective
	•		Comparator:	-
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		valve suigery	<u>comparator</u> .	surgical technique
	Study type: Observational		1º and noint: 22% required permanent enicardial load	
	Size: 60			
Scully HE, et al. 1995 (357) 7776666	<u>Size</u> : 645 <u>Aim</u> : Describe early and late results after tricuspid valve replacement <u>Study type</u> : Observational cohort <u>Size</u> : 60	Inclusion criteria: Pts undergoing tricuspid valve surgery	Intervention: Tricuspid replacement Comparator: <u>1° endpoint</u> : 22% required permanent epicardial lead placement	 Small, retrospective Potentially outdates surgical technique

Jokinen JJ, et al. 2009 (358) <u>19463599</u>	Aim: Need for PPM after TV surgery and implications on morbidity	Inclusion criteria: Pts undergoing tricuspid valve surgery-94% repaired	Intervention: PPM placement <u>Comparator</u> : TV surgery w/o PPM placement	 Small, retrospective Potentially outdated surgical technique
	<u>Study type</u> : Observational cohort		<u>1° endpoint</u> : 21% needed PPM, PPM pts had better 5 y survival, MORE TIA and worse CHF and QOL	
McCarthy PM, et	Size: 136 Aim: Assess durability of TV	Inclusion criteria:	Intervention: Tricuspid repair	 Small, retrospective
al. 2004 (359) <u>15001895</u>	repair	Tricuspid repair	<u>Comparator</u> : Use of Ring vs. No ring	 Potentially outdated surgical technique
	<u>Study type</u> : Observational cohort		<u>1° endpoint:</u> Freedom from TR. In pts who need PPM	
	<u>Size</u> : 790		after repair, Incidence of TR ≥3 is 42%	

Data Supplement 49. Nonrandomized Trials, Observational Studies, and/or Registries of Conduction Abnormalities After TAVR (Section 8.1.2.4)

Study Acronym; Author; Year Published' PMID	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Incidence of Conduction	on Abnormality and PPM			
Piazza N, et al. 2008 (360) <u>19463319</u>	Study type: Retrospective	Inclusion criteria: CoreValve TAVR 11/2005 3/2008	1° endpoint: Conduction abnormalities and the need for pacingResults: • LBBB: 15% pre, 55% post (p<0.001) • 18% required PPM 2 pts with RBBB required PPM (100%)	 Significant increase in LBBB Pts with RBBB may be at risk for CHB
Roten L, et al. 2010 (361) <u>21059439</u>	<u>Study type:</u> Observational <u>Size:</u> 67	Inclusion criteria: MDT or Edwards TAVI Follow-up: >30 d Exclusion criteria: Pre- existing PPM	1° endpoint: AV conduction abnormality and/or need for PPMResults: PPM in 34%, 3°HB in 22%2° HB in 6%, new LBBB in 22%, 3°HB resolved in 64%, RBBB only predictor of CHB (OR: 7.3; 2.4–22.2)	 TAVI associated with AV conduction impairment 3°HB resolves in over half pts Preexisting RBBB at risk for 3°HB

van der Boon, RM, et	Study type: Observational	Inclusion criteria: 36	<u>1° endpoint:</u> Number pacer dependent at median	Improvement in AV
al. 2013 (362)		who received new PPM	follow-up 11.5 mo (IQR 5–18)	conduction occurs in over
<u>23295037</u>	<u>Size:</u> 167 pts from	after TAVR		half of pts
	11/2005–2/2011		<u>Results</u> (number dependent):	
		Exclusion criteria:	16 of 30 (53.3%) with HDAVB	
		Existing PPM or no new	Overall 20 of 36 (55.6%)	
		PPM	, , , , , , , , , , , , , , , , , , ,	
Siontis, GC, et al.	Study type: Meta-analysis	Inclusion criteria:	1° endpoint: PPM post TAVR	Male, baseline conduction
2014 (363)		Studies reporting		disturbance, and
25011716	Size: 41 studies	incidence of PPM after	Results: Increased risk of PPM	intraprocedural AVB are
	encompassing 11,210 pts	TAVR	Men- RR: 1.23; p<0.01	predictors of PPM
			1°block- RR: 1.52; p<0.01	
		Exclusion criteria: 194	L ant hemiblock-RR: 2.89; p<0.01	
		of 235 studies	RBBB- RR: 2.89; p<0.01	
			AVB- RR: 3.49; p<0.01	
Boerlage-Van Dijk K,	Study type: Observational	Inclusion criteria:	1° endpoint: Conduction abnormalities and new	MAC and RBBB predictors
2014 (364)	<u>study type:</u> Observational	Single center TAVR	PPM	of new PPM
25040838	Size: 121	10/2007-6/2011		Prosthesis size is a
25040838	<u>5126</u> . 121	Follow-up 1, 3 and 12	Results:	
		mo	38.8% new LBBB, half of which were temporary	predictor of LBBB
		ino	New PPM in 23 pts (19%)	
		Exclusion criteria:	Predictors of new PPM: MAC (OR: 1.3, 1.05–1.56;	
		Valve in valve	• • • • • •	
		valve in valve	p=0.02), RBBB (OR: 8.8, 1.61–44.91; p=0.01)	
			At follow-up: 52% pacer dependent, 22% not	
Mantality and same DD			paced, 26% intermittent	
Mortality and new PP			40 I.	
Nazif TM, et al. 2015	Study type: Registry	Inclusion criteria: In	<u>1° endpoint:</u> New PPM	8.8% required new PPM
(365)	c : 1070	PARTNER Registry		• New PPM associated with:
<u>25616819</u>	<u>Size:</u> 1973		Results: 8% new PPM	longer LOS, more re-
		Exclusion criteria: Pre-	Predictors: RBBB (OR: 7.03, 4.92–10.06;	hospitalization
		procedure PPM	p<0.0001), prosthesis/outflow tract diameter	 New PPM not associated
			ratio (OR: 1.29, 1.10–1.51; p=0.002),	with increased mortality or
			New PPM not associated with increased 1 y	decreased EF at 1 y
			mortality.	
			EF at 1 y same in PPM vs. no PPM	
FRANCE 2	Study type: Registry	Inclusion criteria: 29	<u>1° endpoint:</u>	All-cause mortality same in
Mouillet G, et al.		centers in FRANCE 2	Incidence of new PPM or	PPM vs. no PPM at mean
2015 (366)	<u>Size:</u> 833	registry	Mortality at 242±179 d	follow-up of 8 mo

25573445	1/2010-10/2011			
		Exclusion criteria: Pre-	Results:	
		existing PPM	30% rate of new PPM	
			Mortality PPM vs.no PPM: 16.3 vs. 16.9; p=0.83	
Impact of Mitral Annu	lar Calcification (MAC)			•
Abramowitz Y, et al.	Study type: Observational	Inclusion criteria: 3 y	<u>1° endpoint:</u> 30 d mortality ± MAC	Severe MAC is associated
2017 (367)		series of TAVR at		with increased all-cause
<u>28039339</u>	<u>Size:</u>	Cedars-Sinai	Results: Severe MAC is a predictor of:	and cardiac mortality and
	761 pts:		overall mortality HR: 1.95 (1.24–3.07; p=0.004)	with conduction
	49.3% MAC	Exclusion criteria: N/A	Cardiovascular mortality HR: 2.35 (1.99–4.66;	abnormalities after TAVR
	Mild MAC 30.4%		p=0.01)	 Mild and moderate MAC
	Mod MAC 9.5%		New PPM HR: 2.83 (1.08–7.47; p=0.03)	are not predictors of
	Severe MAC 9.5%			adverse outcomes
Predictors and impact	t of new LBBB after TAVR			
Franzoni I, et al.	Study type: Observational	Inclusion criteria: TAVR	<u>1° endpoint:</u> New LBBB	LBBB was NOT a predictor
2013 (368)				of: PPM, overall mort,
<u>23726173</u>	<u>Size:</u> 238 (2007–2011) San	Exclusion criteria:	Results:	cardiac mort, at 1 y
	Raffaele, Milan	Previous: PPM, RBBB,	New LBBB in 26.5% (ESV 13.5%, MCVS 50%)	
	MCRS N=87	LBBB	Persistent LBBB at discharge= 17.2%	
	ESV N=151		New PPM=12.7% (2° CHB, bradycardia)	
Urena M, et al. 2012	Study type: Observational	Inclusion criteria: TAVR	<u>1° endpoint</u> New onset LBBB	• Pts with new LBBB at
(369)				discharge are at 20% risk of
<u>23040577</u>	Size: 202, median follow-	Exclusion criteria: No	<u>Results:</u> 30.2% new LBBB	receiving a new PPM but
	up 12 mo	baseline conduction	LBBB resolved in 37.7% at discharge	do not have increased all-
		disturbances	LBBB resolved in 57.3% at 6–12 mo	cause or cardiac mortality
			LBBB at discharge associated with:	 LBBB persistent at
			Higher rate of syncope (16.0% vs. 0.7%; p=0.001)	discharge is associated with
			CHB needing PPI (20 vs. 0.7%; p<0.001	increased syncope, CHB
			no increase in global or cardiac mortality	
Testa L, et al. 2013	Study type: Observational	Inclusion criteria:	<u>1° endpoint:</u> New LBBB	 new LBBB post TAVR not
(370)		CoreValve TAVR		associated with higher all-
<u>23443735</u>	<u>Size</u> : 818 10/2007 to		<u>Results:</u> 27.4% new LBBB	cause or cardiac mortality
	4/2011	Exclusion criteria:	At 30 d and 1 y, LBBB not associated with higher	 New LBBB at discharge is
		Baseline PPM or LBBB	all-cause or cardiac mortality	associated with a higher
		Received new PPM <48	At 30 d LBBB had higher rate of PPI (4.9% vs. 2%;	rate of PPI at 30 d
		h postop	p=0.02)	
Egger F, et al. 2014	Study type: Single center	Inclusion criteria: TAVR	<u>1° endpoint:</u> Development of high degree AVB	 In pts with LBBB after
(371)	prospective			TAVR, intensified

<u>25034184</u>	<u>Size:</u> 50	10 with pre-existing LBBB and 7 with new LBBB received new DDD PMI	<u>Results:</u> 10 of 17 with LBBB developed episode of high degree AVB. In 5/17 (29.4%) the first episode of high degree AVB occurred after discharge (mean follow-up 578 d)	monitoring may be reasonable
Schymik G, et al. 2015 (372) <u>25388650</u>	<u>Study type:</u> Observational 10/2008–4/2012 <u>Size:</u> 197	Inclusion criteria: New onset LBBB after TAVR Exclusion criteria: N/A	<u>1° endpoint:</u> Mortality <u>Results:</u> 31% new LBBB New LBBB independent predictor of all-cause mortality at 1 y (HR: 1.84; 1.35–2.02) At 1-y survival with PPM not different than survival w/o PPM (81.2% vs. 85.0%; p=0.377)	 New onset LBBB is a predictor of increased 1 y all-cause mortality, but mortality is not altered by PPI
Regueiro A, et al. 2016 (373) <u>27169577</u>	Study type: Meta-analysis Size: 17 studies 4,756 pts w/new LBBB 7,032 pts w/new LBBB&PPI	Inclusion criteria: New LBBB post TAVR <u>Exclusion criteria:</u> N/A	<u>1° endpoint:</u> PPI or mortality at 1 y <u>Results:</u> New onset LBBB associated with: PPI (RR: 2.18, 1.28–3.70) Cardiac death (RR: 1.39, 1.04–1.86) No increase in all-cause mort (RR: 1.21, 0.98–1.50) Peri-procedural PPI post TAVR -> NO protective effect on cardiac death (RR: 0.78, 0.6–1.03)	 New onset LBBB post TAVR is associated with increased cardiac death and need for PPI at 1 y Peri-procedural PPI post TAVR did not decrease the risk of cardiac death at 1 y.
RBBB as predictor of	PPI post TAVR			
Mauri V, et al. 2016 (374) <u>27832845</u>	Study type: Observational Size: 229 8/2013–1/2016	Inclusion criteria: TAVR with Edwards SAPIEN 3 Exclusion criteria: N/A	<u>1° endpoint:</u> PPI <u>Results:</u> Among other preprocedure nonconduction factors, RBBB is an independent predictor of 30 d PPI	 Confusing and self- contradictory paper. Abstract says that RBBB is a predictor of PPI Body of the paper just says that prior conduction abnormalities are predictive.
OCEAN-TAVI Wantanabe, Y, et al. 2016 (375) 27832846	<u>Study type:</u> Registry <u>Size:</u> 749, 102 with RBBB 10/2013–8/2015	Inclusion criteria: TAVR at 8 Japanese centers Exclusion criteria: N/A	 <u>1° endpoint:</u> Incidence of PPI and death with pre- existent RBBB <u>Results:</u> New PPI higher in RBBB (17.6% vs. 2.9%; p<.01) Early survival RBBB vs. no RBBB (96% vs. 98.6; p=0.09) Overall survival at 24mo lower in RBBB, log rank p=0.03 	 Pts with RBBB with and w/o PPM at higher risk of cardiac death early after discharge Pts with RBBB should be carefully monitored

			 Cardiac survival lower in RBBB, log rank p<.01 RBBB is a predictor of cardiac death: HR: 2.59 (1.15–5.86; p=0.021) 	
Nazif TM, et al. 2015 (365) <u>25616819</u>	Study type: Analysis of PARTNER Trial and Registry post hoc Size: 2559	Inclusion criteria: TAVR Exclusion criteria: N/A	1° endpoint: Requiring ppm <u>Results:</u> New PPM RBBB vs. no RBBB: 47.6% vs. 12.8%; p<0.001	 Pre-existing RBBB is a predictor of PPI after TAVR
Auffret V, et al 2017 (376) <u>28734885</u>	Study type: Multicenter Size: 3,527 pts, 362 with preexisting RBBB	Inclusion criteria: TAVR	<u>1° endpoint:</u> Complications and death <u>Results:</u> Preexisting RBBB associated with increased all-cause mortality (HR: 1.31) and CV mortality (HR: 1.45). Baseline RBBB associated with a higher 30-d rate of PPM implant (40% vs. 13.5%; p<0.001)	 Preexisting RBBB associated with poorer outcomes in pts undergoing TAVR
Rampat R, et al. 2017 (377) <u>28641846</u>	<u>Study type</u> : Retrospective multicenter <u>Size:</u> 228 pts	Inclusion criteria: LOTUS TAVR	<u>1° endpoint</u> : PPM <u>Results:</u> PPM in 64 pts for AVB or LBBB and first degree AVB. Preprocedural conduction abnormality associated with higher likelihood for PPM	 Pts with preprocedural conduction disturbance and noncalcified AV more likely to require PPM after LOTUS TAVR
Predictors of readmiss	sion post TAVR			
Nombela-Franco L, et al. 2015 (378) <u>26476610</u>	Study type: Observational Size: 720 consecutive pts at 2 centers, follow-up 23 mo	Inclusion criteria: TAVR Exclusion criteria: N/A	<u>1° endpoint:</u> Early readmission <30 d Late readmission 30–365 d <u>Results:</u> 4.9% readmitted Average 1.6 readmits /pt Noncardiac 59% vs. cardiac 41% BBB not a predictor of readmission but AF was (p=0.012)	• Although rhythm disturbances cause 21.2% of readmissions, BBB is not a predictor.
Predictors of Late Dea	th after TAVR			
Urena, M, et al. 2015 (379) <u>25660921</u>	Study type: Observational Size: 3726	Inclusion criteria: TAVR at 18 centers Exclusion criteria: N/A	<u>1° endpoint</u> : Death from HF and SCD post TAVR mean follow-up 22 mo <u>Results</u> :	 New onset persistent LBBB is a predictor of SCD post TAVR PPI in LBBB is not
				PPI In LBBB Is not protective against SCD

			4% died of HF (15% of total deaths, 46.1% cardiac deaths) 15% died of SCD (5.6% of all deaths, 16.9% of cardiac) Predictors of SCD: new LBBB HR: 2.26 (1.23–4.14; p=0.009) new LBBB and QRS >160 ms HR: 4.78 (1.56–14.63; p=0.006) NO difference in SCD between LBBB w/o ppm (N=471) and LBBB with PPI (N=92): HR: 3.13 (0.38–25.63; p=0.287)	
Dizon JM, et al. 2015 (380)	Study type: Series of pts in PARTNER Trial and	Inclusion criteria: Trial and registry, 1-y follow-	<u>1° endpoint:</u> 1 y mortality and re-hospitalization	 LBBB/no ppm was not compared to LBBB/new
26261157	Registry- post hoc analysis	up	<u>Results</u>	ppm
			Prior PPM (p=0.001), new PPM (p=0.05) and	LBBB associated with worse
	<u>Size:</u>	Exclusion criteria: N/A	LBBB/no ppm (p=0.02) all had higher mort than	outcomes but not an
	Prior ppm:586		no PPM	independent predictor of
	New ppm:173		LBBB not a predictor of mortality	mort
	No ppm: 1612		new ppm HR: 1.38(1.0–1.89; p=0.05) and prior	 Any PPM: higher 1 y
	LBBB& no ppm: 160		ppm HR: 1.31 (1.08–1.6; p=0.006) predict 1 y mort	mortality

Data Supplement 50. Nonrandomized Trials, Observational Studies, and/or Registries of Pacing after Heart Transplant (Section 8.1.2.5.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Mallidi HR, et al. 2017 (381) <u>28331443</u>	Study type: Retrospective single center study Size: 1,450 transplants	Inclusion criteria: Heart transplant at Stanford Exclusion criteria: None	 <u>1° endpoint</u>: Pacemaker implant <u>Results:</u> 84/1,450 pts (5.8%) had a PPM placed Of these 55 (65%) had the PPM placed within 30 d Early PPM implant with shorter survival compared to late PPM (6.4 y vs. 7.7 y) Incidence of PPM was 2% for bicaval and 9.1% for biatrial transplant More rejection episodes with PPM 	 Decreased PPM need with bicaval transplant PPM more likely with older donor grafts
Wellmann P, et al. 2017 (382) <u>28101990</u>	Study type: Retrospective single center study Size: 1,179 transplants	Inclusion criteria: Transplant Exclusion criteria: None	 <u>1° endpoint</u>: PPM <u>Results:</u> 135/1,179 pts (11.5%) required a PPM PPM more likely with prolonged operation and biatrial transplant (9.4% vs. 4.4%) Approximately 85% with SND and 15% with AVB No survival differences 	 PPM mainly for SND Requirement for PPM has decreased with bicaval transplant
Lee W, et al. 2016 (383) 26847073	Study type: Retrospective single center Size: 33 (2 pacing dependent)	Inclusion criteria: Requirement for pacing after transplant Exclusion criteria: None	1° endpoint: Clinical HF or LVEF <35%	 AVB with high RV pacing burden associated with HF Numbers small
El-Assaad I, et al. 2015 (384) <u>25956965</u>	Study type: Retrospective UNOS database Size: 6,156	Inclusion criteria: Transplant UNOS <18 y old Exclusion criteria: None	1° endpoint:Acute PPM placement <u>Results:</u> 69/6,156 pts required a PPMacutelyPPM use decreased over time	 PPM recipients with higher risk of infection and dialysis but similar survival

			PPM more likely with a biatrial anastomosis, higher donor age PPM pts more likely to have post- transplant infection (48% vs. 26%)	
Knight CS, et al. 2010 (385) <u>19144548</u>	Study type: Case series Size: 6 (2 with autopsy)	Inclusion criteria: Pts identified from a transplant database with syncope due to bradycardia Exclusion criteria: None	<u>1° endpoint</u> : Pathologic evaluation <u>Results:</u> Autopsy revealed preferential severe rejection in the cardiac conduction system	 Rejection can preferentially affect the conduction system
Braith RW, et al. 2000 (386) <u>11144044</u>	Study type: Prospective treadmill testing Size: 8 pts with PPM	Inclusion criteria: Transplant with PPM Exclusion criteria: None	<u>1° endpoint</u> : Treadmill performance <u>Results:</u> Chronotropic support improves treadmill times (14.6 min vs. 12.4 min) and peak VO ₂ (18.9 vs. 15.4 mL/kg/min)	• Rate adaption helpful
Bacal F, et al. 2000 (387) <u>10904516</u>	Study type: Single center retrospective <u>Size</u> : 114 pts	Inclusion criteria: Transplant Exclusion criteria: None	 <u>1° endpoint</u>: Temporary or permanent pacing <u>Results:</u> 14/114 (12%) required temporary pacing mainly for SND (78.5%), 4 pts required PPM, 3 for SND Rejection with AF 	 SND main reason for PPM or temporary pacing after transplant
Nagele H, et al. 1998 1998 (388) <u>9773864</u>	Study type: Single center retrospective Size: 112 pts	Inclusion criteria: Transplant and placement of epicardial biatrial pacing Exclusion criteria: None	 <u>1° endpoint</u>: NYHA class, hemodynamic parameters <u>Results:</u> Modest improvement with biatrial pacing 	 Biatrial pacing may be beneficial
Jones DG, et al. 2011 (389) <u>21783383</u>	<u>Study type</u> : Single center retrospective <u>Size</u> : 48 pts	Inclusion criteria: PPM after transplant Exclusion criteria: None	<u>1° endpoint</u> : Prognosis <u>Results:</u> 48/309 pts required PPM after transplant (12.3%) 30 with PPM during hospitalization and 18 with late PPM (3 y after transplant) SND more common early and AVB later.	 Late pacing not associated with rejection

			Late pacing not associated with rejection	
(390)	tudy type : UNOS ize: 35,998 pts	Inclusion criteria: Transplant and PPM Exclusion criteria: None	 <u>1° endpoint</u>: Outcomes <u>Results:</u> 3,940/35,987 (10.9%) required PPM PPM recipients with improved survival (8 y vs.5.2 y) Bicaval implant with less PPM (OR: 0.33; 95% CI: 0.29–0.36) PPM associated with increasing donor age (OR: 1.04; 95% CI: 1.00–1.09; p<0.001) and recipient age (OR: 1.09; 95% CI: 1.0–1.12; p<0.001) Transplant CAD (OR: 2.12; 95% CI: 0.92–2.33; p=0.409), donor heart ischemic time (OR: 1.03; 95% CI: 0.97–1.04; p=0.880), and graft rejection requiring treatment (OR: 0.95; 95% CI: 0.84–1.07, P.367) were not associated with PPM requirement. 	 PPM less common with bicaval PPM not associated with rejection

Data Supplement 51. Nonrandomized Studies for Alcohol Septal Ablation/Septal Myectomy (Section 8.1.2.5.2)

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	

Liebregts M, et al. 2017 (391) <u>28595881</u>	Aim: Evaluate use of ASA particularly in younger pts Study type: Retrospective analysis of 3 registries Size: 1,197 pts who underwent ASA	Inclusion criteria: International multicenter study of pts who underwent ASA (National registries of Germany, Netherlands, Denmark) Exclusion criteria: None	1° endpoint: All-cause mortality Adverse arrhythmic event (VT, VF, appropriate ICD shocks) 2° endpoint: Periprocedural AVB (<30 d) PPM Results • Mean follow-up 5.4 y • Complete Heart block ○ <50: 119/369 (32%) ○ 51-64: 161/423 (39%)	 Heart block more common in older pts Authors conclude ASA safe in younger pts Do not discuss PPM use 30 d after the procedure Note that outcomes are better with lower dose alcohol use
Poon SS, et al.	Aim: Evaluate outcomes	Inclusion criteria: Systematic	 ○ 5164: 161/423 (39%) ○ >65: 169/405 (42%) ● PPM ○ <50: 29/369 (8%) ○ 5164: 53/423 (13%) ○ >65: 65/405 (16%) ● ICD (rate support?) ○ <50: 21/369 (6%) ○ 5164: 18/423 (4%) ○ >65: 11/405 (3%) 1° endpoint: Multiple depending on study 	Authors conclude both
2000 SS, et al. 2017 (392) <u>28329292</u>	Aim: Evaluate outcomes between ASA and myectomy Study type: Systematic search Size: 15 articles-14 observational and 1 meta- analysis	Inclusion criteria: Systematic search-keywords: Cardiomyopathy and myectomy and ablation 218 studies Exclusion criteria: 15 studies chosen as best nonoverlapping studies	<u>1° endpoint</u> : Multiple depending on study <u>Results</u> PPM implant: • ASA: 1.7–22% • Myectomy: 2.4%–12.5%	 Authors conclude both procedures reduce LVOT gradient
Axelsson A, et al. 2014 (393) <u>24662414</u>	Aim: Evaluate AV conduction over time after ASA Study type:	Inclusion criteria: Pts who underwent ASA Exclusion criteria: Baseline CIED	<u>1° endpoint</u> : Pacing and AV conduction over time <u>Results</u> :	 Late PPM in 3 pts at variable times after ASA About 40% of pts who need PPM will have recurrent 1:1 AV

	Single center retrospective study <u>Size</u> : 87 pts		 24/87 (28%) pts had PPM paced after ASA 10 lost to follow-up 6/14 remaining pts had recovery of AV conduction at follow-up 6.2 y (2.1–9.4 y) Pts with persistent AVB after ASA had longer PR intervals at baseline Permanent AV conduction abnormalities in pts with baseline 1st degree AVB and persistent CHB 3 pts who initially did not need a PPM later had a PPM implanted (8 mo, 9 y, and 9 y after the index ASA) 	conduction at extended follow- up
Veselka J, et al. 2014 (394) <u>24360153</u>	Aim: Evaluate outcomes in pts with PPM for AVB after ASA Study type: Retrospective analysis Size: 167 pts	Inclusion criteria: 167 consecutive pts with HCM who underwent ASA for LVOT gradients Exclusion criteria: Baseline CIED	1° endpoint: 17 pts (10%) required PPM placed 3–15 d after ASA Results: • At follow-up 11/17 (65%) had recovery of AV conduction at 6 mo. • In the nonpaced group 3/150 pts (2%) had PPM placed • Similar outcomes between the paced and nonpaced groups	 Recovery of AV conduction was high at 6 mo. Pacemakers placed if conduction block >24 h In the nonpaced group 3/150 pts (2%) had PPM placed 12–53 mo after ASA Pacing vs. nonpacing does not change clinical outcomes
El-Jack SS, et al. 2007 (395) <u>17300408</u>	Aim: Evaluate ECG changes after ASA Study type: Retrospective Size: 50 pts who underwent ASA	Inclusion criteria: 50 pts who underwent ASA Exclusion criteria: N/A	 <u>1° endpoint</u>: ECG changes <u>Results</u>: ECG changes New RBBB (57%) Transient CHB with recovery <24 h: 10 pts (20%) Persistent CHB (>24 h) requiring PPM: 9 pts (18%) PPM more likely with baseline LBBB 	 PPM placed if CHB >24 h PPM more likely with baseline LBBB 7/9 were still PPM dependent at 14 d New RBBB common (57%)
McCann, GP et al. 2007 (396) <u>17293204</u>	Aim: Evaluate scarring after ASA Study type: Retrospective	Inclusion criteria: Consecutive pts undergoing ASA Exclusion criteria: None	 <u>1° endpoint</u>: ECG changes <u>Results</u>: ECG after ASA 2 with persistent RBBB 	 New RBBB suggestive of more extensive septal infarct At 6-mo follow-up no new PPM

	myectomy		• RBBB: 2/93 pts (2%)	
	Size: 93 pts underwent		• CHB requiring PPM: 3/93 (3%)	
	stady type. Netrospective		 ECG changes New LBBB: 44/93 (40%) 	
<u>22761504</u>	Study type: Retrospective	Exclusion criteria: N/A	Results: • ECG changes	
2013 (399)	myectomy	pts undergoing myectomy		follow-up only to 1 y.
Wang S, et al.	Aim: Evaluate pts after	Inclusion criteria: Consecutive	1° endpoint: ECG changes	 No late PPM identified-though
			• CHB requiring PPM: 4/117 pts (3%)	
	who underwent myectomy		• New LBBB: 47/117 (40%)	
	underwent ASA; 117 pts		Myectomy	
	<u>Size</u> : 58 pts who		these pts with baseline LBBB	
			 CHB requiring PPM: 6/58 (12%); 3 of 	
	Study type: Retrospective	Liciusion criteria. None	 ASA: RBBB: 21/58 (36%) 	• No specific protocol listed off when PPM implanted
<u>15607394</u>	on conduction tissue	Exclusion criteria: None	Results: • ASA:	whether CHB will develop.No specific protocol listed on
2004 (398)	septal reduction therapies	ASA for HCM	Describer	abnormalities to predict
Talreja DR, et al.	Aim: Evaluate effect of	Inclusion criteria: Myectomy or	<u>1° endpoint</u> : ECG changes	Can use baseline conduction
			No late development of AVB	
			had PPM placed	
			• AV conduction returned in 4/11 pts who	PPM should be implanted
	<u>Size</u> : 155 pts		LBBB	 Pt assessed at 48 h for whether
			 4/11 pt who required PPM had baseline 	and LVOT characteristics
	cohort	Exclusion criteria: N/A	 Permanent pacing in 11/155 pts (7%) 	recovery but also baseline ECG
1/00//08	Study type: Retrospective		Results: • Transient AVB: 71/155 pts (46%)	PPM rather than a prescribed time. Point score used AVB
2007 (397) 17067708	conduction abnormalities	Consecutive pts who underwent ASA	Posulta	identifying whether to put in a
Faber L, et al.	Aim: Evaluate post ASA AV	Inclusion criteria: 155	<u>1° endpoint</u> : ECG changes	Used a point score for
<u></u>			new RBBB pt)	
			 No change in status at 6 mo (1 PPM in 	
			larger scar by MRI	
			• New RBBB associated with >CPK and	
			• 1 LBBB	
	mo, 6 mo		• 9 normal	
	mo. 25 pts with baseline, 1		PPM)	
	Size: 27 pts evaluated with MRI at baseline and at 1		 30 with normal QRS 17 with new RBBB (1/17 required) 	

			 During follow-up (10.7 mo), no progression of AV conduction abnormalities or PPM 	
Agarwal S, et al. 2013 (400) <u>20170823</u>	<u>Aim</u> : Meta-analysis of myectomy vs. ASA <u>Study type</u> : Meta-analysis <u>Size</u> : 12 studies	Inclusion criteria: All observational studies that compared ASA with myectomy Exclusion criteria: 288 abstracts, 177 excluded for lack of a control/comparison group, 39 excluded because case report/case series	 <u>1° endpoint</u>: 30 d all-cause mortality <u>Results</u>: No significant difference in mortality (long-term or short-term), postintervention functional class, postintervention ventricular arrhythmias ASA associated with increased risk for new RBBB (OR: 56.3; 95% Cl: 11.6–273.9) ASA associated with increased risk for PPM (OR: 2.6; 95% Cl: 1.7–3.9) 	 No significant difference in mortality (long-term or short- term), postintervention functional class, postintervention ventricular arrhythmias ASA associated with increased risk for new RBBB and PPM
Schuller JL, et al. 2015 (401) <u>25689552</u>	Aim: Evaluate predictors of late CHB after ASA Study type: Retrospective Size: 145 pts followed for 3.2±2.3 y	Inclusion criteria: 145 pts who underwent ASA Exclusion criteria: N/A	 <u>1° endpoint</u>: Late CHB (First identified >48 h after ASA) <u>Safety endpoint</u>: Late CHB in 15/168 pts (8.9%) Late CHB more likely: Multiple ASA procedures (OR: 4.14; 95% CI:1.24–13.9) High resting or provocable LVOT (OR for each 10 mm Hg: 1.14; 95% CI:1.00–1.20) High provocable LVOT gradient after Multivariate analysis 3 unexplained deaths: new RBBB, found dead 5 mo after 2nd ASA, new LBBB, found dead 3 d after discharge, no change in QRS, found dead after 5 mo 	 Late CHB can be seen in almost 10% of pts Authors suggest post discharge ECG surveillance

Veselka J, et al. 2013 (402) <u>23927866</u>	Aim: Evaluate predictors of complications after ASA	Inclusion criteria: 421 pts who underwent ASA	1° endpoint: CHB >10 s Early <24 h, late >24 h	• Authors suggest close post procedural monitoring and 5 d hospitalizations after ASA
	Study type: Retrospective	Exclusion criteria: If outside	<u>Results</u> :	
	multicenter	2003–5 (to include only "low	• Transient CHB in 70/421 pts (17%),	
		dose" era)	 Intraprocedural: 51 (12%) 	
	Size: 421 pts from 8		 Transient: 33 (8%) 	
	European Centers		• Late: 12 (3%)	
			• Recurrent: 9 (2%)	
			• 97% CHB up to 5 th d after ASA	
			PPM in 35% of pts	
			 6 pts required resuscitation, one 10 d 	
			after ASA	
Kim LK, et al.	Aim: Evaluate effect of	Inclusion criteria: All pts who	<u>1° endpoint</u> : Mortality, PPM, bleeding	 PPM common in both
2016 (403)	hospital volume on	underwent septal reduction		myectomy and ASA at discharge
<u>27438114</u>	complications after ASA or	procedures	<u>Results</u> :	No data on post discharge
	myectomy		PPM: myectomy	outcomes after myectomy and
	Charles to an a Data and a still	Exclusion criteria: N/A	• Total: 9.8%	ASA.
	Study type: Retrospective evaluation of the		• First tertile: 10%	
	Nationwide Inpatient		• Second tertile: 13.8%	
	Sample from 2003 to 2011		• Third tertile: 8.9%	
			PPM: ASA	
	Size: 11,248 patients		• Total: 11.9 %	
	underwent septal		• First tertile: 14.2 %	
	reduction procedures		• Second tertile: 12.4 %	
	•		• Third tertile: 11.5 %	
Liebregts M, et	Aim: Evaluate ASA or	Inclusion criteria: Studies of	<u>1° endpoint</u> : Mortality, PPM, SCD	 ASA with similar mortality
al. 2015 (404)	myectomy	myectomy of ASA		compared to septal myectomy
<u>26454847</u>			Results:	but with higher PPM rate and
	Study type: Systematic	Exclusion criteria: N/A	• PPM:	higher likelihood of repeat
	review		• ASA: 10 %	procedures
	Size: 16 myostomy schorts		• Myectomy: 4.4%	
	Size: 16 myectomy cohorts and 15 ASA cohorts			

Balt JC, et al. 2015 (405) <u>25073885</u>	Aim: Evaluate use of continuous ECG monitoring after ASA Study type: Retrospective Size: 44 pts	Inclusion criteria: Pts undergoing ASA with PPM or ILR Exclusion criteria: N/A	 <u>1° endpoint</u>: VT/VF or other events recorded on the ILR <u>Results</u>: Pts with VT/VF often had associated CHB (during hospitalization) No late AVB identified 	• ILR did not identify any arrhythmias with 3 y monitoring after ASA
Qin JX, et al. 2004 (406) <u>14715342</u>	Aim: Evaluate conduction tissue after ASA or myectomy Study type: Retrospective Size: 70 pts ASA; 134 myectomy	Inclusion criteria: Pts undergoing ASA or myectomy Exclusion criteria: N/A	 No fate AVB identified <u>1° endpoint</u>: ECG <u>Results</u>: 146 pts with normal QRS preprocedure had prolongation of the QRS (72%) RBBB in 62% of pts after ASA LBBB in 93 % of pts after myectomy 174 pts w/o a preexisting CIED ASA: 22% required PPM Myectomy: 10% 	 In pts with preexisting BBB, PPM more likely-approximately 60% (7/12) Although PPM in 25 pts in the entire cohort-33% PPM dependent at follow-up
Chang SM, et al. 2003 (407) <u>12875767</u>	Aim: Evaluate conduction tissue after ASA Study type: Retrospective Size: 261 pts ASA, 224 w/o a CIED	Inclusion criteria: Pts undergoing ASA Exclusion criteria: N/A	1° endpoint: ECG/PPMResults:Independent predictors for CHB:Women (OR: 4.33)Bolus injection (OR: 51)>1septal (OR: 4.6)Baseline LBBB (OR: 39)Baseline 1st degree AVB (OR: 14)Describe 1 pt who developed AVB 5 d after DC31/224 (14%) required new PPM:At 2-y follow-up 25/31 PPM dependent	• Similar hemodynamic benefit regardless of whether a PPM required or not
Chen AA, et al. 2006 (408) <u>16442376</u>	Aim: Evaluate conduction tissue after ASA Study type: Retrospective	Inclusion criteria: Pts undergoing ASA Exclusion criteria: N/A	 <u>1° endpoint</u>: ECG/PPM <u>Results</u>: Acute CHB in 62% of pts; all normalized within 24 h 	 Authors conclude temporary pacing for 48 h ASA or after resolution of CHB Authors conclude that pts w/o acute CHB or new IVCD are at low risk for subacute CHB

	Size: 52 pts ASA, 224 w/o a CIED		• Recurrent CHB in 13 pts (25%), 36±22 h)	
Lawrenz T, et al. 2007 (409) <u>17572252</u>	Aim: Evaluate conduction tissue after ASA Study type: Retrospective Size: 172 pts underwent simultaneous ASA and EPS	Inclusion criteria: Pts undergoing ASA Exclusion criteria: N/A	1° endpoint: ECG/PPM Results: • Intraprocedural AVB • Delayed AVB occurred in 15 pts (8.7%) 1-6 d after ASA. All of these pts showed lack of VA conduction • No pt with intact VA conduction after ASA developed delayed CHB	 Intact VA conduction a helpful sign for determining whether a PPM will be required
			 Risk factors for delayed AVB were advanced age, intraprocedural CHB, and prolonged QRSd before or after ASA PPM in 20 pts 	

Data Supplement 52. Nonrandomized Studies for ICDs for Alcohol Septal Ablation/Septal Myectomy (Section 8.1.2.5.2)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Wang W, et al.	Aim: Evaluate NSVT as a	Inclusion criteria: Single	<u>1° endpoint</u> :	NSVT confirmed to be a
2017 (410)	predictor for appropriate ICD	center	ICD treated VT/VF	risk factor in pts with ICDs
<u>28314849</u>	therapy			
		Exclusion criteria: None	Results:	
	Study type: Retrospective		NSVT associated with appropriate ICD therapy:	
	analysis		No NSVT: 10.2%	
			NSVT: 47.4%	
	Size: 160 pts who underwent			
	ICD implant			
Thavilkulwat AC,	Aim: Evaluate appropriate	Inclusion criteria: Single	1° endpoint: ICD treated VT/VF	Appropriate ICD therapy
et al. 2016 (411)	ICD use in HCM	center review of pts with		lower than previously
<u>27138377</u>		HCM receiving an ICD	<u>Results</u> :	reported
	Study type: Retrospective		Appropriate ICD therapy in 25 pts	
		Exclusion criteria: NR	Primary prevention: 2.6%/y	
	Size: 135 pts with ICD		Secondary prevention: 9.8%/y	

Maron BJ, et al.	Aim: Evaluate appropriate	Inclusion criteria:	1° endpoint: ICD treated VT/VF	Presence of any risk factor
2007 (412)	ICD use in HCM	Multicenter Registry of		sufficient to confer risk
<u>17652294</u>		pts with HCM receiving	<u>Results</u> :	
	Study type: Retrospective	an ICD	Appropriate ICD therapy:	
			Primary prevention: 3.6%/y	
	Size: 506 pts with ICD	Exclusion criteria: NR	Secondary prevention: 10.6%/y. Similar event	
			rates for 1,2, or 3 risk factors for SCD	

Data Supplement 53. Nonrandomized Trials, Observational Studies, and/or Registries of Adult Congenital Heart Disease (ACHD) (Section 8.2)

Study Acronym; Author; Year	Aim of Study Study Type Study Size (N) Patient population	Primary endpoint results (p values OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any) Study limitations Adverse events	Outcomes
Gelatt M, et al. 1997 (413) <u>8996314</u>	<u>Aim</u> : Examination of mortality after Mustard <u>Study type</u> : Retrospective observational; 534 pts – single center	Pacemaker implantation is required in 11% of these pts over 35-y follow-up.	No PM implant	 Loss of SR is associated with higher mortality Late SND and PM implantation is common
Helbing WA, et al. 1994 (414) <u>8041184</u>	Aim: Assess long-term results of atrial switch Study type: Retrospective observational; 122 atrial switch pts followed for a median duration of 16 y	Loss of SR occurred in 50– 80% of pts depending on type of surgery	Sinus rhythm maintained	Loss of sinus node function is especially common in this group
Anand N, et al. 2006 (415) <u>16762984</u>	Aim: Evaluate the association of bradycardia with atrial flutter Study type: Retrospective case- control; 84 pts; CHD and with or w/o atrial arrhythmias	Development of atrial arrhythmias	Pacemaker implant	Late postop atrial flutter is associated with chronotropic incompetence in CHD pts.
Diller G, et al. 2006 (416) <u>16979014</u>	Aim: Assess the long-term outcomes in atrial switch pts	Heart rate reserve predicted mortality independently of	Pts who did not develop CHB	Blunted heart rate with exercise predicts an enhanced mortality risk

Page 216

	Study type: Retrospective	antiarrhythmic therapy,		independently of antiarrhythmic
	observational; 727 consecutive pts	functional class, and peak VO ₂		medication
Janousek J, et al. 1994 (417)	with CHD; longitudinal follow-up Aim : Determine the natural history	SND	N/A	SND occurred in 51% of pts
7846933	for pts with an atrial switch	SND		SND Occurred in 51% of pts
	<u>Study type</u> : Retrospective			
	observational; 359 pts with			
	transposition and atrial switch;			
Fishberger S, et al. 1997	Iongitudinal follow-up <u>Aim</u> : Identify factors that influence	Development of atrial	N/A	The presence of SND was associated
(418)	the development of atrial flutter	arrhythmias	N/A	with a higher incidence of atrial
<u>9011705</u>	after Fontan operation	arriytiinas		flutter (p<0.001).
<u>5011705</u>				
	Study type: Retrospective			
	observational; 334 pts with prior			
	Fontan surgery; longitudinal follow-			
	up			
Michaëlsson M, et al. 1995	Aim: Longitudinal study of isolated	• Mean age at death: 38 y	N/A	High incidence of unpredictable SA
(216)	congenital complete AVB	 SA attacks in 27 pts, (8 		attacks
<u>7634461</u>	in adult life	fatal)		
		• 6 was first event		
	Study type: Prospective follow-up	• PM reduced the risk of		
	102 pts	death		
Dewey RC, et al. 1987 (419) 3821827	Aim: Define long-term natural Hx of congenital CHB	No pts with a mean daytime heart rate of 50	N/A	Mean daytime junctional rate below 50 bpm may represent a
3621627	Congenital CHB	bpm or more had an		manifestation of junctional instability
	Study type: 27 pts prospectively	adverse clinical outcome		and should be viewed as a risk factor
	followed with frequent Holters for a			for sudden death or eventual need for
	mean of 8 y; longitudinal follow-up			a PPM
Lundtsrom U, et al. 1990	Aim: Natural Hx of ccTGA	Major risk factor for early	N/A	N/A
(420)		death: heart block		
<u>2337032</u>	Study type: 111 pts with ccTGA			
	20-y follow-up			
Connelly MS, et al. 1996	<u>Aim</u> : Clinical outcome of ccTGA	40% required PPM	N/A	High rate of AVB
(283) 8609349	Study type: Potrospective			
0003343	Study type: Retrospective observational; 52 pts			

Graham TP, et al. 2000 (421) 10898443	Aim: Long-term outcome in ccTGA	41% required PPM	N/A	PM implantation common. Also associated with systemic ventricular
	Study type: Multicenter			dysfunction
	retrospective			- /
	182 pts from 19 institutions			
Khairy P, et al.	Aim: Assess risk of thromboemboli	Transvenous leads an	N/A	Transvenous leads incur a >2-fold
2006 (422)	in pts with transvenous pacing leads	independent predictor of		increased risk of systemic
16702467	and intracardiac shunts	systemic thromboemboli		thromboemboli in pts with
		(HR: 2.6; p=0.0265)		intracardiac shunts
	Study type: Multicenter,			
	retrospective cohort study of 202			
	pts with intracardiac shunts			
DeSimone CV, et al. 2013	Aim: Stroke or TIA in pts with	1° endpoint: Stroke/TIA:	N/A	Presence of a PFO is associated with a
(423)	endocardial leads and a PFO	30/364 (8.2%) PFO vs		substantially increased risk of embolic
<u>23946264</u>		117/5711 (2.0%) non-PFO		stroke/TIA
	Study type: Retrospective	(HR: 3.49; 95% CI: 2.33–		
	observational; 6,075 pts (364 with	5.25; p<0.0001)		
	PFO)			
Kim MH, et al. 2001 (424)	Aim: Assess prevalence and natural	• At 1-y follow-up:	N/A	If complete AVB is present after aortic
<u>11230857</u>	history of complete AVB after	• 5 of 9 pts (56%)		and mitral valve surgery within the
	valvular heart surgery. Assess the	remained in complete		first 24 h postop and persists for >48
	optimal timing of PM implantation	AVB		h, it is unlikely to resolve within the
		• 2 of 9 pts (22%) had		next 1–2 wk
	Study type: Retrospective	resolution of AVB		
	observational; 155 pts with valvular	• 2 of 9 (22%) lost to		
	surgery; 17 (11%) pts had complete	follow-up		
	AVB in the postop period			
Glikson M, et al. 1997 (425)	Aim: Define long-term dependency	Postop complete AVB is	N/A	In pts with complete AVB, an early
<u>9388104</u>	in permanent pacing after cardiac	the most important		decision to implant a permanent PM
	surgery	predictor of PM		is probably justified
		dependency		
	Study type: Retrospective			
	observational; 120 adults post-			
<u> </u>	cardiac surgery who received PPM			
Edwards W, et al. 1978	Aim: Examination of postmortem	Sinus nodal artery damage	N/A	• The sinus node showed acute
(426)	findings of the sinus nodal tissue in			necrosis or compression in 77% of
<u>625125</u>	pts with an atrial switch procedure			cases

	<u>Study type</u> : 32 pts; atrial switch pts; postmortem pathological analyses			• Para-nodal areas were damaged in 100% of pts
Sanders P, et al. 2004 (427) <u>15007004</u>	Aim: Atrial mapping in pts with SND Study type: 32 pts, 16 pts with SND, 16 controls; case control comparative analysis	SND	Normal hearts with no evidence of SND	SND is associated with diffuse atrial remodeling characterized by structural change, conduction abnormalities, and increased right atrial refractoriness. Also associated with caudal shift of PM
Bolens M and Friedli B 1984 (428) <u>6720586</u>	Aim: EP mapping of sinus and AV nodal function in pts with secundum ASD Study type: Case control comparative analysis; 18 pts studied before and after surgical closure	Prior to surgery	Following ASD repair	 Sinus nodal, atrial conduction, atrial refractory and AV nodal refractory times improved following surgery Ectopic atrial rhythms developed postop in a third of pts
Gillette PC, et al. 1974 (429) <u>4818151</u>	AimElectrophysiologicalexamination of atrial, sinus and AVnodal functionStudy typeProspectiveobservational16 pts studied following atrialswitch surgery (Mustard)		N/A	SND was the primary abnormality detected
Garson A, et al. 1985 (430) <u>4031302</u>	Aim: Identify predictors of death in younger pts (predominantly CHD) and atrial flutter Study type: Longitudinal retrospective observational; 380 pts followed long-term for morbidity and mortality		N/A	 Effective control of atrial flutter was associated with improved outcomes Surgical repair in CHD pts with atrial flutter results in a marked improvement in outcomes
Albin G, et al. 1985 (431) <u>4033231</u>	Aim: SND in young adult pts: treatment by implantation of a PPM Study type: Retrospective observational; 39 pts, mean age 23 y; most commonly TGA; mean follow-up of 50.5 mo	No PM-related deaths	N/A	 Permanent pacing is an effective therapeutic modality Prognosis seems to be excellent Mortality unrelated to pacing

McLeod CJ, et al. 2010 (432) 20563634	<u>Aim</u> : Epicardial versus endocardial permanent pacing in adults with congenital heart disease	Re-intervention was driven primarily by lead failure (49%)	N/A	Epicardial systems were most likely to develop lead failure, predominantly in the ventricular lead
	Study type: Retrospective observational; 106 pts and 259 PM procedures: SND in 20%, heart block (25%); followed for 11.6±14 y			
Walker F, et al. 2004 (433) <u>15145118</u>	Aim: Long-term outcomes of cardiac pacing in adults with congenital heart disease Study type: Retrospective observational; 168 adults with CHD, and with PMs; mean age at implant was 28 y; mean pacing duration 11 y at follow-up		N/A	Lead complications were not significantly different for epicardial vs. endocardial improved lead survival in pts with endocardial leads
Bink-Boelkens M, et al. 1983 (434) <u>6869177</u>	Aim: Identification of surgical factors which affect the development of bradycardia and arrhythmias Study type: Retrospective observational; 204 pts with secundum ASD repair, 50 pts with atrial switch (Mustard)		N/A	Postop atrial flutter is common occurring in 20–40% of the group Damage to the sinus node at surgery was considered a major predictor of SND
Stephenson E, et al. 2003 (435) <u>14516898</u>	Aim: Efficacy of atrial ATP in treating atrial flutter in ACHD pts Study type: 5 pts with atrial arrhythmias	AT was appropriately detected and ATP was enabled for 167 treatable episodes, successfully converting 90 (54%)	N/A	Atrial tachycardias in congenital heart disease are amenable to ATP algorithms
Rhodes LA, et al. 1995 (436) <u>7659551</u>	Aim: Atrial ATP in ACHD after repair of congenital heart disease Study type: Prospective cohort 18 pts (2–32 y with a variety of antitachycardia congenital heart lesions underwent atrial PM	Over 4–30 mo, 6 pts had 189 episodes of tachycardia successfully converted with atrial ATP	N/A	In selected cases, atrial ATP is a useful tool in the management of pts with congenital heart disease and atrial arrhythmias

	placement for recurrent atrial tachycardia			
Weindling SN, et al. 1998 (284) <u>9723647</u>	Study type: Out of 2,698 cardiac surgeries 54 (2%) were complicated by CHB	Recovery of AV conduction occurred by postoperative d 9 in 97% of pts with transient heart block	The greatest risk for CHB occurred in surgery for: • LVOT • ccTGA • VSD • Tetralogy of Fallot Majority were children	Heart block following surgery for congenital heart disease resolves in 2/3 of pts, usually by the 9th postop day
Ayyildiz P, et al. 2015 (437) <u>26517970</u>	Aim: Evaluation for AVB following pediatric cardiac surgery for CHD Study type: Retrospective observational; 1,550 pts with CHD surgery between 2010–2015; median age 0.5–1 y	 Complete AVB occurred (6.2%) in the early postop period 97% of transient AVB recovered by d 10; 84% at 1 wk 	Tetralogy of Fallot and complete AV septal defect are at highest risk	Transient AVB occurred in 12%, and complete AVB in 6% Transient AVB recovered almost entirely by 10 d
Aziz PF, et al. 2013 (438) 23179430	Aim: Evaluation for AVB following pediatric cardiac surgery for CHD Study type: Retrospective, observational, single center, cohort; pediatric not adult group; 44 pts in this study who experienced TCHB - 37 recovered completely	All 37 subjects with transient heart block recovered AV conduction within 12 d	N/A	Delayed recovery of conduction after transient AVB (≥7 d) is a predictor of late block
Lin A, et al. 2010 (439) 20381087	Aim: Evaluation for AVB following pediatric cardiac surgery for CHD Study type: Retrospective, observational, single center; 922 pts, median age 6 mo	Postop AVB developed in 2.3% transient, with recovery at mean of 3 d in 1.4% permanent, with PPM implanted at mean 10 d 0.9%	N/A	By 10 d minimal recovery of transient AVB is present

Data Supplement 54. RCTs, Nonrandomized Trials, Observational Studies, and/or Registries of Bradycardia and Pacemaker Implantation in Patients with an Acute MI (Section 8.3)

Study Acronym; Author; Year	Aim of Study; Study Type	Patient Population	Study Intervention / Study Comparator	Primary endpoint results (p values OR or RR; & 95% CI)	Summary/Conclusion Comments
Domenghetti G, et al. 1980 (440) <u>7363920</u>	Aim: Examine impact of acute intraventricular conduction abnormalities on survival following acute MI <u>Study type</u> : Retrospective observational	59 pts admitted to CCU – single center	N/A	 IV conduction disturbances Mortality 13% if AVB present 	 Higher mortality in the context of intraventricular conduction abnormalities following an MI. This was evident short term and long term. Mortality rate twice the comparator group
Col JJ and Weinberg SL 1972 (441) <u>5060806</u>	Aim: Assess incidence and mortality of conduction defects following AMI <u>Study type</u> : Retrospective observational	212 consecutive pts admitted to CCU with MI	N/A	IV conduction disturbances	 Most common defect was LAH Mortality rate among those with IV conduction abnormal – 47% vs. 21%
Ritter WS, et al. 1976 (442) <u>952264</u>	Aim: Evaluate prognosis following permanent pacing in pts with trifascicular block following AMI Study type: Retrospective observational	18 pts with RBBB, LAH and transient CHB during AMI	Pts who received a PPM	 5/6 pts w/o PPM died within 2.4 mo of discharge 6/12 pts with a PPM survived (mean survival 18 mo) 	 Prophylactic permanent pacing significantly improves the prognosis after MI in this select subgroup
Lamas GA, et al. 1986 (443) <u>3717016</u>	Aim: Development of a method to predict CHB following AMI Study type: Retrospective observational	698 pts with AMI.	N/A	• Pts who developed CHB	 CHB risk score can predict risk of CHB development based on ECG findings.
Shaw, DB et al. 1980 (444) <u>7357290</u>	Aim: Determine the natural Hx for pts with sick-sinus syndrome Study type: Prospective survey	381 pts with sinoatrial disease	N/A	 Longitudinal study of pts with sinus node disease 	 Sinoatrial dysfunction has a benign prognosis, and PPM implantation did not affect mortality – yet did improve symptoms Acute MI during this follow-up did not affect

					mortality in a significant manner.
Hindman MC, et al. 1978 (445, 446) <u>688580</u> <u>688579</u>	Aim: To identify determinants of SCD or recurrent high degree AVB in pts following MI with BBB <u>Study type</u> : Retrospective observational	432 pts with AMI and BBB.	N/A	• Mortality	 Pts with progression to 2nd or 3rd degree AV have increased mortality Pts with transient high degree AVB during MI had a 28% incidence of sudden death or recurrent high degree block during the first year of follow-up At highest risk were those pts with RBBB and left fascicular block
Ginks WR, et al. 1977 (233) <u>836733</u>	Aim: Assess long-term prognosis of AMI with AVB	52 pts with CHB and AMI	21 hospital survivors w/o PPM followed for 49 months	 10 /14 survived w/o PPM PPM failed to prevent sudden death in 2/4 	 Recommendation: PPM implant is not justified in pts with partial bilateral
	Study type: Retrospective observational				bundle-branch block following AMI
The Birmingham Trial Watson RD, et al. 1984 (231) <u>6475712</u>	Aim: To determine whether permanent pacing reduces mortality in pts with fascicular block ≥14 d post- MI, and whether measurement of intracardiac conduction times predicts later death. Study type: RCT Size: 50 pts	Inclusion criteria: Survived at least 14 d after AMI; RBBB alone or in combination with left anterior or left posterior hemiblock or left posterior hemiblock alone Exclusion criteria: Age ≥70 y; previous ECG evidence of conduction disorder, LBBB	Intervention: Permanent pacing Comparator: No permanent pacing Resting intracardiac conduction times were measured in both groups prior to pacing	<u>1° endpoint</u> : No difference in mortality <u>Safety endpoint</u> : N/A	 Progression of conduction disease was not observed Measurement of infranodal conduction time (HV interval) did not predict outcome Ventricular arrhythmia was an important cause of death
Meine TJ, et al. 2005 (447)	Aim: Incidence, predictors, and outcomes of high-	70,742 pts with STEMI compared	N/A	Incidence of AVB was 6.9%	In the thrombolytic era:

<u>15990751</u>	degree AVB AMI treated with thrombolytics <u>Study type</u> : Meta-analysis from 4 studies	with 5,251 pts with STEMI and AVB		 AVB and inferior MI, mortality OR: 2.2 (95% CI: 1.7–2.7) AVB and anterior MI, mortality OR: 3.0 (95% CI: 2.2–4.1) 	 AVB in the setting of STEMI is common It is associated with higher mortality
Gang UJ, et al. 2012 (448) <u>22645234</u>	Aim: High-grade AVB in STEMI pts treated with PCI Study type: Retrospective observational	2073 STEMI pts with primary PCI from Danish National Registry	All-cause mortality was the primary endpoint	 High-grade AVB: 3.2% Early mortality higher Yet equal mortality at 30 d compared with pts w/o AVB 	 In primary PCI era: incidence of AVB in STEMI pts treated with PCI has been reduced If pts survive to 30 d: mortality is equal to non- AVB pts
Auffret V, et al. 2016 (449) <u>26660871</u>	Aim: High-grade AVB complicating STEMI (2006– 2013) Study type: Large prospective registry	6,662 pts with STEMI	N/A	 AVB in 3.5% AVB at admission or in first 24 h had higher mortality rates (18.1% and 28.6%) 	 Combine thrombolytic and primary PCI: HAVB was not independently associated with in-hospital mortality
Kim HL, et al. 2014 (450) <u>25304975</u>	Aim: High-grade AVB on 30- d outcome following AMI in the drug-eluting stent era <u>Study type</u> : Retrospective observational	13,862 pts with AMI, registered in the nation-wide AMI database from 2005–2013	N/A	 Heart block occurred in 2.7% Pts with heart block showed worse clinical parameters at admission, presence of AVB associated with 30 d MACE in univariate but not multivariate after adjustment 	 STEMI treated with DES: Heart block was not an independent risk factor for 30-d MACE in adjusted analyses LAD culprit was an independent risk factor for 30-d MACE among pts with heart block
Singh SM, et al. 2015 (234) <u>25205530</u>	Aim: High-grade AVB in acute coronary syndromes Study type: GRACE registry	59,229 pts with ACS between 1999 and 2007	N/A	 2.9% of pts had HAVB High in-hospital death (23%) Pts with AVB surviving to discharge had similar adjusted survival at 6 mo compared with those w/o AVB 	 AVB is continues to decrease Mortality dictated by type of MI and time to reperfusion
Ranganathan N, et al. 1972 (451) <u>5009474</u>	Aim: Determine the validity of His bundle recordings in managing BBB	20 pts with BBB and 13 pts w/o BBB	EPS	Abnormal His-Purkinje conduction	 BBB may be associated with infra-nodal conduction abnormalities as evidenced by an abnormal His recording

	Study type: Prospective observational				
Scheinman MM, et al. 1975 (82) <u>1157275</u>	Aim: Use of atropine in pts with acute MI and sinus bradycardia <u>Study type</u> : Retrospective observational	56pts with AMI and sinus brady	N/A	 Atropine improved AV conduction in 11 of 13 pts (85%) acute inferior MIs (with 2nd or 3rd degree AVB 	 Atropine recommended as drug of choice for sinus brady and AMI 7 pts developed 10 side effects: VT/VF, ventricular ectopy
Swart G, et al. 1999 (80) <u>10597081</u>	<u>Aim</u> : Use of atropine in acute MI in prehospital setting <u>Study type</u> : Retrospective Observational	131 pts with acute MI and associated bradycardia	Atropine	N/A	 No difference in response to atropine between AMI vs. non-AMI pts MI pts are more likely to recover conduction in hospital
Feigl D, et al. 1984 (160) <u>6736451</u>	Aim: Early and late AVB in acute inferior MI Study type: Single center retrospective cohort	34 pts with 2nd or 3rd degree AVB developing in course of AMI who survived >72 h	Atropine	 Of 15 pts with early AVB (<6 h). Atropine normalized conduction in 20%, increased V-rate in others. 5 had normalization with isoproterenol. 14 pts had late AVB – less response to atropine (mean 16 bpm). 50% required TPM 	 No adverse events to drug therapy reported
Bertolet BD, et al. 1995 (163) <u>7661495</u>	Aim: Theophylline for the treatment of AVB after MI Study type: Single center retrospective cohort	8 pts with significant AVB developing within 4 h of admission for acute inferior MI, resistant to atropine, given IV theophylline up to 250 mg	Aminophylline	 All 8 pts had restoration of 1–1 AV conduction within 3 min lasting at least 24 h 	 Potentially safe Efficacy in very small study
Altun A, et al. 1998 (164) <u>9789698</u>	Aim: Effect of aminophylline in pts with atropine-resistant later advanced AVB during acute inferior MI	8 pts with 2 nd or 3 rd degree AVB after IMI for at least 1 h, resistant to atropine.	Given 2 doses of aminophylline 240 mg 1 h apart	 Aminophylline restored 1-1 AV conduction in 7 pts and Mobitz I AVB in 1. No adverse effects. AVB relapsed in 1 pt only 	 Very small, single-center experience

	Study type: Retrospective observational				
Hatle L, et al. 1971 (167) <u>5557475</u>	Aim: Conservative treatment of AVB in AMI Study type: Results in 105 consecutive pts	Pts with acute MI treated with 2 nd or 3 rd degree AVB	Treated with isoproterenol, generally 1–3 mcg/min	 In hospital mortality 48%. 60 pts received isoproterenol: 38 (63%) had increase in heart rate and BP; 12 (20%) had increased in heart rate but minimal change in BP; 8 (13%) had minimal change; 2 (3%) isoproterenol terminated due to ventricular ectopy. 3 pts had ventricular fibrillation on isoproterenol, 1 of which died. 14 pts treated with TVP, 3 of whom died from ventricular fibrillation 	 Extremely high mortality In this group, isoproterenol appeared safe compared with TVP
Hynes JK, et al. 1983 (115) <u>6823157</u>	Aim: 5-y experience with TPM therapy in the coronary care unit. Study type: Retrospective, observational, single-center Size: N = 1,022	1,022 pts in the coronary care unit with TTVP.	Temporary transvenous pacing	<u>1° endpoint</u> : Clinical outcomes <u>Results:</u> Access was antecubital in 59%, subclavian in 17%, right internal jugular in 11%, and femoral in 5%. Complications occurred in 13.7% with no deaths. The right internal jugular approach was associated with a decreased risk of complications.	• TTVP was associated with an overall risk of complications in approximately 14% of pts.
Jowett NI, et al. 1989 (120) <u>2594596</u>	Aim: Temporary transvenous cardiac pacing: 6 y experience in 1 coronary care unit Study type: Retrospective, observational, single-center	162 pts admitted to coronary care unit who underwent TTVP.	Temporary transvenous pacing	• The majority of TTVP was for CHB and MI (84.6%). 15.4% of TTVPs were placed for symptomatic bradycardia, including SND. Complications occurred in 19.8%, including arrhythmias during insertion, dislodgement, pneumothorax, and perforation.	 TTVP was associated with a 19.8% complication rate. Some TTVP was prophylactic and may not have been indicated. A minority of TTVP was performed for SND (15%)
Rotman M, et al. 1972 (452) <u>4551931</u>	Aim: Bradyarrhythmias in AMI	539 pts with acute MI (prethrombolytic and pre-PCI)	Short- and long- term outcomes	 Incidence of sinus bradycardia 26% 3-fold more frequent in the setting of inferior infarction 	 Sinus brady is common Sinus bradycardia not associated with worse outcomes

Study type: Retrospective, observational, single-center	Overall mortality of 539 pts was 20%.
	• In those pts with sinus
	bradycardia the mortality was 10%.

Data Supplement 55. Nonrandomized Data for Predicting Bradycardia Associated with Seizures (Section 8.4.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
Bestawros M, et al. 2015 (453) 25391254	Aim: Evaluate incidence of ictal asystoleStudy type: Retrospective evaluation of an epilepsy databaseSize: 10 ictal asystole events from 5,312 video-EEG/ECG studies	Inclusion criteria: Database searched for pts with ictal asystole defined as RR interval >3s and >2-fold lengthening over the prior RR interval Exclusion criteria: None	1° endpoint: Ictal asystole 10 pts with 76 seizures with 26 ictal asystole events, 15 of which had associated syncope • Seizure with asystole duration >6 s associated with syncope • All with temporal lobe seizure • 8 pts received a PPM with resolution of syncope	Permanent pacing can be considered if seizure poorly controlled by drug or surgery
Lanz M, et al. 2011 (454) <u>21183363</u>	Aim: Evaluate incidence of ictal asystole Study type: Retrospective Size: 2,003 pts undergoing video EEG/ECG studies	Inclusion criteria: >3 s Exclusion criteria: None	 <u>1° endpoint</u>: >3 s pause <u>Results</u>: 7/2,003 pts with bradycardia 1 pt with insular seizure prolonged, the rest were self-limited though durations of 5, 6, 25, 29, 34, 35, and 77 s and from the temporal lobe Sinus arrest in 3. CHB in 4 Pacemakers in 6 	 No cases of sudden unexpected death in epilepsy with a mean follow-up of 5.6 y
Schuele SU, et al. 2007 (455) <u>17664402</u>	Aim: Evaluate incidence of ictal asystole Study type: Retrospective Size: 6,825 pts undergoing video EEG/ECG studies	Inclusion criteria: >3 s and >2-fold lengthening over the prior RR interval Exclusion criteria: None	 <u>1° endpoint</u>: >3 s pause <u>Results</u>: 10 pts with ictal asystole 8 temporal Pacemakers in 6 of 8 pts 	 No specific data on response to pacing

Page 227

Tenyi D, et al. 2017	Aim: Evaluate incidence of	Inclusion criteria: >3 s and	1° endpoint: >3 s pause	 No specific data on
(456)	ictal asystole using a	>2-fold lengthening over the		response to pacing
<u>27988965</u>	systematic review	prior RR interval	<u>Results</u> :	
			Localization:	
	Study type: Systematic	Exclusion criteria: None	 Temporal: 80–82% 	
	review		 Frontal: 6–10% 	
			 Insular: 3–5% 	
	Size: 157 cases of ictal		 Other 3–11% 	
	asystole pts undergoing video		Duration	
	EEG/ECG studies		○ <30 s: 90%	
			○ >30 s: 10%	
			• Rx:	
			Pacemaker: 35/68	
			• Adjusted AED: 25/33 pts who did not receive	
			a PPM	
			• Surgery: 8/33	
			 Rx response: 	
			 Pacemaker: no asystole falls,14/33 	
			with recurrent seizures, 19/33 w/o	
			recurrent seizures	
			 Adjusted AED: 5/23 with recurring 	
			asystolic falls, 6/23 with recurrent	
			seizures (w/o asystole), 12/23 w/o	
			recurrent seizures	
			 Surgery: 	
			 No asystolic falls, 2/8 with recurring 	
			nonasystolic seizures, 6/8 w/o	
			recurrent seizures	

Data Supplement 56. Nonrandomized Data for Device Type (Section 9)

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	

Ogunbayo GO, et al. 2017 (457) <u>28735733</u>	 <u>Aim</u>: Evaluate incidence of pneumothorax associated with CIED implant <u>Study type</u>: Retrospective evaluation of National Inpatient Sample <u>Size</u>: 3.7 million people underwent CIED implant 	Inclusion criteria: Database searched for pts with primary implantation of a CIED with at least 1 vascular access Exclusion criteria: None	 <u>1° endpoint</u>: Pneumothorax <u>Results:</u> Pneumothorax occurred in 1.6% of cases Pneumothorax associated with increased length of stay and increased mortality (1.2% vs. 0.7%) Pneumothorax associated with older age, female sex, chronic obstructive lung disease, DC device 	 Pneumothorax remains an important complication
Sochala M, et al. 2017 (458) <u>28598855</u>	Aim: Evaluate risk of complication afterCIED implant for myotonic dystrophyStudy type: RetrospectiveSize: 914 pts with myotonic dystrophy Type1-23 with an ICD and 46 with a PPM	Inclusion criteria: Myotonic dystrophy type 1 and CIED placement Exclusion criteria: None	 <u>1° endpoint</u>: Complications <u>Results</u>: After 6-y follow-up device related complications in 9 ICD pts (Inappropriate shocks 5, lead dysfunction 5, infection 2) and 3 PPM pts (lead dysfunction) 	 Increased risk of complications with ICD though small numbers
Bai Y, et al. 2017 (459) <u>28587353</u>	Aim: Evaluate incidence of hematoma after CIED Study type: Retrospective Size: 339 pts from a single center undergoing CIED placement	Inclusion criteria: Pts undergoing CIED placement Exclusion criteria: None	 <u>1° endpoint</u>: Hematoma <u>Results</u>: History of allergy associated with hematoma Hematoma more common with larger devices (ICD and CRT): 30% vs. 8%) 	 Larger devices type though do not address vascular access Only 27 pts with larger device
Hosseini SM, et al. 2017 (460) <u>28329322</u>	Aim: Evaluate complications associated with CRT Study type: Retrospective	Inclusion criteria: CRT device Exclusion criteria: None	 <u>1° endpoint</u>: In-hospital complications <u>Results</u>: 6.1% of pts with at least one 	 Increased complication rate over time No difference between CRT-P and
	Size: 439,010 pts from National Inpatient Sample undergoing CRT		 complication Complications more likely in older pts, women, elective admission, 	CRT-D

			and increased comorbidities (Charlson)	
Gupta N, et al. 2016 (461) <u>26961369</u>	Aim: Evaluate complications associated different CIED	Inclusion criteria: CIED implant	1° endpoint: In-hospital complications, 30 d failure rates, outcomes	 Increased complication rate over time
	Study type: Retrospective-Kaiser database Size: 11,924 ICDs, 33,519 PPMs, 4,472 CRT	Exclusion criteria: None	Results: • CIED failure ○ PM: 0.85% ○ ICD: 2.17%	 No difference between CRT-P and CRT-D
Friedman DJ, et al. 2015 (462) <u>26670062</u>	Aim: Evaluate complications associated CRT in pts with moderate renal dysfunction Study type: Retrospective-NCDR and matched to Medicare Size: 9.525 CRT-D vs. propensity matched ICD only (1,421)	Inclusion criteria: CRT eligible pts with stage 3– 5 CKD Exclusion criteria: None	 ○ CRT: 4.93% <u>1° endpoint</u>: Mortality, HFH <u>Results</u>: • HFH or death: 0.84; 95% CI: 0.78– 0.91 • Death: 0.85; 95% CI: 0.77–0.93 	CRT associated with improved outcomes
Witt CT, et al. 2016 (463) <u>26378089</u>	Aim: Evaluate complications associated ICD Rx with CRT Study type: Retrospective-single center Size: 917 HF pts-427 with NICM and 490 with ICM	Inclusion criteria: CRT and HF Exclusion criteria: None	<u>1° endpoint</u> : Mortality <u>Results:</u> • Median follow-up 4 y • Mortality: ○ NICM: 0.96; 95% CI: 0.60– 1.51; p=0.85 ○ ICM: 0.74; 95% CI: 0.56–0.97; p=0.03	ICD associated with better outcomes in ICM but not NICM
Gadler F, et al. 2015 (464) <u>25336667</u>	<u>Aim</u> : Evaluate complications associated with CIED implant <u>Study type</u> : Retrospective-multicenter registry (Sweden) <u>Size</u> : 6,617 PPM. 1,298 ICD	Inclusion criteria: First CIED implant Exclusion criteria: None	 <u>1° endpoint</u>: Complications <u>Results</u>: Complications (1 y) PM: 5.3% ICD: 10.1% 	 ICD associated with higher complication rate

Essebag V, et al. 2015 (465)	<u>Aim</u>: Evaluate complications associated with CRT upgrade vs. de novo implant	Inclusion criteria: Randomized to CRT-D	1° endpoint: Complications	 Similar results for CRT-D whether de
25417892			Results: Success rate	Novo or as an
	<u>Study type</u>: Subgroup analysis of the	Exclusion criteria: None	• de Novo: 95%	upgrade
	Canadian cohort		• Upgrade: 96%	
	Size: Pts with CRT: 644 de Novo and 80 upgrade			
Chung MK, et al. 2014 (466) <u>25221331</u>	Aim: Evaluate mortality associated with different cardiac procedures	Inclusion criteria: CIED replacement	1° endpoint: Complications/mortality	 Complications, mortality due to comorbidities
	Study type: Retrospective subanalysis	Exclusion criteria: None	Results: Mortality due to	
			comorbidities and not device type	
	Size: 1,744 pts with CIED replacement			
Adelstein E, et al. 2014	Aim: Evaluate risks and benefits with	Inclusion criteria:	<u>1° endpoint</u> :	 Better outcomes in
(467)	device upgrades	Pacemaker dependent	Complications/mortality	the absence of CAD
<u>24657426</u>		with CRT upgrade		
	Study type: Retrospective subanalysis	Fuchasian with the News	Results: Pts w/o CAD had fewer	
	Size: 157 ptc	Exclusion criteria: None	comorbidities, longer survival, and	
Kirkfeldt RE, et al. 2014	Size: 157 pts Aim: Evaluate risks and benefits with	Inclusion criteria: CIED	low risk of appropriate shocks 1° endpoint:	Complications are
(468) 24347317	different device types	implant in Denmark	Complications/mortality	relatively common, particularly with
	Study type: Retrospective subanalysis	Exclusion criteria: None	Results:	complex devices
			Overall complication rate was	
	<u>Size</u> : 5,918 pts		9.5%	
			 More complex procedures with worse outcomes 	
			○ Dual chamber: 2.0; 95% CI: 1.4–2.7	
			○ CRT-D: 2.6; 95% CI: 1.9–3.4	
Acosta J, et al. 2017	Aim: Evaluate use of defibrillator	Inclusion criteria: Class I	1° endpoint: Appropriate ICD	MRI may be helpful
(469) <u>28780194</u>	capabilities in pts who were eligible for CRT	indication for CRT and cardiac MRI	therapy or SCD	for identifying those pts at risk for
	Study type: Prospective, nonrandomized	Exclusion criteria: None	Results: ● 1° endpoint in 11.5% of cases	sustained ventricular arrhythmias
	<u>Size</u> : 217 pts		 No 1° endpoint in pts w/o myocardial scar 	

			 Scar mass, "channel mass," were predictors of 1° endpoint 	
Martens P, et al. 2017 (470) <u>28716973</u>	Aim: Evaluate use of defibrillator capabilities in pts who were eligible for CRT Study type: Retrospective Size: 687 pts	Inclusion criteria: CRT implant Exclusion criteria: None	 <u>1° endpoint</u>: Mortality <u>Results:</u> All-cause mortality was higher in pts with CRT-P vs. CRT-D (21% vs. 12%; p=0.003), even after adjusting for baseline characteristics (HR: 2.5; 95% CI: 1.36–4.60; p=0.003). Multivariate analysis revealed that age >80 y, New York Heart Association class IV, intolerance to BBs and underlying nonischemic CMP were independently associated with little incremental value of a 	Weighing the risk of arrhythmia and nonarrhythmia risk helpful
Yokoshiki H, et al. 2017	Aim: Evaluate use of defibrillator	Inclusion criteria: CRT	primary prevention ICD on top of CRT. <u>1° endpoint</u> : Mortality	Weighing the risk of
(471) <u>28626201</u>	capabilities in pts who were eligible for CRT <u>Study type</u> : Retrospective <u>Size</u> : 717 pts	implant <u>Exclusion criteria:</u> None	 <u>Results:</u> Combined events for all-cause death or HFH (whichever came first) diverged between the CRT-D (N=620) and CRT-P(N=97) 	arrhythmia and nonarrhythmia risk helpful
			 groups with a rate of 22% vs. 42%, respectively, at 24 mo (p=0.0011). Did not remain statistically significant after controlling for baseline variables 	

Ip JE, et al. 2017 (472)	Aim: Evaluate ECG suitability of a	Inclusion criteria:	1° endpoint: ECG analysis	• Transvenous pacing
<u>28185354</u>	subcutaneous ICD in pts with PMs	Transvenous CIED		and subcutaneous
			Results:	ICD may be
	Study type: Prospective	Exclusion criteria: None	 58% of pts would still be possible 	compatible
			candidates for subcutaneous ICD	
	<u>Size</u> : 100 pts		based on ECG morphology.	
			 RV septal pacing or CRT more 	
			likely to qualify vs. RV apical	
			pacing (67% and 80% vs. 37%)	
Maisel WH, et al. 2006	Aim: Evaluate ICD and PPM malfunction	Inclusion criteria:	<u>1° endpoint</u> : Device failures, deaths	 Device malfunction
(473)	from annual manufacturer FDA reports	Manufacturer report for		has affected pt
<u>16639048</u>		explant	<u>Results:</u>	healthcare outcomes
	Study type: Retrospective		 Battery/capacitor abnormalities 	
		Exclusion criteria: None	(4,085 malfunctions [23.6%]) and	
	Size: 2.25 million PM implants and 416,000		electrical issues (4,708	
	ICDs from 1990–2002; 17,323 explanted		malfunctions [27.1%]) accounted	
	due to malfunction		for half of the total device	
			failures.	
			 Overall, the 	
			annual ICD malfunction	
			replacement rate was significantly	
			higher than the PM malfunction	
			replacement rate (mean [SD]: 20.7	
			[11.6] vs. 4.6 [2.2] replacements	
			per 1,000 implants; p<0.001; rate	
			ratio, 5.9; 95% CI: 2.7–9.1]).	
Maisel WH, 2006. (474)	Aim: Evaluate ICD and PPM malfunction	Inclusion criteria: ICD or	1° endpoint: Device failure	 CD failures more
<u>16639052</u>	from published meta-analyses	PPM implant		common than PM
			Results:	failures
	Study type: Meta-analyses	Exclusion criteria: None	 There were 2,981 PM and 	
			384 ICD generator malfunctions.	
	<u>Size</u> : 100 pts		 Morphology 	
			Overall, the mean	
			annual ICD malfunction rate was	
			about 20-fold higher than	
			the PM malfunction rate (26.5	
			[3.8] vs1.3 [0.1] malfunctions per	
			1000 person-y; p<0.001).	

Maron BJ, et al. 2007 (412)	Aim: Evaluate appropriate ICD use in HCM	Inclusion criteria: Multicenter Registry of	1° endpoint: ICD treated VT/VF	• Presence of any risk factor sufficient to
• <u>17652294</u>	Study type: Retrospective Size: 506 pts with ICD	pts with HCM receiving an ICD	 Results: Appropriate ICD therapy: Primary prevention: 3.6%/y 	confer risk
		Exclusion criteria: NR	 Secondary prevention: 10.6%/y Similar event rates for 1,2, or 3 risk factors for SCD 	
Sochala M, et al. 2017 (458) 28598855	Aim: Evaluate arrhythmias in pts with myotonic dystrophy	Inclusion criteria: Myotonic dystrophy	<u>1° endpoint</u> : Arrhythmias (bradycardia, tachycardia), complications	 ICD associated with higher complication rates
	Study type: Retrospective	Exclusion criteria: Matched	Results:	
	Size: 914 pts with 23 pts with an ICD matched with 46 pts with a PPM		 Over a 6-y follow-up period, we observed device-related complications in 9 ICD recipients (inappropriate shocks in 5, lead dysfunction in 5, infection in 2) and in 3 PM recipients (lead dysfunction in 3). Pts with an ICD had, compared to those with a PM, higher rates of complications (39.1% vs. 6.5%; p=0.0006) and more frequent complications requiring hospitalization and/or re-intervention (respectively 30.4% and 21.7% vs. 0%). 	
Benhayon D, et al. 2015 (475) <u>25546341</u>	Aim: Evaluate arrhythmias in pts with myotonic dystrophy <u>Study type</u> : Retrospective <u>Size</u> : 37 pts	Inclusion criteria: Myotonic dystrophy Exclusion criteria: None	 <u>1° endpoint</u>: Arrhythmias (bradycardia, tachycardia) <u>Results:</u> Pts with MD1 were more likely to have evidence of conduction disease abnormalities (40% vs. 8.3%; p=NS) and had a higher all- cause mortality (16% vs. 0%) than those with MD2 	 Presence of AV conduction abnormalities in the setting of myotonic dystrophy associated with ventricular arrhythmias

Takaya Y, et al. 2015 (223) <u>25529542</u>	Aim: Evaluate arrhythmias in pts with cardiac sarcoidosis Study type: Retrospective Size: 53 pts	Inclusion criteria: Cardiac sarcoidosis Exclusion criteria: None	 <u>1° endpoint</u>: Arrhythmias (bradycardia, tachycardia) <u>Results:</u> Similar rates of SCD regardless of whether presenting with HF/ventricular arrhythmias or high-grade AVB 	 ICD should be considered in all pts with cardiac sarcoidosis
Anselme F, et al. 2013 (275) <u>23811080</u>	Aim: Evaluate arrhythmias in pts with lamin A/C mutation Study type: Retrospective	Inclusion criteria: Lamin A/C mutation Exclusion criteria: None	 <u>1° endpoint</u>: Arrhythmias (bradycardia, tachycardia) <u>Results:</u> 21 pts received an ICD for severe 	 ICD should be considered in all pts with lamin A/C mutations
	<u>Size</u> : 47 pts		 conduction disorders Among ICD recipients, no pt died suddenly and 11 (52%) pts required appropriate ICD therapy during a median follow-up of 62 mo. 	
Ha AH, et al. 2012 (206) 22385162	Aim: Evaluate arrhythmias in pts with myotonic dystrophy	Inclusion criteria: Myotonic dystrophy	<u>1° endpoint</u> : Arrhythmias (bradycardia, tachycardia)	 Pts with PM may have sudden cardiac death
	Study type: Retrospective Size: 226 pts	Exclusion criteria: None	 <u>Results:</u> Pacemakers or defibrillators were implanted in 14% of all pts, including 65% of pts with severe ECG abnormalities. During 57±46 mo, 13 pts died (1.16%/y), including 3 pts who died suddenly, 2 of whom had normally functioning PMs. 	
Bhakta D, et al. 2012 (209) <u>22035077</u>	<u>Aim</u> : Evaluate arrhythmias in pts with myotonic dystrophy <u>Study type</u> : Retrospective	Inclusion criteria: Myotonic dystrophy Exclusion criteria: None	<u>1° endpoint</u> : Arrhythmias (bradycardia, tachycardia) Besults:	 Pts with PM may have sudden cardiac death
	Size: 406 pts	Licitision cincenta. None	<u>Results:</u>	

			 46 (11.3%) had or received a PM and 21 (5.2%) received an ICD. 5 (10.9%) PM pts underwent upgrade to an ICD, 3 for LV systolic dysfunction, 1 for VT/VF, and 1 for progressive conduction disease. 24 (52.2%) PM pts died including 13 of respiratory failure and 7 of sudden death. 7 (33.3%) ICD pts died including 2 of respiratory failure and 3 of sudden death. The pts with ICDs and sudden death all had LV systolic dysfunction and 1 death was documented due to inappropriate therapies. 	
Faber TS, et al. 2007 (476)	Aim: Evaluate presence of ventricular arrhythmias in pts with a PPM for	Inclusion criteria: PPM	<u>1° endpoint</u> : Ventricular arrhythmias	 Pts with PM will have NSVT
17636308	bradycardia	Exclusion criteria: None	arriyullilas	
	Study type: Retrospective		<u>Results:</u> In 54 (25.7%) of 210 pts with at least 1 follow-up, episodes of nonsustained VT were documented by stored ECGs. 1 pt received an ICD	
Lazarus A, et al.	Aim: Evaluate arrhythmias in pts with	Inclusion criteria: PPM	<u>1° endpoint</u> : Mortality	Arrhythmias
2002 (207)	myotonic dystrophy	implant		particularly in the
<u>12427418</u>	Study type: Retrospective	Exclusion criteria: None	Results: Paroxysmal arrhythmias in 84% of pts	setting of infraHisian disease associated with arrhythmias
	<u>Size</u> : 49 pts			

References

1. Linzer M, Yang EH, Estes NA, 3rd, et al. Diagnosing syncope. Part 1: Value of history, physical examination, and electrocardiography. Clinical Efficacy Assessment Project of the American College of Physicians. Ann Intern Med. 1997;126:989-96.

2. Thiruganasambandamoorthy V, Hess EP, Turko E, et al. Defining abnormal electrocardiography in adult emergency department syncope patients: the Ottawa Electrocardiographic Criteria. CJEM. 2012;14:248-58.

Page 236

3. Del Rosso A, Ungar A, Maggi R, et al. Clinical predictors of cardiac syncope at initial evaluation in patients referred urgently to a general hospital: the EGSYS score. Heart. 2008;94:1620-6.

4. Perez-Rodon J, Martinez-Alday J, Baron-Esquivias G, et al. Prognostic value of the electrocardiogram in patients with syncope: data from the group for syncope study in the emergency room (GESINUR). Heart Rhythm. 2014;11:2035-44.

5. Lauer MS, Francis GS, Okin PM, et al. Impaired chronotropic response to exercise stress testing as a predictor of mortality. JAMA. 1999;281:524-9.

6. Savonen KP, Kiviniemi V, Laukkanen JA, et al. Chronotropic incompetence and mortality in middle-aged men with known or suspected coronary heart disease. Eur Heart J. 2008;29:1896-902.

7. Doi A, Tsuchihashi K, Kyuma M, et al. Diagnostic implications of modified treadmill and head-up tilt tests in exercise-related syncope: comparative studies with situational and/or vasovagal syncope. Can J Cardiol. 2002;18:960-6.

8. Woelfel AK, Simpson RJ, Jr., Gettes LS, et al. Exercise-induced distal atrioventricular block. J Am Coll Cardiol. 1983;2:578-81.

9. Boran KJ, Oliveros RA, Boucher CA, et al. Ischemia-associated intraventricular conduction disturbances during exercise testing as a predictor of proximal left anterior descending coronary artery disease. Am J Cardiol. 1983;51:1098-102.

10. Oliveros RA, Seaworth J, Weiland FL, et al. Intermittent left anterior hemiblock during treadmill exercise test. Correlation with coronary arteriogram. Chest. 1977;72:492-4.

11. Bobba P, Salerno JA, Casari A. Transient left posterior hemiblock. Report of four cases induced by exercise test. Circulation. 1972;46:931-8.

12. Bharati S, Dhingra RC, Lev M, et al. Conduction system in a patient with Prinzmetal's angina and transient atrioventricular block. Am J Cardiol. 1977;39:120-5.

13. Coplan NL, Morales MC, Romanello P, et al. Exercise-related atrioventricular block. Influence of myocardial ischemia. Chest. 1991;100:1728-30.

14. Gibson TC, Heitzman MR. Diagnostic efficacy of 24-hour electrocardiographic monitoring for syncope. Am J Cardiol. 1984;53:1013-7.

15. Linzer M, Yang EH, Estes NA, 3rd, et al. Diagnosing syncope. Part 2: Unexplained syncope. Clinical Efficacy Assessment Project of the American College of Physicians. Ann Intern Med. 1997;127:76-86.

16. Reiffel JA, Schwarzberg R, Murry M. Comparison of autotriggered memory loop recorders versus standard loop recorders versus 24-hour Holter monitors for arrhythmia detection. Am J Cardiol. 2005;95:1055-9.

17. Sivakumaran S, Krahn AD, Klein GJ, et al. A prospective randomized comparison of loop recorders versus Holter monitors in patients with syncope or presyncope. Am J Med. 2003;115:1-5.

18. Brown AP, Dawkins KD, Davies JG. Detection of arrhythmias: use of a patient-activated ambulatory electrocardiogram device with a solid-state memory loop. Br Heart J. 1987;58:251-3.

19. Cumbee SR, Pryor RE, Linzer M. Cardiac loop ECG recording: a new noninvasive diagnostic test in recurrent syncope. South Med J. 1990;83:39-43.

20. Locati ET, Moya A, Oliveira M, et al. External prolonged electrocardiogram monitoring in unexplained syncope and palpitations: results of the SYNARR-Flash study. Europace. 2016;18:1265-72.

21. Barrett PM, Komatireddy R, Haaser S, et al. Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am J Med. 2014;127:95.e11-7.

Page 237

22. Rosenberg MA, Samuel M, Thosani A, et al. Use of a noninvasive continuous monitoring device in the management of atrial fibrillation: a pilot study. Pacing Clin Electrophysiol. 2013;36:328-33.

23. Turakhia MP, Hoang DD, Zimetbaum P, et al. Diagnostic utility of a novel leadless arrhythmia monitoring device. Am J Cardiol. 2013;112:520-4.

24. Joshi AK, Kowey PR, Prystowsky EN, et al. First experience with a Mobile Cardiac Outpatient Telemetry (MCOT) system for the diagnosis and management of cardiac arrhythmia. Am J Cardiol. 2005;95:878-81.

25. Rothman SA, Laughlin JC, Seltzer J, et al. The diagnosis of cardiac arrhythmias: a prospective multi-center randomized study comparing mobile cardiac outpatient telemetry versus standard loop event monitoring. J Cardiovasc Electrophysiol. 2007;18:241-7.

26. Linzer M, Pritchett EL, Pontinen M, et al. Incremental diagnostic yield of loop electrocardiographic recorders in unexplained syncope. Am J Cardiol. 1990;66:214-9.

27. Schneider JF, Thomas HE, Jr., Kreger BE, et al. Newly acquired left bundle-branch block: the Framingham study. Ann Intern Med. 1979;90:303-10.

28. Schneider JF, Thomas HE, Kreger BE, et al. Newly acquired right bundle-branch block: The Framingham Study. Ann Intern Med. 1980;92:37-44.

29. Schneider JF, Thomas HE, Jr., Sorlie P, et al. Comparative features of newly acquired left and right bundle branch block in the general population: the Framingham study. Am J Cardiol. 1981;47:931-40.

30. Eriksson P, Hansson PO, Eriksson H, et al. Bundle-branch block in a general male population: the study of men born 1913. Circulation. 1998;98:2494-500.

31. Fahy GJ, Pinski SL, Miller DP, et al. Natural history of isolated bundle branch block. Am J Cardiol. 1996;77:1185-90.

32. Imanishi R, Seto S, Ichimaru S, et al. Prognostic significance of incident complete left bundle branch block observed over a 40-year period. Am J Cardiol. 2006;98:644-8.

33. Dhingra R, Pencina MJ, Wang TJ, et al. Electrocardiographic QRS duration and the risk of congestive heart failure: the Framingham Heart Study. Hypertension. 2006;47:861-7.

34. Rotman M, Triebwasser JH. A clinical and follow-up study of right and left bundle branch block. Circulation. 1975;51:477-84.

35. Froelicher VF, Jr., Thompson AJ, Wolthuis R, et al. Angiographic findings in asymptomatic aircrewmen with electrocardiographic abnormalities. Am J Cardiol. 1977;39:32-8.

36. Rabkin SW, Mathewson FA, Tate RB. Natural history of left bundle-branch block. Br Heart J. 1980;43:164-9.

37. Zhang ZM, Rautaharju PM, Soliman EZ, et al. Mortality risk associated with bundle branch blocks and related repolarization abnormalities (from the Women's Health Initiative [WHI]). Am J Cardiol. 2012;110:1489-95.

38. Bogale N, Orn S, James M, et al. Usefulness of either or both left and right bundle branch block at baseline or during follow-up for predicting death in patients following acute myocardial infarction. Am J Cardiol. 2007;99:647-50.

39. Baldasseroni S, Opasich C, Gorini M, et al. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am Heart J. 2002;143:398-405.

40. Erne P, Iglesias JF, Urban P, et al. Left bundle-branch block in patients with acute myocardial infarction: Presentation, treatment, and trends in outcome from 1997 to 2016 in routine clinical practice. Am Heart J. 2017;184:106-13.

41. Yeo KK, Li S, Amsterdam EA, et al. Comparison of clinical characteristics, treatments and outcomes of patients with ST-elevation acute myocardial infarction with versus without new or presumed new left bundle branch block (from NCDR(R)). Am J Cardiol. 2012;109:497-501.

Page 238

42. Dhingra R, Ho Nam B, Benjamin EJ, et al. Cross-sectional relations of electrocardiographic QRS duration to left ventricular dimensions: the Framingham Heart Study. J Am Coll Cardiol. 2005;45:685-9.

43. Talreja D, Gruver C, Sklenar J, et al. Efficient utilization of echocardiography for the assessment of left ventricular systolic function. Am Heart J. 2000;139:394-8.

44. Mendu ML, McAvay G, Lampert R, et al. Yield of diagnostic tests in evaluating syncopal episodes in older patients. Arch Intern Med. 2009;169:1299-305.

45. Recchia D, Barzilai B. Echocardiography in the evaluation of patients with syncope. J Gen Intern Med. 1995;10:649-55.

46. Sarasin FP, Junod AF, Carballo D, et al. Role of echocardiography in the evaluation of syncope: a prospective study. Heart. 2002;88:363-7.

47. Dagres N, Bongiorni MG, Dobreanu D, et al. Current investigation and management of patients with syncope: results of the European Heart Rhythm Association survey. Europace. 2013;15:1812-5.

48. Badheka AO, Singh V, Patel NJ, et al. QRS duration on electrocardiography and cardiovascular mortality (from the National Health and Nutrition Examination Survey-III). Am J Cardiol. 2013;112:671-7.

49. Chiu DT, Shapiro NI, Sun BC, et al. Are echocardiography, telemetry, ambulatory electrocardiography monitoring, and cardiac enzymes in emergency department patients presenting with syncope useful tests? A preliminary investigation. J Emerg Med. 2014;47:113-8.

50. Menozzi C, Brignole M, Alboni P, et al. The natural course of untreated sick sinus syndrome and identification of the variables predictive of unfavorable outcome. Am J Cardiol. 1998;82:1205-9.

51. Brodsky M, Wu D, Denes P, et al. Arrhythmias documented by 24 hour continuous electrocardiographic monitoring in 50 male medical students without apparent heart disease. Am J Cardiol. 1977;39:390-5.

52. Bjerregaard P. Premature beats in healthy subjects 40-79 years of age. Eur Heart J. 1982;3:493-503.

53. Clarke JM, Hamer J, Shelton JR, et al. The rhythm of the normal human heart. Lancet. 1976;1:508-12.

54. Fleg JL, Kennedy HL. Cardiac arrhythmias in a healthy elderly population: detection by 24-hour ambulatory electrocardiography. Chest. 1982;81:302-7.

55. Meytes I, Kaplinsky E, Yahini JH, et al. Wenckebach A-V block: a frequent feature following heavy physical training. Am Heart J. 1975;90:426-30.

- 56. Viitasalo MT, Kala R, Eisalo A. Ambulatory electrocardiographic recording in endurance athletes. Br Heart J. 1982;47:213-20.
- 57. Northcote RJ, Canning GP, Ballantyne D. Electrocardiographic findings in male veteran endurance athletes. Br Heart J. 1989;61:155-60.

58. Tilkian AG, Guilleminault C, Schroeder JS, et al. Sleep-induced apnea syndrome. Prevalence of cardiac arrhythmias and their reversal after tracheostomy. Am J Med. 1977;63:348-58.

59. Guilleminault C, Connolly SJ, Winkle RA. Cardiac arrhythmia and conduction disturbances during sleep in 400 patients with sleep apnea syndrome. Am J Cardiol. 1983;52:490-4.

60. Shepard JW, Jr., Garrison MW, Grither DA, et al. Relationship of ventricular ectopy to oxyhemoglobin desaturation in patients with obstructive sleep apnea. Chest. 1985;88:335-40.

61. Hoffstein V, Mateika S. Cardiac arrhythmias, snoring, and sleep apnea. Chest. 1994;106:466-71.

62. Boudoulas H, Schmidt HS, Clark RW, et al. Anthropometric characteristics, cardiac abnormalities and adrenergic activity in patients with primary disorders of sleep. J Med. 1983;14:223-38.

63. Mehra R, Benjamin EJ, Shahar E, et al. Association of nocturnal arrhythmias with sleep-disordered breathing: The Sleep Heart Health Study. Am J Respir Crit Care Med. 2006;173:910-6.

64. Miller WP. Cardiac arrhythmias and conduction disturbances in the sleep apnea syndrome. Prevalence and significance. Am J Med. 1982;73:317-21.

65. Flemons WW, Remmers JE, Gillis AM. Sleep apnea and cardiac arrhythmias. Is there a relationship? Am Rev Respir Dis. 1993;148:618-21.

66. Becker H, Brandenburg U, Peter JH, et al. Reversal of sinus arrest and atrioventricular conduction block in patients with sleep apnea during nasal continuous positive airway pressure. Am J Respir Crit Care Med. 1995;151:215-8.

67. Koehler U, Fus E, Grimm W, et al. Heart block in patients with obstructive sleep apnoea: pathogenetic factors and effects of treatment. Eur Respir J. 1998;11:434-9.

68. Grimm W, Koehler U, Fus E, et al. Outcome of patients with sleep apnea-associated severe bradyarrhythmias after continuous positive airway pressure therapy. Am J Cardiol. 2000;86:688-92, a9.

69. Harbison J, O'Reilly P, McNicholas WT. Cardiac rhythm disturbances in the obstructive sleep apnea syndrome: effects of nasal continuous positive airway pressure therapy. Chest. 2000;118:591-5.

70. Stegman SS, Burroughs JM, Henthorn RW. Asymptomatic bradyarrhythmias as a marker for sleep apnea: appropriate recognition and treatment may reduce the need for pacemaker therapy. Pacing Clin Electrophysiol. 1996;19:899-904.

71. Garrigue S, Pepin JL, Defaye P, et al. High prevalence of sleep apnea syndrome in patients with long-term pacing: the European Multicenter Polysomnographic Study. Circulation. 2007;115:1703-9.

72. Krahn AD, Klein GJ, Yee R, et al. Randomized assessment of syncope trial: conventional diagnostic testing versus a prolonged monitoring strategy. Circulation. 2001;104:46-51.

73. Farwell DJ, Freemantle N, Sulke AN. Use of implantable loop recorders in the diagnosis and management of syncope. Eur Heart J. 2004;25:1257-63.

74. Podoleanu C, DaCosta A, Defaye P, et al. Early use of an implantable loop recorder in syncope evaluation: a randomized study in the context of the French healthcare system (FRESH study). Arch Cardiovasc Dis. 2014;107:546-52.

75. Denniss AR, Ross DL, Richards DA, et al. Electrophysiologic studies in patients with unexplained syncope. Int J Cardiol. 1992;35:211-7.

76. Smith I, Monk TG, White PF. Comparison of transesophageal atrial pacing with anticholinergic drugs for the treatment of intraoperative bradycardia. Anesth Analg. 1994;78:245-52.

77. Sodeck GH, Domanovits H, Meron G, et al. Compromising bradycardia: management in the emergency department. Resuscitation. 2007;73:96-102.

78. Aghamohammadi H, Mehrabi S, Mohammad Ali Beigi F. Prevention of bradycardia by atropine sulfate during urological laparoscopic surgery: a randomized controlled trial. Urol J. 2009;6:92-5.

79. Brady WJ, Swart G, DeBehnke DJ, et al. The efficacy of atropine in the treatment of hemodynamically unstable bradycardia and atrioventricular block: prehospital and emergency department considerations. Resuscitation. 1999;41:47-55.

80. Swart G, Brady WJ, Jr., DeBehnke DJ, et al. Acute myocardial infarction complicated by hemodynamically unstable bradyarrhythmia: prehospital and ED treatment with atropine. Am J Emerg Med. 1999;17:647-52.

81. Warren JV, Lewis RP. Beneficial effects of atropine in the pre-hospital phase of coronary care. Am J Cardiol. 1976;37:68-72.

Page 240

82. Scheinman MM, Thorburn D, Abbott JA. Use of atropine in patients with acute myocardial infarction and sinus bradycardia. Circulation. 1975;52:627-33.

83. Ogawa H, Inoue T, Miwa S, et al. Heart rate responses to autonomic drugs in sick sinus syndrome--correlation with syncope and electrophysiologic data. Jpn Circ J. 1991;55:15-23.

84. Mandel WJ, Hayakawa H, Allen HN, et al. Assessment of sinus node function in patients with the sick sinus syndrome. Circulation. 1972;46:761-9.

85. Strauss HC, Bigger JT, Saroff AL, et al. Electrophysiologic evaluation of sinus node function in patients with sinus node dysfunction. Circulation. 1976;53:763-76.

86. Morrison LJ, Long J, Vermeulen M, et al. A randomized controlled feasibility trial comparing safety and effectiveness of prehospital pacing versus conventional treatment: 'PrePACE'. Resuscitation. 2008;76:341-9.

87. Howarth DM, Dawson AH, Smith AJ, et al. Calcium channel blocking drug overdose: an Australian series. Hum Exp Toxicol. 1994;13:161-6.

88. Ramoska EA, Spiller HA, Winter M, et al. A one-year evaluation of calcium channel blocker overdoses: toxicity and treatment. Ann Emerg Med. 1993;22:196-200.

89. St-Onge M, Dube PA, Gosselin S, et al. Treatment for calcium channel blocker poisoning: a systematic review. Clin Toxicol (Phila). 2014;52:926-44.

90. Love JN, Sachdeva DK, Bessman ES, et al. A potential role for glucagon in the treatment of drug-induced symptomatic bradycardia. Chest. 1998;114:323-6.

91. Bailey B. Glucagon in beta-blocker and calcium channel blocker overdoses: a systematic review. J Toxicol Clin Toxicol. 2003;41:595-602.

92. Engebretsen KM, Kaczmarek KM, Morgan J, et al. High-dose insulin therapy in beta-blocker and calcium channel-blocker poisoning. Clin Toxicol (Phila). 2011;49:277-83.

93. Greene SL, Gawarammana I, Wood DM, et al. Relative safety of hyperinsulinaemia/euglycaemia therapy in the management of calcium channel blocker overdose: a prospective observational study. Intensive Care Med. 2007;33:2019-24.

94. Eddleston M, Rajapakse S, Rajakanthan, et al. Anti-digoxin Fab fragments in cardiotoxicity induced by ingestion of yellow oleander: a randomised controlled trial. Lancet. 2000;355:967-72.

95. Lapostolle F, Borron SW, Verdier C, et al. Digoxin-specific Fab fragments as single first-line therapy in digitalis poisoning. Crit Care Med. 2008;36:3014-8.

96. Lapostolle F, Borron SW, Verdier C, et al. Assessment of digoxin antibody use in patients with elevated serum digoxin following chronic or acute exposure. Intensive Care Med. 2008;34:1448-53.

97. Chan BS, Buckley NA. Digoxin-specific antibody fragments in the treatment of digoxin toxicity. Clin Toxicol (Phila). 2014;52:824-36.

98. Smith TW, Butler VP, Jr., Haber E, et al. Treatment of life-threatening digitalis intoxication with digoxin-specific Fab antibody fragments: experience in 26 cases. N Engl J Med. 1982;307:1357-62.

99. Wenger TL, Butler VP, Jr., Haber E, et al. Treatment of 63 severely digitalis-toxic patients with digoxin-specific antibody fragments. J Am Coll Cardiol. 1985;5:118a-23a.

100. Antman EM, Wenger TL, Butler VP, Jr., et al. Treatment of 150 cases of life-threatening digitalis intoxication with digoxin-specific Fab antibody fragments. Final report of a multicenter study. Circulation. 1990;81:1744-52.

101. Hickey AR, Wenger TL, Carpenter VP, et al. Digoxin Immune Fab therapy in the management of digitalis intoxication: safety and efficacy results of an observational surveillance study. J Am Coll Cardiol. 1991;17:590-8.

102. Wenger TL. Experience with digoxin immune Fab (ovine) in patients with renal impairment. Am J Emerg Med. 1991;9:21-3; discussion 33-4.

103. Mowry JB, Burdmann EA, Anseeuw K, et al. Extracorporeal treatment for digoxin poisoning: systematic review and recommendations from the EXTRIP Workgroup. Clin Toxicol (Phila). 2016;54:103-14.

104. Abu-Laban RB, McIntyre CM, Christenson JM, et al. Aminophylline in bradyasystolic cardiac arrest: a randomised placebo-controlled trial. Lancet. 2006;367:1577-84.

105. Hurley KF, Magee K, Green R. Aminophylline for bradyasystolic cardiac arrest in adults. Cochrane Database Syst Rev. 2015;Cd006781.

106. Redmond JM, Zehr KJ, Gillinov MA, et al. Use of theophylline for treatment of prolonged sinus node dysfunction in human orthotopic heart transplantation. J Heart Lung Transplant. 1993;12:133-8; discussion 8-9.

107. Bertolet BD, Eagle DA, Conti JB, et al. Bradycardia after heart transplantation: reversal with theophylline. J Am Coll Cardiol. 1996;28:396-9.

108. Rothman SA, Jeevanandam V, Seeber CP, et al. Electrophysiologic effects of intravenous aminophylline in heart transplant recipients with sinus node dysfunction. J Heart Lung Transplant. 1995;14:429-35.

109. Heinz G, Kratochwill C, Buxbaum P, et al. Immediate normalization of profound sinus node dysfunction by aminophylline after cardiac transplantation. Am J Cardiol. 1993;71:346-9.

110. Pasnoori VR, Leesar MA. Use of aminophylline in the treatment of severe symptomatic bradycardia resistant to atropine. Cardiol Rev. 2004;12:65-8.

111. Sadaka F, Naydenov SK, Ponzillo JJ. Theophylline for bradycardia secondary to cervical spinal cord injury. Neurocrit Care. 2010;13:389-92.

112. Schulz-Stubner S. The use of small-dose theophylline for the treatment of bradycardia in patients with spinal cord injury. Anesth Analg. 2005;101:1809-11.

113. Ferguson JD, Banning AP, Bashir Y. Randomised trial of temporary cardiac pacing with semirigid and balloon-flotation electrode catheters. Lancet. 1997;349:1883.

114. López Ayerbe J, Villuendas Sabaté R, García García C, et al. Temporary Pacemakers: Current Use and Complications. Revista Española de Cardiología (English Edition). 2004;57:1045-52.

115. Hynes JK, Holmes DR, Jr., Harrison CE. Five-year experience with temporary pacemaker therapy in the coronary care unit. Mayo Clin Proc. 1983;58:122-6.

116. Murphy JJ. Current practice and complications of temporary transvenous cardiac pacing. Bmj. 1996;312:1134.

117. Austin JL, Preis LK, Crampton RS, et al. Analysis of pacemaker malfunction and complications of temporary pacing in the coronary care unit. Am J Cardiol. 1982;49:301-6.

118. Muñoz Bono J, Prieto Palomino MA, Macías Guarasa I, et al. Efficacy and safety of non-permanent transvenous pacemaker implantation in an intensive care unit. Medicina Intensiva (English Edition). 2011;35:410-6.

119. Betts TR. Regional survey of temporary transvenous pacing procedures and complications. Postgrad Med J. 2003;79:463-5.

120. Jowett NI, Thompson DR, Pohl JE. Temporary transvenous cardiac pacing: 6 years experience in one coronary care unit. Postgrad Med J. 1989;65:211-5.

121. Weinstein J, Gnoj J, Mazzara JT, et al. Temporary transvenous pacing via the percutaneous femoral vein approach. A prospective study of 100 cases. Am Heart J. 1973;85:695-705.

122. Garcia Guerrero JJ, Fernandez de la Concha Castaneda J, Lopez Quero D, et al. Lower incidence of venous thrombosis with temporary activefixation lead implantation in mobile patients. Europace. 2010;12:1604-7.

123. Nolewajka AJ, Goddard MD, Brown TC. Temporary transvenous pacing and femoral vein thrombosis. Circulation. 1980;62:646-50.

124. Jou YL, Hsu HP, Tuan TC, et al. Trends of temporary pacemaker implant and underlying disease substrate. Pacing Clin Electrophysiol. 2010;33:1475-84.

125. McCann P. A review of temporary cardiac pacing wires. Indian Pacing Electrophysiol J. 2007;7:40-9.

126. Bjornstad CC, Gjertsen E, Thorup F, et al. Temporary cardiac pacemaker treatment in five Norwegian regional hospitals. Scand Cardiovasc J. 2012;46:137-43.

127. Barthell E, Troiano P, Olson D, et al. Prehospital external cardiac pacing: a prospective, controlled clinical trial. Ann Emerg Med. 1988;17:1221-6.

128. Sherbino J, Verbeek PR, MacDonald RD, et al. Prehospital transcutaneous cardiac pacing for symptomatic bradycardia or bradyasystolic cardiac arrest: a systematic review. Resuscitation. 2006;70:193-200.

129. Hedges JR, Feero S, Shultz B, et al. Prehospital transcutaneous cardiac pacing for symptomatic bradycardia. Pacing Clin Electrophysiol. 1991;14:1473-8.

130. Zoll PM, Zoll RH, Falk RH, et al. External noninvasive temporary cardiac pacing: clinical trials. Circulation. 1985;71:937-44.

131. Clinton JE, Zoll PM, Zoll R, et al. Emergency noninvasive external cardiac pacing. J Emerg Med. 1985;2:155-62.

132. Lamas GA, Knight JD, Sweeney MO, et al. Impact of rate-modulated pacing on quality of life and exercise capacity--evidence from the Advanced Elements of Pacing Randomized Controlled Trial (ADEPT). Heart Rhythm. 2007;4:1125-32.

133. Alboni P, Menozzi C, Brignole M, et al. Effects of permanent pacemaker and oral theophylline in sick sinus syndrome the THEOPACE study: a randomized controlled trial. Circulation. 1997;96:260-6.

134. Sasaki Y, Shimotori M, Akahane K, et al. Long-term follow-up of patients with sick sinus syndrome: a comparison of clinical aspects among unpaced, ventricular inhibited paced, and physiologically paced groups. Pacing Clin Electrophysiol. 1988;11:1575-83.

135. Goldberger JJ, Johnson NP, Gidea C. Significance of asymptomatic bradycardia for subsequent pacemaker implantation and mortality in patients >60 years of age. Am J Cardiol. 2011;108:857-61.

136. Teichman SL, Felder SD, Matos JA, et al. The value of electrophysiologic studies in syncope of undetermined origin: report of 150 cases. Am Heart J. 1985;110:469-79.

137. Seidl K, Rameken M, Breunung S, et al. Diagnostic assessment of recurrent unexplained syncope with a new subcutaneously implantable loop recorder. Reveal-Investigators. Europace. 2000;2:256-62.

138. Nielsen JC, Thomsen PE, Hojberg S, et al. A comparison of single-lead atrial pacing with dual-chamber pacing in sick sinus syndrome. Eur Heart J. 2011;32:686-96.

139. Andersen HR, Nielsen JC, Thomsen PE, et al. Long-term follow-up of patients from a randomised trial of atrial versus ventricular pacing for sicksinus syndrome. Lancet. 1997;350:1210-6.

140. Lamas GA, Orav EJ, Stambler BS, et al. Quality of life and clinical outcomes in elderly patients treated with ventricular pacing as compared with dual-chamber pacing. Pacemaker Selection in the Elderly Investigators. N Engl J Med. 1998;338:1097-104.

141. Lamas GA, Lee KL, Sweeney MO, et al. Ventricular pacing or dual-chamber pacing for sinus-node dysfunction. N Engl J Med. 2002;346:1854-62.

142. Connolly SJ, Kerr CR, Gent M, et al. Effects of physiologic pacing versus ventricular pacing on the risk of stroke and death due to cardiovascular causes. Canadian Trial of Physiologic Pacing Investigators. N Engl J Med. 2000;342:1385-91.

143. Sweeney MO, Bank AJ, Nsah E, et al. Minimizing ventricular pacing to reduce atrial fibrillation in sinus-node disease. N Engl J Med. 2007;357:1000-8.

144. Healey JS, Toff WD, Lamas GA, et al. Cardiovascular outcomes with atrial-based pacing compared with ventricular pacing: meta-analysis of randomized trials, using individual patient data. Circulation. 2006;114:11-7.

145. Andersen HR, Thuesen L, Bagger JP, et al. Prospective randomised trial of atrial versus ventricular pacing in sick-sinus syndrome. Lancet. 1994;344:1523-8.

146. Sweeney MO, Hellkamp AS, Ellenbogen KA, et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation. 2003;107:2932-7.

147. Nielsen JC, Kristensen L, Andersen HR, et al. A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with sick sinus syndrome: echocardiographic and clinical outcome. J Am Coll Cardiol. 2003;42:614-23.

148. Brandt NH, Kirkfeldt RE, Nielsen JC, et al. Single lead atrial vs. dual chamber pacing in sick sinus syndrome: extended register-based follow-up in the DANPACE trial. Europace. 2016;

149. Kenneback G, Tabrizi F, Lindell P, et al. High-degree atrioventricular block during anti-arrhythmic drug treatment: use of a pacemaker with a bradycardia-detection algorithm to study the time course after drug withdrawal. Europace. 2007;9:186-91.

150. Knudsen MB, Thogersen AM, Hjortshoj SP, et al. The impact of drug discontinuation in patients treated with temporary pacemaker due to atrioventricular block. J Cardiovasc Electrophysiol. 2013;24:1255-8.

151. Osmonov D, Erdinler I, Ozcan KS, et al. Management of patients with drug-induced atrioventricular block. Pacing Clin Electrophysiol. 2012;35:804-10.

152. Zeltser D, Justo D, Halkin A, et al. Drug-induced atrioventricular block: prognosis after discontinuation of the culprit drug. J Am Coll Cardiol. 2004;44:105-8.

153. Risgaard B, Elming H, Jensen GV, et al. Waiting for a pacemaker: is it dangerous? Europace. 2012;14:975-80.

154. Farre N, Bazan V, Garcia-Garcia C, et al. Long-term outcome of transitory "reversible" complete atrio-ventricular block unrelated to myocardial ischemia. Int J Cardiol. 2014;172:503-5.

155. Sadek MM, Yung D, Birnie DH, et al. Corticosteroid therapy for cardiac sarcoidosis: a systematic review. Can J Cardiol. 2013;29:1034-41.

156. Kandolin R, Lehtonen J, Kupari M. Cardiac sarcoidosis and giant cell myocarditis as causes of atrioventricular block in young and middle-aged adults. Circ Arrhythm Electrophysiol. 2011;4:303-9.

157. Ozcan KS, Osmonov D, Erdinler I, et al. Atrioventricular block in patients with thyroid dysfunction: prognosis after treatment with hormone supplementation or antithyroid medication. J Cardiol. 2012;60:327-32.

158. Forrester JD, Mead P. Third-degree heart block associated with lyme carditis: review of published cases. Clin Infect Dis. 2014;59:996-1000.

159. van der Linde MR. Lyme carditis: clinical characteristics of 105 cases. Scand J Infect Dis Suppl. 1991;77:81-4.

Page 244

160. Feigl D, Ashkenazy J, Kishon Y. Early and late atrioventricular block in acute inferior myocardial infarction. J Am Coll Cardiol. 1984;4:35-8.

161. Sclarovsky S, Strasberg B, Hirshberg A, et al. Advanced early and late atrioventricular block in acute inferior wall myocardial infarction. Am Heart J. 1984;108:19-24.

162. Chihrin SM, Mohamed U, Yee R, et al. Utility of isoproterenol in unmasking latent escape rhythm in pacemaker dependent patients undergoing pacemaker replacement. Am J Cardiol. 2008;101:631-3.

163. Bertolet BD, McMurtrie EB, Hill JA, et al. Theophylline for the treatment of atrioventricular block after myocardial infarction. Ann Intern Med. 1995;123:509-11.

164. Altun A, Kirdar C, Ozbay G. Effect of aminophylline in patients with atropine-resistant late advanced atrioventricular block during acute inferior myocardial infarction. Clin Cardiol. 1998;21:759-62.

165. Goodfellow J, Walker PR. Reversal of atropine-resistant atrioventricular block with intravenous aminophylline in the early phase of inferior wall acute myocardial infarction following treatment with streptokinase. Eur Heart J. 1995;16:862-5.

166. Dhingra RC, Winslow E, Pouget JM, et al. The effect of isoproterenol on atrioventricular and intraventricular conduction. Am J Cardiol. 1973;32:629-36.

167. Hatle L, Rokseth R. Conservative treatment of AV block in acute myocardial infarction. Results in 105 consecutive patients. Br Heart J. 1971;33:595-600.

168. Cummins RO, Graves JR, Larsen MP, et al. Out-of-hospital transcutaneous pacing by emergency medical technicians in patients with asystolic cardiac arrest. N Engl J Med. 1993;328:1377-82.

169. Hedges JR, Syverud SA, Dalsey WC, et al. Prehospital trial of emergency transcutaneous cardiac pacing. Circulation. 1987;76:1337-43.

170. Birkhahn RH, Gaeta TJ, Tloczkowski J, et al. Emergency medicine-trained physicians are proficient in the insertion of transvenous pacemakers. Ann Emerg Med. 2004;43:469-74.

171. Mahapatra S, Bybee KA, Bunch TJ, et al. Incidence and predictors of cardiac perforation after permanent pacemaker placement. Heart Rhythm. 2005;2:907-11.

172. Lang R, David D, Klein HO, et al. The use of the balloon-tipped floating catheter in temporary transvenous cardiac pacing. Pacing Clin Electrophysiol. 1981;4:491-6.

173. Winner S, Boon N. Clinical problems with temporary pacemakers prior to permanent pacing. J R Coll Physicians Lond. 1989;23:161-3.

174. Pinneri F, Frea S, Najd K, et al. Echocardiography-guided versus fluoroscopy-guided temporary pacing in the emergency setting: an observational study. J Cardiovasc Med (Hagerstown). 2013;14:242-6.

175. Braun MU, Rauwolf T, Bock M, et al. Percutaneous lead implantation connected to an external device in stimulation-dependent patients with systemic infection--a prospective and controlled study. Pacing Clin Electrophysiol. 2006;29:875-9.

176. de Cock CC, Van Campen CM, In't Veld JA, et al. Utility and safety of prolonged temporary transvenous pacing using an active-fixation lead: comparison with a conventional lead. Pacing Clin Electrophysiol. 2003;26:1245-8.

177. Kawata H, Pretorius V, Phan H, et al. Utility and safety of temporary pacing using active fixation leads and externalized re-usable permanent pacemakers after lead extraction. Europace. 2013;15:1287-91.

178. Chihrin SM, Mohammed U, Yee R, et al. Utility and cost effectiveness of temporary pacing using active fixation leads and an externally placed reusable permanent pacemaker. Am J Cardiol. 2006;98:1613-5.

Page 245

179. Lever N, Ferguson JD, Bashir Y, et al. Prolonged temporary cardiac pacing using subcutaneous tunnelled active-fixation permanent pacing leads. Heart. 2003;89:209-10.

180. Kornberger A, Schmid E, Kalender G, et al. Bridge to recovery or permanent system implantation: an eight-year single-center experience in transvenous semipermanent pacing. Pacing Clin Electrophysiol. 2013;36:1096-103.

181. Zei PC, Eckart RE, Epstein LM. Modified temporary cardiac pacing using transvenous active fixation leads and external re-sterilized pulse generators. J Am Coll Cardiol. 2006;47:1487-9.

182. Santini M, Castro A, Giada F, et al. Prevention of syncope through permanent cardiac pacing in patients with bifascicular block and syncope of unexplained origin: the PRESS study. Circ Arrhythm Electrophysiol. 2013;6:101-7.

183. Guerrero-Marquez FJ, Arana-Rueda E, Pedrote A. Idiopathic Paroxysmal Atrio-Ventricular Block. What is The Mechanism? J Atr Fibrillation. 2016;9:1449.

184. Brignole M, Deharo JC, De Roy L, et al. Syncope due to idiopathic paroxysmal atrioventricular block: long-term follow-up of a distinct form of atrioventricular block. J Am Coll Cardiol. 2011;58:167-73.

185. Brignole M, Menozzi C, Moya A, et al. Mechanism of syncope in patients with bundle branch block and negative electrophysiological test. Circulation. 2001;104:2045-50.

186. Carano N, Bo I, Tchana B, et al. Adams-Stokes attack as the first symptom of acute rheumatic fever: report of an adolescent case and review of the literature. Ital J Pediatr. 2012;38:61.

187. Ando G, Versaci F. Ventriculo-atrial gradient due to first degree atrio-ventricular block: a case report. BMC Cardiovasc Disord. 2005;5:23.

188. Maeno K, Kasai A, Setsuda M, et al. Advanced atrioventricular block induced by obstructive sleep apnea before oxygen desaturation. Heart Vessels. 2009;24:236-40.

189. Moya A, Garcia-Civera R, Croci F, et al. Diagnosis, management, and outcomes of patients with syncope and bundle branch block. Eur Heart J. 2011;32:1535-41.

190. Panic G, Stanulovic V, Popov T. Atrio-ventricular block as the first presentation of disseminated Lyme disease. Int J Cardiol. 2011;150:e104-6.

191. Carroz P, Delay D, Girod G. Pseudo-pacemaker syndrome in a young woman with first-degree atrio-ventricular block. Europace. 2010;12:594-6.

192. Marti-Almor J, Cladellas M, Bazan V, et al. Long-term mortality predictors in patients with chronic bifascicular block. Europace. 2009;11:1201-7.

193. Barold SS. Indications for permanent cardiac pacing in first-degree AV block: class I, II, or III? Pacing Clin Electrophysiol. 1996;19:747-51.

194. Barold SS, Ilercil A, Leonelli F, et al. First-degree atrioventricular block. Clinical manifestations, indications for pacing, pacemaker management & consequences during cardiac resynchronization. J Interv Card Electrophysiol. 2006;17:139-52.

195. Barra SN, Providencia R, Paiva L, et al. A review on advanced atrioventricular block in young or middle-aged adults. Pacing Clin Electrophysiol. 2012;35:1395-405.

196. Dhingra RC, Denes P, Wu D, et al. The significance of second degree atrioventricular block and bundle branch block. Observations regarding site and type of block. Circulation. 1974;49:638-46.

197. Shaw DB, Eraut D. Prevalence and morbidity of heart block in Devon. Br Med J. 1970;1:144-7.

198. Simon AB, Zloto AE. Atrioventricular block: natural history after permanent ventricular pacing. Am J Cardiol. 1978;41:500-7.

199. Strasberg B, Amat YLF, Dhingra RC, et al. Natural history of chronic second-degree atrioventricular nodal block. Circulation. 1981;63:1043-9.

200. Edhag O, Swahn A. Prognosis of patients with complete heart block or arrhythmic syncope who were not treated with artificial pacemakers. A long-term follow-up study of 101 patients. Acta Med Scand. 1976;200:457-63.

201. Shaw DB, Kekwick CA, Veale D, et al. Survival in second degree atrioventricular block. Br Heart J. 1985;53:587-93.

202. Wahbi K, Meune C, Porcher R, et al. Electrophysiological study with prophylactic pacing and survival in adults with myotonic dystrophy and conduction system disease. Jama. 2012;307:1292-301.

203. Buckley AE, Dean J, Mahy IR. Cardiac involvement in Emery Dreifuss muscular dystrophy: a case series. Heart. 1999;82:105-8.

204. Kitaguchi T, Matsubara S, Sato M, et al. A missense mutation in the exon 8 of lamin A/C gene in a Japanese case of autosomal dominant limbgirdle muscular dystrophy and cardiac conduction block. Neuromuscul Disord. 2001;11:542-6.

205. Finsterer J, Stollberger C. Heart Disease in Disorders of Muscle, Neuromuscular Transmission, and the Nerves. Korean Circ J. 2016;46:117-34.

206. Ha AH, Tarnopolsky MA, Bergstra TG, et al. Predictors of atrio-ventricular conduction disease, long-term outcomes in patients with myotonic dystrophy types I and II. Pacing Clin Electrophysiol. 2012;35:1262-9.

207. Lazarus A, Varin J, Babuty D, et al. Long-term follow-up of arrhythmias in patients with myotonic dystrophy treated by pacing: a multicenter diagnostic pacemaker study. J Am Coll Cardiol. 2002;40:1645-52.

208. Facenda-Lorenzo M, Hernandez-Afonso J, Rodriguez-Esteban M, et al. Cardiac manifestations in myotonic dystrophy type 1 patients followed using a standard protocol in a specialized unit. Rev Esp Cardiol (Engl Ed). 2013;66:193-7.

209. Bhakta D, Shen C, Kron J, et al. Pacemaker and implantable cardioverter-defibrillator use in a US myotonic dystrophy type 1 population. J Cardiovasc Electrophysiol. 2011;22:1369-75.

210. Groh WJ, Groh MR, Saha C, et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med. 2008;358:2688-97.

211. Groh WJ. Arrhythmias in the muscular dystrophies. Heart Rhythm. 2012;9:1890-5.

212. Kabunga P, Lau AK, Phan K, et al. Systematic review of cardiac electrical disease in Kearns-Sayre syndrome and mitochondrial cytopathy. Int J Cardiol. 2015;181:303-10.

213. Saxon LA, Albert BH, Uretz EF, et al. Permanent pacemaker placement in chronic atrial fibrillation associated with intermittent AV block and cerebral symptoms. Pacing Clin Electrophysiol. 1990;13:724-9.

214. Hilgard J, Ezri MD, Denes P. Significance of ventricular pauses of three seconds or more detected on twenty-four-hour Holter recordings. Am J Cardiol. 1985;55:1005-8.

215. Ector H, Rolies L, De Geest H. Dynamic electrocardiography and ventricular pauses of 3 seconds and more: etiology and therapeutic implications. Pacing Clin Electrophysiol. 1983;6:548-51.

216. Michaelsson M, Jonzon A, Riesenfeld T. Isolated congenital complete atrioventricular block in adult life. A prospective study. Circulation. 1995;92:442-9.

217. Sholler GF, Walsh EP. Congenital complete heart block in patients without anatomic cardiac defects. Am Heart J. 1989;118:1193-8.

218. Kim YH, O'Nunain S, Trouton T, et al. Pseudo-pacemaker syndrome following inadvertent fast pathway ablation for atrioventricular nodal reentrant tachycardia. J Cardiovasc Electrophysiol. 1993;4:178-82.

219. Alboni P, Holz A, Brignole M. Vagally mediated atrioventricular block: pathophysiology and diagnosis. Heart. 2013;99:904-8.

Page 247

220. Massie B, Scheinman MM, Peters R, et al. Clinical and electrophysiologic findings in patients with paroxysmal slowing of the sinus rate and apparent Mobitz type II atrioventricular block. Circulation. 1978;58:305-14.

221. Mosqueda-Garcia R, Furlan R, Tank J, et al. The elusive pathophysiology of neurally mediated syncope. Circulation. 2000;102:2898-906.

222. Kato Y, Morimoto S, Uemura A, et al. Efficacy of corticosteroids in sarcoidosis presenting with atrioventricular block. Sarcoidosis Vasc Diffuse Lung Dis. 2003;20:133-7.

223. Takaya Y, Kusano KF, Nakamura K, et al. Outcomes in patients with high-degree atrioventricular block as the initial manifestation of cardiac sarcoidosis. Am J Cardiol. 2015;115:505-9.

224. Padala SK, Peaslee S, Sidhu MS, et al. Impact of early initiation of corticosteroid therapy on cardiac function and rhythm in patients with cardiac sarcoidosis. Int J Cardiol. 2017;227:565-70.

225. Birnie DH, Nery PB, Ha AC, et al. Cardiac Sarcoidosis. J Am Coll Cardiol. 2016;68:411-21.

226. Zhou Y, Lower EE, Li HP, et al. Cardiac Sarcoidosis: The Impact of Age and Implanted Devices on Survival. Chest. 2017;151:139-48.

227. Sayed RH, Rogers D, Khan F, et al. A study of implanted cardiac rhythm recorders in advanced cardiac AL amyloidosis. Eur Heart J. 2015;36:1098-105.

228. Reisinger J, Dubrey SW, Lavalley M, et al. Electrophysiologic abnormalities in AL (primary) amyloidosis with cardiac involvement. J Am Coll Cardiol. 1997;30:1046-51.

229. Benditt DG, Benson DW, Jr., Kreitt J, et al. Electrophysiologic effects of theophylline in young patients with recurrent symptomatic bradyarrhythmias. Am J Cardiol. 1983;52:1223-9.

230. Nimura A, Sato N, Sakuragi H, et al. Recovery of advanced atrioventricular block by cilostazol. Intern Med. 2011;50:1957-61.

231. Watson RD, Glover DR, Page AJ, et al. The Birmingham Trial of permanent pacing in patients with intraventricular conduction disorders after acute myocardial infarction. Am Heart J. 1984;108:496-501.

232. Tans AC, Lie KI, Durrer D. Clinical setting and prognostic significance of high degree atrioventricular block in acute inferior myocardial infarction: a study of 144 patients. Am Heart J. 1980;99:4-8.

233. Ginks WR, Sutton R, Oh W, et al. Long-term prognosis after acute anterior infarction with atrioventricular block. Br Heart J. 1977;39:186-9.

234. Singh SM, FitzGerald G, Yan AT, et al. High-grade atrioventricular block in acute coronary syndromes: insights from the Global Registry of Acute Coronary Events. Eur Heart J. 2015;36:976-83.

235. Kostic T, Momcilovic S, Perisic ZD, et al. Manifestations of Lyme carditis. Int J Cardiol. 2017;232:24-32.

236. Robinson ML, Kobayashi T, Higgins Y, et al. Lyme carditis. Infect Dis Clin North Am. 2015;29:255-68.

237. Unterberg C, Luthje L, Szych J, et al. Atrial overdrive pacing compared to CPAP in patients with obstructive sleep apnoea syndrome. Eur Heart J. 2005;26:2568-75.

238. Garrigue S, Bordier P, Jais P, et al. Benefit of atrial pacing in sleep apnea syndrome. N Engl J Med. 2002;346:404-12.

239. Kinlay S, Leitch JW, Neil A, et al. Cardiac event recorders yield more diagnoses and are more cost-effective than 48-hour Holter monitoring in patients with palpitations. A controlled clinical trial. Ann Intern Med. 1996;124:16-20.

240. Giada F, Gulizia M, Francese M, et al. Recurrent unexplained palpitations (RUP) study comparison of implantable loop recorder versus conventional diagnostic strategy. J Am Coll Cardiol. 2007;49:1951-6.

241. Katritsis DG, Josephson ME. Electrophysiological Testing for the Investigation of Bradycardias. Arrhythm Electrophysiol Rev. 2017;6:24-8.

242. Mangiardi LM, Bonamini R, Conte M, et al. Bedside evaluation of atrioventricular block with narrow QRS complexes: usefulness of carotid sinus massage and atropine administration. Am J Cardiol. 1982;49:1136-45.

243. Twidale N, Heddle WF, Tonkin AM. Procainamide administration during electrophysiology study--utility as a provocative test for intermittent atrioventricular block. Pacing Clin Electrophysiol. 1988;11:1388-97.

244. Bogossian H, Frommeyer G, Gobbert K, et al. Is there a prognostic relevance of electrophysiological studies in bundle branch block patients? Clin Cardiol. 2017;40:575-9.

245. Kalscheur MM, Donateo P, Wenzke KE, et al. Long-Term Outcome of Patients with Bifascicular Block and Unexplained Syncope Following Cardiac Pacing. Pacing Clin Electrophysiol. 2016;39:1126-31.

246. Morady F, Higgins J, Peters RW, et al. Electrophysiologic testing in bundle branch block and unexplained syncope. Am J Cardiol. 1984;54:587-91.

247. Click RL, Gersh BJ, Sugrue DD, et al. Role of invasive electrophysiologic testing in patients with symptomatic bundle branch block. Am J Cardiol. 1987;59:817-23.

248. Brignole M, Menozzi C, Bottoni N, et al. Mechanisms of syncope caused by transient bradycardia and the diagnostic value of electrophysiologic testing and cardiovascular reflexivity maneuvers. Am J Cardiol. 1995;76:273-8.

249. Dhingra RC, Wyndham C, Bauernfeind R, et al. Significance of block distal to the His bundle induced by atrial pacing in patients with chronic bifascicular block. Circulation. 1979;60:1455-64.

250. Zipes DP. Second-degree atrioventricular block. Circulation. 1979;60:465-72.

251. Shetty RK, Agarwal S, Ganiga Sanjeeva NC, et al. Trifascicular block progressing to complete AV block on exercise: a rare presentation demonstrating the usefulness of exercise testing. BMJ Case Rep. 2015;2015:

252. Toeda T, Suetake S, Tsuchida K, et al. Exercise induced atrioventricular block with gap phenomenon in atrioventricular conduction. Pacing Clin Electrophysiol. 2000;23:527-9.

253. Chokshi SK, Sarmiento J, Nazari J, et al. Exercise-provoked distal atrioventricular block. Am J Cardiol. 1990;66:114-6.

254. Bakst A, Goldberg B, Schamroth L. Significance of exercise-induced second degree atrioventricular block. Br Heart J. 1975;37:984-6.

255. Egred M, Jafary F, Rodrigues E. Exercise induced atrio-ventricular (AV) block: important but uncommon phenomenon. Int J Cardiol. 2004;97:559-60.

256. Fisher JD. Role of electrophysiologic testing in the diagnosis and treatment of patients with known and suspected bradycardias and tachycardias. Prog Cardiovasc Dis. 1981;24:25-90.

257. Toff WD, Camm AJ, Skehan JD. Single-chamber versus dual-chamber pacing for high-grade atrioventricular block. N Engl J Med. 2005;353:145-55.

258. Kerr CR, Connolly SJ, Abdollah H, et al. Canadian Trial of Physiological Pacing: Effects of physiological pacing during long-term follow-up. Circulation. 2004;109:357-62.

259. Curtis AB, Worley SJ, Adamson PB, et al. Biventricular pacing for atrioventricular block and systolic dysfunction. N Engl J Med. 2013;368:1585-93.

260. Gierula J, Cubbon RM, Jamil HA, et al. Cardiac resynchronization therapy in pacemaker-dependent patients with left ventricular dysfunction. Europace. 2013;15:1609-14.

Page 249

261. Kindermann M, Hennen B, Jung J, et al. Biventricular versus conventional right ventricular stimulation for patients with standard pacing indication and left ventricular dysfunction: the Homburg Biventricular Pacing Evaluation (HOBIPACE). J Am Coll Cardiol. 2006;47:1927-37.

262. Wilkoff BL, Cook JR, Epstein AE, et al. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. Jama. 2002;288:3115-23.

263. Doshi RN, Daoud EG, Fellows C, et al. Left ventricular-based cardiac stimulation post AV nodal ablation evaluation (the PAVE study). J Cardiovasc Electrophysiol. 2005;16:1160-5.

264. Brignole M, Botto G, Mont L, et al. Cardiac resynchronization therapy in patients undergoing atrioventricular junction ablation for permanent atrial fibrillation: a randomized trial. Eur Heart J. 2011;32:2420-9.

265. Brignole M, Gammage M, Puggioni E, et al. Comparative assessment of right, left, and biventricular pacing in patients with permanent atrial fibrillation. Eur Heart J. 2005;26:712-22.

266. Brignole M, Botto GL, Mont L, et al. Predictors of clinical efficacy of 'Ablate and Pace' therapy in patients with permanent atrial fibrillation. Heart. 2012;98:297-302.

267. Dretzke J, Toff WD, Lip GY, et al. Dual chamber versus single chamber ventricular pacemakers for sick sinus syndrome and atrioventricular block. Cochrane Database Syst Rev. 2004;Cd003710.

268. Vatankulu MA, Goktekin O, Kaya MG, et al. Effect of long-term resynchronization therapy on left ventricular remodeling in pacemaker patients upgraded to biventricular devices. Am J Cardiol. 2009;103:1280-4.

269. Kiehl EL, Makki T, Kumar R, et al. Incidence and predictors of right ventricular pacing-induced cardiomyopathy in patients with complete atrioventricular block and preserved left ventricular systolic function. Heart Rhythm. 2016;13:2272-8.

270. Ellenbogen KA, Hellkamp AS, Wilkoff BL, et al. Complications arising after implantation of DDD pacemakers: the MOST experience. Am J Cardiol. 2003;92:740-1.

271. Udo EO, Zuithoff NP, van Hemel NM, et al. Incidence and predictors of short- and long-term complications in pacemaker therapy: the FOLLOWPACE study. Heart Rhythm. 2012;9:728-35.

272. Ellenbogen KA, Stambler BS, Orav EJ, et al. Clinical characteristics of patients intolerant to VVIR pacing. Am J Cardiol. 2000;86:59-63.

273. Link MS, Hellkamp AS, Estes NA, 3rd, et al. High incidence of pacemaker syndrome in patients with sinus node dysfunction treated with ventricular-based pacing in the Mode Selection Trial (MOST). J Am Coll Cardiol. 2004;43:2066-71.

274. Arbustini E, Pilotto A, Repetto A, et al. Autosomal dominant dilated cardiomyopathy with atrioventricular block: a lamin A/C defect-related disease. J Am Coll Cardiol. 2002;39:981-90.

275. Anselme F, Moubarak G, Savoure A, et al. Implantable cardioverter-defibrillators in lamin A/C mutation carriers with cardiac conduction disorders. Heart Rhythm. 2013;10:1492-8.

276. Hasselberg NE, Edvardsen T, Petri H, et al. Risk prediction of ventricular arrhythmias and myocardial function in Lamin A/C mutation positive subjects. Europace. 2014;16:563-71.

277. Mahmod M, Karamitsos TD, Suttie JJ, et al. Prevalence of cardiomyopathy in asymptomatic patients with left bundle branch block referred for cardiovascular magnetic resonance imaging. Int J Cardiovasc Imaging. 2012;28:1133-40.

278. McAnulty JH, Rahimtoola SH, Murphy E, et al. Natural history of "high-risk" bundle-branch block: final report of a prospective study. N Engl J Med. 1982;307:137-43.

Page 250

279. Kwok CS, Rashid M, Beynon R, et al. Prolonged PR interval, first-degree heart block and adverse cardiovascular outcomes: a systematic review and meta-analysis. Heart. 2016;102:672-80.

280. Boriani G, Gallina M, Merlini L, et al. Clinical relevance of atrial fibrillation/flutter, stroke, pacemaker implant, and heart failure in Emery-Dreifuss muscular dystrophy: a long-term longitudinal study. Stroke. 2003;34:901-8.

281. Mymin D, Mathewson FA, Tate RB, et al. The natural history of primary first-degree atrioventricular heart block. N Engl J Med. 1986;315:1183-7.

Huhta JC, Maloney JD, Ritter DG, et al. Complete atrioventricular block in patients with atrioventricular discordance. Circulation. 1983;67:13747.

283. Connelly MS, Liu PP, Williams WG, et al. Congenitally corrected transposition of the great arteries in the adult: functional status and complications. J Am Coll Cardiol. 1996;27:1238-43.

284. Weindling SN, Saul JP, Gamble WJ, et al. Duration of complete atrioventricular block after congenital heart disease surgery. Am J Cardiol. 1998;82:525-7.

285. Meune C, Van Berlo JH, Anselme F, et al. Primary prevention of sudden death in patients with lamin A/C gene mutations. N Engl J Med. 2006;354:209-10.

286. van Rijsingen IA, Arbustini E, Elliott PM, et al. Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers a European cohort study. J Am Coll Cardiol. 2012;59:493-500.

287. Maury P, Rollin A, Sacher F, et al. Prevalence and prognostic role of various conduction disturbances in patients with the Brugada syndrome. Am J Cardiol. 2013;112:1384-9.

288. O'Mahony C, Coats C, Cardona M, et al. Incidence and predictors of anti-bradycardia pacing in patients with Anderson-Fabry disease. Europace. 2011;13:1781-8.

289. Polak PE, Zijlstra F, Roelandt JR. Indications for pacemaker implantation in the Kearns-Sayre syndrome. Eur Heart J. 1989;10:281-2.

290. Khambatta S, Nguyen DL, Beckman TJ, et al. Kearns-Sayre syndrome: a case series of 35 adults and children. Int J Gen Med. 2014;7:325-32.

291. Ali H, Furlanello F, Lupo P, et al. Clinical and Electrocardiographic Features of Complete Heart Block Following Blunt Cardiac Injury: A Systematic Review of the Literature. Heart Rhythm. 2017;

292. Chierichini A, Frassanito L, Vergari A, et al. The effect of norepinephrine versus epinephrine in irrigation fluid on the incidence of hypotensive/bradycardic events during arthroscopic rotator cuff repair with interscalene block in the sitting position. Arthroscopy. 2015;31:800-6.

293. Marrocco-Trischitta MM, Mazzone P, Vitale R, et al. Temporary Transvenous Pacemaker Implantation during Carotid Endarterectomy in Patients with Trifascicular Block. Ann Vasc Surg. 2016;34:206-11.

294. Cheung CC, Martyn A, Campbell N, et al. Predictors of intraoperative hypotension and bradycardia. Am J Med. 2015;128:532-8.

295. Bauer AM, Smith RB, Thorell WE. Implications of carotid sinus hypersensitivity following preoperative embolization of a carotid body tumor. An indication for prophylactic intraoperative cardiac pacing. JAMA Otolaryngol Head Neck Surg. 2014;140:459-63.

296. Fritsch G, Flamm M, Hepner DL, et al. Abnormal pre-operative tests, pathologic findings of medical history, and their predictive value for perioperative complications. Acta Anaesthesiol Scand. 2012;56:339-50.

297. Pereira ID, Grando MM, Vianna PT, et al. Retrospective analysis of risk factors and predictors of intraoperative complications in neuraxial blocks at Faculdade de Medicina de Botucatu-UNESP. Rev Bras Anestesiol. 2011;61:568-81, 311-8.

Page 251

298. Mitar MD, Ratner S, Lavi S. Heart block and temporary pacing during rotational atherectomy. Can J Cardiol. 2015;31:335-40.

299. Im SH, Han MH, Kim SH, et al. Transcutaneous temporary cardiac pacing in carotid stenting: noninvasive prevention of angioplasty-induced bradycardia and hypotension. J Endovasc Ther. 2008;15:110-6.

300. Bush RL, Lin PH, Bianco CC, et al. Reevaluation of temporary transvenous cardiac pacemaker usage during carotid angioplasty and stenting: a safe and valuable adjunct. Vasc Endovascular Surg. 2004;38:229-35.

301. Harrop JS, Sharan AD, Benitez RP, et al. Prevention of carotid angioplasty-induced bradycardia and hypotension with temporary venous pacemakers. Neurosurgery. 2001;49:814-20; discussion 20-2.

302. Gauss A, Hubner C, Meierhenrich R, et al. Perioperative transcutaneous pacemaker in patients with chronic bifascicular block or left bundle branch block and additional first-degree atrioventricular block. Acta Anaesthesiol Scand. 1999;43:731-6.

303. Killeavy ES, Ferguson JJ, 3rd. The use of temporary transvenous pacing catheters during percutaneous transluminal coronary angioplasty. Tex Heart Inst J. 1990;17:37-41.

304. Chowdhury T, Ahuja N, Schaller B. Severe Bradycardia During Neurosurgical Procedure: Depth of Anesthesia Matters and Leads to a New Surrogate Model of the Trigeminocardiac Reflex: A Case Report. Medicine (Baltimore). 2015;94:e2118.

305. Yong J, Hibbert P, Runciman WB, et al. Bradycardia as an early warning sign for cardiac arrest during routine laparoscopic surgery. Int J Qual Health Care. 2015;27:473-8.

306. Vimala S, Arulvelan A. Sudden Bradycardia and Hypotension in Neurosurgery: Trigeminocardiac Reflex (TCR) and More. J Neurosurg Anesthesiol. 2016;28:175-6.

307. Mohan S, Flis DW, O'Leary MA. A Case of Trigeminocardiac Reflex During Infrastructure Maxillectomy. JAMA Otolaryngol Head Neck Surg. 2014;140:563-4.

308. Ishii D, Satow T, Murao K, et al. Efficacy of cilostazol in prevention of bradycardia during carotid artery stenting. J Stroke Cerebrovasc Dis. 2014;23:662-6.

309. Schipke JD, Cleveland S, Caspers C. Computer-assisted paranasal sinus operation induces diving bradycardia. Am J Otolaryngol. 2013;34:353-4.

310. Haldar R, Gyanesh P, Bettaswamy G. Isolated bradycardia due to skull pin fixation: an unusual occurrence. J Neurosurg Anesthesiol. 2013;25:206-7.

311. Seo KC, Park JS, Roh WS. Factors contributing to episodes of bradycardia hypotension during shoulder arthroscopic surgery in the sitting position after interscalene block. Korean J Anesthesiol. 2010;58:38-44.

312. Jeyabalan G, Saba S, Baril DT, et al. Bradyarrhythmias during rheolytic pharmacomechanical thrombectomy for deep vein thrombosis. J Endovasc Ther. 2010;17:416-22.

313. Usami K, Kamada K, Kunii N, et al. Transient asystole during surgery for posterior fossa meningioma caused by activation of the trigeminocardiac reflex: three case reports. Neurol Med Chir (Tokyo). 2010;50:339-42.

314. Lubbers HT, Zweifel D, Gratz KW, et al. Classification of potential risk factors for trigeminocardiac reflex in craniomaxillofacial surgery. J Oral Maxillofac Surg. 2010;68:1317-21.

315. Christensen RE, Reynolds PI, Bukowski BK, et al. Anaesthetic management and outcomes in patients with surgically corrected D-transposition of the great arteries undergoing non-cardiac surgery. Br J Anaesth. 2010;104:12-5.

316. Jacques F, Elkouri S, Bracco D, et al. Regional anesthesia for carotid surgery: less intraoperative hypotension and vasopressor requirement. Ann Vasc Surg. 2009;23:324-9.

317. Hanss R, Renner J, Ilies C, et al. Does heart rate variability predict hypotension and bradycardia after induction of general anaesthesia in high risk cardiovascular patients? Anaesthesia. 2008;63:129-35.

318. Reddy MK, Arivazhagan A, Chandramouli BA. Intractable hypotension and bradycardia during surgical positioning in atlantoaxial dislocation. J Neurosurg Anesthesiol. 2008;20:71.

319. Ardesch JJ, Buschman HP, van der Burgh PH, et al. Cardiac responses of vagus nerve stimulation: intraoperative bradycardia and subsequent chronic stimulation. Clin Neurol Neurosurg. 2007;109:849-52.

320. Jones PM, Soderman RM. Intra-operative bradycardia in a patient with Alzheimer's disease treated with two cholinesterase inhibitors. Anaesthesia. 2007;62:201.

321. Wijeysundera DN, Duncan D, Nkonde-Price C, et al. Perioperative beta blockade in noncardiac surgery: a systematic review for the 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2014;64:2406-25.

322. Morris D, Mulvihill D, Lew WY. Risk of developing complete heart block during bedside pulmonary artery catheterization in patients with left bundle-branch block. Arch Intern Med. 1987;147:2005-10.

323. Elliott CG, Zimmerman GA, Clemmer TP. Complications of pulmonary artery catheterization in the care of critically ill patients. A prospective study. Chest. 1979;76:647-52.

324. Unnikrishnan D, Idris N, Varshneya N. Complete heart block during central venous catheter placement in a patient with pre-existing left bundle branch block. Br J Anaesth. 2003;91:747-9.

325. Mouillet G, Lellouche N, Lim P, et al. Patients without prolonged QRS after TAVI with CoreValve device do not experience high-degree atrioventricular block. Catheter Cardiovasc Interv. 2013;81:882-7.

326. Rabinovitz E, Finkelstein A, Ben Assa E, et al. Norton scale for predicting prognosis in elderly patients undergoing trans-catheter aortic valve implantation: A historical prospective study. J Cardiol. 2016;67:519-25.

327. Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597-607.

328. Kogan A, Sternik L, Beinart R, et al. Permanent pacemaker insertion following isolated aortic valve replacement before and after the introduction of TAVI. Pacing Clin Electrophysiol. 2015;38:424-30.

329. Rivard L, Schram G, Asgar A, et al. Electrocardiographic and electrophysiological predictors of atrioventricular block after transcatheter aortic valve replacement. Heart Rhythm. 2015;12:321-9.

330. Rene AG, Sastry A, Horowitz JM, et al. Recovery of atrioventricular conduction after pacemaker placement following cardiac valvular surgery. J Cardiovasc Electrophysiol. 2013;24:1383-7.

331. Steyers CM, 3rd, Khera R, Bhave P. Pacemaker Dependency after Cardiac Surgery: A Systematic Review of Current Evidence. PLoS One. 2015;10:e0140340.

332. Dawkins S, Hobson AR, Kalra PR, et al. Permanent pacemaker implantation after isolated aortic valve replacement: incidence, indications, and predictors. Ann Thorac Surg. 2008;85:108-12.

Page 253

333. Viles-Gonzalez JF, Enriquez AD, Castillo JG, et al. Incidence, predictors, and evolution of conduction disorders and atrial arrhythmias after contemporary mitral valve repair. Cardiol J. 2014;21:569-75.

334. Merin O, Ilan M, Oren A, et al. Permanent pacemaker implantation following cardiac surgery: indications and long-term follow-up. Pacing Clin Electrophysiol. 2009;32:7-12.

335. Petrac D, Radic B, Birtic K, et al. Prospective evaluation of infrahisal second-degree AV block induced by atrial pacing in the presence of chronic bundle branch block and syncope. Pacing Clin Electrophysiol. 1996;19:784-92.

336. Bougioukas I, Jebran AF, Grossmann M, et al. Is there a correlation between late re-exploration after cardiac surgery and removal of epicardial pacemaker wires? J Cardiothorac Surg. 2017;12:3.

337. Bethea BT, Salazar JD, Grega MA, et al. Determining the utility of temporary pacing wires after coronary artery bypass surgery. Ann Thorac Surg. 2005;79:104-7.

338. Puskas JD, Sharoni E, Williams WH, et al. Is routine use of temporary epicardial pacing wires necessary after either OPCAB or conventional CABG/CPB? Heart Surg Forum. 2003;6:E103-6.

339. Caspi Y, Safadi T, Ammar R, et al. The significance of bundle branch block in the immediate postoperative electrocardiograms of patients undergoing coronary artery bypass. J Thorac Cardiovasc Surg. 1987;93:442-6.

340. Zeldis SM, Morganroth J, Horowitz LN, et al. Fascicular conduction distrubances after coronary bypass surgery. Am J Cardiol. 1978;41:860-4.

341. Cook DJ, Bailon JM, Douglas TT, et al. Changing incidence, type, and natural history of conduction defects after coronary artery bypass grafting. Ann Thorac Surg. 2005;80:1732-7.

342. Tuzcu EM, Emre A, Goormastic M, et al. Incidence and prognostic significance of intraventricular conduction abnormalities after coronary bypass surgery. J Am Coll Cardiol. 1990;16:607-10.

343. Ngaage DL, Schaff HV, Mullany CJ, et al. Does preoperative atrial fibrillation influence early and late outcomes of coronary artery bypass grafting? J Thorac Cardiovasc Surg. 2007;133:182-9.

344. Yesil M, Bayata S, Arikan E, et al. Should we revascularize before implanting a pacemaker? Clin Cardiol. 2008;31:498-501.

345. Satinsky JD, Collins JJ, Jr., Dalen JE. Conduction defects after cardiac surgery. Circulation. 1974;50:li170-4.

346. Limongelli G, Ducceschi V, D'Andrea A, et al. Risk factors for pacemaker implantation following aortic valve replacement: a single centre experience. Heart. 2003;89:901-4.

347. Bagur R, Manazzoni JM, Dumont É, et al. Permanent pacemaker implantation following isolated aortic valve replacement in a large cohort of elderly patients with severe aortic stenosis. Heart. 2011;97:1687-94.

348. Baraki H, Al Ahmad A, Jeng-Singh S, et al. Pacemaker dependency after isolated aortic valve replacement: do conductance disorders recover over time? Interact Cardiovasc Thorac Surg. 2013;16:476-81.

349. Greason KL, Lahr BD, Stulak JM, et al. Long-Term Mortality Effect of Early Pacemaker Implantation After Surgical Aortic Valve Replacement. Ann Thorac Surg. 2017;104:1259-64.

350. Berdajs D, Schurr UP, Wagner A, et al. Incidence and pathophysiology of atrioventricular block following mitral valve replacement and ring annuloplasty. Eur J Cardiothorac Surg. 2008;34:55-61.

351. Goldstein D, Moskowitz AJ, Gelijns AC, et al. Two-Year Outcomes of Surgical Treatment of Severe Ischemic Mitral Regurgitation. New England Journal of Medicine. 2016;374:344-53.

Page 254

352. Saint LL, Damiano RJ, Jr., Cuculich PS, et al. Incremental risk of the Cox-maze IV procedure for patients with atrial fibrillation undergoing mitral valve surgery. J Thorac Cardiovasc Surg. 2013;146:1072-7.

353. Gammie JS, Haddad M, Milford-Beland S, et al. Atrial fibrillation correction surgery: lessons from the Society of Thoracic Surgeons National Cardiac Database. Ann Thorac Surg. 2008;85:909-14.

354. Gillinov AM, Gelijns AC, Parides MK, et al. Surgical ablation of atrial fibrillation during mitral-valve surgery. N Engl J Med. 2015;372:1399-409.

355. Phan K, Xie A, La Meir M, et al. Surgical ablation for treatment of atrial fibrillation in cardiac surgery: a cumulative meta-analysis of randomised controlled trials. Heart. 2014;100:722-30.

356. Chikwe J, Itagaki S, Anyanwu A, et al. Impact of Concomitant Tricuspid Annuloplasty on Tricuspid Regurgitation, Right Ventricular Function, and Pulmonary Artery Hypertension After Repair of Mitral Valve Prolapse. J Am Coll Cardiol. 2015;65:1931-8.

357. Scully HE, Armstrong CS. Tricuspid valve replacement. Fifteen years of experience with mechanical prostheses and bioprostheses. J Thorac Cardiovasc Surg. 1995;109:1035-41.

358. Jokinen JJ, Turpeinen AK, Pitkanen O, et al. Pacemaker therapy after tricuspid valve operations: implications on mortality, morbidity, and quality of life. Ann Thorac Surg. 2009;87:1806-14.

359. McCarthy PM, Bhudia SK, Rajeswaran J, et al. Tricuspid valve repair: durability and risk factors for failure. J Thorac Cardiovasc Surg. 2004;127:674-85.

360. Piazza N, Onuma Y, Jesserun E, et al. Early and persistent intraventricular conduction abnormalities and requirements for pacemaking after percutaneous replacement of the aortic valve. JACC Cardiovasc Interv. 2008;1:310-6.

361. Roten L, Wenaweser P, Delacretaz E, et al. Incidence and predictors of atrioventricular conduction impairment after transcatheter aortic valve implantation. Am J Cardiol. 2010;106:1473-80.

362. van der Boon RM, Van Mieghem NM, Theuns DA, et al. Pacemaker dependency after transcatheter aortic valve implantation with the selfexpanding Medtronic CoreValve System. Int J Cardiol. 2013;168:1269-73.

363. Siontis GC, Juni P, Pilgrim T, et al. Predictors of permanent pacemaker implantation in patients with severe aortic stenosis undergoing TAVR: a meta-analysis. J Am Coll Cardiol. 2014;64:129-40.

364. Boerlage-Van Dijk K, Kooiman KM, Yong ZY, et al. Predictors and permanency of cardiac conduction disorders and necessity of pacing after transcatheter aortic valve implantation. Pacing Clin Electrophysiol. 2014;37:1520-9.

365. Nazif TM, Dizon JM, Hahn RT, et al. Predictors and clinical outcomes of permanent pacemaker implantation after transcatheter aortic valve replacement: the PARTNER (Placement of AoRtic TraNscathetER Valves) trial and registry. JACC Cardiovasc Interv. 2015;8:60-9.

366. Mouillet G, Lellouche N, Yamamoto M, et al. Outcomes following pacemaker implantation after transcatheter aortic valve implantation with CoreValve((R)) devices: Results from the FRANCE 2 Registry. Catheter Cardiovasc Interv. 2015;86:E158-66.

367. Abramowitz Y, Kazuno Y, Chakravarty T, et al. Concomitant mitral annular calcification and severe aortic stenosis: prevalence, characteristics and outcome following transcatheter aortic valve replacement. Eur Heart J. 2017;38:1194-203.

368. Franzoni I, Latib A, Maisano F, et al. Comparison of incidence and predictors of left bundle branch block after transcatheter aortic valve implantation using the CoreValve versus the Edwards valve. Am J Cardiol. 2013;112:554-9.

369. Urena M, Mok M, Serra V, et al. Predictive factors and long-term clinical consequences of persistent left bundle branch block following transcatheter aortic valve implantation with a balloon-expandable valve. J Am Coll Cardiol. 2012;60:1743-52.

Page 255

370. Testa L, Latib A, De Marco F, et al. Clinical impact of persistent left bundle-branch block after transcatheter aortic valve implantation with CoreValve Revalving System. Circulation. 2013;127:1300-7.

371. Egger F, Nurnberg M, Rohla M, et al. High-degree atrioventricular block in patients with preexisting bundle branch block or bundle branch block occurring during transcatheter aortic valve implantation. Heart Rhythm. 2014;11:2176-82.

372. Schymik G, Tzamalis P, Bramlage P, et al. Clinical impact of a new left bundle branch block following TAVI implantation: 1-year results of the TAVIK cohort. Clin Res Cardiol. 2015;104:351-62.

373. Regueiro A, Abdul-Jawad Altisent O, Del Trigo M, et al. Impact of new-onset left bundle branch block and periprocedural permanent pacemaker implantation on clinical outcomes in patients undergoing transcatheter aortic valve replacement: a systematic review and meta-analysis. Circ Cardiovasc Interv. 2016;9:e003635.

374. Mauri V, Reimann A, Stern D, et al. Predictors of Permanent Pacemaker Implantation After Transcatheter Aortic Valve Replacement With the SAPIEN 3. JACC Cardiovasc Interv. 2016;9:2200-9.

375. Watanabe Y, Kozuma K, Hioki H, et al. Pre-Existing Right Bundle Branch Block Increases Risk for Death After Transcatheter Aortic Valve Replacement With a Balloon-Expandable Valve. JACC Cardiovasc Interv. 2016;9:2210-6.

376. Auffret V, Webb JG, Eltchaninoff H, et al. Clinical Impact of Baseline Right Bundle Branch Block in Patients Undergoing Transcatheter Aortic Valve Replacement. JACC Cardiovasc Interv. 2017;10:1564-74.

377. Rampat R, Khawaja MZ, Hilling-Smith R, et al. Conduction Abnormalities and Permanent Pacemaker Implantation After Transcatheter Aortic Valve Replacement Using the Repositionable LOTUS Device: The United Kingdom Experience. JACC Cardiovasc Interv. 2017;10:1247-53.

378. Nombela-Franco L, del Trigo M, Morrison-Polo G, et al. Incidence, Causes, and Predictors of Early (</=30 Days) and Late Unplanned Hospital Readmissions After Transcatheter Aortic Valve Replacement. JACC Cardiovasc Interv. 2015;8:1748-57.

379. Urena M, Webb JG, Eltchaninoff H, et al. Late cardiac death in patients undergoing transcatheter aortic valve replacement: incidence and predictors of advanced heart failure and sudden cardiac death. J Am Coll Cardiol. 2015;65:437-48.

380. Dizon JM, Nazif TM, Hess PL, et al. Chronic pacing and adverse outcomes after transcatheter aortic valve implantation. Heart. 2015;101:1665-71.

381. Mallidi HR, Bates M. Pacemaker Use Following Heart Transplantation. Ochsner J. 2017;17:20-4.

382. Wellmann P, Herrmann FE, Hagl C, et al. A Single Center Study of 1,179 Heart Transplant Patients-Factors Affecting Pacemaker Implantation. Pacing Clin Electrophysiol. 2017;40:247-54.

383. Lee W, Tay A, Walker BD, et al. Accelerated graft dysfunction in heart transplant patients with persistent atrioventricular conduction block. Europace. 2016;18:1837-41.

384. El-Assaad I, Al-Kindi SG, Oliveira GH, et al. Pacemaker implantation in pediatric heart transplant recipients: Predictors, outcomes, and impact on survival. Heart Rhythm. 2015;12:1776-81.

385. Knight CS, Tallaj JA, Rayburn BK, et al. Bradycardia and syncope as a presentation of cardiac allograft rejection involving the conducting system. Cardiovasc Pathol. 2010;19:117-20.

386. Braith RW, Clapp L, Brown T, et al. Rate-responsive pacing improves exercise tolerance in heart transplant recipients: a pilot study. J Cardiopulm Rehabil. 2000;20:377-82.

387. Bacal F, Bocchi EA, Vieira ML, et al. Permanent and temporary pacemaker implantation after orthotopic heart transplantation. Arq Bras Cardiol. 2000;74:5-12.

388. Nagele H, Doring V, Kalmar P, et al. Long-term hemodynamic benefit of atrial synchronization with A2A2D or A2A2T pacing in sinus node syndrome after orthotopic heart transplantation. J Heart Lung Transplant. 1998;17:906-12.

389. Jones DG, Mortsell DH, Rajaruthnam D, et al. Permanent pacemaker implantation early and late after heart transplantation: clinical indication, risk factors and prognostic implications. J Heart Lung Transplant. 2011;30:1257-65.

390. Cantillon DJ, Tarakji KG, Hu T, et al. Long-term outcomes and clinical predictors for pacemaker-requiring bradyarrhythmias after cardiac transplantation: analysis of the UNOS/OPTN cardiac transplant database. Heart Rhythm. 2010;7:1567-71.

391. Liebregts M, Faber L, Jensen MK, et al. Outcomes of Alcohol Septal Ablation in Younger Patients With Obstructive Hypertrophic Cardiomyopathy. JACC Cardiovasc Interv. 2017;10:1134-43.

392. Poon SS, Field M, Gupta D, et al. Surgical septal myectomy or alcohol septal ablation: which approach offers better outcomes for patients with hypertrophic obstructive cardiomyopathy? Interact Cardiovasc Thorac Surg. 2017;24:951-61.

393. Axelsson A, Weibring K, Havndrup O, et al. Atrioventricular conduction after alcohol septal ablation for obstructive hypertrophic cardiomyopathy. J Cardiovasc Med (Hagerstown). 2014;15:214-21.

394. Veselka J, Krejci J, Tomasov P, et al. Outcome of patients after alcohol septal ablation with permanent pacemaker implanted for periprocedural complete heart block. Int J Cardiol. 2014;171:e37-8.

395. El-Jack SS, Nasif M, Blake JW, et al. Predictors of complete heart block after alcohol septal ablation for hypertrophic cardiomyopathy and the timing of pacemaker implantation. J Interv Cardiol. 2007;20:73-6.

396. McCann GP, Van Dockum WG, Beek AM, et al. Extent of myocardial infarction and reverse remodeling assessed by cardiac magnetic resonance in patients with and without right bundle branch block following alcohol septal ablation for obstructive hypertrophic cardiomyopathy. Am J Cardiol. 2007;99:563-7.

397. Faber L, Welge D, Fassbender D, et al. Percutaneous septal ablation for symptomatic hypertrophic obstructive cardiomyopathy: managing the risk of procedure-related AV conduction disturbances. Int J Cardiol. 2007;119:163-7.

398. Talreja DR, Nishimura RA, Edwards WD, et al. Alcohol septal ablation versus surgical septal myectomy: comparison of effects on atrioventricular conduction tissue. J Am Coll Cardiol. 2004;44:2329-32.

399. Wang S, Luo M, Sun H, et al. A retrospective clinical study of transaortic extended septal myectomy for obstructive hypertrophic cardiomyopathy in China. Eur J Cardiothorac Surg. 2013;43:534-40.

400. Agarwal S, Tuzcu EM, Desai MY, et al. Updated meta-analysis of septal alcohol ablation versus myectomy for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;55:823-34.

401. Schuller JL, Zipse MM, Krantz MJ, et al. Incidence and predictors of late complete heart block after alcohol septal ablation treatment of hypertrophic obstructive cardiomyopathy. J Interv Cardiol. 2015;28:90-7.

402. Veselka J, Lawrenz T, Stellbrink C, et al. Low incidence of procedure-related major adverse cardiac events after alcohol septal ablation for symptomatic hypertrophic obstructive cardiomyopathy. Can J Cardiol. 2013;29:1415-21.

403. Kim LK, Swaminathan RV, Looser P, et al. Hospital Volume Outcomes After Septal Myectomy and Alcohol Septal Ablation for Treatment of Obstructive Hypertrophic Cardiomyopathy: US Nationwide Inpatient Database, 2003-2011. JAMA Cardiol. 2016;1:324-32.

Page 257

404. Liebregts M, Vriesendorp PA, Mahmoodi BK, et al. A Systematic Review and Meta-Analysis of Long-Term Outcomes After Septal Reduction Therapy in Patients With Hypertrophic Cardiomyopathy. JACC Heart Fail. 2015;3:896-905.

405. Balt JC, Wijffels MC, Boersma LV, et al. Continuous rhythm monitoring for ventricular arrhythmias after alcohol septal ablation for hypertrophic cardiomyopathy. Heart. 2014;100:1865-70.

406. Qin JX, Shiota T, Lever HM, et al. Conduction system abnormalities in patients with obstructive hypertrophic cardiomyopathy following septal reduction interventions. Am J Cardiol. 2004;93:171-5.

407. Chang SM, Nagueh SF, Spencer WH, 3rd, et al. Complete heart block: determinants and clinical impact in patients with hypertrophic obstructive cardiomyopathy undergoing nonsurgical septal reduction therapy. J Am Coll Cardiol. 2003;42:296-300.

408. Chen AA, Palacios IF, Mela T, et al. Acute predictors of subacute complete heart block after alcohol septal ablation for obstructive hypertrophic cardiomyopathy. Am J Cardiol. 2006;97:264-9.

409. Lawrenz T, Lieder F, Bartelsmeier M, et al. Predictors of complete heart block after transcoronary ablation of septal hypertrophy: results of a prospective electrophysiological investigation in 172 patients with hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol. 2007;49:2356-63.

410. Wang W, Lian Z, Rowin EJ, et al. Prognostic Implications of Nonsustained Ventricular Tachycardia in High-Risk Patients With Hypertrophic Cardiomyopathy. Circ Arrhythm Electrophysiol. 2017;10:

411. Thavikulwat AC, Tomson TT, Knight BP, et al. Appropriate Implantable Defibrillator Therapy in Adults With Hypertrophic Cardiomyopathy. J Cardiovasc Electrophysiol. 2016;27:953-60.

412. Maron BJ, Spirito P, Shen WK, et al. Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. Jama. 2007;298:405-12.

413. Gelatt M, Hamilton RM, McCrindle BW, et al. Arrhythmia and mortality after the Mustard procedure: a 30-year single-center experience. J Am Coll Cardiol. 1997;29:194-201.

414. Helbing WA, Hansen B, Ottenkamp J, et al. Long-term results of atrial correction for transposition of the great arteries. Comparison of Mustard and Senning operations. J Thorac Cardiovasc Surg. 1994;108:363-72.

415. Anand N, McCrindle BW, Chiu CC, et al. Chronotropic incompetence in young patients with late postoperative atrial flutter: a case-control study. Eur Heart J. 2006;27:2069-73.

416. Diller GP, Dimopoulos K, Okonko D, et al. Heart rate response during exercise predicts survival in adults with congenital heart disease. J Am Coll Cardiol. 2006;48:1250-6.

417. Janousek J, Paul T, Luhmer I, et al. Atrial baffle procedures for complete transposition of the great arteries: natural course of sinus node dysfunction and risk factors for dysrhythmias and sudden death. Z Kardiol. 1994;83:933-8.

418. Fishberger SB, Wernovsky G, Gentles TL, et al. Factors that influence the development of atrial flutter after the Fontan operation. J Thorac Cardiovasc Surg. 1997;113:80-6.

419. Dewey RC, Capeless MA, Levy AM. Use of ambulatory electrocardiographic monitoring to identify high-risk patients with congenital complete heart block. N Engl J Med. 1987;316:835-9.

420. Lundstrom U, Bull C, Wyse RK, et al. The natural and "unnatural" history of congenitally corrected transposition. Am J Cardiol. 1990;65:1222-9.

421. Graham TP, Jr., Bernard YD, Mellen BG, et al. Long-term outcome in congenitally corrected transposition of the great arteries: a multiinstitutional study. J Am Coll Cardiol. 2000;36:255-61.

Page 258

422. Khairy P, Landzberg MJ, Gatzoulis MA, et al. Transvenous pacing leads and systemic thromboemboli in patients with intracardiac shunts: a multicenter study. Circulation. 2006;113:2391-7.

423. DeSimone CV, Friedman PA, Noheria A, et al. Stroke or transient ischemic attack in patients with transvenous pacemaker or defibrillator and echocardiographically detected patent foramen ovale. Circulation. 2013;128:1433-41.

424. Kim MH, Deeb GM, Eagle KA, et al. Complete atrioventricular block after valvular heart surgery and the timing of pacemaker implantation. Am J Cardiol. 2001;87:649-51, a10.

425. Glikson M, Dearani JA, Hyberger LK, et al. Indications, effectiveness, and long-term dependency in permanent pacing after cardiac surgery. Am J Cardiol. 1997;80:1309-13.

426. Edwards WD, Edwards JE. Pathology of the sinus node in d-transposition following the Mustard operation. J Thorac Cardiovasc Surg. 1978;75:213-8.

427. Sanders P, Morton JB, Kistler PM, et al. Electrophysiological and electroanatomic characterization of the atria in sinus node disease: evidence of diffuse atrial remodeling. Circulation. 2004;109:1514-22.

428. Bolens M, Friedli B. Sinus node function and conduction system before and after surgery for secundum atrial septal defect: an electrophysiologic study. Am J Cardiol. 1984;53:1415-20.

429. Gillette PC, el-Said GM, Sivarajan N, et al. Electrophysiological abnormalities after Mustard's operation for transposition of the great arteries. Br Heart J. 1974;36:186-91.

430. Garson A, Jr., Bink-Boelkens M, Hesslein PS, et al. Atrial flutter in the young: a collaborative study of 380 cases. J Am Coll Cardiol. 1985;6:871-8.

431. Albin G, Hayes DL, Holmes DR, Jr. Sinus node dysfunction in pediatric and young adult patients: treatment by implantation of a permanent pacemaker in 39 cases. Mayo Clin Proc. 1985;60:667-72.

432. McLeod CJ, Attenhofer Jost CH, Warnes CA, et al. Epicardial versus endocardial permanent pacing in adults with congenital heart disease. J Interv Card Electrophysiol. 2010;28:235-43.

433. Walker F, Siu SC, Woods S, et al. Long-term outcomes of cardiac pacing in adults with congenital heart disease. J Am Coll Cardiol. 2004;43:1894-901.

434. Bink-Boelkens MT, Velvis H, van der Heide JJ, et al. Dysrhythmias after atrial surgery in children. Am Heart J. 1983;106:125-30.

435. Stephenson EA, Casavant D, Tuzi J, et al. Efficacy of atrial antitachycardia pacing using the Medtronic AT500 pacemaker in patients with congenital heart disease. Am J Cardiol. 2003;92:871-6.

436. Rhodes LA, Walsh EP, Gamble WJ, et al. Benefits and potential risks of atrial antitachycardia pacing after repair of congenital heart disease. Pacing Clin Electrophysiol. 1995;18:1005-16.

437. Ayyildiz P, Kasar T, Ozturk E, et al. Evaluation of Permanent or Transient Complete Heart Block after Open Heart Surgery for Congenital Heart Disease. Pacing Clin Electrophysiol. 2016;39:160-5.

438. Aziz PF, Serwer GA, Bradley DJ, et al. Pattern of recovery for transient complete heart block after open heart surgery for congenital heart disease: duration alone predicts risk of late complete heart block. Pediatr Cardiol. 2013;34:999-1005.

439. Lin A, Mahle WT, Frias PA, et al. Early and delayed atrioventricular conduction block after routine surgery for congenital heart disease. J Thorac Cardiovasc Surg. 2010;140:158-60.

440. Domenighetti G, Perret C. Intraventricular conduction disturbances in acute myocardial infarction: short- and long-term prognosis. Eur J Cardiol. 1980;11:51-9.

441. Col JJ, Weinberg SL. The incidence and mortality of intraventricular conduction defects in acute myocardial infarction. Am J Cardiol. 1972;29:344-50.

442. Ritter WS, Atkins JM, Blomqvist CG, et al. Permanent pacing in patients with transient trifascicular block during acute myocardial infarction. Am J Cardiol. 1976;38:205-8.

443. Lamas GA, Muller JE, Turi ZG, et al. A simplified method to predict occurrence of complete heart block during acute myocardial infarction. Am J Cardiol. 1986;57:1213-9.

444. Shaw DB, Holman RR, Gowers JI. Survival in sinoatrial disorder (sick-sinus syndrome). Br Med J. 1980;280:139-41.

445. Hindman MC, Wagner GS, JaRo M, et al. The clinical significance of bundle branch block complicating acute myocardial infarction. 2. Indications for temporary and permanent pacemaker insertion. Circulation. 1978;58:689-99.

446. Hindman MC, Wagner GS, JaRo M, et al. The clinical significance of bundle branch block complicating acute myocardial infarction. 1. Clinical characteristics, hospital mortality, and one-year follow-up. Circulation. 1978;58:679-88.

447. Meine TJ, Al-Khatib SM, Alexander JH, et al. Incidence, predictors, and outcomes of high-degree atrioventricular block complicating acute myocardial infarction treated with thrombolytic therapy. Am Heart J. 2005;149:670-4.

448. Gang UJ, Hvelplund A, Pedersen S, et al. High-degree atrioventricular block complicating ST-segment elevation myocardial infarction in the era of primary percutaneous coronary intervention. Europace. 2012;14:1639-45.

449. Auffret V, Loirat A, Leurent G, et al. High-degree atrioventricular block complicating ST segment elevation myocardial infarction in the contemporary era. Heart. 2016;102:40-9.

450. Kim HL, Kim SH, Seo JB, et al. Influence of second- and third-degree heart block on 30-day outcome following acute myocardial infarction in the drug-eluting stent era. Am J Cardiol. 2014;114:1658-62.

451. Ranganathan N, Dhurandhar R, Phillips JH, et al. His Bundle electrogram in bundle-branch block. Circulation. 1972;45:282-94.

452. Rotman M, Wagner GS, Wallace AG. Bradyarrhythmias in acute myocardial infarction. Circulation. 1972;45:703-22.

453. Bestawros M, Darbar D, Arain A, et al. Ictal asystole and ictal syncope: insights into clinical management. Circ Arrhythm Electrophysiol. 2015;8:159-64.

454. Lanz M, Oehl B, Brandt A, et al. Seizure induced cardiac asystole in epilepsy patients undergoing long term video-EEG monitoring. Seizure. 2011;20:167-72.

455. Schuele SU, Bermeo AC, Alexopoulos AV, et al. Video-electrographic and clinical features in patients with ictal asystole. Neurology. 2007;69:434-41.

456. Tenyi D, Gyimesi C, Kupo P, et al. Ictal asystole: A systematic review. Epilepsia. 2017;58:356-62.

457. Ogunbayo GO, Charnigo R, Darrat Y, et al. Incidence, predictors, and outcomes associated with pneumothorax during cardiac electronic device implantation: A 16-year review in over 3.7 million patients. Heart Rhythm. 2017;14:1764-70.

458. Sochala M, Wahbi K, Sorbets E, et al. Risk for Complications after Pacemaker or Cardioverter Defibrillator Implantations in Patients with Myotonic Dystrophy Type 1. J Neuromuscul Dis. 2017;4:175-81.

459. Bai Y, Duan J, Wang L, et al. Clinical analysis of the effect of anti-allergy treatment on pocket-related complications following pacemaker implantation. Exp Ther Med. 2017;13:2876-82.

460. Hosseini SM, Moazzami K, Rozen G, et al. Utilization and in-hospital complications of cardiac resynchronization therapy: trends in the United States from 2003 to 2013. Eur Heart J. 2017;38:2122-8.

461. Gupta N, Kiley ML, Anthony F, et al. Multi-Center, Community-Based Cardiac Implantable Electronic Devices Registry: Population, Device Utilization, and Outcomes. J Am Heart Assoc. 2016;5:e002798.

462. Friedman DJ, Singh JP, Curtis JP, et al. Comparative Effectiveness of CRT-D Versus Defibrillator Alone in HF Patients With Moderate-to-Severe Chronic Kidney Disease. J Am Coll Cardiol. 2015;66:2618-29.

463. Witt CT, Kronborg MB, Nohr EA, et al. Adding the implantable cardioverter-defibrillator to cardiac resynchronization therapy is associated with improved long-term survival in ischaemic, but not in non-ischaemic cardiomyopathy. Europace. 2016;18:413-9.

464. Gadler F, Valzania C, Linde C. Current use of implantable electrical devices in Sweden: data from the Swedish pacemaker and implantable cardioverter-defibrillator registry. Europace. 2015;17:69-77.

465. Essebag V, Joza J, Birnie DH, et al. Incidence, predictors, and procedural results of upgrade to resynchronization therapy: the RAFT upgrade substudy. Circ Arrhythm Electrophysiol. 2015;8:152-8.

466. Chung MK, Holcomb RG, Mittal S, et al. REPLACE DARE (Death After Replacement Evaluation) score: determinants of all-cause mortality after implantable device replacement or upgrade from the REPLACE registry. Circ Arrhythm Electrophysiol. 2014;7:1048-56.

467. Adelstein E, Schwartzman D, Bazaz R, et al. Outcomes in pacemaker-dependent patients upgraded from conventional pacemakers to cardiac resynchronization therapy-defibrillators. Heart Rhythm. 2014;11:1008-14.

468. Kirkfeldt RE, Johansen JB, Nohr EA, et al. Complications after cardiac implantable electronic device implantations: an analysis of a complete, nationwide cohort in Denmark. Eur Heart J. 2014;35:1186-94.

469. Acosta J, Fernandez-Armenta J, Borras R, et al. Scar Characterization to Predict Life-Threatening Arrhythmic Events and Sudden Cardiac Death in Patients With Cardiac Resynchronization Therapy: The GAUDI-CRT Study. JACC Cardiovasc Imaging. 2017;

470. Martens P, Verbrugge FH, Nijst P, et al. Incremental benefit of cardiac resynchronisation therapy with versus without a defibrillator. Heart. 2017;103:1977-84.

471. Yokoshiki H, Shimizu A, Mitsuhashi T, et al. Survival and Heart Failure Hospitalization in Patients With Cardiac Resynchronization Therapy With or Without a Defibrillator for Primary Prevention in Japan- Analysis of the Japan Cardiac Device Treatment Registry Database. Circ J. 2017;81:1798-806.

472. Ip JE, Wu MS, Kennel PJ, et al. Eligibility of Pacemaker Patients for Subcutaneous Implantable Cardioverter Defibrillators. J Cardiovasc Electrophysiol. 2017;28:544-8.

473. Maisel WH, Moynahan M, Zuckerman BD, et al. Pacemaker and ICD generator malfunctions: analysis of Food and Drug Administration annual reports. Jama. 2006;295:1901-6.

474. Maisel WH. Pacemaker and ICD generator reliability: meta-analysis of device registries. Jama. 2006;295:1929-34.

475. Benhayon D, Lugo R, Patel R, et al. Long-term arrhythmia follow-up of patients with myotonic dystrophy. J Cardiovasc Electrophysiol. 2015;26:305-10.

476. Faber TS, Gradinger R, Treusch S, et al. Incidence of ventricular tachyarrhythmias during permanent pacemaker therapy in low-risk patients results from the German multicentre EVENTS study. Eur Heart J. 2007;28:2238-42.

Page 261