Table of Contents

Data Supplement 1. Nonrandomized Trials, Observational Studies, and/or Registries of Q3: Evidence regarding the difference in lipid levels measured in fasting and non-fasting individuals, and associations with outcomes (Section 2.2) ... 4

Data Supplement 2. RCTs of Statin Therapy for Primary Prevention of ASCVD Among Patients with the Metabolic Syndrome or its Subcomponents (Section 3.1.2) ... 12

Data Supplement 3. Meta-analyses comparing statins versus placebo or various intensities of statin therapy (Section 3.2) .. 15

Data Supplement 4. Risk stratification among patients with ASCVD to identify those most likely to benefit from non-statin therapy (Section 3.2.2) 17

Data Supplement 5. RCTs of Non-Statin or Combination Lipid Lowering Therapy for Primary Prevention of ASCVD Among Patients with the Metabolic Syndrome or its Subcomponents (Section 3.2.3) .. 20

Data Supplement 6. Evidence Tables for Statin initiation in patients with heart failure meta-analysis of CORONA and GISSI HF trials (Section 4.1) .. 22

Data Supplement 7. Meta-analysis of CORONA and GISSI HF trials (Section 4.1) ... 26

Data Supplement 8. Evidence Tables for Secondary Prevention (Section 4.1) ... 32

Data Supplement 9. RCTs comparing evidence on Severe Hypercholesterolemia (Section 4.2) .. 39

Data Supplement 10. Non-randomized Trials, Observational Studies and/or Registries for Severe Hypercholesterolemia (Section 4.2) .. 46

Data Supplement 11. Nonrandomized Trials, Observational Studies, and/or Registries of Diabetes Mellitus 40-75 Years (Section 4.3) .. 51

Data Supplement 12. RCTs Comparing Diabetes Mellitus 40-75 Years (Section 4.3) .. 58

Data Supplement 13. Nonrandomized Trials, Observational Studies, and/or Registries of ASCVD Risk Associated with the Metabolic Syndrome (Section 4.4.1) 64

Data Supplement 14. Nonrandomized Trials, Observational Studies, and/or Registries of Q1: Performance of the Pooled Cohort Equations (PCE) when used for the prediction of first incident atherosclerotic cardiovascular disease (ASCVD) events in diverse populations (Section 4.4.1.2) ... 65

Data Supplement 15. Nonrandomized Trials, Observational Studies, and/or Registries of Q2: Performance of coronary artery calcium screening to reclassify risk appropriately for atherosclerotic cardiovascular disease (ASCVD) events when used for the prediction of first incident ASCVD events in diverse populations, especially in the context of the Pooled Cohort Equations (Section 4.4.1.2) ... 84

Data Supplement 16. Evidence Tables for Borderline and Intermediate Risk Group (5-<7.5%; 7.5 to 20%) (Section 4.4.2) ... 101

Data Supplement 17. Evidence Tables Monitoring in Response to LDL-C–Lowering Therapy (Section 4.4.3) .. 104

Data Supplement 18. Evidence Table to discontinue therapy (Section 4.4.4.1) .. 107

Data Supplement 19. Evidence Table for Statin therapy for adults >75 years (Section 4.4.4.1) .. 109

Data Supplement 20. Nonrandomized Trials, Observational Studies, and/or Registries of Q4: Evidence regarding the cost-effectiveness of screening for familial hypercholesterolemia (Section 4.4.4.3) .. 115

Data Supplement 21. RCTs Comparing Screening of Children and Adolescents (Section 4.4.4.3) ... 121

Data Supplement 22. Nonrandomized Trials, Observational Studies, and/or Registries of Metabolic Syndrome of Children and Adolescents (Section 4.4.4.3) 131
Data Supplement 23. Nonrandomized Trials, Observational Studies, and/or Registries of Treatment (Section 4.4.4.3) ...134
Data Supplement 24. Nonrandomized Trials, observational studies and / Registries for African Americans. (Section 4.5.1) ...135
Data Supplement 25. Nonrandomized Trials, Observational Studies, and/or Registries of Pooled Cohorts Equation Risk Estimation in Adults of Asian Descent (Section 4.5.1) ...138
Data Supplement 26. Nonrandomized Trials, Observational Studies, and/or Registries of Hispanic (Section 4.5.1) ...141
Data Supplement 27. Nonrandomized Trials, Observational Studies, and/or Registries of Hispanic (Section 4.5.1) ...143
Data Supplement 28. Nonrandomized Trials, Observational Studies, and/or Registries of Hispanic (Section 4.5.1) ...148
Data Supplement 29. Nonrandomized Trials, Observational Studies, and/or Registries of Hispanic (Section 4.5.1) ...151
Data Supplement 30 Nonrandomized Trials, Observational Studies, and/or Registries of Hispanic (Section 4.5.1) ...153
Data Supplement 31. Hypertiglyceridemia: RCT, Meta Analyses (4.5.2) ...155
Data Supplement 32. Hypertiglyceridemia: Observational Studies (Section 4.5.2) ...161
Data Supplement 33. Randomized Trials of Statins in Women for Primary Prevention of CVD (Section 4.5.3.) ...166
Data Supplement 34. Nonrandomized Studies of the Utility of Coronary Artery Calcium in Women (Section 4.5.3) ...180
Data Supplement 35. CAC to guide therapy (Section 4.5.3) ...186
Data Supplement 36. Nonrandomized Trials, Observational Studies, and/or Registries of Chronic Kidney Disease and Cardiovascular Risk (Section 4.5.4) ...187
Data Supplement 37. RCTs Comparing PLACEBO VS. Statin (or Statin plus another agent) to reduce CVD events in persons with CKD (Section 4.5.4)..............................190
Data Supplement 38. RCTs Comparing PLACEBO VS. Statin (or Statin plus another agent) to reduce CVD events in persons with Albuminuria and preserved eGFR (Section 4.5.4) ...195
Data Supplement 39. Nonrandomized Trials, Observational Studies, and/or Registries of HIV/Inflammatory Diseases (Section 4.5.5) ..196
Data Supplement 40. RCTs Comparing Statin Safety and Statin Associated Side Effects (Section 5) ...205
Data Supplement 41. Nonrandomized Trials, Observational Studies, Meta-analyses and/or Registries of Statin Safety and Statin-Associated Side Effects (Section 5) ...210
Data Supplement 42. RCTs Comparing Patient Interventions to Usual Care (Section 6) ...215
Data Supplement 43. RCTs Comparing System Interventions to Usual Care (Section 6) ...219
Data Supplement 44. RCTs Comparing Small Number of Pills/Day to Large Number of Pills/Day (Section 6) ...221
Data Supplement 45. RCTs for Implementation (Section 6) ...225
Data Supplement 46. Nonrandomized Trials, Observational Studies, and/or Registries for Implementation (Section 6) ...227
Data Supplement 47. Cost-Effectiveness Models of PCKS9 Inhibitors in Secondary Prevention (Section 7) ...234
Data Supplement 48. Cost-Effectiveness Models of PCKS9 Inhibitors in Primary Prevention (Familial Hypercholesterolemia) (Section 7) ...235
References ...236

© American Heart Association, Inc., and the American College of Cardiology Foundation.
Methodology and Evidence Review
The recommendations listed in this guideline are, whenever possible, evidence based. An extensive evidence review was conducted from May 1980 through July 2017. Other selected references published through August 2018 were incorporated by the writing committee. Literature included was derived from research involving human subjects, published in English, and indexed in PubMed and other selected databases relevant to this guideline. Key search words included but were not limited to the following: hyperlipidemia, cholesterol, LDL-C, HDL-C, ezetimibe, bile acid sequestrants, PCSK9 inhibitors, lifestyle, diet, exercise, medications, child, adolescent, screening, primary prevention, secondary prevention, cardiovascular disease, coronary artery calcium, familial hypercholesterolemia. ASCVD risk enhancing factors, statin therapy, diabetes, women, adherence, Hispanic/Latino, South Asian, African American. Terms may have been used alone or in combination.

Abbreviations 1° indicates primary; 2°, secondary; ACC, American College of Cardiology; ACE, angiotensin-converting-enzyme; ACR, albumin-to-creatinine ratio; AHA, American Heart Association; ALT, alanine aminotransferase; AMI, acute myocardial infarction; ARB, angiotensin-receptor blocker; ART, antiretroviral therapy; AS, ankylosing spondylitis; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial—lipid-lowering arm; ASPEN, the Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in non-insulin-dependent diabetes mellitus; Atorva, atorvastatin; AURORA, A Study to Evaluate the Use of Rosuvastatin in Subjects on Regular Hemodialysis; BMI, body mass index; BP, blood pressure; CAC, coronary artery calcium; CARDS, Collaborative Atorvastatin Diabetes Study; CHD, coronary heart disease; chol, cholesterol; CI, confidence interval; CIMT, carotid intima-media thickness; CK, Creatine kinase; CKD, chronic kidney disease; cPB, carotid plaque burden score; CPK, creatine phosphokinase; CRP, C-reactive protein; CVD, cardiovascular disease; DM, diabetes mellitus; DR, diabetic retinopathy; EC, extended care; eGFR, estimated glomerular filtration rate; ERD, electronic reminder device; f/u, follow up; FDC, fixed-dose combination; FET, Fisher’s exact test; FOCUS, Fixed Dose Combination Drug [Polypill] for Secondary Cardiovascular Prevention; GFR, glomerular filtration rate; h/o, history of; Hba1c, hemoglobin A1c; HCV, Hepatitis C viral; HF, heart failure; HPS, Heart Protection Study; HPS2-THRIVE, Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events; HR, hazard ratio; ICD, International Classification of Disease; IQR, Inter Quartile range; ITT, intention to treat; JART, Justification for Atherosclerosis Regression Treatment; KDIGO, kidney international guidelines; LDL-C, low density lipoprotein cholesterol; LFT, liver function test; LVH, left ventricular hypertrophy; MACE, Major adverse cardiovascular events; MAQ, Morisky Green questionnaire; MEMS, medication event monitoring system; MESA, Multi-Ethnic Study of Atherosclerosis; MI, myocardial infarction; N/A, not applicable; NHANES, National Health And Nutrition Education Survey; NNT, number needed to treat; NODM, new onset diabetes mellitus; NP, nurse practitioner; NR, not reported; NRI, net reclassification index; NYHA, New York Heart Association; OR, odds ratio; P01, first co-primary outcome; PAD, peripheral arterial disease; PCI, percutaneous coronary intervention; P02, second co-primary outcome; PCP, primary care provider; PI, pharmacist-delivered intervention; PN, Peripheral neuropathy; pts, patients; RA, rheumatoid arthritis; RAS, renin angiotensin system; revasc, revascularization; RC, routine care; RCT, randomized controlled trial; rhabdo, rhabdomyolysis; rosuva, rosuvastatin; RUTHERFORD, Reduction of LDL-C with PCSK9 Inhibition in Heterozygous Familial Hypercholesterolemia Disorder; RR, relative risk; RRF, reduced renal function; RRR, relative risk reduction; SBP, systolic blood pressure; SCR, serum creatinine; SD, standard deviation; SE, standard error; SHARP, Study of Heart and Renal Protection; Simva; simvastatin; SL, systemic lupus erythematosus; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; TC, total cholesterol; UC, usual care; UL, upper limit; ULN, Upper limit of normal; UMPIRE, Use of a Multidrug Pill In Reducing Cardiovascular Events; UK, United Kingdom; US, United States; vs., versus; WOSCOPS, West of Scotland Coronary Prevention Study; y, years; yr, year.
Data Supplement 1. Nonrandomized Trials, Observational Studies, and/or Registries of Q3: Evidence regarding the difference in lipid levels measured in fasting and non-fasting individuals, and associations with outcomes (Section 2.2)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di Angelantonio E, et al., 2009 (1) 19622820</td>
<td>Study type: Individual patient data meta-analysis of prospective cohort studies
 Size: 302,430 individuals</td>
<td>Inclusion criteria:
 Studies with information on total cholesterol, HDL-C, triglycerides and other CVD risk factors at a baseline examination.
 Exclusion criteria:
 Participants with missing data.</td>
<td>1° endpoint: Incident myocardial infarction or fatal CHD.
 Results:
 8857 nonfatal MIs, 3928 CHD deaths.
 Adjusted HRs per 1 SD higher lipid measures:
 - HDL-C
 Fasting participants HR: 0.79; 95% CI: 0.74-0.84.
 Nonfasting participants HR: 0.75; 95% CI: 0.68-0.83.
 - Triglycerides
 Fasting participants HR: 1.02; 95% CI: 0.95-1.09.
 Nonfasting participants HR: 0.92; 95% CI: 0.82-1.03.</td>
<td>Hazard ratios for HDL-C and incident CHD were at least as strong for those who were not fasting as for those who fasted.
 After adjustment for HDL-C, non-HDL-C, and other standard CVD risk factors, triglycerides were not independently associated with CHD risk overall, in women and under nonfasting conditions.</td>
</tr>
<tr>
<td>Doran B, et al., 2014 (2) 25015340</td>
<td>Study type: Nested matched prospective cohort
 Size: 16,161 individuals (8,598 individuals after propensity matching: 4299 fasting; 4299 nonfasting)</td>
<td>Inclusion criteria:
 ≥18 y of age
 Noninstitutionalized US adults examined between 1988-1994 as part of NHANES III
 Fasting defined as ≥8 H for main analyses
 Exclusion criteria:
 Missing lipid values or fasting information.
 TG ≥400 mg/dL</td>
<td>1° endpoint: All-cause mortality; mean follow up of 14.0 y.
 Secondary outcome: CVD mortality.
 Results:
 Mean LDL-C 118.55 mg/dL among fasting and 118.33 among nonfasting matched participants.
 3788 total deaths; 1454 CVD deaths.
 HRs adjusted for potential confounders.
 All-cause mortality
 Fasting: LDL-C tertile 1: HR: 1.0 (referent).</td>
<td>Similar prognostic value for fasting and nonfasting LDL-C levels in association with all-cause and CVD mortality over 14 y.
 Similar prognostic value also observed for fasting and nonfasting total cholesterol and triglyceride levels.
 Results question the value of fasting for prognostic information from lipid panel.
 Large sample representative of broad US population.
 Fasting and nonfasting samples from different individuals; propensity score used to match fasting and nonfasting participants; content of last meal unknown.</td>
</tr>
<tr>
<td>Tertile</td>
<td>HR (95% CI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL-C tertile 1</td>
<td>1.0 (referent)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL-C tertile 2</td>
<td>1.68; 1.13-2.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL-C tertile 3</td>
<td>3.04; 2.00-4.62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C statistic: 0.62; 95% CI: 0.60-0.66.

Sensitivity analyses: Pattern of results similar for unmatched participants, participants with triglycerides ≥400 mg/dL, and for different definitions of fasting (4 H or 12 H).

- **Cardiovascular mortality**
 - **Fasting:**
 - LDL-C tertile 1: HR: 1.0 (referent)
 - LDL-C tertile 2: HR: 1.68; 95% CI: 1.13-2.51.
 - LDL-C tertile 3: HR: 3.04; 95% CI: 2.00-4.62.
 - C statistic: 0.62; 95% CI: 0.60-0.66.
Nonfasting:
LDL-C tertile 1: HR: 1.0 (referent).
LDL-C tertile 2: HR 1.59; 95% CI: 0.97-2.61.
LDL-C tertile 3: HR: 4.00; 95% CI: 2.58-6.19.

C statistic: 0.62; 95% CI: 0.60-0.66

(p=0.73 compared with C statistic for fasting).
P_{interaction} for fasting status x LDL-C=0.34.

C statistics for triglyceride levels for fasting (0.62; 95% CI: 0.60-0.64) vs. nonfasting (0.61; 95% CI: 0.59-0.64) participants were not different (p=0.81).

C statistics for total cholesterol levels for fasting (0.64; 95% CI: 0.62-0.66) vs. nonfasting (0.63; 95% CI: 0.60-0.65) participants were not different (p=0.49).

Sensitivity analyses: Pattern of results similar for unmatched participants, participants with triglycerides ≥400 mg/dL, and for different definitions of fasting (4 H or 12 H).

<table>
<thead>
<tr>
<th>Langsted A, et al., 2008 – Part 1 (3) 18955664</th>
<th>Study type: Cross-sectional cohort (Copenhagen General Population Study, 2003-2006 and Copenhagen City Heart Study, 2001-2003)</th>
<th>Inclusion criteria: • All adults ages 20-95 y • Fasting (≥8 H) or nonfasting (<8 H)</th>
<th>1° endpoint: Lipid levels stratified by time since last reported meal</th>
<th>Results: • Compared with levels in participants fasting >8 H, total cholesterol, LDL-C and HDL-C were minimally but statistically significantly lower for 3-5 H after the last reported meal; triglyceride levels were significantly higher for up to 6 H after the last meal. Adjustment for effects related to hemodilution altered some of these differences slightly.</th>
<th>Limitations: fasting and nonfasting samples from different individuals; exclusively northern European Caucasian sample; content of last meal unknown.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size: 33,391 individuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Levels of non-HDL-C, apo A1, apo B, total/HDL-C and apo B/apo A1 did not differ by time from last meal in response to normal food intake.
- Patterns of results did not differ substantially by time of day of blood sampling, although total cholesterol and LDL-C were somewhat lower for 5 H after a meal when blood was drawn in the evening.
- After normal food intake, maximum mean differences in levels were observed for:
 - Total cholesterol: -0.2 mmol/L at 0-2 H
 - LDL-C: -0.2 mmol/L at 0-2 H
 - HDL-C: -0.1 mmol/L at 0-5 H
 - Triglycerides: +0.3 mmol/L at 1-4 H
- Results were similar after excluding participants on lipid lowering therapy (5% of sample).

| Langsted A, et al., 2008 – Part 2 (3) 18955664 | **Study type:** Prospective cohort (Copenhagen City Heart Study, 1991-1994) | **Inclusion criteria:**
| | | • Adults ages 20-95 y and free of ischemic CVD
| | | • Nonfasting
| | **Exclusion criteria:** | • Missing lipid levels
| | **1st endpoint:** | Fatal and nonfatal myocardial infarction and ischemic stroke; Mean follow up 14.0 y.
| | **Results:** | 1,166 primary endpoint events.
| | | • Adjusted HRs for nonfasting lipids:
| | | **Total cholesterol**
| | | Men
| | | Tertile 1: HR: 1.0 (referent)
| | | Tertile 2: HR: 1.1; 95% CI: 0.7-1.6
| | | Tertile 3: HR: 1.7; 95% CI: 1.1-2.5
| | | Women
| | | Tertile 1: HR: 1.0 (referent)
| | | Tertile 2: HR: 1.4; 95% CI: 0.9-2.3
| | | Tertile 3: HR: 1.9; 95% CI: 1.2-3.1
| | **LDL-C**
| | Men
| | Tertile 1: HR: 1.0 (referent)
| | Tertile 2: HR: 1.3; 95% CI: 0.8-2.0
| | Tertile 3: HR: 1.8; 95% CI: 1.2-2.7
| | Nonfasting lipid levels are associated with ASCVD events.
| | Limitations: exclusively northern European Caucasian sample; content of last meal unknown. |
| Women | Tertile 1: HR: 1.0 (referent)
| | Tertile 2: HR: 1.6; 95% CI: 1.0-2.4
| | Tertile 3: HR: 2.2; 95% CI: 1.5-3.5
| | - Patterns of results by tertile were overall similar for other nonfasting lipid measures (non-HDL-C, HDL-C, Apo A1, Apo B, triglycerides, total/HDL-C, and Apo B/Apo A1). |

Study type: Cross-sectional cohort (Copenhagen General Population Study, 2003-2009)
Size: 58,434 individuals
Inclusion criteria:
- All adults ages 20-95 y
- Fasting (≥8 H) or nonfasting (<8 H)
Exclusion criteria: N/A

1st endpoint: Lipid levels stratified by time since last reported meal, in participants with and without diabetes.
Results:
- 2270 participants with and 56,164 without diabetes.
- 52% of participants with and 8% of those without diabetes taking statins
- Lipid levels were lower in participants with vs. without diabetes.
- Overall patterns of lipid levels as a function of time since last meal were similar between participants with and without diabetes.
- Compared with levels in participants fasting >8 H, total cholesterol and LDL-C were modestly lower for 3-5 H after the last reported meal; triglyceride levels were somewhat higher for up to 6 H after the last meal. Differences tended to be statistically significant among people without diabetes and nonsignificant among people with diabetes (smaller N).
- After normal food intake, maximum mean differences in levels were observed for:
 People without diabetes
 Total cholesterol: -0.3 mmol/L at 0-1 H
 LDL-C: -0.3 mmol/L at 0-2 H
 HDL-C: 0.0 mmol/L at 0-8 H
 Triglycerides: +0.2 mmol/L at 0-5 H

- Cholesterol and triglyceride levels differed minimally, and similarly, across time after normal food intake in individuals with and without diabetes.
- Limitations: fasting and nonfasting samples from different individuals; exclusively northern European Caucasian sample; content of last meal unknown; smaller number of participants with diabetes limits statistical power to detect differences.
<table>
<thead>
<tr>
<th>People with diabetes</th>
<th>Study type: Prospective cohort</th>
<th>Inclusion criteria:</th>
<th>1° endpoints: Lipid concentrations in fasting vs. nonfasting women; Composite end point of incident CVD (nonfatal myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting, nonfatal stroke, or cardiovascular death). Median follow up 11.4 y.</th>
<th>Exclusion criteria:</th>
<th>Results:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol: -0.4 mmol/L at 0-2 H</td>
<td>Size: 26,330 women</td>
<td>Women aged ≥45 y</td>
<td></td>
<td>Missing data on time since last meal</td>
<td>Lipid levels differed minimally in fasting compared with nonfasting women, with the exception of triglycerides.</td>
</tr>
<tr>
<td>LDL-C: -0.6 mmol/L at 1-2 H</td>
<td></td>
<td>Asymptomatic from CVD or cancer</td>
<td></td>
<td></td>
<td>Associations of fasting total cholesterol, LDL-C and non-HDL-C with incident CVD were stronger than associations of nonfasting levels with incident CVD. Associations with incident CVD were similar for fasting and nonfasting levels of HDL-C and total/HDL-C.</td>
</tr>
<tr>
<td>HDL-C: 0.0 mmol/L at 0-8 H</td>
<td></td>
<td>Fasting (≥8 H) or nonfasting (<8 H)</td>
<td></td>
<td></td>
<td>Results suggest that nonfasting blood draws may be useful when limited to HDL cholesterol, total/HDL cholesterol ratio, and triglycerides.</td>
</tr>
<tr>
<td>Triglycerides: +0.2 mmol/L at 0-4 H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results also suggest that a fasting sample is preferred if risk assessment is based on total cholesterol, LDL cholesterol, or non-HDL cholesterol alone.</td>
</tr>
<tr>
<td>• Adjustment for effects related to hemodilution attenuated these differences.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Limitations: women only; fasting and nonfasting samples from different individuals; largely Caucasian sample, higher SES; content of last meal unknown; smaller number of participants with diabetes limits statistical power to detect differences.</td>
</tr>
</tbody>
</table>
| Mora S, et al., 2009 (6) | **Study type:** Prospective cohort
Inclusion criteria:
- Women aged ≥45 y
- Asymptomatic from CVD or cancer
- Fasting (≥8 H) or nonfasting (<8 H)
- Missing data on time since last meal
Exclusion criteria:
- Correlation between fasting Friedewald calculated LDL-C and fasting direct LDL-C, \(r=0.976, p<0.001 \); mean difference (direct minus Friedewald) was -0.146 (95% CI: -0.149, -0.143) mmol/L for fasting samples and -0.125 (95% CI: -0.13, -0.12) mmol/L for nonfasting samples.
Endpoints: LDL-C measured by Friedewald calculation or direct LDL-C measurement in fasting vs. nonfasting women; Composite end point of incident CVD (nonfatal myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting, nonfatal stroke, or cardiovascular death); Mean follow up 11.4 y
Results: LDL-C.
- After adjustment for total and HDL-C, nonfasting triglycerides remained associated with incident CVD events, whereas fasting triglyceride levels did not.
- Results were generally similar for women using vs. not using hormone replacement therapy
- For total cholesterol, LDL-C, and non-HDL-C, significant associations with CVD were noted only after at least 10 H postprandially. The strongest associations for the other lipids and apolipoproteins were noted 6 to 8 H postprandially.
- Lower LDL-C measured by direct methods may lead to misclassification of some individuals when LDL-C strata are applied.
- Associations of Friedewald and direct LDL-C were nearly identical for fasting samples.
- No association of nonfasting direct LDL-C with incident CVD, calling into question the utility of a direct assay for prognosis in nonfasting samples.
- Limitations: women only; fasting and nonfasting samples from different individuals; largely Caucasian sample, higher SES; content of last meal unknown.
Total cholesterol
- Nonfasting: HR: 1.07; 95% CI: 0.93-1.21
- Fasting: HR: 1.22; 95% CI: 1.14-1.30
\(P \) interaction = 0.10
LDL-C
- Nonfasting: HR: 1.00; 95% CI: 0.87-1.15
- Fasting: HR: 1.21; 95% CI: 1.13-1.29
\(P \) interaction = 0.03
| 19395440 |
Study type: Prospective cohort
Size: 27,331 women
Exclusion criteria:
- Correlation between fasting Friedewald calculated LDL-C and fasting direct LDL-C, \(r=0.976, p<0.001 \); mean difference (direct minus Friedewald) was -0.146 (95% CI: -0.149, -0.143) mmol/L for fasting samples and -0.125 (95% CI: -0.13, -0.12) mmol/L for nonfasting samples.
Endpoints: LDL-C measured by Friedewald calculation or direct LDL-C measurement in fasting vs. nonfasting women; Composite end point of incident CVD (nonfatal myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting, nonfatal stroke, or cardiovascular death); Mean follow up 11.4 y
Results: LDL-C.
- After adjustment for total and HDL-C, nonfasting triglycerides remained associated with incident CVD events, whereas fasting triglyceride levels did not.
- Results were generally similar for women using vs. not using hormone replacement therapy
- For total cholesterol, LDL-C, and non-HDL-C, significant associations with CVD were noted only after at least 10 H postprandially. The strongest associations for the other lipids and apolipoproteins were noted 6 to 8 H postprandially.
- Lower LDL-C measured by direct methods may lead to misclassification of some individuals when LDL-C strata are applied.
- Associations of Friedewald and direct LDL-C were nearly identical for fasting samples.
- No association of nonfasting direct LDL-C with incident CVD, calling into question the utility of a direct assay for prognosis in nonfasting samples.
- Limitations: women only; fasting and nonfasting samples from different individuals; largely Caucasian sample, higher SES; content of last meal unknown.
| Study type: Cross-sectional cohort (Calgary Laboratory Services) | Inclusion criteria:
- All individuals with at least 1 lipid profile | 1st endpoint: Lipid levels stratified by time (1-16 H) since last reported meal, in men and women. | Fasting time since last meal showed minimal associations with total cholesterol and HDL-C, and modest associations with LDL-C (lower after meal by up to 10%) and triglycerides (higher after meal by up to 20%).
- Large population-based sample of those receiving testing.
- Limitations: content of last meal unknown; unknown status with regard to lipid lowering drugs. |
|---|---|---|---|
| Size: 209,180 individuals | Exclusion criteria:
- Missing fasting time data
- LDL-C data missing when triglycerides ≥400 mg/dL | Results:
- Compared with those who fasted >8 H, adjusted mean levels of lipid subclasses varied minimally in 1-7 H as a function time from last meal for total cholesterol and HDL-C, and somewhat more for LDL-C and triglycerides:
Mean total cholesterol varied by <2% lower (NS for men; p<0.05 for H 1-2 in women)
- Overall distributions of Friedewald or direct LDL-C did not differ substantially by time since last meal. |
- 945 incident CVD events.
- Adjusted HRs for incident CVD per 1 SD higher LDL-C:
Friedewald, fasting HR: 1.22; 95% CI: 1.14-1.30
Direct, fasting HR: 1.23; 95% CI: 1.15-1.32
Direct, nonfasting HR: 1.03; 95% CI: 0.89-1.18 |
Mean HDL-C varied by <2% lower (NS for men and women)
Mean LDL-C varied by <10% (p<0.05 for H 1-5 in men; p<0.05 for H 1-4 in women)
Mean triglycerides varied by <20% (p<0.05 for H 1-6 in men; p<0.05 for H 1-5 in women).

Abbreviations: 1° indicated primary; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; and RR, relative risk. NHANES

Search Terms and Date of Search: Author to provide

Data Supplement 2. RCTs of Statin Therapy for Primary Prevention of ASCVD Among Patients with the Metabolic Syndrome or its Subcomponents (Section 3.1.2)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
</table>
| MEGA Matshushima T, et al., 2012 (8) 22573844 | **Aim:** To evaluate the effectiveness of pravastatin for preventing ASCVD events among individuals with the metabolic syndrome
Study type: RCT (post-hoc subgroup analysis)
Size: 8,214 pts (subgroup of 2,636 with metabolic syndrome) | **Inclusion criteria:** Men and post-menopausal women aged 40-70 with total cholesterol 220-270 mg/dl
Exclusion criteria: History of CVD, familial hypercholesterolemia, secondary hyperlipidemia or current malignancy | **Intervention:** Pravastatin 10-20 mg
Comparator: Placebo | **1° endpoint:** CHD, defined as composite of fatal and nonfatal MI, cardiac and sudden death, coronary revascularization procedure and angina (Among those with metabolic syndrome: Pravastatin 5.3 vs. Placebo 6.9, events per 1000 person-y; HR: 0.78 [95% CI: 0.49-1.24])
Safety endpoint (if relevant): N/A | • Stroke (Pravastatin 2.6 vs. Placebo 5.7, events per 1000 person-y; HR: 0.45 [95% CI: 0.25-0.83])
• Total CVD events, defined as CHD, stroke, transient ischemic attack [TIA], and arteriosclerosis obliterans (Pravastatin 8.6 vs. Placebo 13.6, events per 1000 person-y; HR: 0.64 [95% CI: 0.45-0.90])
• Total Mortality (Pravastatin 2.5 vs. Placebo 5.2, events per 1000 person-y; HR: 0.50 [95% CI: 0.27-0.92])
Limitation: Post-hoc subgroup analysis among individuals with the metabolic syndrome |
<table>
<thead>
<tr>
<th>Study</th>
<th>Aim</th>
<th>Inclusion criteria</th>
<th>Intervention</th>
<th>1st endpoint</th>
<th>Safety endpoint</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFCAPS/TEXCAPS Clearfield M, et al., (9) 16360356</td>
<td>To determine the effectiveness of lovastatin for the primary prevention of ASCVD events among several clinical subgroups, including individuals with the metabolic syndrome.</td>
<td>Men aged 45-73 and women aged 55-73, with LDL cholesterol 130-190 mg/dl and triglycerides < 400 mg/dl</td>
<td>Lovastatin 20-40 mg</td>
<td>10-y incidence of MI, CHD Mortality or Unstable Angina (Among those with metabolic syndrome: Lovastatin 7.7% vs. Placebo 13.0%; RR: 0.59; p<0.05)</td>
<td>N/A</td>
<td>• Limitation: Post-hoc subgroup analysis among individuals with the metabolic syndrome. 10-y follow-up data utilized</td>
</tr>
<tr>
<td>WOSCOPS Sattar N, et al., 2003 (10) 12860911</td>
<td>To evaluate the risk for CHD associated with metabolic syndrome and risk reduction from pravastatin in those with and without metabolic syndrome.</td>
<td>Men with LDL cholesterol from 174-232 mg/dl and triglycerides < 530 mg/dl</td>
<td>Pravastatin 40 mg</td>
<td>CHD, defined as nonfatal CHD or CHD death (Among those with metabolic syndrome: Pravsatatin 7.7% vs. Placebo 10.4%, event rate; HR: 0.73; 95% CI: 0.53-1.01)</td>
<td>N/A</td>
<td>• Limitation: Post-hoc subgroup analysis among individuals with the metabolic syndrome Average 4.9 y follow-up</td>
</tr>
<tr>
<td>Study</td>
<td>Aim: To evaluate whether rosuvastatin decreases the rate of first major cardiovascular events among individuals with elevated high sensitivity CRP and LDL-C < 130 mg/dL</td>
<td>Inclusion criteria: LDL-C less than 130 mg/dL, triglycerides < 500 mg/dL and high sensitivity CRP ≥ 2 mg/dL</td>
<td>Intervention: Rosuvastatin 20 mg</td>
<td>1st endpoint: First major cardiovascular event, defined as nonfatal MI, nonfatal stroke, hospitalization for unstable angina, arterial revascularization procedure or death from cardiovascular causes (Rosuvastatin 0.77 vs. Placebo 1.36, rate per 100 person-y; HR: 0.56; 95% CI: 0.46-0.69)</td>
<td>• All-cause mortality (Rosuvastatin 1.00 vs. Placebo 1.25, rate per 100 person-y; HR: 0.80; 95% CI: 0.67-0.97)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>JUPITER</td>
<td>Study type: RCT</td>
<td>Exclusion criteria: A history of CVD; current use of lipid lowering therapy; elevated CK (3x normal), ALT (2x normal) or creatinine (> 2 mg/dL); uncontrolled HTN; history of systemic inflammatory condition</td>
<td>Comparator: Placebo</td>
<td>Safety endpoint: Any serious event (Rosuvastatin 15.2% vs. Placebo 15.5%; p=0.60); notable statistically significant findings: newly diagnosed diabetes (Rosuvastatin 3.0% vs. Placebo 2.4%, p=0.01); death from cancer (Rosuvastatin 0.4% vs. Placebo 0.7%, p=0.02); median GFR at 12 mo (Rosuvastatin 66.8 vs. Placebo 66.6, in ml/min/1.73 m²; p=0.02)</td>
<td>• In subgroup analyses, rosuvastatin was associated with a reduction in the primary endpoint among individuals with and without the metabolic syndrome, with no evidence of statistical interaction (p=0.14)</td>
<td></td>
</tr>
<tr>
<td>HOPE-3</td>
<td>Aim: To evaluate the effects of rosuvastatin on preventing cardiovascular events among intermediate risk persons without baseline cardiovascular disease</td>
<td>Inclusion criteria: Men ≥ 55 y and Women ≥ 65 y with at least one of the following risk factors: elevated waist-hip ratio; low HDL-C; dysglycemia; current or recent smoking; mild renal dysfunction; or a family history of premature CAD. Women ≥ 60 y with at least two of the above risk factors</td>
<td>Intervention: Rosuvastatin 10 mg</td>
<td>1st co-primary outcome: composite of death from cardiovascular causes, nonfatal MI and nonfatal stroke (Rosuvastatin 3.7% vs. Placebo 4.8%, event rates; HR: 0.76; 95% CI: 0.64-0.91)</td>
<td>• Composite of death from cardiovascular causes, nonfatal MI, nonfatal stroke, resuscitated cardiac arrest, heart failure, revascularization and angina with evidence of ischemia (Rosuvastatin 4.8% vs. Placebo 6.2%, event rates; HR: 0.77; 95% CI: 0.66-0.89)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study type: RCT</td>
<td>Exclusion criteria: Known cardiovascular disease; an existing indication for or contraindication to statin therapy</td>
<td>Comparator: Placebo</td>
<td>2nd co-primary outcome: composite of death from cardiovascular causes, nonfatal MI, nonfatal stroke, resuscitated cardiac arrest, heart failure and revascularization (Rosuvastatin 4.4% vs. Placebo 5.7%, event rates; HR: 0.75; 95% CI: 0.64-0.88)</td>
<td>• Death from any cause (Rosuvastatin 5.3% vs. Placebo 5.6%, event rates; HR: 0.93; 95% CI: 0.80-1.08)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size: 17,802 pts (7,375 with metabolic syndrome)</td>
<td>Safety endpoint: New onset diabetes</td>
<td>• Limitation: Metabolic syndrome components part of the inclusion criteria, but only a subset met diagnostic criteria for the metabolic syndrome</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cognitive decline

Median follow-up of 5.6 y

Abbreviations: 1° indicated primary; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; and RR, relative risk.

Search Terms and Date of Search: Author to provide

Data Supplement 3. Meta-analyses comparing statins versus placebo or various intensities of statin therapy (Section 3.2)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
</table>
| Baigent C, et al., 2010 (13) 21067804 | Aim: To evaluate safety and efficacy of more intensive lowering of LDL cholesterol | **Inclusion criteria:** All eligible statin trials published by the end of 2009, main intervention to lower LDL-C using statin therapy, at least 1000 participants recruited with at least 2 y of scheduled duration. | **Intervention/Comparator:** 1. Statin (n=64744)/placebo (n=64782) [21 trials] 2. More (high) [n=19829]/less intense statin therapy (n=19783) [5 trials] | **Endpoints:** | **• No heterogeneity of effect for major vascular events among those with previous vascular disease versus those without any previous vascular disease (p for heterogeneity = 0.3)**
- History of prior CHD: Statin/MS (4.5% per annum) versus P/LS (5.6% per annum) - RR: 0.79; 95% CI: 0.76-0.82.
- History of non-CHD vascular disease: Statin/MS (3.1% per annum) versus P/LS (3.7% per annum) - RR: 0.81; 95% CI: 0.71-0.92.
- No history of prior vascular disease: Statin/MS (1.4% per annum) versus P/LS (1.8% per annum) - RR: 0.75; 95% CI: 0.69-0.82.
- No significant reduction in CHD death when comparing MS versus LS (RR: 0.93; 95% CI: 0.81-1.07). Significant reduction in non-fatal MI (RR: 0.85; 95% CI: 0.76-0.94), coronary revascularization (RR: 0.81; 95% CI: 0.76-0.85), ischemic | |
| | **Study type:** Individual patient-level meta-analysis of 26 randomized trials of statin therapy | **Exclusion criteria:** Trials where other risk factor modification (except LDL-C reduction via statins) were excluded. -5 trials of more versus less intense statin therapy included 100% patients with CHD. -Proportion of patients with CHD in the remaining 21 trials varied from <1% (AFCAPS/TexCAPS, ASCOT LLA, CARDS, MEGA, JUPITER) to 100% | | | |
| | **Size:** 170000 participants from 26 randomized trials of statin therapy | **Definition of Outcomes:** 1. Major vascular events (first occurrence of any major coronary event, coronary revascularization, or stroke) 2. Major coronary event (coronary death or non-fatal MI) 3. Coronary revascularization (angioplasty or bypass grafting) 4. Stroke (any, ischemic, hemorrhagic, unknown) | | | |
(SSSS, CARE, Post-CABG, LIPID, GISSI-P, LiPS, ALLIANCE).

-Overall, 52% of the patients had prior CHD -15% had other vascular disease (history of intracerebral bleed, transient ischemic attack, ischemic stroke, unknown stroke, peripheral artery disease, or heart failure) -41% with no prior vascular disease (no known history of CHD or other vascular disease).

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5. First cancer after randomization</td>
<td>2. Major coronary events: MS = 1.9% per annum, LS = 2.2% per annum (RR: 0.87; 95% CI: 0.81-0.93).</td>
<td>For all 26 trials combined (Described per mmol/L reduction in LDL-C):</td>
</tr>
<tr>
<td>6. Mortality (overall, vascular, non-vascular, unknown) [described for all 26 trials combined]</td>
<td>3. Coronary revascularization; MS 2.6% per annum, LS 3.2% per annum (RR: 0.81; 95% CI: 0.76-0.85)</td>
<td>- Mortality: Statin/MS (2.1% per annum) versus P/LS (2.3% per annum)- RR: 0.90; 95% CI: 0.87-0.93.</td>
</tr>
<tr>
<td>Median follow-up = 4.8 y in statin/placebo trials</td>
<td>4. Stroke; MS 0.6% per annum, LS 0.7% per annum (RR: 0.86; 95% CI: 0.77-0.96).</td>
<td>- Vascular mortality: Statin/MS (1.2% per annum) versus P/LS (1.3% per annum)- RR: 0.86; 95% CI: 0.82-0.90.</td>
</tr>
<tr>
<td>Median follow-up 5.1 y in more versus less statin trials</td>
<td></td>
<td>- Any non-vascular mortality: Statin/MS (0.8% per annum) versus P/LS (0.8% per annum)- RR: 0.97; 95% CI: 0.92-1.03.</td>
</tr>
</tbody>
</table>

For all 26 trials combined (Described per mmol/L reduction in LDL-C):

- Mortality: Statin/MS (2.1% per annum) versus P/LS (2.3% per annum)- RR: 0.90; 95% CI: 0.87-0.93.
- Vascular mortality: Statin/MS (1.2% per annum) versus P/LS (1.3% per annum)- RR: 0.86; 95% CI: 0.82-0.90.
- Any non-vascular mortality: Statin/MS (0.8% per annum) versus P/LS (0.8% per annum)- RR: 0.97; 95% CI: 0.92-1.03.
- Unknown cause of mortality: Statin/MS (0.1% per annum) versus P/LS (0.1% per annum)- RR: 0.87; 95% CI: 0.73-1.03.
- Although mortality data not provided for separately for statin versus placebo and more versus less statin, the authors state that “the proportional reduction in risk per 1.0 mmol/L LDL cholesterol reduction did not differ between the two types of trial comparisons (all heterogeneity p values >0.1).”

Limitations:

1. Individual patient-level data on 3 trials (CORONA, SPARCL, stroke (RR: 0.84; 95% CI: 0.74-0.99) when comparing MS versus LS.

- Although major vascular events reduced non-significantly when comparing patients with CHD aged >75 y receiving MS versus LS (RR: 0.78, 99% CI: 0.52-1.18); heterogeneity; p=0.8 when comparing MS versus LS across groups of CHD patients aged <65 y, >65 y to ≤75 y, and >75 y.
- For major vascular events, RR: 0.71 (99% CI: 0.63-0.80) for males and RR 0.75 (99% CI: 0.58-0.97) for females when comparing MS versus LS among males/ females (p for heterogeneity = 0.6).
- RR: 0.85 (99% CI: 0.73-0.99) for major vascular events in those aged >75 y comparing S versus P (p for heterogeneity = 0.4 when comparing S versus P among those aged ≤65 y, >65 y to ≤75 y, and >75 y).
Safety endpoint (if relevant):

- **Cancer**: S = 1.4% per annum, P = 1.4% per annum (RR: 1.00, 95% CI: 0.95-1.04).

- **Cancer**: MS = 1.6% per annum, LS = 1.6% per annum (RR: 1.00, 95% CI: 0.93-1.07).

- **Rhabdomyolysis**: Observed excess of rhabdomyolysis = 1 (SE 1) per 10,000 in 21 trials of S versus P (14 vs. 9 cases) 4 (SE 2) per 10,000 in 5 trials of MS versus LS (14 vs. 6 cases) [All excess cases occurred in SEARCH and A to Z study (simvastatin 80 mg po daily)].

- **Hemorrhagic Stroke**: S= 0.1% per annum, P = 0.1% per annum, RR: 1.15 (99% CI: 0.87-1.51) MS = 0.1% per annum, LS = 0.1% per annum, RR: 1.21, 99% CI: 0.76-1.91).

GREACE) not available and therefore, not included.

Abbreviations:

1° indicated primary; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; RR, relative risk; LDL-C, low-density lipoprotein cholesterol; S, statin; P, placebo; LS, less statin; MS, more statin; CHD, coronary heart disease

* 1 mmol/L LDL-C = 38.67 mg/dL of LDL-C

Data Supplement 4. Risk stratification among patients with ASCVD to identify those most likely to benefit from non-statin therapy (Section 3.2.2)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
</table>

© American Heart Association, Inc., and the American College of Cardiology Foundation.

17
<table>
<thead>
<tr>
<th>Bohula EA, et al., 2017 (14) 28231942</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aim: To test the hypothesis that atherothrombotic risk stratification may be useful to identify post-ACS patients who have the greatest potential for benefit from the addition of ezetimibe to statin therapy.</td>
</tr>
<tr>
<td>Study type: Post-hoc analyses from an RCT (IMPROVE-IT).</td>
</tr>
<tr>
<td>Size: 17,717 patients post ACS</td>
</tr>
</tbody>
</table>

| **Inclusion criteria:** Patients at least 50 y of age with hospitalization for ACS within the preceding 10 ds, including MI with or without ST-segment elevation or high-risk unstable angina |
| **Exclusion criteria:** Incomplete baseline characteristics, baseline ezetimibe use in combination with a statin, creatinine clearance of <30 ml/min., statin therapy with a potency >40 mg simvastatin, hemodynamic instability, or revascularization by CABG for the index event. |

| **1st endpoint:** Composite of CV death, MI, or ischemic stroke. |
| **Results:** 9 clinical risk factors used to define a score. These included CHF, HTN, age >75 y, DM, prior stroke, prior CABG, PAD, eGFR <60ml/min./1.73 m², and current smoking. |

- Each of the 9 clinical variables in the model were independent predictors of 1st endpoint in the control (simvastatin + placebo) group.
- Mean number of risk indicators for each patient was 1.8 ± 1.2 in both treatment arms.
- The use of this risk stratification tool showed a graded relationship with the primary outcome (8.6% for patients with 0 risk indicators to 68.4% for those with ≥5 risk indicators, p for trend <0.0001).
- Goodness-of-fit was 4.5 (p=0.48) indicating adequate calibration.
- The c-statistic for the 9-component clinical model was 0.67 (95% CI: 0.65-0.68).
- Risk categories, defined as low (0 to 1 risk indicators), intermediate (2 indicators), and high (≥3 indicators) represented 45% (n = 8,032), 30% (n = 5,292), and 25% (n = 4,393) of the overall population, respectively.
- 7-y event rates with HR (95% CI) associated with the addition of ezetimibe, ARR (95% CI) in ezetimibe + simvastatin group (eze+simva) compared with simvastatin + placebo (simva) group: |

- This risk score identified patients with ACS at high risk of recurrent CV events who derive the greatest benefit from the addition of ezetimibe to statin therapy.
- Of note, this risk score was initially developed in a population of patients with MI within 2 wk to one year of randomization to a thrombin receptor agonist. The results of the current study validated the utility of this score in post-ACS population of IMPROVE-IT (Circulation. 2016 Jul 26;134(4):304-13) (36)
- 0-1 risk indicators: 14% (eze+simva), 13.1% (simva), HR: 1.05; 95% CI: 0.92-1.19; ARR: -0.9%; 95% CI: -2.5, 0.7.
- 2 risk indicators: 19.3% (eze+simva), 21.5% (simva), HR: 0.89 (95% CI: 0.78-1.01), ARR: 2.2%; 95% CI: -0.3, 4.6.
- 3 or more risk indicators: 40.2% (eze+simva), 33.9% (simva), HR: 0.81 (95% CI: 0.73, 0.90), ARR: 6.3%; 95% CI: 2.9-9.7).

- Number-needed-to-treat for 7 y to prevent one primary event = 16 among those with 3 or more risk indicators.
- Similar results were obtained for IMPROVE-IT pre-specified primary and secondary trial endpoints as well as most of the individual, nonfatal endpoints.
- No significant reduction in CV death or all-cause mortality.
- The median achieved LDL-C values at 1 y were similar across risk categories by treatment.

Abbreviations: 1° indicated primary; CI, confidence interval; HR, hazard ratio; RCT, randomized controlled trial; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; ACS, acute coronary syndrome; MI, myocardial infarction; CV, cardiovascular; CHF, congestive heart failure; HTN, hypertension; DM, diabetes; CABG, coronary artery bypass grafting; PAD, peripheral artery disease; GFR, glomerular filtration rate; ARR, absolute risk reduction; LDL-C, low-density lipoprotein cholesterol
Data Supplement 5. RCTs of Non-Statin or Combination Lipid Lowering Therapy for Primary Prevention of ASCVD Among Patients with the Metabolic Syndrome or its Subcomponents (Section 3.2.3)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
</table>
| **HHS: Helsinki Heart Study** Frick et al., 1987 (15) **3313041** | **Aim**: To test the efficacy of gemfibrozil for lowering CHD risk among asymptomatic men with high Non-HDL-C
Study type: RCT
Size: 4,081 pts | **Inclusion criteria**: Men 40-55 y of age with Non-HDL-C greater than or equal to 200 mg/dl in two consecutive pretreatment assessments
Exclusion criteria: Clinical or ECG evidence of baseline CHD; congestive heart failure; other comorbidities that “could have an influence on the study outcome” | **Intervention**: Gemfibrozil 600 mg twice a day
Comparator: Placebo | **1° endpoint**: Composite of fatal and nonfatal MI and cardiac death (Gemfibrozil 27.3 vs. Placebo 41.4, cumulative events per 1000 over 5 y; relative risk reduction of 34% [95% CI: 8.2-52.6])
Safety endpoint (if relevant): Moderate to severe upper gastrointestinal symptoms - in 1st year: Gemfibrozil 11.3% vs. Placebo 7.0% (p<0.001); in subsequent years: Gemfibrozil 2.4% vs. Placebo 1.2% (p<0.05)
• Nonfatal MI (Gemfibrozil 21.9 vs. Placebo 35.0, cumulative events per 1000 over 5 y; p<0.02; relative risk reduction of 37%)
• Gallstone operations (Gemfibrozil 18 vs. Placebo 12; p value nonsignificant [>0.05])
• All gastrointestinal operations, including hemorrhoidectomies (Gemfibrozil 81 vs. Placebo 53; p<0.02)
• 5 y of follow-up | |
| **Tenkanen L, et al., 1995 (16) 7671361** | **Aim**: To evaluate the effectiveness of gemfibrozil for CHD prevention among overweight subjects with metabolic risk factors
Study type: RCT subgroup analysis
Size: 4,081 pts | **Inclusion criteria**: Men 40-55 y of age with Non-HDL-C greater than or equal to 200 mg/dl in two consecutive pretreatment assessments
Exclusion criteria: Clinical or ECG evidence of baseline CHD; congestive heart failure; other comorbidities that “could have an influence on the study outcome” | **Intervention**: Gemfibrozil 600 mg twice a day
Comparator: Placebo | **1° endpoint**: Composite of fatal and nonfatal MI and cardiac death
Among those with BMI greater than 26 kg/m², high triglycerides (greater than or equal to 200 mg/dl) and low HDL-C (less than 42 mg/dl): Gemfibrozil 4 vs. Placebo 17, events per 1000 person-y; relative risk reduction of 78% [p=0.002])
Among those with BMI greater than 26 kg/m², and 3-4 of the following: hypertension (greater than or equal to 140/90), glucose greater than 80 mg/dl, sedentary lifestyle and smoking (Gemfibrozil 8 vs. Placebo 27, events per 1000 person-y; 5 y of follow-up | **Post-hoc subgroup analysis**
• 5 y of follow-up |
| FIELD | Keech A, et al., 2005 (17) 16310551 | **Aim:** To assess the effect of fenofibrate on CVD events among patients with type 2 diabetes
Study type: RCT
Size: 9,795 pts (80% meeting criteria for metabolic syndrome) | **Inclusion criteria:**
Exclusion criteria: | **Intervention:** N/A
Comparator: N/A | **1° endpoint:** Nonfatal MI or CHD death
Safety endpoint: N/A | • Total CVD events, including nonfatal MI, CHD death, stroke, coronary and carotid revascularization
• Nonfatal MI
• CHD mortality |

| ACCORD Lipid Trial | Ginsberg HN, et al., 1998 (18) 20228404 | **Aim:** To assess whether combination therapy with fenofibrate plus simvastatin lowers the rate of incident CVD events more than simvastatin alone among high risk patients with type 2 diabetes
Study type: RCT
Size: 5,518 pts | **Inclusion criteria:** Men and women aged 40-79 y (55-79 y if subclinical CVD or 2 additional risk factors) with type 3 DM with hemoglobin A1C greater than or equal to 7.5%; an LDL-C level of 60-180 mg/dl; HDL less than 55 mg/dl for women and blacks and less than 50 mg/dl for others; and triglycerides less than 750 mg/dl (or 400 mg/dl on lipid therapy). Included subjects with (36.5%) and without a previous cardiovascular event (primary and secondary prevention trial)
Exclusion criteria: taking any medication known to interact with statins or fibrates; history of pancreatitis, gallbladder | **Intervention:** Combination of Fenofibrate (160 mg, with adjustment as needed to eGFR) plus open label Simvastatin (20-40 mg)
Comparator: Placebo + open label Simvastatin (20-40 mg) | **1° endpoint:** Composite of nonfatal MI, nonfatal stroke and death from cardiovascular causes (Fenofibrate 2.2% vs. Placebo 2.4%, annual event rate; HR: 0.92 [95% CI: 0.79-1.08; p=0.32])
Safety endpoint: Elevations of CK more than 10 times the upper limit of normal (Fenofibrate 0.4% vs. Placebo 0.3%; cumulative rate during trial; p=0.83)
Any unexplained myalgias with CK greater than 5 times the upper limit of normal (Fenofibrate 0.3% vs. Placebo 0.3%; cumulative rate during trial; p=0.83)
Serum creatinine elevation – for women (ever greater than 1.3 mg/dl; Fenofibrate 27.9% vs. Placebo 18.7%; cumulative rate during trial; p<0.001) | • Prespecified subgroup analyses:
Triglycerides greater than or equal to 204 mg/dl and HDL-C less than or equal to 34 mg/dl (Fenofibrate 12.4 vs. Placebo 17.3, overall % of events in group; p=0.032). Others without high triglycerides and low HDL-C (Fenofibrate 10.1 vs. Placebo 10.1, overall % of events in group; p=0.032). p for interaction 0.06
Women (Fenofibrate 9.1 vs. Placebo 6.6, overall % of events in group). Men (Fenofibrate 11.2 vs. Placebo 13.3, overall % of events in group). p for interaction 0.01
No interaction seen with prior CVD (p=0.45)
Mean duration of follow-up 4.7 y for primary outcome |
Data Supplement 6. Evidence Tables for Statin initiation in patients with heart failure meta-analysis of CORONA and GISSI HF trials (Section 4.1)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORONA Kjekshus et al., 2007 (19) 17984166</td>
<td>Aim: To assess beneficial effects and harms of initiation of rosuvastatin therapy in patients with chronic, symptomatic, ischemic heart failure. Study type: RCT Size: 5011 patients (2497 in placebo, 2514 in rosuvastatin arm) Median follow-up: 32.8 mo 371 sites in 19 European countries,</td>
<td>Inclusion criteria: Patients who were at least 60 y of age and who had chronic New York Heart Association (NYHA) class II, III, or IV heart failure of ischemic cause (as reported by investigators) and an ejection fraction of no more than 40% (no more than 35% in patients in NYHA class II) were eligible, if the investigator thought they did not need treatment with a cholesterol-lowering drug. Exclusion criteria: Previous statin-induced myopathy or hypersensitivity reaction; decompensated heart failure or a need for inotropic therapy; myocardial infarction</td>
<td>Intervention: G1: Rosuvastatin 10 mg QD (n=2514) Comparator: G2: Placebo (n = 2497) End points: 1° endpoint: Composite of death from cardiovascular causes, nonfatal myocardial infarction, and nonfatal stroke, Secondary: Death from any cause, any coronary event (defined as sudden death, fatal or nonfatal myocardial infarction, the performance of PCI or CABG, ventricular defibrillation by an</td>
<td>G1: LDL-C 137 to 76 mg/dL G2: LDL-C 136 to 138 mg/dL Absolute LDL-C difference of 45% between groups (p<0.001) 1° endpoint: G1: 692 (11.4 per 100 patient-y of follow-up) G2: 732 (12.3 per 100 patient-y of follow-up) HR: 0.92; 95% CI: 0.83-1.02 p 0.12 No heterogeneity of effect across subgroups Secondary Outcomes (per 100 patient-y of follow-up): Death from any cause: G1: 728 (11.6 per 100 patient-y of follow-up)</td>
<td>• Mean age 73 y, 41% participants were at least 75 y old. • Nonfatal MI and stroke relatively uncommon. • Composite of Fatal or nonfatal MI, or stroke: G1: 227; G2: 264 HR: 0.84; 95% CI: 0.7-1.0; p=0.05 • Adverse events: -Study drug discontinuation: G1 490, G2 546 HR: 0.88; 95% CI: 0.78-0.99 -ALT >3 x ULN (at least one episode): G1: 25; G2: 24 -Muscle adverse events: G1: 170; G2: 155 -CK >10 x ULN: G1: 1; G2: 3 -CK >10 x ULN with muscle symptoms: G1: 0, G2: 1</td>
</tr>
<tr>
<td>Country</td>
<td>Criteria</td>
<td>Outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russia and South Africa</td>
<td>within the past 6 mo; unstable angina or stroke within the past 3 mo; percutaneous coronary intervention (PCI), coronary-artery bypass grafting (CABG), or the implantation of a cardioverter–defibrillator or biventricular pacemaker within the past 3 mo or a planned implantation of such a device; previous or planned heart transplantation; clinically significant, uncorrected primary valvular heart disease or a malfunctioning prosthetic valve; hypertrophic cardiomyopathy; acute endomyocarditis or myocardiitis, pericardial disease, or systemic disease (e.g., amyloidosis); acute or chronic liver disease; levels of alanine aminotransferase or thyrotropin of more than 2 times the upper limit of the normal range; a serum creatinine level of more than 2.5 mg per deciliter (221 μmol per liter); chronic muscle disease or an unexplained creatine kinase level of more than 2.5 times the upper limit of the normal range; previous treatment with cyclosporine; any other condition that would substantially reduce implantable cardioverter–defibrillator, resuscitation after cardiac arrest, or hospitalization for unstable angina); death from cardiovascular causes (with an additional analysis of cause-specific death from a cardiovascular cause); and the number of hospitalizations for cardiovascular causes, unstable angina, or worsening heart failure.</td>
<td>G1: 759 (12.2 per 100 patient-y of follow-up) HR: 0.95; 95% CI: 0.86-1.05 p=0.31 Any coronary event: G1: 554 (9.3 per 100 patient-y of follow-up) G2: 588 (10 per 100 patient-y of follow-up) HR: 0.92; 95% CI: 0.82-1.04 p=0.18 Other outcomes (per 100 patient-y of follow-up): Death from Cardiovascular causes: G1: 9.3 G2: 9.6 HR: 0.97; 95% CI: 0.87-1.09 Death from noncardiovascular cause: G1: 2.2 G2: 2.6 Nonfatal MI: G1 1.9, G2 2.4 Nonfatal Stroke: G1 1.5, G2 1.7 Hospitalization (total number of hospitalizations): -For any cause: G1 3694, G2 4074, p 0.007 -For a cardiovascular cause: G1 2193, G2 2564, p<0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1: Study characteristics and results

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
</table>
| GISSI HF Tavazzi L, et al., 2008 (20) 1875089 | **Aim:** To investigate the safety and efficacy of rosuvastatin in patients with heart failure
Study type: RCT
Size: 4631 randomized
Median follow-up: 3.9 y
-326 cardiology and 31 internal medicine centers in Italy | **Inclusion criteria:**
Men and women with symptomatic heart failure (NYHA Class II-IV). Both ischemic and non-ischemic etiologies of HF included. Those with LV EF >40% had to have at least hospital admission for CHF in the preceding year.
Exclusion criteria:
Known hypersensitivity to study treatment; presence of any noncardiac comorbidity (e.g., cancer) that was unlikely to be compatible with a sufficiently long follow-up; treatment with any investigational agent within 1 month before randomization; acute coronary syndrome or a revascularization procedure within 1 month before | **Intervention:** G1: Rosuvastatin 10 mg QD (n=2285)
Comparator: G2: placebo (n= 2289) | **G1:** LDL-C 3.16 mmol/L* to 2.31 mmol/L after 3 y
G2: LDL-C 3.13 mmol/L to 3.06 mmol/L after 3 y.
1° endpoint:
Death from any cause:
G1: 657 (29%), G2: 644 (28%)
HR: 1.03; 95% CI: 0.91-1.14
Death from any cause or admission to hospital for cardiovascular reasons:
G1: 1305 (57%), G2:1283 (56%)
HR: 1.02; 95% CI: 0.92-1.13
No heterogeneity of effect across various subgroups,
Secondary Outcomes
Cardiovascular mortality:
G1: 478 (20.9%), G2:488 (21.3%)
HR: 0.98; 95% CI: 0.87-1.12
**Mean age 68 y, 44% older than 70 y. 23.8% women in G1, 21.4% women in G2
**Etiology of HF: Ischemic (40%), primary dilated (35%), hypertensive (18%)
**Mean EF: 33.4% G1, 33.1% G2
10.3% in G1 and 9.8% in G2 with LV EF >40%
**Per protocol analysis: Death from any cause: G1 29%, G2: 27% (HR: 1.12; 95% CI: 0.97-1.29).
**Adverse events
-Permanent discontinuation of study treatment: G1: 790 (34.6%), G2: 831 (36.3%), p=0.22
-Permanent discontinuation due to adverse drug reaction: G1: 104 (4.6%), G2: 91 (4.0%), p=0.36
-CK >5x ULN: G1: 9, G2: 2
-CK >10x ULN: G1: 1, G2: 1 |
randomization; planned cardiac surgery, expected to be done within 3 mo after randomization; significant liver disease; serum creatinine concentration greater than 221 μmol/L; alanine and aspartate transaminase concentrations more than 1.5 times the upper normal limit; creatine phosphokinase concentrations above the upper normal limit; and pregnant or lactating women or women of childbearing potential who were not adequately protected against becoming pregnant.

-Cardiovascular mortality or admission for any reason:
 G1: 1417 (62%), G2:1385 (60.5%)
 HR: 1.03; 95% CI: 0.96-1.11

-Sudden Cardiac death:
 G1: 220 (9.6%), G2:196 (8.6%)
 HR: 1.13; 95% CI: 0.93-1.37

-Patients admitted:
 G1: 1278 (55.9%), G2:1286 (56.1%)
 HR: 1.00; 95% CI: 0.93-1.08

-Admission for cardiovascular reason:
 G1: 1033 (45.2%), G2:1060 (46.3%)
 HR: 0.98; 95% CI: 0.90-1.07

- Admission for HF:
 G1: 629 (27.5%), G2:634 (27.7%)
 HR: 1.00; 95% CI: 0.90-1.12

-Fatal and non-fatal MI:
 G1: 61 (2.7%), G2:70 (3.1%)
 HR: 0.88; 95% CI: 0.63-1.24

-Fatal and non-fatal stroke:
 G1: 82 (3.6%), G2:66 (2.9%)
 HR: 1.25; 95% CI: 0.91-1.73

Abbreviations: 1° indicated primary; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; RR, relative risk; LDL-C, low-density lipoprotein cholesterol; ULN, upper limit of normal.

*1 mmol/L LDL-C=38.67 mg/dL LDL-C
Data Supplement 7. Meta-analysis of CORONA and GISSI HF trials (Section 4.1)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled individual-level reanalysis of CORONA and GISSI-HF Feinstein MJ, et al., 2015 (21) 25684642</td>
<td>Aim: Using pooled data from CORONA and GISSI HF trials, to assess whether HF patients randomized to rosvastatin 10 mg daily vs. placebo had statistically significant differences in atherothrombotic events after accounting for competing causes of death. Study type: Individual trial participant-level reanalysis. Size: CORONA (n=5011), GISSI HF (n = 4574) Median follow-up: 32.8 mo in CORONA, 46.9 mo in GISSI HF</td>
<td>Inclusion criteria: Inclusion criteria for CORONA and GISSI HF trials as discussed above. Exclusion criteria: Exclusion criteria for CORONA and GISSI HF trials as discussed above.</td>
<td>Intervention: G1: Rosuvastatin 10 mg QD (n = 4799) Comparator: G2: placebo (n = 4786) End points: A competing Cox regression model was used to analyze the joint and simultaneous risks for the following outcomes: - MI (fatal and non-fatal) - Stroke (fatal and non-fatal) - Other cardiovascular death - Death from non-cardiovascular causes</td>
<td>CORONA and GISSI-HF pooled (all participants): MI (fatal and non-fatal): G1 186, G2 223, HR: 0.83; 95% CI: 0.68-1.00; p=0.055 Stroke (fatal and non-fatal): G1 186, G2 169, HR: 1.07; 95% CI: 0.87-1.32; p=0.50 Other cardiovascular death: G1 877, G2 890, HR: 0.98; 95% CI: 0.90-1.08; p=0.74 Data presented here are for (a) CORONA and GISSI-HF pooled (b) CORONA and GISSI HF pooled for those with ischemic etiology of HF. CORONA and GISSI HF pooled for those with ischemic etiology of heart failure: MI (fatal and non-fatal): G1 171, G2 208, HR: 0.81; 95% CI: 0.66-0.99; p=0.049 Stroke (fatal and non-fatal): G1 145, G2 140, HR: 1.08; 95% CI: 0.86-1.37; p 0.50 Other cardiovascular death: G1 687, G2 695, HR: 0.99; 95% CI: 0.89-1.10; p 0.88</td>
<td>• NNT to prevent one MI = 94 • Relatively few MIs in both the trials compared to other outcomes. • Traditional Cox regression analyses (without accounting for competing risk) yielded largely similar results. CORONA and GISSI HF pooled for those with ischemic etiology of heart failure (using traditional Cox regression): MI (fatal and non-fatal): HR: 0.82; 95% CI: 0.67-1.00. Stroke (fatal and non-fatal): HR: 0.87; 95% CI: 0.67-1.14. Other cardiovascular death: HR: 0.97; 95% CI: 0.88-1.07. Non-cardiovascular death: HR: 1.02; 95% CI: 0.85-1.22.</td>
</tr>
</tbody>
</table>
Death from non-cardiovascular causes: G1 227, G2 214, HR: 1.07; 95% CI: 0.89-1.29; p 0.49.

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARCL Amarenco P, et al., 2006 (22) 16899775</td>
<td>Aim: To assess whether atorvastatin 80 mg daily (compared to placebo) reduces the incidence of stroke in patients with a recent stroke or transient ischemic stroke (TIA)</td>
<td>Inclusion criteria: Men and women over 18 y of age with no known CHD who had had an ischemic or hemorrhagic stroke or a TIA (diagnosed by a neurologist within 30 d after the event) 1 to 6 mo before randomization. Patients with hemorrhagic stroke were included if they were deemed by the investigator to be at risk for ischemic stroke or coronary heart disease.</td>
<td>Intervention: G1: Atorvastatin 80 mg po daily (n= 2365).</td>
<td>LDL-C: G1: 132.7 mg/dL at baseline versus mean of 72.9 mg/dL during the trial. G2: 133.7 mg/dL at baseline versus mean of 128.5 mg/dL during the trial.</td>
<td>• More patients in the placebo group than in the atorvastatin group permanently discontinued treatment (20.2% vs. 15.4%) • After randomization, open-label statin therapy use (25.4% in the placebo group versus 11.4% percent in the atorvastatin group) • The net difference in statin use between groups was 78.1%. • All-cause death: G1: 216 (9.1%), G2 211 (8.9%) Adjusted HR: 1.00; 95% CI: 0.82-1.21.</td>
</tr>
<tr>
<td></td>
<td>Study type: RCT</td>
<td>Exclusion criteria: Presence of atrial fibrillation, other causes of embolism, subarachnoid hemorrhage.</td>
<td>Comparator: G2: Placebo (n= 2366).</td>
<td>1° endpoint: G1: 265 (11.2%), G2 311 (13.1%) Adjusted HR: 0.84; 95% CI: 0.71-0.99.</td>
<td>-Death from cardiovascular disease: G1: 78 (3.3%), G2 98 (4.1%) Adjusted HR: 0.78; 95% CI: 0.58-1.06.</td>
</tr>
<tr>
<td></td>
<td>Size: 4731 patients</td>
<td>• Mean Time since index event to entry in the trial = 87.1 d in the atorvastatin group and 84.3 d in the placebo group.</td>
<td>End Points: Analyses adjusted for geographic region, entry event (stroke or TIA), time since entry event, sex, and baseline age. This was prespecified.</td>
<td>Secondary and other relevant endpoints:</td>
<td>-Death from Cancer: G1: 57 (2.4%), G2 53 (2.2%) Adjusted HR: 1.05; 95% CI: 0.72-1.53.</td>
</tr>
<tr>
<td></td>
<td>Follow-up: Median ≥ 4.9 y</td>
<td>Primary: Time from randomization to a first nonfatal or fatal stroke.</td>
<td>Primary:</td>
<td>1. Stroke or TIA: G1: 375 (15.9%), G2 476 (20.1%) Adjusted HR: 0.77; 95% CI: 0.67-0.88.</td>
<td>• Post-hoc analyses:</td>
</tr>
<tr>
<td></td>
<td>205 participating centers.</td>
<td>Secondary: 1. Stroke or TIA</td>
<td>2. Major coronary event (death from cardiac causes, nonfatal myocardial infarction, or resuscitation after cardiac arrest).</td>
<td>2. Major coronary event: G1: 81 (3.4%), G2 120 (5.1%) Adjusted HR: 0.65; 95% CI: 0.49-0.87.</td>
<td>- 492 ischemic strokes: 218 atorvastatin, 274 placebos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Major cardiovascular event (stroke plus any major coronary event).</td>
<td>3. Major cardiovascular event: G1: 334 (14.1%), G2 407 (17.2%) Adjusted HR: 0.80; 95% CI: 0.69-0.92.</td>
<td>4. Acute coronary event: G1: 101 (4.3%), G2 151 (6.4%)</td>
<td></td>
</tr>
</tbody>
</table>
4. Acute coronary event (major coronary event or unstable angina).
5. Any coronary event (acute coronary event plus a coronary revascularization procedure, unstable angina, or angina or ischemia requiring emergency hospitalization)
6. Revascularization procedure (coronary, carotid, or peripheral).
7. Any cardiovascular event (any of the former plus clinically significant peripheral vascular disease).

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Group 1 (G1)</th>
<th>Group 2 (G2)</th>
<th>Adjusted HR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute coronary event</td>
<td>123 (5.2%)</td>
<td>204 (8.6%)</td>
<td>0.65</td>
<td>0.50-0.84</td>
</tr>
<tr>
<td>Any coronary event</td>
<td>1: 123 (5.2%), G2 204 (8.6%)</td>
<td>Adjusted HR: 0.58; 95% CI: 0.46-0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revascularization</td>
<td>G1: 94 (4.0%), G2 163 (6.9%)</td>
<td>Adjusted HR: 0.55; 95% CI: 0.43-0.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any cardiovascular event</td>
<td>G1: 530 (22.4%), G2 687 (29.0%)</td>
<td>Adjusted HR: 0.74; 95% CI: 0.66-0.83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Safety endpoint (if relevant):
- Any adverse event: G1 2199 (93%), G2 2156 (91.1%)
- Any serious adverse event: G1 998 (41.8%), G2 975 (41.2%)
- Any adverse event resulting in discontinuation of study treatment: G1 415 (17.5%), G2 342 (14.5%)
- Myalgias: G1 129 (5.5%), G2 141 (6.0%)
- Rhabdomyolysis: G1 2 (0.1%), G2 3 (0.1%)
- AST or ALT >3 x ULN at 2 consecutive measurements: G1 51 (2.2%), G2 11 (0.5%)
- CK >10 x ULN at 2 consecutive measurements: G1 2 (0.1%), G2 0 |

- 88 hemorrhagic strokes: 55 atorvastatin, 33 placebo.
 HR: 1.66; 95% CI: 1.08-2.55.
- 19 unclassified strokes: 7 atorvastatin, 12 placebo.
 HR: 0.55; 95% CI: 0.21-1.40.
- Incidence of fatal hemorrhagic stroke did not differ: 17 in the atorvastatin group, 18 in the placebo group.
<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2<sup>e</sup> Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREACE Athyros VG, et al., 2002 (23)</td>
<td>Aim: To assess the effect of atorvastatin on morbidity and mortality (total and coronary) of patients with established coronary heart disease (CHD), Study type: Randomized (please see last column) Size: 1600 patients Follow-up: 3 y</td>
<td>Inclusion criteria: Patients with established CHD: history of prior MI or >70% stenosis of at least one coronary artery on a coronary angiogram. Age< 75 y, LDL-C >100 mg/dL, triglycerides <400 mg/dL. Exclusion criteria: Recent acute coronary syndrome, renal or liver dysfunction, prior hypolipidemic treatment, childbearing potential, any significant disease likely to limit life to less than the study duration (e.g. NYHA Class III or IV heart failure, malignancies), and patients scheduled for coronary revascularization.</td>
<td>Intervention (G1): Atorvastatin dose titration (from 10-80 mg daily) to get LDL-C below 100 mg/dL (n=800) performed in the university clinic. Comparator (usual care) [G2]: Lifestyle changes such as hypolipidemic diet, weight loss, exercise plus all necessary drug treatment (e.g. lipid lowering treatment) [n=800].</td>
<td>Lipids/Lipid lowering medications: -Intervention group (G1): 100% received atorvastatin, mean dose = 24 mg/d. -Usual care group (G2): 211 (26%) of the patients received hypolipidemia drug treatment. 98(12%) of these discontinued their treatment at 6-8 mo. Overall, 14% (n =113) of the patients in the usual care continued hypolipidemic treatment throughout the study (12% statins, 2% fibrates). -Mean LDL-C: G1 180 mg/dL (baseline), 97 mg/dL (on-treatment) G2: 179 mg/dL (baseline), 169 mg/dL (on-treatment). -Mean Non-HDL-C: G1 218 mg/dL (baseline), 123 mg/dL (on-treatment) G2: 218 mg/dL (baseline), 204 mg/dL (on-treatment). G1: 95% achieved LDL-C <100 mg/dL and 97% achieved non-HDL-C <130 mg/dL. G2: 3% achieved LDL-C <100 mg/dL and none achieved non-HDL-C <130 mg/dL.</td>
<td>No placebo No blinding Adjudicators likely not blinded to the identity of the study group of the participants. Active treatment (atorvastatin) versus usual care in different settings. Two separate adjudication committees (one for each group). Cost per quality-adjusted life year gained with atorvastatin = $US 8350.</td>
</tr>
</tbody>
</table>
-Total mortality: G1 23 (2.9%), G2 40 (5%), p=0.0021.
- Coronary mortality: G1 20 (2.5%), G2 38 (4.8%), p=0.0017.
- Non-fatal MI: G1 21 (2.6%), G2 51 (6.4%), p=0.0001
- Unstable angina: G1 10 (1.2%), G2 21 (2.6%), p=0.0032.
- PTCA/CABG: G1 22 (2.7%), G2 45 (5.6%), p=0.0011.
- CHF: G1 11 (1.3%), G2 22 (2.7%), p=0.021.
- Stroke: G1 9 (1.1%), G2 17 (2.1%), p=0.034.

Safety endpoint (if relevant):
Intervention group: 9 (1.1%) had side effects; 7 with liver enzyme increase >3 x ULN (specific liver enzymes i.e. AST or ALT not mentioned), 2 with persistent epigastric discomfort. No cases of myopathy. 6 patients withdrawn from the study due to side-effects attributed to atorvastatin.

Usual care: Withdrawal from the study in 3 patients with liver enzyme elevation >3 x ULN (0.4%) [p non-significant vs. atorvastatin].

relative risk; NYHA, new York Heart Association; HF, heart failure; MI, myocardial infarction; LV, left ventricular; EF, ejection fraction; CK, creatine kinase; ULN, upper limits of normal; NNT = numbers needed to treat; LDL-C, low-density lipoprotein cholesterol; ULN, upper limit of normal; Non-HDL-C, non-high-density lipoprotein cholesterol; NYHA, New York Heart Association; PTCA, percutaneous transluminal coronary angioplasty; CHF, congestive heart failure; CABG, coronary artery bypass grafting; ULN, upper limit of normal.

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
</table>

© American Heart Association, Inc., and the American College of Cardiology Foundation.
30
Aim:
To determine whether higher-dose of pitavastatin (4 mg) would be beneficial and safe compared to lower-dose (pitavastatin 1 mg) in Japanese patients with stable CAD.

Study type:
Prospective, multicenter, randomized, open-label, blinded end point, physician-initiated superiority trial

Size:
13,054 total.

Follow-up:
Median follow-up = 3.9 years.

Inclusion criteria:
Men and women 20 to 80 y of age with stable CAD as defined by a history of acute coronary syndrome or coronary revascularization >3 mo ago or a clinical diagnosis of CAD with angiographically documented coronary artery stenosis of at least 75% diameter narrowing.

Exclusion criteria:
Patient with LDL-C <100 mg/dL without statin therapy. Other major exclusions included coronary revascularization scheduled but not yet completed, active malignancy, history of hypersensitivity to any of the ingredients of pitavastatin, serious liver disorder or bile duct obstruction, currently under treatment with cyclosporin, women who are pregnant, potentially pregnant, or lactating, serious heart failure (left ventricular ejection fraction <30% or NYHA classification class III or above), receiving dialysis, familial hypercholesterolemia, participating in another clinical study, under treatment with a prohibited intervention.

Intervention (G1):
Pitavastatin 4mg (n=6526)

Comparator (G2):
Pitavastatin 1mg (n=6528)

Lipids/ Lipid lowering medications:
- Intervention group (G1):
 Mean baseline LDL-C (after run-in period) = 87.7 mg/dL
 6 mo LDL-C = 73.7 mg/dL.
- Comparator group (G2):
 Mean baseline LDL-C (after run-in period) = 88.1 mg/dL
 6 mo LDL-C = 89.4 mg/dL.

- LDL-C difference = 14.7 mg/dL between G1 and G2.

1º endpoints (composite of cardiovascular death, nonfatal myocardial infarction, nonfatal ischemic stroke, or unstable angina requiring emergency hospitalization):
-4.3% in G1 versus 5.4% in G2 (HR: 0.81; 95% confidence interval, 0.69–0.95; p=0.01)

Secondary and other relevant endpoints (composite of the primary end point event and clinically indicated coronary revascularization, excluding target-lesion revascularization for lesions treated at prior percutaneous coronary intervention):
-7.9% in G1 versus 9.7% in G2 (HR: 0.83; 95% CI: 0.73–0.93; p=0.002)

-Death from any cause: 3.3% in G1 versus 4.2% in G2 (HR: 0.81; 95% CI, 0.68-0.98)

- Open label
- Run in period with pitavastatin 1 mg po daily for at least 1 month.
- The actual event rate was lower than anticipated. However, the steering committee decided not to extend the study further despite the original event-driven trial design because a substantial number of centers were reluctant to extend the study further.
- Final follow-up completed in 83.4% in G1 and 83.2% in G2.
- The rate of adherence to the study drug was high in both groups, although it was slightly but significantly lower in G1 than in G2 (97.1% and 98.7% at 6 mo, 74.8% and 76.8% at 4 y; p=0.02)
- Study drug discontinuation was slightly but significantly more frequent in G1 than G2 (9.8% and 8.1%; p<0.001).
concomitant drug that cannot be discontinued, not a suitable candidate for study participation for some other reasons, in the opinion of the investigator or subinvestigator.

- Myocardial Infarction: 0.6% in G1 versus 1.2% in G2 (HR: 0.57; 95% CI: 0.38-0.83)
- Coronary revascularization (all): 8.5% in G1 versus 10.1% in G2 (HR: 0.86; 95% CI: 0.76-0.96)
- Coronary revascularization (nontarget-lesion): 4.5% in G1 versus 5.7% in G2 (HR: 0.79; 95% CI: 0.68-0.92)

No significant difference in the risk of cardiovascular death, cardiac death, ischemic stroke, hemorrhagic stroke, unstable angina requiring emergency hospitalization, target lesion coronary revascularization.

Safety endpoint (if relevant):
- Muscle complaints: 1.9% in G1 versus 0.7% in G2, p<0.001
- No significant difference in rhabdomyolysis, gallbladder-related events, new onset diabetes mellitus, psychiatric disorders, elevation of alanine aminotransferase, aspartate aminotransferase, or both ≥3 upper limit of normal range, elevation of creatine kinase ≥5 upper limit of normal range

Abbreviations: 1° indicated primary; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; RR, relative risk; LDL-C, low-density lipoprotein cholesterol; CAD, coronary artery disease; NYHA, New York Heart Association

Data Supplement 8. Evidence Tables for Secondary Prevention (Section 4.1)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
</table>
| Virani SS et al, 2017(25) | **Study type:** Observational Study evaluating what proportion of patients with ASCVD seeking care in the VA health care system would qualify for evolocumab based on FOURIER trial criteria. The authors also evaluated how eligibility for PCSK9 inhibitor therapy would change if high-intensity statins, ezetimibe, or the combination of both agents were used.
Size: 631, 855 patients with ASCVD receiving care in the VA health care system between October 2013 and September 2014 | **Inclusion criteria:** Same as FOURIER trial inclusion criteria
Exclusion criteria: Same as FOURIER trial exclusion criteria | **1° endpoint:** Proportion of patients with ASCVD meeting FOURIER trial criteria
Results:
- 154,823 patients (24.5%) with ASCVD met FOURIER criteria based on LDL-C and non-HDL-C cutoffs.
- 49.9% of the ASCVD patients who qualified were on high-intensity statins, 47.5% were on moderate intensity statins, and 2.6% were on a statin/ezetimibe combination
- Titration to a high-intensity statin would be expected to reduce LDL-C to <70 mg/dL in an additional 28,930 FOURIER-eligible patients (18.7%) with a mean achieved LDL-C of 63 mg/dL.
- Initiation of ezetimibe would lead to LDL-C <70 mg/dL in an additional 78,507 patients (50.7%) with a mean achieved LDL-C of 60 mg/dL.
- Combination of high-intensity statin plus ezetimibe would lead to LDL-C <70 mg/dL in 92,538 patients (59.8%) with a mean achieved LDL-C of 58 mg/dL.
- Estimated costs associated with treating the 154,823 patients eligible for FOURIER with evolocumab would be $2.08 billion/year. Restricting evolocumab use in patients with LDL ≥70 mg/dL, after accounting for cost associated with titration to high-intensity statin plus ezetimibe, would be expected to result in an annual net cost savings of $1.13 billion.
- Healthcare systems have considerable opportunity to increase the use of evidence-based high-intensity statins and ezetimibe, which may reduce the need for additional PCSK9 inhibitor therapy. |
<table>
<thead>
<tr>
<th>Cannon et al, 2017 (26) 28768335</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study type: Observational study using a large database of medical and pharmacy claims (MarketScan). The study aimed to estimate the percentage of patients with ASCVD who would require a PCSK9 Inhibitor (alirocumab) when oral lipid-lowering therapy is intensified first.</td>
</tr>
<tr>
<td>Inclusion criteria: Patients 21 years or older; LDL-C level measured from January 1, 2012, through December 31, 2013; 2 years of continuous enrollment before the index date; and ASCVD defined as (1) recent acute coronary syndrome, (2) other coronary heart disease, (3) ischemic cerebrovascular disease, and (4) peripheral arterial disease.</td>
</tr>
<tr>
<td>1st endpoint: Use of lipid lowering therapy in the ASCVD patients and distributions of LDL-C levels under various treatment intensification scenarios</td>
</tr>
<tr>
<td>Results: -53.2% ASCVD patients were receiving statins at baseline and 15.3% were receiving a high-intensity statin. -25.2% achieved LDL-C levels of less than 70mg/dL. -When a 20-mg dose of atorvastatin was added for patients not receiving a statin, 49.1% of the overall cohort achieved an LDL-C level of less than 70mg/dL. Of the remaining 50.9% patients, 9.1% were already receiving high-intensity statins and 41.8% would undergo up titration to atorvastatin, 80mg. The up titration resulted in an additional 20.2% achieving an LDL-C level of less than 70mg/dL (overall cohort with LDL-C level <70 mg/dL, 69.3% at this stage). - Of the remaining 30.7% not at the LDL-C goal, 0.9% were already taking concomitant ezetimibe; therefore, ezetimibe was added in the remaining 29.8% of the cohort receiving high intensity statins and not at the LDL-C level goal. After this step in intensification, an additional 16.7% were able to achieve the LDL-C goal (total at LDL-C goal, 86%) and 14% of the original cohort required additional treatment with alirocumab.</td>
</tr>
</tbody>
</table>

- 69.3% of ASCVD patients could achieve LDL-C levels of less than 70mg/dL with statin initiation and/or up titration only, and add-on ezetimibe could increase this percentage to 86%. Adding a PCSK9 inhibitor to therapy for the remaining 14% still above the LDL-C threshold could result in more than 99% of the population with ASCVD having LDL-C levels of less than 70mg/dL.

-In a model that assumes no lipid lowering therapy intolerance and full adherence, intensification of oral lipid lowering therapy could achieve an LDL-C level of less than 70mg/dL in most patients, with only a modest percentage requiring a PCSK9 inhibitor.
Addition of a 75-mg dose of alirocumab for patients not at the LDL-C goal resulted in an incremental 12% achieving an LDL-C level of less than 70 mg/dL. The remaining 2% of the cohort received up titration to alirocumab, 150mg. At this final step of the intensification, only 0.7% of the original cohort failed to achieve an LDL-C level goal of less than 70 mg/dL.

In summary, simulation of maximal lipid-lowering treatment intensification indicated that 99.3% could achieve LDL-C levels of less than 70mg/dL, including 86% receiving statins and ezetimibe and 14% with add-on PCSK9 inhibitors.

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample Size</th>
<th>Drug Tested</th>
<th>Study Population</th>
<th>Primary and Secondary Outcomes*</th>
<th>Major Adverse Events</th>
</tr>
</thead>
</table>
| dal-OUTCOMES | (Schwartz et al) (27) | Dalcetrapib 600 mg daily | Inclusion
- Prior hospitalization for ACS, MI with PCI
- Target baseline LDL <100 mg/dL, preferably 70 mg/dL, but not excluded if higher
Exclusion (cardiovascular)
- TG >400 mg/dL
- Mean age 60.3±9.1 y
- 20% women
- 12% nonwhite | ERC primary outcome
Not reported
ERC secondary outcome
Not reported
Study primary outcome
Death from coronary heart disease, nonfatal MI, ischemic stroke, unstable angina, or cardiac arrest with resuscitation
- HR: 1.04 (0.93–1.16)
- Event rates 9.2% vs. 9.1%, p=0.52 | – Mean SBP remained approximately 0.6 mm Hg higher with dalcetrapib vs. placebo (p<0.001)
– Greater incidence of hypertension with dalcetrapib (7.3% vs. 6.5%) but smaller difference in report of hypertension as a serious event (0.6% vs. 0.3%)
– Greater incidence of diarrhea 6.8 vs. 4.3 |
| 23126252 | 15,871 | Dalcetrapib 600 mg daily | 97% on a statin intensity or dose not reported | ERC primary outcome
Not reported
ERC secondary outcome
Not reported
Study primary outcome
Death from coronary heart disease, nonfatal MI, ischemic stroke, unstable angina, or cardiac arrest with resuscitation
- HR: 1.04 (0.93–1.16)
- Event rates 9.2% vs. 9.1%, p=0.52 | – Mean SBP remained approximately 0.6 mm Hg higher with dalcetrapib vs. placebo (p<0.001)
– Greater incidence of hypertension with dalcetrapib (7.3% vs. 6.5%) but smaller difference in report of hypertension as a serious event (0.6% vs. 0.3%)
– Greater incidence of diarrhea 6.8 vs. 4.3 |

Abbreviations: 1° indicated primary; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; RR, relative risk; ASCVD, atherosclerotic cardiovascular disease; FOURIER, Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk; VA, Veterans Affairs; LDL-C, low-density lipoprotein cholesterol; non-HDL-C, non-high density lipoprotein cholesterol; PCSK9, proprotein convertase subtilisin/kexin type 9.
| FOURIER
(Sabatine et al) (28)
28304224 | at least 80% adherence to study drug | Evolocumab either 140 mg every 2 wk or 420 mg monthly | Inclusion
— Age 40–85 y
— Clinically evident ASCVD (prior MI, nonhemorrhagic stroke, or symptomatic PAD)
— Most recent fasting LDL-C ≥70 mg/dL or non-HDL-C ≥100 mg/dL after ≥2 weeks of stable lipid-lowering therapy
— Fasting TG <400 mg/dL
— PLUS
• At least 1 major risk factor (DM, age >65 y, prior MI or nonhemorrhagic stroke in the last 6 mo, current daily smoking, prior MI, stroke, symptomatic PAD)
• Or 2 minor risk factors (prior non–MI-related revascularization, residual >40% stenosis in ≥2 large vessels, most recent HDL-C <40 mg/dL for men and <50 mg/dL for women, most recent hsCRP >2.0 mg/L, most recent LDL-C ≥130 mg/dL or non-HDL-C ≥160 mg/dL, metabolic syndrome)
Exclusion (cardiovascular)
— MI or stroke within 4 weeks | ERC primary outcome
— HR: 0.80 (95% CI: 0.73–0.88)
— Event rates (5.9% vs. 7.4%), p<0.001
— ARR: 1.5%
— NNT: 67
ERC secondary outcome
— HR: 0.85 (95% CI: 0.79–0.92)
— Event rates (9.8% vs. 11.3), p<0.001
— ARR: 1.5%
— NNT: 67 | Injection site reactions more frequent with evolocumab (2.1% vs. 1.6%), 90% were considered mild, 0.1% in each group stopped treatment because of a reaction |
ODYSSEY Outcomes (Schwartz et al.) (29)

PMID-IN PRESS

<table>
<thead>
<tr>
<th>18,924 Median follow-up 2.8 y</th>
<th>Alirocumab 75–150 mg every 2 wk</th>
<th>Inclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adherence</td>
<td>Drug was titrated to goal LDL 25–50 mg/dL; switched to placebo if LDL<15 mg/dL</td>
<td>Age >40 y</td>
</tr>
<tr>
<td>– Active 96.4%</td>
<td>High-intensity statin in 88.6%</td>
<td>ACS within past 1–12 mo</td>
</tr>
<tr>
<td>– Placebo 96.6%</td>
<td>Low-moderate intensity in 8.8%</td>
<td>LDL ≥70 mg/dL or non-HDL ≥100 mg/dL or ApoB ≥80 mg/dL</td>
</tr>
<tr>
<td>– Based on study discontinuation rates</td>
<td></td>
<td>High-intensity statin ≥2 weeks</td>
</tr>
</tbody>
</table>

Exclusion (cardiovascular)

- NYHA class III or IV or last ejection fraction <30%
- Any prior hemorrhagic stroke
- Uncontrolled BP
- Uncontrolled or recurrent ventricular tachycardia

Mean age 62.5±9.1 y
25% women
15% nonwhite

ERC primary outcome

- **HR:** 0.85 (95% CI: 0.78, 0.93)
- **Event rates 9.5% vs. 11.1,**
 - **p<0.001**
 - **ARR:** 1.6%
 - **NNT:** 63

ERC secondary outcome‡

- **HR:** 0.87 (95% CI: 0.81, 0.94)
- **Event rates 13.7% vs. 15.6%,**
 - **p<0.001**
 - **ARR:** 1.9%
 - **NNT:** 53

Injection site reaction

- 3.8% vs. 2.1%, **HR:** 1.82 (95% CI: 1.54–2.17)

ACC indicates American College of Cardiology; ACS, acute coronary syndrome(s); ALT, alanine aminotransferase; apoB, apolipoprotein B; ARR, absolute risk reduction; ASCVD, atherosclerotic cardiovascular disease; BP, blood pressure; CABG, coronary artery bypass graft; CAD, coronary artery disease; CI, confidence interval; CKD, chronic kidney disease; CRP, C-reactive protein; CV, cardiovascular; CVD, cardiovascular disease; DBP, diastolic blood pressure; DM, diabetes mellitus; ERC, evidence review committee; FDA, U.S. Food and Drug Administration; FH, familial hypercholesterolemia; HDL-C, high-density lipoprotein cholesterol; HR, hazard ratio; hsCRP, high-sensitivity C-reactive protein; IV, intravenous; LDL-C, low-density lipoprotein cholesterol; MI, myocardial infarction; NNT, number needed to treat; NYHA, New York Heart Association; PAD, peripheral artery disease; PCI, percutaneous coronary intervention; SBP, systolic blood pressure; TG, triglycerides; and ULN, upper limit of normal.

*__________.

†Outcomes only included coronary death, not CVD death.
‡Includes only coronary heart disease death, not CVD death.

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giugliano RP et al 2017 (30) 28813214</td>
<td>Study type/Design: Substudy of the Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER) trial that evaluated ASCVD outcomes in those on statin therapy assigned to evolocumab or placebo. Double-blind randomization was performed with the use of a central, 24-hour, interactive, computerized response system, with stratification according to region and final screening LDL cholesterol level (<85 mg per deciliter [2.2 mmol per liter] or ≥85 mg per deciliter). Evaluated cognition using the Cambridge Neuropsychological Test Automated Battery (CANTAB, www.cambridgecognition.com) Study Size: A total of 2442 patients in the FOURIER trial were screened for eligibility for the inclusion criteria: Enrolled before administration of first dose of study drug or placebo -40 and 85 years of age, -clinically evident atherosclerosis -LDL cholesterol level of 70 mg per deciliter (1.8 mmol per liter) or higher or a non–high-density lipoprotein level of 100 mg per deciliter (2.6 mmol per liter) or higher, -receiving moderate-intensity or high-intensity statin therapy. Excusion criteria: Current or past diagnosis of dementia or mild cognitive impairment or any condition or situation, including other mental or neurologic disorders, that, in the investigator’s opinion, could confound the study results or considerably interfere with the 1° endpoint: The score on the spatial working memory strategy index of executive function, a principal component of CANTAB; CANTAB was performed at screening (training session), at baseline, at 24 weeks, yearly, and at the end of the trial. Results: Primary endpoint: Evolocumab: -0.21±2.62 Placebo group: 0.29±2.81 P<0.001 for noninferiority; P=0.85 for superiority) Secondary endpoints: No significant between-group differences in scores for working memory (change in raw score, Evolocumab: -0.52 Placebo group: -0.93) For episodic memory (change in raw score, Evolocumab: -1.53 Placebo group: -1.53) For psychomotor speed (change in raw score, Evolocumab: 5.2 msec</td>
<td>Conclusions: In a randomized trial involving patients who received either evolocumab or placebo in addition to statin therapy, no significant between-group difference in cognitive function was observed over a median of 19 months. Strengths: Done in the context of a randomized controlled clinical trial of large size CANTAB tool has been validated as a research tool There was absence of self reported clinical change in cognition to parallel these results Limitations: Followup period short Patients with mid cognitive impairment or known dementia were not included CANTAB tool not a standard in clinical practice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EBBINGHAUS study, and 1974 were enrolled (full-analysis population). patient’s participation in the trial. Placebo group: 0.9 msec) In an exploratory analysis, there were no associations between LDL cholesterol levels and cognitive changes

Data Supplement 9. RCTs comparing evidence on Severe Hypercholesterolemia (Section 4.2)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENHANCE Kastelein JJ, et al., 2008 (31) 18376000</td>
<td>To assess the effect of ezetimibe on progression of carotid intima-media thickness in patients with HeFH</td>
<td>Inclusion criteria: Men and women age 30-75 with clinical HeFH defined by WHO criteria. LDL-C ≥ 210 mg/dL untreated; if on treatment LDL-C ≥ 210 mg/dL after placebo run-in. Exclusion criteria: high-grade stenosis or occlusion of the carotid artery, a history of carotid endarterectomy or carotid stenting, homozygous FH, New York Heart Association class III or IV congestive heart failure, cardiac arrhythmia, angina pectoris, or recent cardiovascular events.</td>
<td>Intervention/Comparator: Simvastatin 80 mg daily plus placebo (360) vs. simvastatin 80 mg daily plus ezetimibe 10 mg (360) daily over 24 mo.</td>
<td>Primary endpoint: Change from baseline in the average of the means of the far-wall intima–media thickness of the right and left common carotid arteries, carotid bulbs, and internal carotid arteries in the two study groups. Results: There was no significant difference in the change in CIMT in the simvastatin monotherapy group versus with simvastatin-ezetimibe group Fasting blood samples were obtained for analysis of lipid measures, as well as laboratory measures of liver aminotransferase levels, renal function, and hematologic values. Results: There was a statistically significant difference in the fall in LDL-C and apo B between the simvastatin monotherapy group (317.8±66.1 mg/dl to 192.7±60.3</td>
<td>Secondary endpoint: Proportion of patients with regression in carotid-artery intima–media thickness from baseline, the proportion of patients with new carotid-artery plaques of more than 1.3 mm, the change from baseline in the maximal carotid-artery intima–media thickness and the change from baseline in the average intima–media thickness of the carotid and common femoral arteries. Results: No difference between the simvastatin monotherapy and simvastatin-ezetimibe group in any secondary endpoint Adverse events: Adverse events and safety profile were similar in the two groups Study limitations: 1. Statin pre-treatment resulting in plaque lipid depletion and normal baseline CIMT may have biased the results.</td>
</tr>
<tr>
<td>Study</td>
<td>Aim</td>
<td>Inclusion criteria</td>
<td>Intervention/Comparator</td>
<td>1st endpoint</td>
<td>Results</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>IMPROVE-IT Cannon C, et al., 2015 (32) 26039521</td>
<td>To determine whether the addition of ezetimibe to a statin reduces the incidence of cardiovascular events as compared to statin monotherapy.</td>
<td>1. Men and women 50 y of age or older who had been hospitalized with the preceding 10 d for an acute coronary syndrome 2. Patients required to have LDL-C ≥ 50 mg/dL 3. For those not on lipid-lowering therapy at baseline, LDL-C ≤ 125 mg/dL 4. For those on lipid-lowering therapy, LDL-C ≤ 100 mg/dL</td>
<td>Simvastatin 40 mg daily (9072) plus placebo versus simvastatin 40 mg daily plus ezetimibe 10 mg daily (9072) over a median follow-up of 6 y.</td>
<td>mg/dL for LDL-C and 254.1±49.3 to 168.8±44.3 for apo B and the simvastatin-ezetimibe group (319.0±65.0 mg/dL to 141.3±52.6 mg/dL for LDL-C and 253.9±47.6 to134.6±39.1 for apo B), p<0.01 for both.</td>
<td>1. Ezetimibe added to moderate-intensity statin therapy lowered LDL-C and reduced the incidence of cardiovascular events. 2. Ezetimibe therapy was safe and well-tolerated.</td>
</tr>
<tr>
<td>Silverman MG, et al., 2016 (33) 27673306</td>
<td>To evaluate association between LDL cholesterol lowering and relative cardiovascular risk reduction employing statin and non-statin therapies</td>
<td>49 RCT’s of 9 different approaches to LDL-C reduction with reported ASCVD outcomes that included myocardial infarction</td>
<td>Drug vs. placebo</td>
<td>Relative risk of major vascular events (a composite of cardiovascular death, acute MI or other acute coronary syndrome, coronary revascularization, or stroke) associated with the absolute reduction in LDL-C level; 5-y rate of</td>
<td>Limitations: PCSK9 inhibitor outcome trial results were not available to be included in the results of this study</td>
</tr>
</tbody>
</table>
| **Study type:** Meta-analysis of RCT's | **Exclusion criteria:** RCT's of <6 mo duration or with fewer than 50 clinical events | major coronary events (coronary death or MI) associated with achieved LDL-C level.
1. Relative risk for major vascular events per 38.7 mg/dL reduction in LDL-C was 0.77 (95% CI: 0.71-0.84), p<0.001) and was 0.75 for non-statin interventions that work primarily by up-regulation of LDL-receptor expression, including diet, bile acid sequestrants, ileal bypass and ezetimibe (between-group significance, p=0.72). Combined therapies were associated with a relative risk reduction of 0.77 (95% CI: 0.75-0.79, p<0.001).
2. Achieved absolute LDL-C level was associated with the absolute rate of major coronary events (11,301 coronary deaths or myocardial infarctions for primary prevention trials (1.5% lower event rate [95% CI: 0.5-2.6%] per each 38.7 mg/dL lower LDL-C level; p=0.008) and secondary prevention trials (4.6% lower event rate [95% CI: 2.9-6.4%] for each 38.7 mg/dL lower LDL-C; p<0.001).
3. Interventions (in aggregate) that lower LDL-C via other mechanisms did not demonstrate ASCVD risk reduction. |

Aim: To assess the effect of pravastatin therapy on the incidence of non-fatal MI and coronary heart disease death in hypercholesterolemic Scottish men

| **Inclusion criteria:** Men 45-64 y of age with no history of MI with LDL-C ≥ 155 mg/dL during and at least one value 174-232 mg/dL during pre-randomization visits. Patients with a history of | **Intervention/comp arator:** Pravastatin 40 mg daily vs. placebo over a mean follow-up period of 4.9 y | **1° endpoint:** 1. Combined occurrence of nonfatal MI or death from coronary heart disease as a first event. 2. Occurrence of death from coronary heart disease and nonfatal MI. |

| **2° endpoint:** Death from cardiovascular causes, death from any cause, and the frequency of coronary revascularization procedures. Results: In the pravastatin group there was a 32% relative risk reduction in risk of death from all cardiovascular causes (95% CI: 3-|

Shepherd J, et al., 1995 (34) 7566020
Study Design: Double blind placebo controlled RCT

Size: N= 6595

Stable angina could be enrolled if no hospitalization in the preceding 12 mo

Exclusion criteria:
1. No history or ECG evidence of MI
2. No atrial fibrillation, flutter, frequent premature ventricular beats, high grade atrioventricular block
3. Blood pressure >180/110 mm Hg
4. History of rheumatic, congenital or pulmonary heart disease
5. Cardiomegaly, congestive heart failure or significant valvular heart disease
6. Psychiatric illness
7. Current lipid lowering therapy
8. Excluding laboratory values, including triglycerides >534 mg/dL

Results:
1. In the pravastatin group there was a 31% relative risk reduction (95% CI: 17-43%, p<0.001) in the combined endpoint of definite non-fatal MI and coronary heart disease death (absolute risk reduction 2.4%)

53%, p=0.0333) and a 37% reduction in revascularization procedures (95% CI: 11-56%; p=0.009)

Adverse events were similar in pravastatin and placebo groups.

Limitations: Men only

RUTHERFORD

Raal FJ, et al., 2015 (35)

25282519

Aim: To investigate the effect of PCSK9 inhibition with evolocumab on LDL-C in patients with heterozygous FH

Study Type: Randomized double-blind placebo-controlled multicenter trial

Size: N=331 patients

Inclusion criteria:
- Men and women age 18-80 with clinical FH using Simon-Broome criteria on stable dose of statin ± ezetimibe, resins, stanols or niacin; LDL-C ≥ 100 mg/dL; mutations causative of FH were recorded in 211 of 264 patients (80%) who consented to genetic analysis.
- Fibrate therapy. Apheresis within the past 4 mo. HoFH.

Exclusion criteria:
- Fibrate therapy. Apheresis within the past 4 mo. HoFH.

Intervention/comp arator:
- Patients randomly allocated in a 2:2:1:1 ratio to receive SQ evolocumab 140 mg Q2 wk (N=111), 420 mg Q month (N=110), placebo Q2 wk (n=55) or placebo Q month (n=55) for 12 wk

1*endpoint: Compared with placebo: Evolocumab Q 2 wk: reduced LDL-C by 59% (95% CI: 4-65.1, p<0.0001)
- Q 4 wk: reduced LDL-C 61.3% (95% CI: 53.6-69, p<0.0001).
- >60% treated with evo at either dose achieved LDL-C < 70 mg/dL
- Reduction in Lp(a) ranged from 19-45%.

Post hoc analysis showed LDL-C reduction in those with no genetically defined mutation was similar to that in those with genetically confirmed FH

Adverse events: Rates of adverse events with evolocumab similar to placebo.

Limitations:
1. Analysis of response based on genotype was post hoc.
2. Short study duration (12 wk)
| **ODYSSEY FH 1 and 2** | **Aim:** To assess LDL-C lowering efficacy and safety of long-term (78 wk) alirocumab treatment in patients with HeFH
Kastelein JJP, et al., 2015 (36) 26330422 | **Inclusion criteria:** Men and women age ≥18 y with HeFH with no history of CV events; and those who had a history of a myocardial infarction or ischemic stroke, if their LDL-C levels were ≥100 mg/dL for primary or ≥70 mg/dL for secondary prevention, respectively. HeFH was diagnosed with a score >8 points. Patients had to be on stable dose of statin for ≥4 wk and/or fenofibrate ≥6 wk prior to screening visit and from screening visit to randomization.
Exclusion criteria: Known HoFH or fasting TG >400 mg/dL | **Intervention/Comparator:** Patients were randomized 2:1 to receive either alirocumab 75 mg every 2 wk or placebo. Randomization stratified by history of MI or ischemic stroke, statin treatment (atorvastatin 40–80 mg or rosuvastatin 20–40 mg daily vs. simvastatin in any dose, atorvastatin <40 mg daily, or rosuvastatin <20 mg daily), and geographic region (FH I only). Dose of alirocumab was increased in a blinded fashion to 150 mg Q2W at Wk 12 if the patient’s LDL-C level at wk 8 was 70 mg/dL.
Comparator: Placebo | **1st endpoint:** % change in calculated LDL-C from baseline to Wk 24. using an intention-to-treat (ITT) approach, including values obtained after stopping treatment in patients who discontinued therapy:
Results: Mean LDL-C decreased from 145 mg/dL at baseline to 71 mg/dL (-57.9% vs. placebo) at wk 24 in patients randomized to alirocumab in FH 1 and from 135 mg/dL to 68 mg/dL in FH 2 (p<0.0001).
Secondary endpoints: % change in LDL-C in an on-treatment analysis and the proportion of patients reaching LDL-C <100 mg/dL (for those without prior CV events) and <70 mg/dL regardless of prior CV events; the proportion achieving LDL-C <70 regardless of CV events. All achieved significant reductions. The reductions were maintained through wk 78. LDL-C <70 mg/dL, regardless of CV risk was achieved at wk 24 by 59.8 and 68% of alirocumab-treated patients in FH1 and FH2 respectively.
Safety endpoints: The percentage of patients experiencing treatment-emergent adverse events were similar between treatment groups in the individual studies. Anti-drug antibodies were observed in 17 (5.5%) of alirocumab and one (0.6%) placebo-treated patient in FH 1 and 14 (8.6%) alirocumab and one (1.3%) placebo. |

| **Ross S, et al., 2015 (37) 26043746** | **Aim:** To assess the effect of bile acid sequestrants on the incidence of coronary artery disease events
Study type: Meta-analysis of RCT N=7,021 | **Inclusion criteria:** 19 RCT’s employing therapy with cholestyramine or coleselvelam was performed as part of a study using Mendelian randomization to assess the effect of bile acid sequestrants on CAD: 6 of
Intervention/Comparator: Bile acid sequestrant vs. placebo, or bile acid sequestrant vs. additional lipid lowering drug or bile
1st endpoint: Studies evaluating:
1. Cardiovascular mortality
2. Incidence of myocardial infarction
3. Baseline and mean endpoint values or the absolute difference in the intervention and placebo arms for change in LDL-C
2nd endpoints: Baseline and endpoint mean values or the absolute treatment difference in the intervention and placebo arms for the change in HDL-C, total cholesterol, triglycerides, apolipoprotein A1 and apolipoprotein B | **Comparator:** Placebo | **1st endpoint:** Baseline and endpoint mean values or the absolute treatment difference in the intervention and placebo arms for the change in HDL-C, total cholesterol, triglycerides, apolipoprotein A1 and apolipoprotein B |
cholestyramine, 3 of colestipol and 10 of colesevelam.

Exclusion criteria:
1. The 3 studies on colestipol were excluded because of lack of reported data and differences in the study dose
2. Only the Lipid Research Clinics Coronary Primary Prevention Trial was used for cholestyramine because of the heterogeneity in the pooled estimates of the lipid results from the cholestyramine studies

Results:
1. Cholestyramine therapy 24 grams daily reduced LDL-C by 23.5 mg/dL (95% CI: -26.8 to -20.2; N=3,806 and exhibited a trend toward reduced coronary artery disease risk (odds ratio: 0.81; 95% CI: 0.70-1.02; p=0.07; N=3806)
2. Colesevelam 3.75 grams daily reduced LDL-C by 22.7 mg/dL (95% CI: -28.3, -17.2; N=759)
3. There are no adequately powered trials of bile acid sequestrants to determine their effect on coronary artery disease endpoints.

<table>
<thead>
<tr>
<th>Huijgen R, 2010 (38) 20435231</th>
<th>Aim: Assess efficacy and tolerability of colesevelam added to maximally tolerated, stable dose combination treatment with a statin plus ezetimibe in patients with heterozygous FH.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study type: Randomized double-blind placebo controlled multicenter trial</td>
<td></td>
</tr>
<tr>
<td>Study size: N=86 patients (45 colesevelam and 41 placebo)</td>
<td></td>
</tr>
</tbody>
</table>

| **Inclusion criteria:** Men and women age 18-75 y with history of a documented LDL receptor mutation or an untreated LDL-C >95th percentile for sex and age in combination with at least one of the following: (1) typical tendon xanthomas in the patient or in a first-degree relative; (2) an LDL-C > 95th percentile in a first-degree relative; and (3) coronary artery disease in the patient or in a first-degree relative aged <60 y. Additional eligibility criteria were refractory FH, defined as an LDL-C concentration >95 mg/dL despite combination treatment with a maximally tolerated and stable regimen of a |
| **Intervention:** Colesevelam 625 mg 6 tablets daily with a meal or beverage taken either as 6 tablets one daily or 3 tablets twice daily |
| **Comparator:** Placebo |

| **1⁰ endpoint:** difference in the percentage change from baseline to wk 6 in LDL-C between colesevelam and placebo. Tolerability was assessed based on prevalence and severity of adverse events or on laboratory analysis of hematology and blood chemistry, including CK, liver and kidney function tests, and discontinuation due to AEs at the end of 12 wk. |
| **Results:** The between-group difference in change from baseline LDL-C was significant at wk 6, with an LSM change of -18.5% (95% CI: -25.3 to -11.8) p<0.001 Apo A1/apo B ratio fell by 14% (p=0.003). No change in hs-CRP |

| **2⁰ endpoint:** Various lipid parameters, HgbA1C and hs-CRP Adverse events: Frequency of treatment-emergent adverse events over the 12-wk study period was not significantly different between the colesevelam and placebo groups. The most commonly reported TEAEs were gastrointestinal (12/45 [27%] and 7/40 [18%], respectively; p=NS). |
| **Limitations:** 1. Small number of patients 2. Short duration 3. DM and high TG were exclusion criteria |
| Cholesterol Treatment Trialists Collaborators, 2010 (13) 21067804 | **Aim:** Assess the safety and efficacy of more intensive statin therapy Meta-analysis of individual participant data from statin RCT with ASCVD outcomes
Size: N=169,138 | Major statin primary and secondary prevention trials with at least 1000 participants with a minimum follow-up of 2 y, including trials of more versus less intensive statin regimens (five trials; 39,612 subjects; median follow-up 5.1 y) and statin versus control (21 trials; 129,526 subjects; median follow-up 4.8 y).
Exclusion criteria: For acute coronary syndrome subjects, revascularization not related to recurrent ischemia or occurring <30 d from the time of randomization | **Intervention/Comparator:** Statin versus control
More intense versus less intense statin
1⁰ endpoint: Cause-specific mortality, major coronary event defined as coronary death or non-fatal MI percutaneous coronary intervention or bypass grafting), stroke (subdivided by type), and new cancer diagnosis (subdivided by site).
Results: 1. More intensive versus less intensive regimens produced a 15% (95% CI: 11-18; p<0.0001) further reduction in major vascular events, including a 13% (95% CI: 7-19; p<0.0001) further reduction in coronary death or non-fatal MI, a 19% (95% CI: 15-24; p<0.0001) reduction in coronary revascularization, and a 16% (95% CI: 5-26, p=0.005) in ischemic stroke.
2. For every 39 mg/dL reduction in LDL-C, there was a 22% (rate ratio 0.78; 95% CI: 0.76-0.80; p<0.0001) reduction in the relative risk of major vascular events.
3. All-cause mortality was reduced by 10% for every 39 mg/dL LDL-C reduction (rate ratio 0.9; 95% CI: 0.87-0.93; p<0.0001) primarily due to reduction in coronary heart disease death (risk ratio: 0.8; 99% CI: 0.74-0.87; p<0.0001) and other cardiac causes (risk ratio: 0.89; 99% CI: 0.89-0.98; p=0.002). | N/A |
3. No effect on death due to stroke or other vascular causes and no effect on death due to cancer, death from non-vascular causes or on cancer incidence.

<table>
<thead>
<tr>
<th>Study Acronym: Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perak, AM, et al., 2016 (39) 27356432</td>
<td>Study Type: Pooled cohort analysis from 6 large US epidemiological cohorts Size: 68565 baseline person-examination</td>
<td>Inclusion criteria: Men and women stratified by LDL-C at ages 20-79 y with at least 1 baseline examination with direct measurement of serum lipids, physiological and anthropometric variables. Primary analysis defined FH phenotype as LDL-C ≥ 190 mg/dL and referent <130 mg/dL Exclusion criteria: N/A</td>
<td>1st endpoint: long term CHD and total ASCVD risks in UD adults with an FH phenotype. Results: After co-variate adjustment, FH phenotype was associated with HR: up to 5.0 (95% CI: 1.1-21.7). CHD risk was accelerated by 10-20 y in men and 20-30 y in women. Total ASCVD risk was associated with HR: up to 4.1 (95% CI: 1.2-13.4)</td>
<td>Summary: FH phenotype is associated with increased risk for ASCVD and accelerates risk in both men and women. Limitations: 1. Phenotypic rather than genotypic diagnosis of FH. 2. Single measurement of LDL-C for inclusion. 3. Secondary hypercholesterolemia was not excluded. 4. Limited family data available</td>
</tr>
<tr>
<td>Khera AV, et al., 2016 (40) 27050191</td>
<td>Study Type: Pooled cohort analysis of 7 CAD case control cohorts and 5 prospective cohort studies Size: 20,485 subjects</td>
<td>Inclusion criteria: 1386 subjects were identified with LDL-C ≥ 190 mg/dL. Whole exome gene sequencing was done on those with LDL-C ≥ 190 mg/dL comparing risk for CAD in those with vs. without FH-causing mutations. Exclusion criteria: N/A</td>
<td>1st endpoint: Prevalence of an FH mutation among those with severe hypercholesterolemia and determination of whether CAD risk varies according to mutation status beyond the observed LDL-C level. Results: 1. Those with LDL-C ≥190 mg/dL and no FH mutation had a 6-fold higher risk for CAD (odds ratio: 6.0; 95% CI: 5.2-6.9) than those with LDL-C <130 mg/dL and no mutation. Those with both LDL-C ≥190 mg/dL and an FH mutation had a 22-fold increased risk (odds ratio: 22.3; 95% CI: 10.7-53.2).</td>
<td>Summary: CAD risk is higher in those with LDL-C ≥ 190 mg/dL than in those with LDL-C <130 mg/dL and the risk is more than tripled in those with LDL-C ≥190 mg/dL and a concomitant FH causing mutation. 3. These findings may be mediated via a higher cumulative exposure to LDL-C. Study limitations: 1. Study participants could not be stratified by family history or physical examination. 2. Assumption of 30% LDL-C lowering in those treated with statin therapy may not be accurate. 3. Those with LDL mutations may have had survivorship bias</td>
</tr>
<tr>
<td>Study</td>
<td>Study Type</td>
<td>Inclusion criteria</td>
<td>1st endpoint</td>
<td>Summary</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>Nanchen D, et al., (41)</td>
<td>Multicenter prospective cohort study</td>
<td>Patients ≥ age 18 y with a primary diagnosis of ST elevation MI, non-ST elevation MI or unstable angina, hospitalized with acute coronary syndrome in Switzerland between 2009 and 2013 and who were individually screened for clinical FH using the definitions of the American Heart Association, Simon Broome, and the Dutch Lipid Clinic criteria. Patients with complete baseline and follow-up lipid measurements and family history information.</td>
<td>1-y risk of first recurrent coronary death or myocardial infarction after multivariable adjustment, assessed by telephone monitoring and by a follow-up clinic visit 1 y after the acute event.</td>
<td>Recurrent coronary events are more likely in those with FH than in those without despite high-dose statins</td>
</tr>
<tr>
<td>Versmissen J, et al., 2008 (42)</td>
<td>Retrospective cohort study of 27 outpatient</td>
<td>Patients with phenotypic familial hypercholesterolemia identified in a Dutch cohort from 1/1/90 to 2002.</td>
<td>Relative risk of myocardial infarction in statin treated patients and in those who were delayed in starting statin treatment compared with a Cox</td>
<td>Summary: Statin therapy reduces incident myocardial infarction risk in subjects with familial hypercholesterolemia</td>
</tr>
</tbody>
</table>
| Besseling J, et al., 2016 (43)
27417002 | **Study Type** | Retrospective cohort study of the database of the national FH cascade screening program in the Netherlands and a patient-centric data network of multiple health care databases |
| | **Size:** | 1559 patients |
| | **Inclusion criteria:** | Patients’ age ≥18 y with genetically determined deleterious mutations associated with FH and free of clinical CAD at entry into the study. |
| | **Exclusion criteria:** | Patients with homozygous, compound heterozygous or double heterozygous FH or carriers of a non-deleterious mutation. |
| | **1^endpoint:** | Relative risk reduction for CAD (myocardial infarction, angina pectoris, or other forms of atherosclerotic or ischemic heart disease or coronary artery bypass graft or PCI), and all-cause mortality by statins in heterozygous FH patients. |
| | **Results:** | Patients treated with statins (n = 1,041) (most often simvastatin 40 mg daily [23.1%] or atorvastatin 40 mg daily [22.8%]) had 89 CAD events and 17 deaths during 11,874 person-y of follow-up versus those never treated with statins (n = 518), who had 22 CAD events and 9 deaths during 4,892 person-y (combined rates 8.8 vs. 5.3 per 1,000 person-y, respectively; p<0.001). After applying IPTW and adjusting for other medications, the hazard ratio of statin use for CAD and all-cause mortality was 0.18 (95% CI: 0.13-0.25; p<0.001). |
| | **Limitations:** | 1. Because of the observational nature of the study, indication bias could have been present. 2. Time lag between the first observation in the database and the first visit in the screening program may have affected results 3. Cause of death was not specified. |

| **lipid clinics in the Netherlands.**
Size: 2146 patients | **Exclusion criteria:** | Enrollees had to have no documented coronary heart disease prior to 1/1/90. |
	Size:	2146 patients
	Enrollees had to have no documented coronary heart disease prior to 1/1/90.	
	Exclusion criteria:	Those with established coronary heart disease prior to 1/1/90.
	regression model in which statin use was a time dependent variable.	
	Results:	In January 1990, 413 (21%) of the patients had been started on a statin, and during follow-up 1294 patients (66%) started after a mean delay of 4.3 y (SD 3.3 y). During a mean follow-up of 8.5 y (SD 3.1 y) there was a reduction in myocardial infarction risk reduction of 76% (hazard ratio: 0.24; CI: 0.18-0.30), p<0.001) in those initially started on a statin as compared to those in whom statin administration had been delayed. After additional reduction for baseline characteristics, there was an 82% risk reduction (HR: 0.18; 95% CI: 0.13-0.25; p<0.001).
	Limitations:	1. Possible selection bias favoring earlier treatment of patients with perceived higher risk. 2. Lack of placebo control 3. Intention to treat analysis was not employed

endpoint: Relative risk reduction for CAD (myocardial infarction, angina pectoris, or other forms of atherosclerotic or ischemic heart disease or coronary artery bypass graft or PCI), and all-cause mortality by statins in heterozygous FH patients.
| Study: Perez de Isla, 2017 (44) 28275165 | **Study Type:** Prospective cohort study from multiple medical centers in Spain employing the SAFEHEART registry | **Inclusion criteria:** Age ≥ 18 y with molecularly defined heterozygous FH, with or without previous ASCVD | **1° endpoint:** Identification of key risk factors for prediction of ASCVD in patients with familial hypercholesterolemia using the SAFEHEART registry. | **Results:** 1. Over a mean period of 5.5 y, 12 (0.5%) had fatal and 122 (5.1%) non-fatal ASCVD incidents. 2. Age, male gender, history of previous ASCVD, high blood pressure, increased waist circumference, active smoking, LDL-C and Lp(a) were independent predictors of incident ASCVD. See table 3 from article below. 3. Molecular diagnosis: Two hundred and nine different functional mutations in LDL receptor (LDLR) (97.0%) and APO-B (3.0%) genes were identified. In the cohort 856 (35.6%) patients had LDLR null mutations, 1092 (45.4%) defective mutations and 384 (16.0%) unclassified mutations. 4. A risk equation was derived from these results with Harrell’s C index of 0.85. 5. Individual risk was estimated for each person without established ASCVD before enrollment using SAFEHEART risk equation, modified Framingham risk Scoring and ACC/AHA Pooled cohort Risk Equations. SAFEHEART-RE outperformed the other two models. | **Summary:** 1. Several easily obtained clinical and laboratory studies were independent predictors of incident ASCVD. 2. A SAFEHEART risk equation, derived from the ASCVD outcomes of this cohort, was shown to be a useful tool to predict ASCVD risk in these patients with molecularly defined FH. | **Limitations:** 1. No data from children or adolescents. 2. Not all patients had pre-treatment lipid values. 3. No external validation cohort available. 4. Relatively short mean follow-up period of 5.5 y. |
| Size: 2404 patients | Assessment of fasting lipids; Lp(a); ASCVD risk factors; whole blood molecular analysis of DNA; assessment of previous and incident ASCVD | Exclusion criteria : N/A | 1. Over a mean period of 5.5 y, 12 (0.5%) had fatal and 122 (5.1%) non-fatal ASCVD incidents.
2. Age male gender, history of previous ASCVD, high blood pressure, increased waist circumference, active smoking, LDL-C and Lp(a) were independent predictors of incident ASCVD
See table 3 from article below
3. Molecular diagnosis: Two hundred and nine different functional mutations in LDL receptor (LDLR) (97.0%) and APO-B (3.0%) genes were identified. In the cohort 856 (35.6%) patients had LDLR null mutations, 1092 (45.4%) defective-mutations and 384 (16.0%) unclassified mutations.
4. A risk equation was derived from these results with Harrell’s C index of 0.85
5. Individual risk was estimated for each person without established ASCVD before enrollment using SAFEHEART risk equation, modified Framingham risk Scoring and ACC/AHA Pooled cohort Risk Equations. SAFEHEART-RE outperformed the other two models. | 2. A SAFEHEART risk equation, derived from the ASCVD outcomes of this cohort, was shown to be a useful tool to predict ASCVD risk in these patients with molecularly defined FH.
Limitations:
1. No data from children or adolescents
2. Not all patients had pre-treatment lipid values
3. No external validation cohort available
4. Relatively short mean follow-up period of 5.5 y |
Study Acronym; Author; Year Published

<table>
<thead>
<tr>
<th>Data Supplement 11. Nonrandomized Trials, Observational Studies, and/or Registries of Diabetes Mellitus 40-75 Years (Section 4.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Acronym; Author; Year Published</td>
</tr>
</tbody>
</table>
| Wong ND, et al., 2012 (45)
22377485 | **Study type:** Cross sectional cohort analysis
Design: Assessment of distribution of 10 y CVD risk in a representative US sample of subjects with diabetes (NHANES 2003-6) using the Framingham score which divides 10 y CVD risk into low (<10%), intermediate (10-20%) and high risk (>20%) categories.
Size: n=1,114, representing 18.2 million | **Inclusion criteria:** adults 30-74 y with DM
Exclusion criteria: N/A | **1st endpoint:** 10 y total CVD events estimated by the Framingham algorithm.
Results:
- Among those without pre-existing CVD 27% had <10%, 23% had 10-20% and 50% had >20% 10 y risk.
- Age subgroups:
 - 40-49 y, low risk 47%; high risk 15%
 - 50-59 y, low risk 17%; high risk 33%
 - 60-69 y, low risk 6%, high risk 42%
- 49.3% of subjects with T1DM, 10.3% with type 2 and 17.5% with previously undiagnosed DM were at low risk.
- Low risk subgroups (% low risk):
 - Sex; Female/Male: 26.8%/18.6%
 - Race/Ethnicity; Black/Hispanic/Caucasian: 30.6%/32.4%/16.8%
- 59% of low risk subjects had metabolic syndrome and 7% had CKD.
| **Summary:**
- 75% of subjects without CVD were at intermediate or high risk.
- A minority of adults with T2DM and about half of those with T1DM are at <10% 10y CVD risk using the Framingham score, especially those <50 y, females>males, minorities>Caucasians.
- Half the cohort were at high risk (>20% 10 y CVD risk).
- Low risk subjects frequently have comorbidities that increase their long-term.
| **Limitations:**
- Though representative of the US population, the study group is relatively small.
- The Framingham score may underestimate risk and its validity in subjects with diabetes has been questioned. |
| Rana JS, et al., 2016 (46)
26666660 | **Study type:** Prospective population-based cohort case-control study
Design: Comparison of risk of incident CHD events over 10 y (2002-2011) among members of Kaiser Permanente with or without diabetes or CHD
Size: 1,586,061 adults of whom 138,507 had diabetes (ICD code diagnosis) | **Inclusion criteria:** continuously enrolled
30-90 y
Exclusion criteria: N/A | **1st endpoint:** Age-adjusted rate of new fatal or non-fatal CHD or revascularization; n/1,000 pt.-y (95% CI)
Results:
- With CHD only; Overall: 22.5 (22.0–22.98)
 - With DM only (n=118,952); Overall: 12.2 (95% CI: 12.02–12.49)
 - HR: 3.7 (95% CI: 3.6–3.8) vs. no DM/CHD men: 15.2 (95% CI: 14.8–15.53)
 - women 8.8 (95% CI: 8.58–9.14)
- By age subgroups;
 - 40-49 y (n=19,746); men 9.0,
| **Summary:**
- Overall incident CHD rates were 15.2% in men and 8.8% in women. By age subgroup rates rose from 5% or less for those 30-39 y old and rose incrementally with age reaching 15-25% for age 60-69 y.
- There was a modest increase of incident CHD in those with duration of diabetes <5 y (compared to those without DM) and event rates increased with duration until it was not different from those with prior CVD and no diabetes in those with duration >10 y.
- Overall the risk for a CHD event in a large cohort with diabetes but no CVD is about half that in subjects without diabetes but with CHD.

© American Heart Association, Inc., and the American College of Cardiology Foundation.
<table>
<thead>
<tr>
<th>Study type</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Results</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>MESA</td>
<td>Persons living within 6 defined geographic boundaries between 45 and 84 y who are African-American, Chinese-American, Caucasian or Hispanic</td>
<td>People with clinical CVD</td>
<td>Mean (SD) CAC score (DM, metabolic syndrome, no DM/metabolic syndrome):
 - CAC 0%; 38, 45, 55
 - CAC 1-99; 2.2, 1.2, 0.7
 - CAC 100-399; 2.9, 2.4, 1.7
 - CAC 400+; 5.1, 4.6, 2.6</td>
<td>All diagnoses were based on electronic records only, including CHD ascertainment. All subjects were insured and therefore results may not be generalizable to other segments of the population.</td>
</tr>
<tr>
<td></td>
<td>Annual CVD events (%)
 - CAC 0; 0.8, 0.4, 0.2
 - CAC 1-99; 2.2, 1.2, 0.7</td>
<td>CVD events in CAC 1-99 vs. CAC 0
 HR: 2.0; 95% CI: 1.1–3.7; p<0.05</td>
<td>Mean (SD) CAC score (DM, metabolic syndrome, no DM/metabolic syndrome):
 - CAC 0%; 38, 45, 55
 - CAC 1-99; 2.2, 1.2, 0.7
 - CAC 100-399; 2.9, 2.4, 1.7
 - CAC 400+; 5.1, 4.6, 2.6</td>
<td>In a model adjusted for the Framingham risk score CAC still predicted CVD events in D; HR: 2.0; 95% CI: 1.5–2.6.</td>
</tr>
<tr>
<td>Mulnier HE, et al., 2008 (48)</td>
<td>Men and women aged 35-89 y</td>
<td>Free of CHD</td>
<td>Incident MI: rate/1000 pt. y (95% CI) over mean follow-up of 7 y</td>
<td>Although mean CAC was higher in DM vs. metabolic syndrome vs. no DM/metabolic syndrome, 38% of DM had CAC 0.
 CAC 0 in DM was associated with a 0.8% annual rate risk of CVD.
 CAC 1-99 doubled the rate
 CAC >100 more than tripled the rate
 CAC screening in diabetes predicts risk independent of the Framingham risk score
 CIMT showed the same trends as CAC but was not as good a predictor of CVD.</td>
</tr>
<tr>
<td>Mulnier HE, et al., 2008 (48)</td>
<td>Study type: Prospective case- control observational cohort study</td>
<td>1st endpoint: 7 y Incident MI</td>
<td>1st endpoint: 7 y Incident MI</td>
<td>The primary objective of this study, to compare incident MI rates in DM versus no DM, demonstrated overall more than a 2-fold excess risk.</td>
</tr>
<tr>
<td>Study type:</td>
<td>Prospective case-control observational cohort study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size:</td>
<td>7,479 subjects with and 38,116 without Type 1 DM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inclusion criteria:
- Men and women aged <35 - >75 y with type 1 DM
 (defined as being treated with insulin + diagnosed <35 years of age)
- 5 randomly selected age and sex-matched controls for each subject with type 1 DM

Baseline characteristics:
- Baseline age (mean±SD) 33±14.5 y; 55% men, type 1 DM prevalence 2.15/1000; average DM duration 15 y
- Baseline CVD prevalence; 3% in type 1 DM, 1% in controls, RR 3.0 (95% CI 2.5–3.5)

Exclusion criteria:
N/A

Results:

First major CVD event
- DM vs non-DM: 219 vs 289 events (cumulative incidence 3% vs 0.76%)
- DM vs non-DM HR (95% CI): 4.5 (3.8–5.4)
- Men absolute risk/1000 person-y (95%CI); HR (95%CI):
 - Overall: 7.3 (6.1–8.6); 5.5 (4.4–6.8)
 - <35 y: 0.8 (0.4–1.6); 11.3 (2.9–43.8)
 - 35-44 y: 4.8 (3.2–7.1); 4.4 (2.5–7.6)
 - 45-54 y: 10.6 (7.3–15.2); 3.0 (1.9–4.8)
 - 55-64 y: 39.4 (29.5–52.6); 4.1 (2.8–6.0)
 - 65-74 y: 35.2 (21.6–57.5); 2.3 (1.3–4.1)
 - >75 y: 122.2 (69.4–215.2); 3.5 (1.6–7.3)
- Women
 - Overall: 5.5 (4.4–6.8); 7.7 (5.5–10.7)
 - <35 y: 0.5 (0.2–1.3); 9.8 (1.8–53.6)
 - 35-44 y: 3.5 (2.1–6.1); 15.4 (5.0–47.3)
 - 45-54 y: 10.2 (6.7–15.5); 10.1 (5.0–20.4)
 - 55-64 y: 22.8 (15.0–34.7); 5.7 (3.2–10.4)
 - 65-74 y: 38.7 (24.1–62.3); 8.3 (4.0–17.2)
 - >75 y: 87.3 (39.2–194.3); 4.0 (1.4–11.2)

Limitations:
- The diagnosis of type 1 DM was not confirmed by antibody testing so the cohort
<table>
<thead>
<tr>
<th>Study type: Retrospective cohort analysis</th>
<th>Inclusion criteria: Being an outpatient with T2DM 18 y or older</th>
<th>1° endpoint: Non-fatal CVD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Design:</td>
<td></td>
<td>Fatal CVD: fatal MI, stroke and CHD [absolute risk/1000 person-y (95%CI); HR (95%CI)];</td>
<td></td>
</tr>
<tr>
<td>• Comparison of rates of non-fatal CVD identified from records of patients attending 603 medical centers with early onset (<40 y) versus late onset T2DM taken from the China National HbA1c Surveillance System.</td>
<td></td>
<td>• Men: 2.8 (2.1–3.7); 5.8 (3.9–8.6)</td>
<td></td>
</tr>
<tr>
<td>• This provides information of CVD prevalence in patients with DM who are 40-50 y of age and by 5 y increments to >70 y</td>
<td></td>
<td>• Women: 2.5 (1.9–3.5); 11.6 (6.7–20.1)</td>
<td></td>
</tr>
<tr>
<td>Size: 222,773 subjects</td>
<td></td>
<td>Results: Mean (SD) age at assessment; o Early onset; 40.9 (7.9) y</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Late onset; 60.7 (9.6) y</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean age at diagnosis: o Early onset; 34.5 (5.0) y</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Late onset; 55.3 (8.9) y</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Risk of non-fatal CVD in Early onset vs. Late onset diabetes: o OR: 1.91; 95% CI: 1.81–2.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o (p<0.0001) which was attenuated when adjusted for diabetes duration (OR: 1.13; 95% CI: 1.06–1.20).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prevalence of CVD by age in Early onset: o 30-34 y; 1.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o 35-39 y; 3.3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o 40-44 y; 5.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o 45-49 y; 8.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o 50-54 y; 13.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o 55-59 y; 21.3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o 60-64 y; 29.6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o 65-69 y; 28.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o >70 y; 42.7%</td>
<td></td>
</tr>
</tbody>
</table>

- This is one of two studies that provides information on rates of CVD in a cohort with T2DM diagnosed <40 y of age.
- Although prevalence of CVD is relatively low in 30-44 y old subjects (1.9-5.8%) diagnosed <40 y, it increases rapidly with age in both men and women.
- The principal finding was that Early onset T2DM has a higher lifetime risk for CVD than Late onset, which occurs at an earlier stage of life in Early onset, but in regression analysis was more strongly related to duration of diabetes rather than lower age of DM onset.
<table>
<thead>
<tr>
<th>Study type</th>
<th>Inclusion criteria</th>
<th>1st endpoint</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Constantino MI, et al., 2013 (51) 23846814 | **Study type:** 25-y retrospective review of hospital records **Design:** Comparison of diabetic complications and mortality in T1DM and T2DM cohorts with age of onset between 15 and 30 y of age **Size:** 354 patients with T2DM and 470 patients with T1DM | **Inclusion criteria:** - Records of all patients with diabetes aged 15-30 y in the Royal Prince Alfred Hospital diabetes database in Sydney Australia during the period 1986-2011. **Baseline characteristics:** - Mean current age (SD) y:
 - T2DM: 40.4 (12.5)
 - T1DM: 38.9 (10.9) - Median diabetes duration (IQR) y:
 - T2DM: 11.6 (4.5–22.6)
 - T1DM: 14.7 (8.2–23.6) | **1st endpoint:** Mortality **Results:** - Other outcomes: Macrovascular disease - Mortality T2DM vs. T1DM (%):
 - Total: 11% vs. 6.8%
 - Median duration of DM until death (IQR) y:
 - T2DM: 26.9 [18.1–36.0]
 - T1DM: 36.5 [24.4–45.4], p=0.01 - Mean age at death (SD) y:
 - T2DM: 52.9 (14.7)
 - T1DM: 57.4 (12)
 - CVD death;
 - T2DM: 50.0%
 - T1DM: 30.3%, p=0.053 - Cumulative macrovascular disease T2DM vs. T1DM (%):
 - IHD: 12.6% vs. 2.5%, p<0.0001
 - Stroke: 4.3% vs. 0.7%, p<0.0001
 - Any: 14.4% vs. 5.7%, p<0.0001 | This study provides comparative, long-term data on complications and mortality in subjects with T1DM or T2DM, diagnosed between age 15 and 30 y of age.
 - The principal finding is that those with T2DM have a greater risk of macrovascular disease and mortality than those with T1DM.
 - The study also demonstrates that over a mean duration of diabetes of 11.6-14.7 y, 14.4% of T2DM and 5.7% of T1D diagnosed between 15 and 30 y develop CVD. |
| Svensson MK, et al., 2013 (52) 24002670 | **Study type:** Observational cohort study **Design:** To evaluate the predictive value of reduced renal function and albuminuria on CVD events and all-cause mortality in diabetes **Size:** 66,065 | **Inclusion criteria:** Subjects with T2DM aged 30-79 y (mean age 64 y) registered with the Swedish National Diabetes Register and followed for an average of 5.7 y
 - 17% of the cohort had RRF, (eGFR<60 ml/min/1.73m2);
 - 24% had albuminuria (>30mcg/mg creatinine). | **1st endpoint:**
 - Fatal/non-fatal CHD
 - Fatal/non-fatal CVD
 - All-cause mortality
 - Fatal/non-fatal CVD events (n [%], fully adjusted HR [95%CI] vs. those without either albuminuria or RRF:
 - No albuminuria/RRF: 3306 (7.7%), 1.0
 - albuminuria: 1484 (12.5%), 1.27; 95% CI: 1.20–1.36.
 - RRF: 951 (12.7%), 1.21; 95% CI: 1.12–1.30.
 - albuminuria +RRF: 749 (19.3%), 1.41; 95% CI: 1.30–1.53.
 - All-cause mortality
 - No albuminuria /RRF: 2713 (6.3%) 1.0
 - albuminuria: 1378 (11.6%), 1.43; 95% CI: 1.34–1.53. | Albuminuria and reduced renal function are each independent risk factors for CVD and mortality in type 2 diabetes.
 - Albuminuria was predictive at all levels of renal function and additive to the effects of RRF.
 - In normoalbuminuric patients, reduced renal function is an important predictor of CVD events and mortality.
 - Limitations include the fact that subjects with more severe degrees of RRF were not included, that only 1 baseline measure of renal function was used, and effects of RAS inhibitors were not assessed. |
<table>
<thead>
<tr>
<th>Study type</th>
<th>Inclusion criteria</th>
<th>1st endpoint</th>
<th>Results</th>
</tr>
</thead>
</table>
| Guo VY, et al., 2016 | **Study type:** Meta-analysis of cohort studies

Design: To evaluate the association between any diabetic retinopathy (DR) and CVD in T1DM AND T2DM without prior CVD

Size: 17,611 patients from 13 studies; 10,200 with T2DM (8 studies) and 7411 with T1DM (5 studies) | **1st endpoint:** Risk ratio for first CVD event in DR vs. no DR | • Overall DR is associated with an increased risk of CVD events in diabetes.
• The risk associated with DR is greater in those with T1DM than those with T2DM, although the T1DM data were strongly influenced by a single large study that only studied pts with advanced retinopathy.
• The DR associated CVD risk is independent of other risk factors.
• It was not possible in this meta-analysis to determine whether severity of DR was related to CVD risk, although the ACCORD study did show this. |

| Study type: Observational case-control cohort study

Design: To compare incident first CVD events in a large group of patients with type 2 diabetes seen | **Inclusion criteria:**
• >18 y of age
• no prior CVD
• type 2 diabetes
• foot exam using a monofilament | **1st endpoint:** First CVD event, death | • PN is associated with increased risk for a first CVD event in people with diabetes after adjustment for conventional risk factors.
• The presence of PN led to modest reclassification of individuals into different risk categories.
• A limitation is the short follow-up period |

• CVD events, n (%)
 - PN; 65 (5.0%)
 - No PN; 334 (2.8%)
• Crude mortality, n per 1000 pt. y |
in primary care practice in
the UK with or without
peripheral neuropathy (55)

Size: Data on 13,043
individuals from 122
primary care practices
extracted using a national
software program

Baseline characteristics:
- mean age (SD); 63.8 y
 (12.8)
- PN prevalence 9.9%
 (1296/13,043)
- Mean follow-up was 30
 mo

Exclusion criteria: N/A

- PN; 22.8
- No PN; 11.3, p<0.001
- Effect of PN vs. no PN on CVD;
 - Unadjusted HR: 1.78; (95% CI: 1.37–
 2.32); p<0.001
 - Adjusted for risk factors; HR: 1.38; 95%
 CI: 1.05 to1.80; p=0.02
- Reclassification of risk categories based
 on the Framingham score: -
 - PN reclassified 6.9% into a higher or
 lower risk category.

The diagnosis of PN is imprecise, which is a
potential limitation.

Pang XH, et al., 2017

Study type: Cross-
sectional case-control
cohort study

Design: Comparison of
CVD risk estimated by the
United Kingdom
Prospective Diabetes
Study risk engine in
Chinese subjects with
diabetes and with or
without PAD and free of
CVD.

Size: 1,178 subjects with
diabetes

Inclusion criteria:
- All 1,178 patients with type 2 diabetes admitted to
 Zhejiang University Medical
 College Hospital between
 2008 and 2013
- 88 had asymptomatic PAD
defined as an ABI <0.9 or
 >1.4
- Mean (SD) age y
 - No PAD; 57.2 (12.3)
 - PAD; 69.8 (11.8)

Exclusion criteria: N/A

1° endpoint: 10 y % fatal/non-fatal CVD risk
assessed by UKPDS risk engine.

Results:
- Mean [95%CI]%
 - No PAD; 20.5 [19.6–21.4]
 - PAD; 35.1 [30.7–39.5] p<0.001
- Multivariate logistic regression (OR [95%CI]) of
 PAD vs. non-PAD on CVD risk that included
 age and standard risk factors,
 - CHD: 3.6, (2.2–6.0); p<0.001
 - Stroke: 6.9, (4.0–11.8); p<0.001

An ABI<0.9>1.4 in a large Chinese cohort
with type 2 diabetes free of CVD was
associated with increased risk for future CVD
as assessed by the UKPDS risk engine.
This increased risk was found to be
independent of age and of standard risk
factors.
A limitation is the use of a risk engine to
assess CVD instead of incident events.

© American Heart Association, Inc., and the American College of Cardiology Foundation.
57
Table: RCTs Comparing Diabetes Mellitus 40-75 Years (Section 4.3)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
</table>
| **HPS** Collins R, et al., 2003 (57) 12814710 | Aim:
- To evaluate whether (moderate intensity) statin therapy reduces CVD morbidity and mortality in subjects with diabetes and with or without CVD compared to placebo.
- This report summarizes findings in the pre-specified subgroup of participants without ASCVD only.
Study type: Randomized double-blind placebo-controlled clinical trial
Size: 5,963 subjects with diabetes 615 of whom had T1DM; 3,051 subjects had ASCVD and 2,912 individuals did not. | Inclusion criteria:
- Age 40-80 y
- T1DM or T2DM
- Non-fasting cholesterol >3.5 mmol/l (135 mg/dl)
- treated hypertension (if also male and aged at least 65 y)
Exclusion criteria:
- No CVD for the pre-specified primary prevention subgroup
- Subject’s physician assessment that statins clearly indicated or contraindicated
- liver disease
- severe renal disease
- cyclosporine, fibrates, niacin
- Baseline LDL-C; mean (SD) 3·2 (0·82) mmol/l [125 (32) mg/dl] | Intervention:
- Simva 40 mg daily (n=1455)
- average statin usage 83%,
- average LDL-C 2.2 mmol/l (86 mg/dl)
Comparator:
- Placebo (n=1457)
- average statin usage 11%
- average LDL-C 3.1 mmol/L (121 mg/dl)
- LDL-C difference between simva and placebo 0.9 mmol (35 mg/dl)
- Mean duration 4.8 y | 1° endpoint:
- Non-fatal MI, death from any coronary disease
Results:
- n (rate ratio %)
- Simva; 135 (9.3%)
- Placebo; 196 (13.5%)
RRR 33% (95% CI: 17–46; p=0.0003)
- Men: RRR [SE] 33% [10], p=0·002
- Women RRR 30% [19], p=0·1
- 40-64 y of age: RRR 33% [12], p=0·006
- 65-80 y of age: RRR 31% [14], p=0·03
- Adverse events: (full group with diabetes)
- Liver enzymes >4X UL
- Simvastatin: n (%) 14 [0·47%]
- Placebo: 11 [0·37%])
- CK >10X UL
- Simva: 4 [0·13%]
- Placebo: 2 [0·07%] | |
| **CARDS** Colhoun HM, et al., 2004 (58) 15325833 | Aim: To test the effectiveness of atorvastatin 10 mg for primary prevention of major CVD events in patients with T2DM without high LDL-C | Inclusion criteria:
- Men and women aged 40-75
- T2DM
- At least one of hypertension, retinopathy, microalbuminuria and smoking | Intervention:
- Atorva 10 mg daily (n=1428)
 Comparator:
- Placebo (n=1410)
- 1 y LDL-C
- Mean (SD) mmol/l/mg/dl | 1° endpoint: (first acute CHD event [MI including silent MI, unstable angina, CHD death, resuscitated cardiac arrest], coronary revascularization, or stroke)
Results:
- Acute coronary events, n (%)
- Atorva: 51 (3.6)
- Placebo: 77 (5.5)
- Acute coronary events, rate per 100 per y
- Atorva: 0.94
- Placebo: 1.47
- HR: 0.64; 95% CI: 0.45 - 0.91; | |
Study type: Randomized double-blind placebo-controlled clinical trial

Size: 2,838

Exclusion criteria:
- Any CVD
- LDL-C > 160 mg/dl
- triglyceride > 160 mg/dl
- plasma creatinine > 150 mol/L
- HbA1c > 12%
- <80% compliance with placebo during the baseline phase
- Baseline LDL-C: mean (SD) mmol/l/mg/dl
 Atorva: 3.04 (0.72)/118 (28)
 Placebo: 3.02 (0.70)/118 (27)
- Mean change %
 Atorva: 1.86 (0.69)/70 (39)
 Placebo: 2.65
- Absolute change %
 Atorva: -35%
 Placebo: 2.65
- Between-group Difference, 40%
- The trial was terminated 2 y earlier than expected (median duration 3.9 y) because efficacy had been met

Inclusion criteria:
- Men and women 40-80 y
- Hypertension
- Total chol <6.5mmol/l (253 mg/dl)
- 3 of: T2DM, male sex, age >55 y, microalbuminuria or proteinuria, smoking, total/HDL-C >6, premature FH of CHD, LVH, specified ECG abnormalities, PAD, stroke or TIA
- MI current angina, cerebrovascular event in past 3 mo

Intervention:
- Atorva 10 mg daily (n=1258)
 - Baseline LDL-C mean (SD) mmol/l/mg/dl: 3.3 (0.7)/128 (27)
 - 1 y LDL-C: 2.1 (0.86)/92 (26)

Comparator
- Placebo (n=1274)
 - Baseline LDL-C: 3.3 (0.8)/128 (31)
 - 1 y LDL-C: 3.3 (0.8)/128 (31)

1º endpoint:
- The trial was terminated earlier than expected (median duration 3.9 y) because efficacy for the primary endpoint for the full group had been met. However, this meant there was insufficient power in the subgroup with diabetes for the primary outcome, which was non-fatal MI + fatal CHD

Diabetes group results: n(%) [per 1000 pt. y]
- Atorva: 38 (3.0) [9.6]
- Placebo: 46 (3.6%) [11.4]
 - HR: 0.84 (95% CI: 0.55-1.29); p=NR

2º endpoint for the main study which became the primary endpoint for the diabetes cohort:
- Total CVD events; CVD mortality, nonfatal MI, unstable angina, chronic stable angina, life-threatening arrhythmias, non-fatal heart failure, non-fatal stroke, PAD, retinal thrombosis, revascularization, TIA, and reversible ischemic neurological deficits.
- Diabetes group results:
 - Atorva: 116 (9.2%) [30.2]
Study type:
Randomized double-blind placebo controlled clinical trial

Size: 10,305 subjects of whom 2532 had T2DM

- uncontrolled arrhythmia
- fasting trig >4.5 mmol/l (400 mg/dl)
- clinically important laboratory abnormalities
- no current statin/fibrate

Baseline characteristics:
- Mean age 64 >60 y (66%)
- 16% had previous cerebrovascular disease or PAD
- Mean no. of risk factors including diabetes = 4

Inclusion criteria:
- Men and women 40-75 y
- T2DM
- LDL cholesterol <160mg/dl
- Triglyceride <600 mg/dl

Exclusion criteria:
- T1DM
- CVD
- HbA1c>10%
- hepatic dysfunction
- severe renal disease
- BP >160/100
- BMI >35
- alcohol abuse
- <80% placebo run-in compliance
- Excluded medications

Baseline data:
- Atorva:
 - mean age 60.5 y

Intervention:
- Atorva 10 mg daily (Primary prevention n=959)
 - Baseline LDL-C mg/dl: 114 (26)
 - End of treatment % change from baseline LDL-C
 - -30.5%

Comparator:
- Placebo (Primary prevention n=946)
 - Baseline LDL-C 114 (26)
 - End of treatment % change from baseline LDL-C
 - -0.5%

1st endpoint:
- time to first CVD death, nonfatal or silent MI, nonfatal stroke, revascularization, resuscitated cardiac arrest, unstable angina
- Duration; median duration was 4 y overall; mean duration for primary prevention group was 2.4 y (reflecting change in protocol)

1st endpoint results:
- Atorva: 100 (10.4%)
- Placebo: 102 (10.8%)
- HR: (0.97; 95% CI: 0.74–1.28)

Reasons proposed for lack of significant benefit:
- 26.9% drop-in lipid lowering in placebo group
- relatively short duration of trial
- lower number of risk factors
- younger cohort than other trials
- requirement that study medication be discontinued after end point reached
- inclusion of hospitalization for angina in endpoint may have diluted statin effect

Adverse events:
- abnormal LFTs
- Atorva 1.4%
- Placebo 1.2%
- myalgia
- Atorva 3%
- Placebo 1.6%
- rhabdo
- Atorva 1

ASPEN
Knopp RH, et al., 2006 (60)

Aim:
- To evaluate whether (moderate intensity) statin therapy (atorvastatin 10 mg daily) reduces CVD morbidity and mortality in subjects with DM compared to placebo
- This study was originally designed as a 4-y secondary prevention trial but after 2 y it became a primary prevention trial. This report focuses on the group without baseline ASCVD

Study type:
Randomized double-blind placebo controlled clinical trial

Baseline data:
- Atorva:
 - mean age 60.5 y

Intervention:
- Atorva 10 mg daily (Primary prevention n=959)
 - Baseline LDL-C mg/dl: 114 (26)
 - End of treatment % change from baseline LDL-C
 - -30.5%

Comparator:
- Placebo (Primary prevention n=946)
 - Baseline LDL-C 114 (26)
 - End of treatment % change from baseline LDL-C
 - -0.5%

1st endpoint:
- study trial secondary outcome, namely total CVD events
 - placebo: 151(11.9%) [39.1]
 - HR: 0.77; 95% CI: 0.61-0.98; p=0.036
 - Excluding those with baseline CVD (12%); HR: 0.75; 95% CI: 0.57-0.99; p=0.038.

Limitation:
There was insufficient power to test the efficacy of statin therapy on the primary outcome in the diabetes group
| **Size:** 2,410 subjects with T2DM. 505 had CVD and 1,905 did not | o >65 y n=332 (35%)
 o diabetes duration 8 y
 o hypertension; 55%
 • Placebo:
 • mean age 60.4 y
 • >65 y n=305 (32%)
 • DM duration 8 y
 • hypertension; 53% |
| --- | --- |
| **Aim:** To assess the efficacy of statins in the primary prevention of major ASCVD event in patients with diabetes | **Inclusion criteria:**
 • double-blind, randomized study
 • separate data on primary prevention subjects
 • minimum of 500 participants
 • mean follow-up of >2 y
 • high quality – Jadad score >4
 Exclusion criteria:
 • 11 reports were retrieved for detailed evaluation and 7 were excluded; 2 not double-blind, 2 too few subjects, 1 used surrogate endpoints, 1 had no separate results and 1 was in a specific population
 • Trials included were HPS, CARDS, ASPEN, ASCOT-LLA
 • Baseline data in the 4 trials:
 • Men; 77%, 62%, 68%, NR
 • Mean age; 60, 62, 64, NR
 • HTN%; 52, 84, 100, NR
 • Smokers; 20.4, 12, 23 NR
 • Mean LDL-C mmol/l 3.3, 2.9, 3.0, NR |
| **Study type:** Fixed effects meta-analysis of 4 high quality clinical trials comparing moderate statin therapy to placebo in patients with diabetes for the primary prevention of major ASCVD | **Intervention:**
 Statin; n=5100 (simva 40mg daily in 1 study, atorva 10mg in 3 studies
 Comparator:
 Placebo; n=5087
 Mean(range) follow-up; 3.8 (2.4-4.8) y |
| **Size:** 10,187 subjects, 5100 on statins and 5087 on placebo | 1º endpoint:
 • Major cardiovascular and cerebrovascular events;
 • Results: n (%)
 Statin 434 (8.5%)
 Placebo 576 (11.3%)
 RR: 0.75; 95% CI: 0.67–0.85; 3/4 studies were significant
 • NNT/3.8 y; 35; (95% CI: 25–58)
 2º endpoints:
 • Fatal/non-fatal stroke events (n) (3 studies)
 Statin 75
 Placebo 109
 RR 0.69 (0.51–0.92)
 NNT 0.69 (0.51–0.92)
 • Fatal/non-fatal MI events (n) (3 studies)
 Statin 99
 Placebo 141
 RR 0.70 (0.54–0.90)
 NNT 86 (50–290)
 • All-cause mortality events (n) (2 studies)
 Statin 105
 Placebo 123
 RR 0.84 (0.65–1.09)
 NNT 130
 Limitations:
 • differences between studies in endpoints although these were minor
 • included some subjects with CVD (~12% in ASCOT-LLA)
 • diagnostic criteria of diabetes differed
 • differences in baseline risk
 • in HPS and ASCOT-LLA subject with diabetes were a subgroup |
| **de Vries FM, et al., 2012 (61) 23186103** | • Placebo 1 |
JUPITER
Ridker PM, et al., 2008 (11) 18997196

Aim: To investigate whether treatment with rosvastatin, 20 mg daily vs. placebo, would decrease MACE in apparently healthy persons with levels of LDL-C below current treatment thresholds but with elevated high-sensitivity (hs) CRP

Study type: Randomized double-blind placebo controlled clinical trial

Size: 17,802 subjects

<table>
<thead>
<tr>
<th>Inclusion criteria:</th>
<th>Intervention:</th>
<th>1° endpoint:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Age: men >50 and women >60 y</td>
<td>Rosuvastatin 20 mg daily -n=8901 -median [IQR] 1 y LDL-C; 55 [44-72] mg/dl - 50% reduction vs. placebo</td>
<td>•Median follow-up 1.9 y; the study ended early because efficacy had been met •Primary endpoint: first nonfatal MI, non-fatal stroke, hospitalization for unstable angina, revascularization, or CVD death.</td>
</tr>
<tr>
<td>• LDL-C<130 mg/dl</td>
<td>Comparator: Matching placebo n=8901 -median [IQR] 1 y LDL-C; 110 [94-125] mg/dl</td>
<td>Results:</td>
</tr>
<tr>
<td>• hsCRP >2 mg/l</td>
<td></td>
<td>• n (rate/100pt.yrs) Rosuva 142 (0.77) Placebo 251 (1.36)</td>
</tr>
<tr>
<td>• triglyceride<500 mg/dl</td>
<td></td>
<td>• HR: 0.56 ; 95% CI: 0.46–0.69; p<0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exclusion criteria:</th>
<th>2° Endpoint n (rate/100pt.yr):</th>
</tr>
</thead>
<tbody>
<tr>
<td>• history of CVD</td>
<td>• MI</td>
</tr>
<tr>
<td>• diabetes</td>
<td>o Rosuva 31 (0.17)</td>
</tr>
<tr>
<td>• past or current lipid-lowering therapy</td>
<td>o Placebo 68 (0.37)</td>
</tr>
<tr>
<td>• PMP hormone therapy</td>
<td>o HR: 0.46;0.30–0.70; p=0.0002</td>
</tr>
<tr>
<td>• ALT>2X ULN</td>
<td>• Stroke</td>
</tr>
<tr>
<td>• CPK>3X ULN</td>
<td>o Rosuva 33 (0.18)</td>
</tr>
<tr>
<td>• SCR ±2.0 mg/dl</td>
<td>o Placebo 64 (0.34)</td>
</tr>
<tr>
<td>• uncontrolled HTN</td>
<td>o HR: 0.52; 95% CI: 0.34–0.79; p=0.002</td>
</tr>
<tr>
<td>• cancer</td>
<td>• Revascularization</td>
</tr>
<tr>
<td>• inflammatory state</td>
<td>o Rosuva 71 (0.38)</td>
</tr>
<tr>
<td>• hypothyroidism</td>
<td>o Placebo 131 (0.71)</td>
</tr>
<tr>
<td>• substance abuse</td>
<td>o HR: 0.54; 95% CI: 0.41–0.72; p<0.0001</td>
</tr>
</tbody>
</table>

Baseline characteristics:
- mean [IQR] age; 66 [60-71] y
- females 38-39%
- Metabolic syndrome (41-42%)
- mean LDL-C 108 mg/dl

<table>
<thead>
<tr>
<th>Adverse events n(%):</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Muscle symptoms</td>
</tr>
<tr>
<td>• Rosuva 1421 (16.0)</td>
</tr>
<tr>
<td>• Placebo 1375 (15.4) p=0.34</td>
</tr>
<tr>
<td>• ALT >3XULN</td>
</tr>
<tr>
<td>• Rosuva 23 (0.3) 17</td>
</tr>
<tr>
<td>• Placebo 17 (0.2) p=0.34</td>
</tr>
<tr>
<td>• New diabetes</td>
</tr>
<tr>
<td>• Rosuva 270 (3.0)</td>
</tr>
<tr>
<td>• Placebo 216 (2.4) p<0.01</td>
</tr>
</tbody>
</table>

Limitations:
- Non-diabetic participants
- age restricted to men >50 and women >60 y

• Drop-in statin used in placebo groups.
Data Supplement 13. Nonrandomized Trials, Observational Studies, and/or Registries of ASCVD Risk Associated with the Metabolic Syndrome (Section 4.4.1)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
</table>
| Gami AS, et al., 2007 (62) 17258085 | Study type: Systematic Review and Meta-Analysis
Size: 43 cohorts and 172,573 pts | Inclusion criteria: Included only prospective studies, with assessment of metabolic syndrome and follow-up for CV events or death
Exclusion criteria: see above | 1st endpoint: Composite of cardiovascular events and death; also, individual endpoints of CV events and total mortality
Results: Metabolic syndrome associated with RR of 1.78 (95% CI: 1.58-2.00) for the primary outcome; RR: 2.18 (95% CI: 1.63-2.93) for CV events; and RR: 1.60 (95% CI: 1.37-1.92) for total mortality | • Demonstrates clear association between metabolic syndrome and increased risk of CVD events and mortality
• Trend towards stronger associations among women than men (RR: 2.63 vs. 1.98; p=0.09)
• Stronger associations in lower (<10% ten y risk) than higher risk populations (RR: 1.96 vs. 1.43; p=0.04)
• Persistent association after adjusting for traditional cardiovascular risk factors (RR: 1.54; 95% CI: 1.32-1.79) |
| Galassi A et al., (63) 17000207 | Study type: Meta-analysis
Size: 21 studies | Inclusion criteria:
Exclusion criteria: | 1st endpoint: CVD mortality, total mortality, incident CVD, incident CHD and incident stroke
Results: Metabolic syndrome associated with increased risk for all outcomes: RR: 1.74 for CVD mortality (95% CI: 1.29-2.35); RR 1.35 for total mortality (95% CI: 1.17-1.56); RR: 1.53 for incident CVD (95% CI: 1.26-1.87); RR: 1.52 for incident CHD (95% CI: 1.37-1.69); and RR: 1.76 for incident stroke (95% CI: 1.37-2.25) | • Metabolic syndrome strongly associated with incident CVD, CVD mortality and all-cause mortality
• Stronger risk associations seen among women (RR: 2.10; 95% CI: 1.79-2.45) than men (RR: 1.57; 95% CI: 1.41-1.75); no p for interaction reported |
Data Supplement 14. Nonrandomized Trials, Observational Studies, and/or Registries of Q1: Performance of the Pooled Cohort Equations (PCE) when used for the prediction of first incident atherosclerotic cardiovascular disease (ASCVD) events in diverse populations (Section 4.4.1.2)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Framingham Heart Study Andersson C, et al., 2015 (64) 25688372</td>
<td>Study type: Prospective Observational Cohort study Size: 7234 participants in the U.S. Framingham Heart Study Offspring Cohort</td>
<td>Inclusion criteria: • Age 40 to 75 y at baseline • Absence of clinical ASCVD • Participants of Framingham Heart Study Offspring Cohort cycle 1 (1971–1975), 3 (1983–1987), and/or 6 (1995–1998) Exclusion criteria: • Prevalent MI or stroke (recognized or silent) • Missing values of blood pressure, treatment for hypertension, cholesterol values, diabetes, and smoking • Lipid-lowering medication use at baseline</td>
<td>1st endpoint: New-onset ASCVD, defined as incident MI, nonfatal or fatal ischemic stroke (excluding transient ischemic attack), or death due to coronary artery disease; Median duration follow-up 10 y Results: • 284 incident ASCVD events (8.4%) in men and 112 events (3%) in women. • Hosmer–Lemeshow chi-square statistics were 16.3 in men (340 predicted versus 285 observed events) and 29.1 in women (166 predicted versus 112 observed events). • Overprediction predominantly occurred among women in the highest risk decile and among men in the ≥ 7th risk deciles, for which observed ASCVD event rates were ≥ 7.5%. • Assessed by PCE, 36% had estimated ASCVD risks ≥7.5% (or diabetes) and LDL-C ≥70 mg/dL and thus were eligible for statins. In contrast, only 24% were eligible according to ATP III guidelines, translating into a net overall 51% increase (59% increase in women and 47% increase in men for statin eligibility). • The discrepancy between statin-eligible participants in the new versus old guidelines increased in the higher age groups, exceeding 10% in men aged >50 y and in women aged >60 y. Discordance in statin eligibility between the 2 guidelines was greatest in women aged >65 y • Censored for initiation of lipid-lowering treatment, the calibration of the PCE was slightly improved, with chi-square values of 13.1 (340 predicted versus 300 observed events) and 16.3 (166 predicted versus 132 observed events).</td>
<td>• The PCE overpredicted ASCVD risk but did so mainly among high-risk participants who would be considered eligible for statin use anyway. • Limitations: sample was not a completely independent external validation sample of PCE because data from some of the participants were included in the PCE derivation (i.e., Offspring Cohort examination cycles 1 and 3); included whites only; somewhat low ASCVD event rate. OVERALL QUALITY: Moderate</td>
</tr>
</tbody>
</table>
Chia YC, et al., 2014 (65) 25410585

Study type: Retrospective Cohort study

Size: 922 patients in Asia (Malay, Chinese and Indian race)

Inclusion criteria:
- Age 40 to 79 y
- Absence of clinical ASCVD
- Enrolled in an outpatient primary care clinic in Kuala Lumpur, Malaysia

Exclusion criteria:
- Age <40 or >79 y
- Clinical ASCVD at baseline
- Missing data for calculation of risk score (PCE or FRS) or data on ASCVD events

1st endpoint: Nonfatal MI, coronary heart disease death, and fatal/nonfatal stroke; 10 y follow up

Results:
- Mean age 57.5 ± 8.8 y; 66.7% female; 47% diabetic
- Overall AUC=0.632 (95% CI: 0.557-0.70), p=0.003
 - Malay race: 0.737 (95% CI: 0.641-0.834), p=0.011
 - Chinese race: 0.625 (95% CI: 0.512-0.737), p=0.054
 - Indian race: 0.576 (95% CI: 0.417-0.736), p=0.335
- Good calibration (Hosmer-Lemeshow test χ2 =12.6, p=0.12)
- Net Reclassification Improvement (NRI) 0.031, p=0.001 compared to FRS
- Notably, the number of patients receiving statin therapy increased from 9.7% (n = 90) to 63.7% (n = 587) over the 10-y period of follow up (1998-2007) and mean blood pressure, total cholesterol and HbA1c were lower at follow up
- Observed/predicted events: 45 actual ASCVD events (4.9%) over 10-y: 22 (7.2%) in men and 23 (3.7%) in women vs. predicted 93 (10.1%) ASCVD events: 21.1% in men and 6.7% in women.

Observed v. Predicted (%)

<table>
<thead>
<tr>
<th></th>
<th>All Adults</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 7.5%</td>
<td>2.2 v. 3.8</td>
<td>0 v. 4.5</td>
<td>2.4 v. 3.6</td>
</tr>
<tr>
<td>7.5%-9.9%</td>
<td>7.0 v. 8.4</td>
<td>5.3 v. 8.2</td>
<td>7.5 v. 8.4</td>
</tr>
<tr>
<td>10-19.9%</td>
<td>5.3 v.13.9</td>
<td>6.5 v.14.3</td>
<td>4.4 v.13.5</td>
</tr>
<tr>
<td>>=20%</td>
<td>7.9 v.30.5</td>
<td>9.1 v.31.1</td>
<td>5.3 v.28.2</td>
</tr>
</tbody>
</table>

- The PCE had poor discrimination and fair calibration in an Asian population overall, with reasonable calibration at lower risk levels and more substantial overprediction at higher predicted risk levels (≥10%, and especially ≥20%) in men and women
- Lower observed vs. predicted ASCVD events may be partially explained by the very high proportion of patients who initiated statin therapy, and observed improvements in risk factor control (e.g., lower blood pressure and lower HbA1c) over the 10-y study period, which likely resulted in a reduction in observed ASCVD events.
- Limitations: recall bias potential, unclear if chart abstractors were blinded to ASCVD event outcome prior to calculating risk; significant missing data (36%) led to participant exclusion; very high predicted risk population overall with fewer persons in low-risk category and intensive treatment after assessment

OVERALL QUALITY: Moderate

REGARDS
Colantonio L, et al., 2017 (66) 28314800

Study type: Prospective Observational Cohort Study

Inclusion criteria:
- Age 45 to 70 y
- No history of ASCVD or DM

1st endpoint: Nonfatal/fatal stroke, MI, or coronary heart disease death, stratified by socioeconomic status; Median ~7 y follow-up

- The PCE had good discrimination and calibration overall, with overprediction among individuals at higher SES with higher risk, fairly accurate prediction
Size: 9066 black and white participants from the U.S. REGARDS (REasons for Geographic And Racial Differences in Stroke) study

- Not taking statin at baseline
- Fasting LDL-C 70-189 mg/dL or NHDL-C 100-219 mg/dL
- Participants from the REGARDS (REasons for Geographic And Racial Differences in Stroke) study

Exclusion criteria:
- Prevalent ASCVD, diabetes mellitus, heart failure or Afib
- Low-density lipoprotein cholesterol level <70 or >189 mg/dL or NHDL-C <100 or >219 mg/dL
- Statin use at baseline

Results:
- 457 incident ASCVD events occurred during 59,648 person-y of follow-up
- Social deprivation was defined as any of the following: 1) self-reported annual household income <$35,000, 2) < high school education or 3) living without a partner.
- C statistics generally >0.70 and H-L X2 ≤15 for all groups.
- Predicted and observed rates similar at lower predicted risks, with overprediction observed more in higher risk individuals and higher SES individuals, and modest underprediction in lower SES groups.
- Predicted and observed per 1000 per-y
 - **By number of indicators of deprivation:**
 - 0 indicators: 8.02 and 6.23 (95% CI: 5.31–7.31), H-L 12.43, p=0.01
 - 1 indicator: 8.05 and 6.61 (95% CI: 5.29–8.24), H-L 6.6, p=0.09
 - 2 or 3 indicators: 9.83 and 11.40 (95% CI: 9.23–14.05), H-L 5.77, p=0.12

 - **Annual household income**
 - ≥$50 000: 6.91 and 5.15 (95% CI: 4.21–6.29), H-L 10.91, p=0.01
 - $25 000 to <$50 000: 9.16 and 7.48 (95% CI: 6.22–9.00), H-L 8.09, p=0.04
 - <$25 000: 9.72 and 10.73 (95% CI: 8.88–12.95), h-l 4.74, p=0.19

 - **Education**
 - College graduate+: 7.74 and 6.03 (95% CI: 5.01–7.26), h-l 9.01, p=0.03
 - High school/some college: 8.33 and 7.18 (95% CI: 6.15–8.39), H-L 8.62, p=0.03
 - Less than high school: 11.87 and 14.56 (95% CI: 10.92–19.35), H-L 8.92, p=0.03

 - **Relationship status**

OVERAL QUALITY: HIGH

© American Heart Association, Inc., and the American College of Cardiology Foundation.

67
| **Cook N, et al., 2014 (67) 25285455** | **Study type:** Prospective Observational Cohort Study
Size: 27,542 participants from the US Women’s Health Study | **Inclusion criteria:**
- Participants from the US Women’s Health Study
- Women ages 45 to 70 y
- No clinical ASCVD at baseline
- Complete ascertainment of plasma lipids and information on other risk factors

| **1° endpoint:** ASCVD, defined as any myocardial infarction, any stroke, or death due to cardiovascular cause.
Results:
- The PCE average predicted risk was 3.6% over 10 y vs. actual observed risk in the WHS of 2.2%.
- Ratios of predicted to observed rates were 1.90 or higher in the groups with 0 to less than 5.0% and 5.0%
- The PCE overpredicted risk in this study sample, with the largest absolute discrepancies at the highest predicted risks (>10%). Ratios of predicted to observed risks were greatest at lower predicted risk but absolute differences between predicted and observed rates were highest at high predicted risks (>10%). | **Living with a partner:** 8.42 and 6.92 (6.02–7.96), H-L 11.45, p=0.01
Living without a partner: 8.23 and 7.79 (95% CI?!: 6.50–9.32, H-L 7.49, p=0.06)
- **Discrimination** Harrell’s C-index (95% CI)
 - *Indicators of deprivation:*
 - 0: 0.72 (0.69–0.75)
 - 1: 0.73 (0.69–0.78)
 - 2 or 3: 0.70 (0.65–0.75)

Annual household income
- ≥$50 000: 0.724 (0.683–0.765)
- $25 000 to <$50 000: 0.711 (0.671–0.751)
- <$25 000: 0.703 (0.660–0.746)

Education
- College graduate: 0.724 (0.685–0.763)
- High school/some college: 0.704 (0.671–0.737)
- Less than high school: 0.742 (0.676–0.808)

Relationship status
- Living with a partner: 0.720 (0.692–0.749)
- Living without a partner: 0.722 (0.680–0.763)

- The NRI after adding deprivation data to the PCE was modest (0.12; 95% CI: 0.03–0.21); for annual household income: 0.16 (0.06–0.25); education: 0.07 (95% CI?!: 0.02 to 0.15), relationship status: 0.02 (95% CI?!: 0.07 to 0.11) |
Exclusion criteria:
- The WHS excluded women with angina at baseline
- The ratios of predicted to observed remained 1.80 or higher in the lower 2 risk groups and over 1.30 in the higher risk groups after adjustment for hypothetical statin use, revascularization procedures and confounding by indication

<table>
<thead>
<tr>
<th>Observed vs. Predicted, % E/O.</th>
</tr>
</thead>
<tbody>
<tr>
<td><5%</td>
</tr>
<tr>
<td>5-7.5%</td>
</tr>
<tr>
<td>7.5%–9.9%</td>
</tr>
<tr>
<td>>10%</td>
</tr>
</tbody>
</table>

• Statin use and revascularization during follow up explained only part of the discrepancy between observed rates of ASCVD in the WHS and those predicted by PCE. Other assumptions regarding effects of statin use might explain more, but not all, of the discrepancy.
• Large, lower risk sample of women in clinical trial (half receiving aspirin by design) and at high SES
• Limitations: cumulative incidence of ASCVD was estimated as of 8 y because women were followed for 8 y, and then extrapolated to 10 y using a converting equation. Statin use was not assessed at every exam in the WHS. Estimates of confounding by indication were hypothetical and not data-derived. No report of discrimination/calibration statistics.

OVERALL QUALITY: Moderate

<table>
<thead>
<tr>
<th>Crowson et al., 2017 (68)</th>
<th>Study type: Combined Observational Cohort (both prospective and retrospective)</th>
</tr>
</thead>
</table>
| **Size:** 1796 patients with rheumatoid arthritis (RA) from UK, Norway, Netherlands, USA, South Africa, Canada, and Mexico | **Inclusion criteria:**
- Seven RA cohorts from UK, Norway, Netherlands, USA, South Africa, Canada and Mexico were combined.
- No prior CVD
- Physician diagnosis of RA and/or fulfilment of 1987 or 2010 American College of Rheumatology criteria for RA |
| **Exclusion criteria:**
- Other RA cohorts without information on disease activity or CVD death
- CVD prior to baseline | **1st endpoint:** CVD event, defined as MI, ischemic stroke or CVD death |

Results:
- The Standardized Incidence Ratio (SIR) for PCE was 0.73, 95% CI: 0.60, 0.89
- There were no significant differences between predicted and observed risks by decile for the PCE
- Discrimination was moderate (c-statistic: 0.72)
- In sensitivity analysis including only patients aged 40-74 y at baseline, calibration of the PCE improved (SIR: 0.73-0.93), but discrimination decreased (c-statistic: 0.70)
- Other risk calculators that include RA-specific risk factors (e.g., ERS-RA, QRISK2 and EULAR 1.5 multiplier) did not improve risk prediction for patients with RA compared with the PCE

- PCE had moderate discrimination and fair overall calibration among patients with RA, with modest underestimation of risk at lower predicted risk and modest overprediction at very high levels of predicted risk (>20%).
- RA-specific risk calculators do not predict CVD risk in patients with RA more accurately than the general population risk calculators.
- Limitations: lower than expected CVD event rate for RA patients, who were treated at specialty centers; combined prospective and retrospective studies so risk of ascertainment bias; CVD events were not adjudicated
Dalton JE, et al., 2017 (69)

| **Study type:** | Retrospective Cohort study |
| **Size:** | 109,793 patients |

Inclusion criteria:
- Patients from the Cleveland Clinic Health System who had an outpatient lipid panel drawn between 2007 and 2010
- White or African-American
- Age > 35 y
- Resided in 1 of 21 northeastern Ohio counties

Exclusion criteria:
- History of MI, stroke, heart valve disorder, or pericarditis, endocarditis, myocarditis, or cardiomyopathy
- Missing data

1st endpoint: Incident major ASCVD event, defined as first occurrence of MI, stroke or CVD death; Median follow up of 5 y

Results:
- 4933 incident events (1676 MI, 2605 strokes, 652 CVD deaths)
- PCE model discrimination was poorer among patients from disadvantaged communities (C statistic 0.70; [95% CI: 0.67 to 0.74]) than the most affluent communities (0.80 [95% CI: 0.78 to 0.81])
- PCE systematically underpredicted risk across all predicted risk levels in individuals living in disadvantaged neighborhoods, who were more likely to be black and female. Underprediction was observed especially in the top quartile (least affluent) of neighborhood disadvantage index.
- PCE had near perfect calibration among individuals living in more affluent communities (neighborhood disadvantage index below the median).

Limitations:
- Patients from affluent communities were overrepresented.
- Socioeconomic position was assessed using a composite index and thus cannot determine which measures of neighborhood characteristics and SES actually contribute to the disparity; used EHR data and thus subject to ascertainment bias, particularly with regard to event outcomes, since persons with low SES were more likely to not follow up; may have missed some events occurring at facilities outside of CCHS system; use of administrative data may have led to overdiagnosis of some ASCVD events; 5 y follow up.
MESA
DeFilippis AP, et al., 2015 (70)
[25666167]

<table>
<thead>
<tr>
<th>Study type:</th>
<th>Prospective cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size:</td>
<td>4227 participants from the U.S. Multi-Ethnic Study of Atherosclerosis (MESA) Cohort</td>
</tr>
</tbody>
</table>

| **Inclusion criteria:** | • Age 50 to 74 y
• Free of clinical ASCVD or diabetes at baseline
• MESA participants who identified as White, African American, Hispanic, or Chinese |
| **Exclusion criteria:** | • Diabetes at baseline
• Missing data (2.7%) |

| **1st endpoint:** | MI, death from CHD, and stroke |

| **Results:** | Five prediction scores were calculated and compared: PCE, FRS-CHD, FRS-CVD, ATPIII-FRS, CHD, and RRS |

<table>
<thead>
<tr>
<th></th>
<th>ALL</th>
<th>P</th>
<th>O</th>
<th>C</th>
<th>slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRS-HD</td>
<td>9.42</td>
<td>6.22</td>
<td>68.0</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>FRS-CVD</td>
<td>13.28</td>
<td>10.60</td>
<td>.71</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>ATPIII-FRS-CHD</td>
<td>6.83</td>
<td>3.17 .71</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRS</td>
<td>7.43</td>
<td>7.64</td>
<td>.72</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>PCE</td>
<td>9.16</td>
<td>5.16</td>
<td>.71</td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MEN</th>
<th>P</th>
<th>O</th>
<th>C</th>
<th>slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRS-HD</td>
<td>12.8</td>
<td>8.36</td>
<td>.69</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>FRS-CVD</td>
<td>18.29</td>
<td>13.31</td>
<td>.71</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>ATPIII-FRS-CHD</td>
<td>11.15</td>
<td>4.39 .71</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRS</td>
<td>10.89</td>
<td>9.99</td>
<td>.70</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>PCE</td>
<td>11.84</td>
<td>6.37</td>
<td>.71</td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>WOMEN</th>
<th>P</th>
<th>O</th>
<th>C</th>
<th>slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRS-HD</td>
<td>6.47</td>
<td>4.37</td>
<td>.60</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>FRS-CVD</td>
<td>8.94</td>
<td>8.25</td>
<td>.70</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>ATPIII-FRS-CHD</td>
<td>3.10</td>
<td>2.12 .67</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRS</td>
<td>4.44</td>
<td>5.60</td>
<td>.72</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>PCE</td>
<td>6.84</td>
<td>4.10</td>
<td>.70</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

| **For those with PCE risk score of 7.5% to 10%, the actual event rate was 3% in men and 5.1% in women.** |
| **C-statistic for PCE: overall, 0.71; men, 0.71; women 0.70.** |
| **Calibration results in clinically relevant predicted risk categories:** |

<table>
<thead>
<tr>
<th>PCE: MEN</th>
<th>P</th>
<th>O</th>
<th>H-L</th>
</tr>
</thead>
<tbody>
<tr>
<td><5%</td>
<td>3.4</td>
<td>1.3</td>
<td>4.94</td>
</tr>
<tr>
<td>5-7.5%</td>
<td>6.2</td>
<td>2.5</td>
<td>7.45</td>
</tr>
</tbody>
</table>

| **OVERALL QUALITY:** | Moderate |

- Four of the 5 risk scores, including the PCE, overestimated risk in a modern multiethnic cohort.
- Absolute differences in predicted vs. observed risk were most notable at higher levels of predicted risk.
- Women experienced less overestimation than men in all models, including PCE, and had underestimation by the RRS.
- Attempts to adjust for aspirin, lipid-lowering or antihypertensive therapy during follow up and interim revascularization did not appear to explain the overestimation.
- Limitations: multi-ethnic cohort, and PCE were derived only in whites and blacks; participants with diabetes excluded; participants received intensive, repeated screenings for subclinical CVD at baseline and during follow up, which may have influenced preventive approaches; may represent a healthier subset of the U.S. population; inadequate adjustment for follow up therapy.

© American Heart Association, Inc., and the American College of Cardiology Foundation.

71
<table>
<thead>
<tr>
<th>Study type:</th>
<th>Inclusion criteria:</th>
<th>1st endpoint:</th>
<th>Results:</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MESA DeFilippis AP, et al., 2017 (71) 27436865</td>
<td></td>
<td>Incident MI, death from CHD, and stroke</td>
<td></td>
<td>PCE overestimated ASCVD risk among men, women, and all four race/ethnic groups in a modern American primary prevention cohort</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size: 6441 participants from the U.S. Multi-Ethnic Study of Atherosclerosis (MESA) Cohort</th>
<th>Inclusion criteria:</th>
<th>Results:</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age 45-79 y</td>
<td>Risk overestimation was similar for women (100%) and men (93%) as was discrimination: c-statistic: 0.74 for women and 0.71 for men</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free of known ASCVD at baseline</td>
<td>Overestimation was observed in all race/ethnicity groups and was highest among Chinese (252% for women and 314% for men), and lowest in White women (72%) and Hispanic men (67%). Modelling of the AHA-ACC- ASCVD risk score in MESA demonstrates a mean absolute risk overestimation of 5.5% (p=0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria:</td>
<td>C-statistics in women: overall, 0.74; white 0.70; black, 0.75; Hispanic, 0.79; Chinese, 0.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Missing data for risk score calculation (<1%) or no follow-up data after baseline (<1%)</td>
<td>C-statistics in men: overall, 0.71; white 0.71, black 0.68; Hispanic, 0.75; Chinese, 0.63</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C-statistics in women not on lipid-lowering medications with baseline LDLC 70-189: overall, 0.77; white 0.70; black, 0.77; Hispanic, 0.84; Chinese (too few events)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C-statistics in men not on lipid-lowering medications with baseline LDLC 70-189: overall, 0.71; white 0.72, black 0.70; Hispanic, 0.74; Chinese (too few events)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predicted risks were higher, and absolute differences between predicted and observed event rates were greater, for those who initiated preventive therapies or had revascularization during follow up.</td>
<td></td>
</tr>
<tr>
<td>Study type: Retrospective analysis of previously collected multicenter clinical prospective cohort study data</td>
<td>Study type: Prospective Observational Cohort study</td>
<td>Study type: Retrospective analysis of previously collected multicenter clinical prospective cohort study data</td>
<td>Study type: Prospective Observational Cohort study</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Size: 11,288 HIV-infected adults from the Centers for AIDS Research Network of Integrated Clinical Systems (CNICS) cohort</td>
<td>Size: 5,002 participants from the U.S. Multi-Ethnic Study of Atherosclerosis (MESA) Cohort</td>
<td>Size: 11,288 HIV-infected adults from the Centers for AIDS Research Network of Integrated Clinical Systems (CNICS) cohort</td>
<td>Size: 5,002 participants from the U.S. Multi-Ethnic Study of Atherosclerosis (MESA) Cohort</td>
</tr>
<tr>
<td>Inclusion criteria: - Adults age 18 y or older receiving HIV care at 1 of 5 centers for AIDS research clinics in the US with adjudicated MI as outcome - Free of MI at baseline</td>
<td>Inclusion criteria: - Adults age 45 to 75 y - Free of CVD</td>
<td>Inclusion criteria: - Adults age 18 y or older receiving HIV care at 1 of 5 centers for AIDS research clinics in the US with adjudicated MI as outcome - Free of MI at baseline</td>
<td>Inclusion criteria: - Adults age 45 to 75 y - Free of CVD</td>
</tr>
<tr>
<td>Exclusion criteria: - MI prior to baseline</td>
<td>Exclusion criteria: - missing covariates for ASCVD risk prediction - taking statins at baseline - age > 75 y</td>
<td>Exclusion criteria: - MI prior to baseline</td>
<td>Exclusion criteria: - missing covariates for ASCVD risk prediction - taking statins at baseline - age > 75 y</td>
</tr>
<tr>
<td>1st endpoint: Incident MI only; Median follow up of 4.1 y</td>
<td>1st endpoint: 10-y CVD events defined as fatal and nonfatal MI, CHD death, fatal and nonfatal stroke and sudden cardiac death and CAC categories (>=0, >=100, >=300)</td>
<td>1st endpoint: Incident MI only; Median follow up of 4.1 y</td>
<td>1st endpoint: 10-y CVD events defined as fatal and nonfatal MI, CHD death, fatal and nonfatal stroke and sudden cardiac death and CAC categories (>=0, >=100, >=300)</td>
</tr>
<tr>
<td>Results: - PCE adequately discriminated MI risk in the overall cohort (Harrell C statistic=0.75, 95% CI: 0.71-0.78) - Among those with baseline age >=40 y, C-statistic = 0.70 (95% CI: 0.66,0.74) overall; white men 0.69 (95% CI: 0.64-0.75); black men 0.69 (95% CI: 0.63,0.76); white women 0.65 (95% CI: 0.48, 0.82); black women 0.74 (95% CI: 0.66, 0.83) - PCE were moderately calibrated in the overall cohort (slope = 0.815; intercept = 0.0015; GND test statistic = 13.1; p=0.16), particularly for white men (slope = 0.857; intercept = 0.009; GND test statistic = 6.4; p=0.50)</td>
<td>Results (for PCE): - For incident ASCVD, sensitivity was 79.6%, specificity was 50.7%, NPV was 98.0%, PPV was 7.7%, Negative LR 1.61 (95% CI: 1.50-1.73), Positive LR 0.40 (95% CI: 0.31-0.52) - Overall, the PCE had higher sensitivity and NPV than the 2004 NCEP ATP III and 2016 ESC/EAS - For CAC >=300, sensitivity was 87.2%, specificity was 52.6%, NPV was 97.8%, PPV was 14.5%, Negative LR 0.24 (95% CI: 0.19-0.31), positive LR 1.84 (95% CI: 1.76-1.93) - For CAC >=100, sensitivity was 83.1%, specificity was 56.1%, NPV was 97.8%, PPV was 14.5%, Negative LR 0.30 (95% CI: 0.26-0.35), Positive LR 1.89 (95% CI: 1.81-1.98) - For CAC >0, sensitivity was 69.8%, specificity was 63.2%, NPV was 97.8%, PPV was 14.5%, Negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVERALL QUALITY: High</td>
<td>OVERALL QUALITY: Moderate</td>
<td>OVERALL QUALITY: High</td>
<td>OVERALL QUALITY: Moderate</td>
</tr>
</tbody>
</table>

© American Heart Association, Inc., and the American College of Cardiology Foundation.
<table>
<thead>
<tr>
<th>Study type</th>
<th>Study type: Prospective Observational Cohort study</th>
<th>Study type: Prospective Observational Cohort study</th>
<th>Study type: Prospective Observational Cohort study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Size: 192,605 participants</td>
<td>Size: 4854 participants</td>
<td>Size: 192,605 participants</td>
</tr>
<tr>
<td>Inclusion criteria:</td>
<td>• Age 40-79 y • Korean adults in the Korean Heart Study who had a minimum 10 y follow-up by 2012 • Stroke or CVD at baseline • use of lipid-lowering meds at baseline • Persons with missing values of blood pressure, total cholesterol, HDL cholesterol, fasting glucose, smoking status, or BMI</td>
<td>• Age 55-75 y in Rotterdam, Netherlands • Lipid-lowering medication use • Prevalent CVD or LDL-c >190</td>
<td>• Age 40-79 y • Korean adults in the Korean Heart Study who had a minimum 10 y follow-up by 2012 • Stroke or CVD at baseline • use of lipid-lowering meds at baseline • Persons with missing values of blood pressure, total cholesterol, HDL cholesterol, fasting glucose, smoking status, or BMI</td>
</tr>
<tr>
<td>Exclusion criteria:</td>
<td>• Discrimination: ACC/AHA PCE for white or black men exhibited moderate discrimination (AUROC 0.727 and 0.725 respectively), and similarly for the white or black women PCE (AUROC 0.738 and 0.739, respectively) • Calibration: ACC/AHA PCEs overestimated event rates in KHS cohort for men. Absolute 10y risk overestimated by 56.5% from the white men model and 74.1% from the black men model. For women, risk was underestimated by 27.9% in the white model but overestimated by 29.1% in the black model. These patterns of inadequate calibration were consistent across risk deciles • A recalibrated model exhibited improved calibration; the largest differences between actual and predicted rates within a risk decile were 1.7% in the recalibrated model (compared with 8.75% in the original ACC/AHA models) • The Korean Risk Prediction Model (KRPM) exhibited somewhat better calibration than the PCEs; of note, it appears that the KRPM was derived from the same KHS cohort it was then validated in</td>
<td>• Discrimination: ACC/AHA PCE for white or black men exhibited moderate discrimination (AUROC 0.727 and 0.725 respectively), and similarly for the white or black women PCE (AUROC 0.738 and 0.739, respectively) • Calibration: ACC/AHA PCEs overestimated event rates in KHS cohort for men. Absolute 10y risk overestimated by 56.5% from the white men model and 74.1% from the black men model. For women, risk was underestimated by 27.9% in the white model but overestimated by 29.1% in the black model. These patterns of inadequate calibration were consistent across risk deciles • A recalibrated model exhibited improved calibration; the largest differences between actual and predicted rates within a risk decile were 1.7% in the recalibrated model (compared with 8.75% in the original ACC/AHA models) • The Korean Risk Prediction Model (KRPM) exhibited somewhat better calibration than the PCEs; of note, it appears that the KRPM was derived from the same KHS cohort it was then validated in</td>
<td>• Discrimination: ACC/AHA PCE for white or black men exhibited moderate discrimination (AUROC 0.727 and 0.725 respectively), and similarly for the white or black women PCE (AUROC 0.738 and 0.739, respectively) • Calibration: ACC/AHA PCEs overestimated event rates in KHS cohort for men. Absolute 10y risk overestimated by 56.5% from the white men model and 74.1% from the black men model. For women, risk was underestimated by 27.9% in the white model but overestimated by 29.1% in the black model. These patterns of inadequate calibration were consistent across risk deciles • A recalibrated model exhibited improved calibration; the largest differences between actual and predicted rates within a risk decile were 1.7% in the recalibrated model (compared with 8.75% in the original ACC/AHA models) • The Korean Risk Prediction Model (KRPM) exhibited somewhat better calibration than the PCEs; of note, it appears that the KRPM was derived from the same KHS cohort it was then validated in</td>
</tr>
<tr>
<td>1° endpoint:</td>
<td>ASCVD incidence; Minimum of 10 y of follow up; mean 12.8 y</td>
<td>Hard ASCVD: stroke, nonfatal MI, fatal CHD, fatal MI; Median follow up >10 y</td>
<td>ASCVD incidence; Minimum of 10 y of follow up; mean 12.8 y</td>
</tr>
<tr>
<td>Results:</td>
<td>• 12,237 ASCVD events overall (10,049 of which were nonfatal stroke)</td>
<td>• 343 ASCVD events</td>
<td>• PCE exhibited moderate discrimination but inadequate calibration when applied to a large Korean prospective cohort • PCE had systematic mismatch for men whereby predicted risks consistently exceeded observed; this was not consistently the case for women • A simple recalibrated ACC/AHA model was better calibrated • A Korean-specific model was best calibrated, though this is expected given the derivation and validation cohorts appear to be the same</td>
</tr>
</tbody>
</table>

OVERALL QUALITY: Moderate
<table>
<thead>
<tr>
<th>Study type: Prospective Observational Cohort study</th>
<th>Inclusion criteria:</th>
<th>1st endpoint: Incident CVD, defined as CHD and cerebrovascular events</th>
<th>Limitations: Older age of the cohort, which included only persons age 55 and over at baseline; all white cohort. OVERALL QUALITY: Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size: 6275 participants</td>
<td>Inclusion criteria:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Age 40-75 y</td>
<td>• Age 40-75 y</td>
<td>Incident CVD, defined as CHD and cerebrovascular events</td>
<td>• Although there was consistent mismatch whereby risk predicted by PCEs exceeded observed ASCVD risk in this population, this overestimation had negligible effect on the validity and clinical usefulness of the PCEs and related guideline, as the net benefit fraction was positive for men with 5% or greater predicted risk and women with 7.5% or greater predicted risk. Limitations: Some of the analyses use the PCE inappropriately to estimate risk among persons with pre-existing CVD; the results included in this evidence synthesis thus focus on the analyses that evaluated the PCEs in persons with no prior CVD. OVERALL QUALITY: Moderate</td>
</tr>
<tr>
<td>• Iranian urban population in Tehran</td>
<td>• Iranian urban population in Tehran</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria:</td>
<td>Exclusion criteria:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Lipid-lowering medication use</td>
<td>• Lipid-lowering medication use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Hemodialysis</td>
<td>• Hemodialysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Missing data on LDL-c, DM, SBP, or current smoking at baseline</td>
<td>• Missing data on LDL-c, DM, SBP, or current smoking at baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Missing follow-up data</td>
<td>• Missing follow-up data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(95% CI: 6.7-9.2%) for women. The C-statistic of this model was 0.67 (95% CI: 0.63-0.71) for men and 0.68 (95% CI: 0.64-0.73) for women. Across predicted risk strata, absolute mismatch between PCE predicted and observed rates was moderate for men at <10% and substantial at ≥10% predicted risk; for women, absolute mismatch was small at <10% and moderate at ≥10% predicted risk. • ATP3: C-statistic 0.67 (95% CI: 0.62-0.72) for men and 0.69 (95% CI: 0.63-0.75) for women • ESC SCORE: C-statistic 0.76 (95% CI: 0.70-0.82) for men, 0.77 (95% CI: 0.71-0.83) for women</td>
<td>Khali D, et al., 2015 (76) 25769004</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lee CH, et al., 2015

Study type: Prospective Observation Cohort study
Size: 1753 participants
Inclusion criteria:
- Chinese men and women in Hong Kong aged 25-75 y
Exclusion criteria:
- Lipid-lowering med use
- Prevalent CVD or LDL-c >190
1st endpoint: Incident CVD event: First-recorded diagnosis of CV event based on administrative codes (ICD-9); hard ASCVD defined as MI, stroke, CHD, or stroke-related mortality; Total CVD defined as MI, coronary insufficiency, angina, stroke, TIA, PVD, HF, and CHD or stroke-related mortality; Median follow up of 10 y
Results:
- 122 persons had incident ASCVD, 138 with total CVD; 45 CHD events and 41 strokes in men, 32 CHD events and 20 strokes in women
- PCE C statistic 0.714 (95% CI: 0.567-0.770) for men, 0.765 (95% CI: 0.69-0.84) for women. Calibration chi-square was 24.1 for men and 10.1 for women.
- Framingham CV risk equation AUROC 0.773 (95% CI: 0.742-0.802) for men, 0.788 (95% CI: 0.724-0.852) for women. Chi-square was 20.1 for men and 12.1 for women
- PCE were poorly calibrated in Hong Kong Chinese population, especially in men
- PCE and Framingham total CVD equations had moderate discrimination
- Limitations: Events were not adjudicated; potential for misclassification; relatively few events.
OVERALL QUALITY: Poor

NHANES

Loprinzi PD, et al., 2016 (78)
Study type: Prospective cohort
Size: 11,171
Inclusion criteria:
- Noninstitutionalized US adults age 40-79 y without CVD, non-pregnant, and with complete BMI data
- NHANES 1999-2010 samples
Exclusion criteria:
- Pregnant
- Prevalent CVD
- Lipid-lowering med use
1st endpoint: All-cause and CVD-specific mortality across different levels of predicted ASCVD risk; Median follow-up of 72 mo.
Results:
- 851 total deaths; 124 CVD deaths
- Predicted 10y ASCVD risk was significantly associated with all-cause and CVD-specific mortality.
- Each 1% higher predicted 10y ASCVD risk was associated with a 6% greater risk for all-cause and CVD mortality (HR: 1.06; 95% CI: 1.05-1.07 for both per 1% higher predicted risk by PCEs). Harrell’s C-statistic for this was 0.74 for all-cause mortality and 0.79 for CVD mortality.
- After adjustment for physical activity, obesity, age, sex and race/ethnicity, HR per 1% higher predicted risk
- Predicted 10y ASCVD risk levels were significantly associated with all-cause and CVD-specific mortality among those free of CVD
- PCE can rank-order all-cause and CVD mortality risk
- Strength of association was similar for all-cause and CVD-specific mortality.
- Limitations: Outcomes assessed do not include nonfatal ASCVD events
OVERALL QUALITY: Moderate-to-poor.
was 1.03 (95% CI: 1.02-1.04) for all-cause mortality and 1.03 (95% CI: 1.01-1.05) for CVD mortality.

- Hazard ratios for total mortality by predicted 10y ASCVD risk:
 - ≥7.5% vs. <7.5%: Unadjusted HR: 5.44; 95% CI: 4.34-6.77; HR adjusted for physical activity, obesity, age, sex and race/ethnicity: 1.77; 95% CI: 1.27-2.48
 - ≥20% vs. <20%: HR: 5.57; 95% CI: 4.73-6.56; HR adjusted for physical activity, obesity, age, sex and race/ethnicity 1.47; 95% CI: 1.10-1.97

- Hazard ratios for CVD-specific mortality by predicted 10y ASCVD risk:
 - ≥7.5% vs. <7.5%: HR: 7.21; 95% CI: 3.70-14.05; HR adjusted for physical activity, obesity, age, sex and race/ethnicity 3.16; 95% CI: 1.16-8.58
 - ≥20% vs. <20%: HR: 5.24; 95% CI: 3.43-7.99; HR adjusted for physical activity, obesity, age, sex and race/ethnicity 1.36; 95% CI: 0.71-2.60.

Size: 37,892 participants

Inclusion criteria:
- Adults age 40-75 y in Copenhagen, Denmark
- Diabetes
- Lipid-lowering medication use
- Prevalent ASCVD

1st endpoint: Incident ASCVD; 5 y follow up

Results:
- Compared statin eligibility of sample by ACC/AHA approach using PCE (42% eligible) vs. approach using trial eligibility criteria (56%) vs. hybrid approach (21%)
- 834 ASCVD events (323 myocardial infarctions)
- PCE well calibrated below 10% predicted 10 y risk, with predicted and observed event rates statistically similar for predicted risk strata <10%, and overprediction of observed risk at predicted risk ≥10%
- Events (K-M adjusted) over 5 y stratified by 10y ASCVD predicted risk by PCE:
 - <5% predicted risk: 1.0% observed events, 0.8% predicted, ratio P/O 0.8
 - 5 to <7.5% predicted risk: 2.1% observed, 2.3% predicted, ratio P/O 1.1
 - 7.5 to <10% predicted risk: 2.7% observed, 3.4% predicted, ratio P/O 1.2

- In a contemporary Danish cohort, clinical performance of ACC/AHA risk-based approach (based on PCE) was superior to other approaches, suggesting this approach would prevent more ASCVD events and treat fewer people than the trial-based approach
- PCE were well calibrated at predicted risks <10%

Limitations: No formal calibration calculation used; white-only cohort; persons with diabetes excluded; 5-y predicted and observed event rates used given lack of 10 y of follow up

OVERALL QUALITY: Moderate

© American Heart Association, Inc., and the American College of Cardiology Foundation.
77
| Mortensen MB, et al., 2017 (80) 28363217 | **Study type:** Prospective Observational Cohort study (Copenhagen General Population Study, 2003-2009) | **Inclusion criteria:**
- Adults age 40-75 y in Copenhagen, Denmark | **1st endpoint:** Incident ASCVD (for PCE) or incident CVD death (for European-SCORE equations); 5 y follow-up |
| | **Exclusion criteria:**
- Diabetes
- Lipid-lowering medication use
- Prevalent ASCVD | **Results:**
- Compared statin eligibility of sample by ACC/AHA approach using PCE (42% eligible) vs. approach using ESC/EAS guidelines using European-SCORE approach (6%)
- 1265 ASCVD events
- PCE were well calibrated overall (overall predicted to observed ratio 1.2), especially below 10% predicted 10 y risk, with predicted and observed event rates statistically similar for predicted risk strata <10%. Overprediction of observed risk at predicted risk ≥10% was seen.
- European-SCORE was not well calibrated at any level of predicted risk for CVD death (overall predicted to observed ratio 5.0, range 3.6 to 5.4 across all risk strata).
- Events (K-M adjusted) over 5 y stratified by 10y ASCVD predicted risk by PCE:
 - <5% predicted risk: 235 observed events, 164 predicted, ratio P/O 0.7
 - 5 to <7.5% predicted risk: 123 observed events, 125 predicted, ratio P/O 1.0 | **Limitations:** No formal calibration calculation used; white-only cohort; persons with diabetes excluded; 5-y predicted and observed event rates used given lack of 10 y of follow up
OVERALL QUALITY: Moderate |
REGARDS
Muntner P, et al., 2014 (81) 24682252

| **Study type:** Prospective Observational Cohort study (REasons for Geographic And Racial Differences in Stroke [REGARDS] Study, 2003-2007) | **Inclusion criteria:**
- Adults age 45-79 y in nationwide US cohort with LDL-C 70 to 189 mg/dl
- Lipid-lowering medication use
- Prevalent ASCVD
- Diabetes

| **Exclusion criteria:**
- Lipid-lowering medication use
- Prevalent ASCVD
- Diabetes

| **1st endpoint:** Incident ASCVD (CHD death, nonfatal MI, fatal or nonfatal stroke);
Follow-up of 5 y

| **Results:**
- 338 ASCVD events (192 CHD events, 146 strokes)
- PCE were very well calibrated in lower predicted risk strata (<10% predicted 10-y risk), and overpredicted events in higher predicted risk strata (≥10% predicted 10-yr risk)
- In the group for whom the PCE were intended, events over 5 y across 10y ASCVD predicted risk strata were:
- <5% predicted risk: 1.9% observed events, 1.9% predicted
- 5 to <7.5% predicted risk: 4.8% observed, 4.8% predicted
- 7.5 to <10% predicted risk: 6.1% observed, 6.9% predicted
- ≥10% predicted risk: 12.0% observed, 15.1% predicted
- C-statistics for PCE:
 - Overall: 0.72, 95% CI: 0.70-0.75
 - Women: 0.75, 95% CI: 0.71-0.79
 - Men: 0.66, 95% CI: 0.62-0.70
 - Blacks: 0.69, 95% CI: 0.65-0.74

| **Limitations:** 5 y of follow-up; use of administrative codes for additional events in Medicare subset may have led to some misclassification of events; did not assess effects of statin or other preventive therapy after baseline.

| **QUALITY:** MODERATE

- 7.5 to <10% predicted risk: 115 observed events, 130 predicted, ratio P/O 1.1
- ≥10% predicted risk: 792 observed events, 1144 predicted, ratio P/O 1.4
- Overall C-statistic for PCEs 0.72 for ASCVD overall and 0.82 for fatal ASCVD; for men these numbers were 0.71 and 0.77, and for women they were 0.71 and 0.85. These were consistently superior to the European SCORE model.
- Net reclassification improvement for improving decision making for statin therapy compared with European SCORE: +0.27 for PCE for ASCVD overall (+0.21 in men, +0.28 in women, p<0.0001 for both).

© American Heart Association, Inc., and the American College of Cardiology Foundation.
79
<p>| MESA | Study type: Prospective Observational Cohort study (MESA) | Inclusion criteria: Adults age 45-75 y with complete data for risk factors used in PCE | Exclusion criteria: Lipid-lowering medication use Prevalent ASCVD LDL <70 mg/dl | 1ª endpoint: Incident ASCVD (CHD death, resuscitated cardiac arrest, myocardial infarction, and stroke); Median follow up of 10.3 y | Results: 247 ASCVD events; 155 hard CHD events Event rates based on recommendation status for statins per 2013 ACC/AHA guidelines: - Recommended for statins based on PCE (10-y predicted risk ≥7.5% or LDL-C 190 mg/dL or diabetes): 9.1/1000 person-y, 95% CI: 7.9-10.5); - Considered for statins (10-y predicted risk 5% - <7.5%): 4.00/1000 person-y, 95% CI: 2.6-6.0; | Limitations: No formal discrimination/calibration assessment, as the purpose of this study was not as much to evaluate the PCE as it was to evaluate the additive value of CAC to the PCE OVERALL QUALITY: Moderate |</p>
<table>
<thead>
<tr>
<th>Study type: Retrospective administrative cohort (integrated healthcare system, baseline 2008)</th>
<th>Inclusion criteria:</th>
<th>Results:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size: 307,591</td>
<td>- Adults aged 40-75 y with LDL-c 70-189 mg/dl receiving care at Kaiser Permanente Northern California with blood pressure and cholesterol data</td>
<td>- Consistent mismatch between predicted and observed event rates; PCE substantially overpredicted event rates in this sample and in all subgroups by sex and race and diabetes status</td>
</tr>
<tr>
<td>Exclusion criteria:</td>
<td>- Prior hospitalization for MI, stroke, CABG, PCI</td>
<td>- Event rates over 5 y by 5-y predicted risk strata in patients without diabetes (N=307,591):</td>
</tr>
<tr>
<td></td>
<td>- Lipid-lowering medication use within 5 y before index date</td>
<td>- <2.5%: observed rate 0.20%, predicted rate 1.04%</td>
</tr>
<tr>
<td></td>
<td>- Unknown race/ethnicity</td>
<td>- 2.5% to <3.75%: observed rate 0.65%, predicted rate 3.08%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 3.75% to <5.0%: observed rate 0.9%, predicted rate 4.34%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ≥5.0%: observed rate 1.85%, predicted rate 8.72%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Event rates over 5 y by 5-y predicted risk strata in patients with diabetes (N=4242):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <2.5%: observed rate 0.10%, predicted rate 1.36%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 2.5% to <3.75%: observed rate 2.55%, predicted rate 3.11%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 3.75% to <5.0%: observed rate 2.65%, predicted rate 4.37%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ≥5.0%: observed rate 5.50%, predicted rate 13.38%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mis-calibration similar with substantial overprediction by PCE across all subgroups by sex, race, and diabetes status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discrimination C statistics moderate to good:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Overall without diabetes: 0.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Women: 0.72</td>
</tr>
</tbody>
</table>

- Authors concluded that PCE should be recalibrated due to the substantial and consistent overestimation of ASCVD risk in their sample

- Limitations: Approximately 90% of all covered individuals and >2/3 of original eligible population excluded, including those treated after baseline; as a result, very low prevalence of diabetes (1.4%) and other high-risk conditions, and there were very low event rates compared with other samples from the same population. Administrative data used to ascertain endpoints, which may have led to some misclassification; uncertain how scaling of 10-y to 5-y predicted risks was performed.

QUALITY: Low
Ungprasert et al., 2017 (84) 28705378

| Study type: Retrospective Case-Cohort study from Olmsted County, MN, 1989-2013 |
| Inclusion criteria (for analysis of PCE): |
| - Patients aged 40 to 74 y with incident sarcoidosis and randomly selected comparators from underlying population matched on age, sex and date of diagnosis of sarcoidosis in case |
| Exclusion criteria (for analysis of PCEs): |
| - Incomplete data on lipids and other variables needed for PCE |
| - Prevalent CVD |
| - Prevalent statin use |
| 1st endpoint: Incident CHD or stroke (for analyses of PCE); Median follow up N/A |

Results:
- In analysis of the PCE, the predicted number of ASCVD events among those with sarcoidosis was 4.6, and the observed number of events was 16, corresponding to a standardized incidence ratio (SIR) of 4.11, 95% CI: 2.62-6.44. Among comparators, the predicted number of events was 5.4 and the observed number was 6, for an SIR of 1.12, 95% CI: 0.50-2.49.
- In analysis of Framingham general CVD equations, the predicted number of CVD events among those with sarcoidosis was 11.8, and the observed number of CVD events was 34, corresponding to a SIR of 2.88, 95% CI: 2.06-4.04. Among comparators, the predicted number of events was 11.0 and the observed number was 11, for an SIR of 1.00, 95% CI: 0.56-1.81. FRS consistently underpredicted risk across subgroups of age, sex and severity of sarcoidosis.

- PCE substantially underestimated the risk of CVD among patients with sarcoidosis
- Limitations: Small sample size, retrospective study; unclear what the role of controls is here; non-parallel nature of ASCVD PCE and overall CVD endpoint

QUALITY: Poor

Wolfson J, et al., 2017 (85) 28438733

| Study type: Retrospective administrative cohort study, 2001-2011 |
| Inclusion criteria: |
| - Adults aged 40-79 y without CVD, in a large combined medical care network and/or insurance plan in Minnesota |
| - Two or more medical encounters with blood pressure measurement >30 ds but <1.5 y apart |
| 1st endpoint: Incident CHD or stroke based on administrative codes; Median follow-up of 4.5 y |

Results:
- PCE were well calibrated in lower-risk strata and overpredicted risk notably in higher risk strata (>=10% 10-y risk)
- Kaplan-Meier event rates for strata of predicted 5-y risk by PCE were:

- PCE exhibited good calibration, except at higher risk levels (>=10% predicted 10-y risk), and moderate discrimination in this EHR-based cohort. Recalibrating the PCE did not improve calibration substantially.
- Limitations: Retrospective cohort study; administrative data and non-adjudicated endpoints; 4.5 y of follow up; missing data handled by imputation rather than restricting analyses; no accounting of preventive therapy after baseline

QUALITY: Poor
<table>
<thead>
<tr>
<th>Study type:</th>
<th>Prospective Observational Cohort study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size:</td>
<td>84,961 participants (combination of two external validation cohorts)</td>
</tr>
<tr>
<td>Study type:</td>
<td>Prospective Observational Cohort study</td>
</tr>
<tr>
<td>Size:</td>
<td>84,961 participants (combination of two external validation cohorts)</td>
</tr>
</tbody>
</table>

Inclusion criteria:
- Adults aged 35-74 y at baseline

Exclusion criteria:
- Prevalent MI or stroke
- Missing data

1st endpoint: Incident ASCVD (nonfatal MI or CHD death, stroke); Median follow up of 12 y

Results:
- PCE for white individuals tended to overestimate risk in men and underestimate risk in women
- Using PCE for white participants, measures of utility were:
 - Kaplan-Meier-adjusted observed events 218.7, predicted events 336.9; C-statistic 0.768; 95% CI: 0.733-0.803; calibration X2 118.8 (p<0.001) in China MUCA men

Exclusion criteria:
- Prevalent CVD based on ICD codes
- Prevalent MI or stroke
- Missing data

1st endpoint: Incident ASCVD (nonfatal MI or CHD death, stroke); Median follow up of 12 y

Results:
- PCE for white individuals tended to overestimate risk in men and underestimate risk in women
- Using PCE for white participants, measures of utility were:
 - Kaplan-Meier-adjusted observed events 218.7, predicted events 336.9; C-statistic 0.768; 95% CI: 0.733-0.803; calibration X2 118.8 (p<0.001) in China MUCA men

Quality: Moderate to poor
Data Supplement 15. Nonrandomized Trials, Observational Studies, and/or Registries of Q2: Performance of coronary artery calcium screening to reclassify risk appropriately for atherosclerotic cardiovascular disease (ASCVD) events when used for the prediction of first incident ASCVD events in diverse populations, especially in the context of the Pooled Cohort Equations (Section 4.4.1.2)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion</th>
</tr>
</thead>
</table>
| CARDIA Carr J, et al.(87) 2017 28196265 | Study type: Prospective cohort (CARDIA study, exam years 15, 20 and 25) Size: 3036 participants Inclusion criteria: • Black and white men and women attending Year 15 examination of the CARDIA Study and undergoing CAC measurement • Adults age 32-46 years Exclusion criteria: • Missing data • Pregnant • Prevalent CHD | 1st endpoint: Incident clinical CHD, CVD, or all-cause mortality, considered separately; Median follow up of 12.5 years Results: • Any CAC versus CAC=0 • All CHD (57 events/38,056 p-y) Any CAC: 30 events/3644 p-y CAC=0: 27 events/34,413 p-y Adjusted HR 5.0, 95% CI: 2.8-8.7 • CHD excluding coronary revascularization without acute events (46 events/38,125 p-y) Any CAC: 23 events/3693 p-y CAC=0: 23 events/34,432 p-y Adjusted HR 4.1, 95% CI: 2.2-7.7 | - Kaplan-Meier-adjusted observed events 166.4, predicted events 121.6; C-statistic 0.786; 95% CI: 0.752-0.820; X2 18.7 (p=0.03) in China MUCA women - Kaplan-Meier-adjusted observed events 746.7, predicted events 1249.3; C-statistic 0.793; 95% CI: 0.778-0.808; X2 81.3 (p<0.001) in CIMIC men - Kaplan-Meier-adjusted observed events 716.0, predicted events 646.3; C-statistic 0.785 (95% CI: 0.771-0.800); X2 65.9 (p<0.001) in CIMIC women • Recalibration improved discrimination and calibration of PCE • CAC>0 among adults age 32-46 years was associated with higher risk of fatal and nonfatal CHD; CAC>100 was associated with nearly four-fold risk of all-cause mortality, most of which was due to CHD • There is a dose-response gradient for future CHD events evident for CAC scores even among younger adults aged 32-46 years over 12.5 years of follow up. • Presence of risk factors for CVD in early adult life identified those above the median risk for developing CAC and, if applied, in a selective CAC screening strategy could reduce the number of people screened for CAC by 50% and the number imaged needed to find 1 person with CAC from 3.5 to 2.2.

© American Heart Association, Inc., and the American College of Cardiology Foundation.
<table>
<thead>
<tr>
<th>CAC Score Ranges vs. CAC=0</th>
<th>All CHD</th>
<th>All CVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAC 1-19 events/1844 p-yr</td>
<td>Adjusted HR 1.8, 95% CI 0.9-3.4</td>
<td>Adjusted HR 2.6, 95% CI 1.0-5.7</td>
</tr>
<tr>
<td>CAC 20-99 events/1177 p-yr</td>
<td>Adjusted HR 3.6, 95% CI 1.8-6.5</td>
<td>Adjusted HR 5.8, 95% CI 2.6-12.1</td>
</tr>
<tr>
<td>CAC ≥100 events/623 p-yr</td>
<td>Adjusted HR 5.7, 95% CI 2.8-10.9</td>
<td>Adjusted HR 9.8, 95% CI 4.5-20.5</td>
</tr>
</tbody>
</table>

- Any CHD event (25 events/38330 p-yr)
- Adjusted HR 1.6, 95% CI 1.0-2.6
- All-cause mortality (25 events/3847 p-yr)
- Adjusted HR 1.1, 95% CI 0.5-2.1

- CAC score further stratified CHD incidence density, with those
 - When participants were stratified into 3 tiers of Framingham CHD risk score (≤4%, 5%-11%, ≥12%), CAC score further stratified CHD incidence density, with those

- Selective use of screening for CAC in adults before the age of 50, based on the presence of risk factors in young adulthood, might be considered to inform discussions on primary prevention.

- Limitations: Small number of events given younger age of cohort.
with lower CAC scores experiencing substantially lower event rates than those with higher CAC scores, especially when CAC score ≥100 at 10-year CHD risk levels >5% and when CAC score ≥20 at 10-year CHD risk levels ≥12%

- Among participants predicted to be at lower risk for CAC>0 in middle age (based on being below the median in predicted CAC risk from risk factor levels in early adulthood), CAC prevalence was 13.2% for number needed to screen to find CAC>0 of 7.7
- Among participants predicted to be at higher risk for CAC>0 in middle age (above the median in predicted CAC risk), CAC prevalence was 44.7% for number needed to screen to find CAC>0 of 2.2

MESA
Flueckiger P, et al. (73) 2017 27859433

Study type: Prospective cohort

Size: 5002 participants

Inclusion criteria:
- Untreated MESA participants (adults age 45-84 years) who underwent CAC screening at baseline

Exclusion criteria:
- Lipid-lowering medication use
- Missing data
- Age >75 years

1st endpoints:
Sensitivity/specificity/NPV/PPV of several risk scores/guideline recommendations for detecting CAC at baseline; Incident CHD (for ATP III – defined as fatal/nonfatal MI or fatal CHD) Incident ASCVD (for ACC/AHA – defined as including fatal/nonfatal myocardial infarction (MI), coronary heart disease (CHD) death, fatal/nonfatal stroke); ASCVD death (for ESC/EAS – defined as all fatal ASCVD events, including MI, stroke, occlusive atherosclerotic disease, and sudden cardiovascular death) Follow up of 10 years

Results:
Using Class I recommendations for lipid-lowering therapy by different guidelines for detection of CAC at baseline:

- ACC/AHA approach using PCE appears to have the best balance between sensitivity and specificity for detecting CAC and for predicting incident CVD events compared with ATP III and ESC/EAS.
- There were modest differences by sex (more sensitive in men), age (more sensitive in older adults), and race (minimal differences), but these differences appear largely driven by risk.
- The proportion with baseline CAC=0 was high for all Class I recommendation groups, but similar across groups: ATP III (57%), PCE (58%), and SCORE (60%).
• Sensitivity/Specificity/NPV/PPV for CAC>0
 2004 ATP III: 35.0%/80.7%/62.9%/57.0%
 2013 ACC/AHA: 69.8%/63.2%/74.2%/58.1%
 2016 ESC/EAS: 39.1%/80.8%/64.5%/59.7%
• Sensitivity/Specificity/NPV/PPV for CAC≥100
 ATP III: 40.2%/77.1%/85.9%/27.1%
 ACC/AHA: 83.1%/56.1%/94.0%/28.6%
 ESC/EAS: 48.5%/76.8%/87.5%/30.7%
• Sensitivity/Specificity/NPV/PPV for CAC≥300
 ATP III: 41.1%/75.5%/93.3%/13.4%
 ACC/AHA: 87.2%/52.6%/97.8%/14.5%
 ESC/EAS: 54.1%/74.8%/94.6%/16.8%
• Sensitivity/Specificity/NPV/PPV for CAC≥300 + 75th %ile for age/sex/race
 ATP III: 36.3%/77.2%/80.1%/32.4%
 ACC/AHA: 66.3%/53.9%/84.2%/30.2%
 ESC/EAS: 39.4%/75.9%/80.6%/33.0%

Using Class I recommendations for lipid-lowering therapy by different guidelines for prediction of incident events (risk score-specific outcomes)

• HR (95% CI) for incident events (absolute event rates not reported) among statin eligible compared with statin not eligible:
 ATP III: HR 2.24, 95% CI 1.74-2.88
 ACC/AHA: HR 4.10, 95% CI 3.01-5.60
 ESC/EAS: HR 2.41, 95% CI 1.87-3.10

• Sensitivity/Specificity/NPV/PPV for incident events
 ATP III: 45.8%/75.1%/96.3%/8.9%
 ACC/AHA: 79.6%/50.7%/98.0%/7.7%
 ESC/EAS: 50.5%/72.9%/98.7%/3.6%

AUC (95% CI) for statin eligibility and incident events
<table>
<thead>
<tr>
<th>Study type:</th>
<th>Inclusion criteria:</th>
<th>Exclusion criteria:</th>
<th>Results:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MESA</td>
<td>• MESA participants at baseline exam</td>
<td>• Missing data</td>
<td>Addition of CAC to PCE modestly improved discrimination, calibration, categorical and continuous net reclassification, and integrated discrimination, similarly across sex and race/ethnicity subgroups</td>
</tr>
<tr>
<td>Fudim M, et al. (88)</td>
<td>1^st endpoint: Hard CVD events, which included myocardial infarction, death due to myocardial infarction, resuscitated cardiac arrest, stroke and death from stroke; Median follow up of 7.5 years</td>
<td>Metrics for utility of addition of CAC score to PCE for prediction of CVD in subgroups:</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Study type: Prospective cohort (MESA)</td>
<td>Size: 6742 participants</td>
<td>• Men: 6.1 per 1000 p-y Increase in C-statistic: 0.025, P=0.047 Hosmer-Lemeshow X2: 8.587, P=0.38 Categorical NRI: 0.080, P=0.037IDI: 0.0117, P=0.001</td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria:</td>
<td></td>
<td>• Women 3.7 per 1000 p-y Increase in C-statistic: 0.018, P=0.019Hosmer–Lemeshow X2: 16.715, P=0.033Categorical NRI: 0.095, P=0.039IDI: 0.0069, P=0.032</td>
</tr>
<tr>
<td></td>
<td>• MESA participants at baseline exam</td>
<td></td>
<td>• Caucasian: 5.4 per 1000 p-y Increase in C-statistic: 0.019, P=0.18Hosmer –Lemeshow X2: 11.9, P=0.16Categorical NRI: 0.111, P=0.02IDI: 0.012, P=0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Black 5.0 per 1000 p-y Increase in C-statistic: 0.033, P=0.11Hosmer-Lemeshow X2: 12.3, P=0.14Categorical NRI: 0.024, P=0.61IDI: 0.006, P=0.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Chinese-American: 2.5 per 1000 p-y Increase in C-statistic: 0.013, P=0.66Hosmer-Lemeshow X2: 4.9, P=0.77Categorical NRI: -0.121, P=0.11IDI: 0.005, P=0.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Hispanic 5.0 per 1000 p-y</td>
</tr>
</tbody>
</table>
Study type: Systematic review

Size: 8 studies identified (7 observational, 1 RCT) but only 6 studies (11,256 participants) included due to data availability.

Single arm (CAC measurement) of EISNER study included.

Note 2 reports from 1 study with different outcomes

Inclusion criteria:
- Studies that evaluated the influence of CAC scores on subsequent lifestyle modifications or medication usage for primary prevention of CVD

Exclusion criteria:
- N/A

1st endpoint: Use of preventive interventions (both initiation and continuation), including aspirin, blood pressure lowering, lipid lowering, and behavioral changes

Results:
- Compared with individuals with CAC=0, individuals with CAC>0 had:
 - Aspirin initiation OR 2.6, 95% CI 1.8-3.8 (30% vs. 15%, 4 studies with 1.6 to 6 years of follow up, I²=86%)
 - Lipid lowering medication initiation OR 2.9, 95% CI 1.9-4.4 (20% vs. 10%, 3 studies with 1.6 to 6 years of follow up, I²=89%);
 - Blood pressure lowering medication initiation OR 1.9, 95% CI 1.6-2.3 (19% vs. 11%, 2 studies with 1.6 to 4 years of follow up, I²=15%);
 - Aspirin continuation OR 1.3, 95% CI 0.8-2.2 (66% vs. 65%, 3 studies with 3.2 to 6 years of follow up, I²=75%);
 - Lipid lowering medication continuation OR 2.3, 95% CI 1.6-3.3 (75% vs. 69%, 4 studies with 3 to 6 years of follow up, I²=52%);
 - Blood pressure lowering medication continuation OR 1.4, 95% CI 0.9 to 2.2 (73% vs. 64%, 2 studies with 3.2 to 4 years of follow up, I²=34%).

Limitations:
- Self-reported use of medications in at least half of studies; degree of exercise increase and dietary change ill-defined; predominantly Caucasian participants; variable means for informing participants of CAC presence and score

Identification of coronary atherosclerosis by coronary calcium scanning is significantly associated with the likelihood of initiation or continuation of pharmacological and lifestyle therapies for prevention of CVD in follow up of up to 6 years.
| Han D, et al. (90) 2017 28531241 | **Study type:** Retrospective registry (KOICA, Korea, 2002-2014) | **Inclusion criteria:**
- Adults age 40-75 years
- Prevalent CVD
- LDL<70 mg/dL
- Lipid lowering medication use
- Missing risk factor or CAC data | **1st endpoint:** All-cause mortality; Median follow-up of 5 years (IQR 3-7 years)
Results:
All-cause mortality
- Statin recommended group (n=13,888; 10-year predicted risk ≥7.5% or LDL-C 190 mg/dL or diabetes)
 - CAC=0 (reference)
 - 68 events/7083 participants
 - Any CAC
 - 110 events/6805 participants
 - Adjusted HR 1.29, 95% CI 0.93-1.77
 - CAC 1-100
 - 63 events/4583 participants
 - Adjusted HR 1.14, 95% CI 0.80-1.63
 - CAC>100
 - 47 events/2222 participants
 - Adjusted HR 1.60, 95% CI 1.07-2.38
- Statin considered group (n=4046; 10-year predicted risk 5.0%-<7.5%)
 - CAC=0 (reference)
 - 13 events/2428 participants
 - Any CAC
 - 12 events/1618 participants
 - Adjusted HR 1.19, 95% CI 0.53-2.66
 - CAC 1-100
 - 6 events/1214 participants
 - Adjusted HR 0.76, 95% CI 0.28-2.02 | **Presence of CAC and CAC score stratified risk for all-cause mortality in different statin-eligibility groups as assigned by ACC/AHA 2013 guidelines in a Korean population**
- Limitations: Retrospective study; patients self-referred for CAC; predominantly male; no data on ASCVD events; use of preventive therapy during follow up unknown; |
<table>
<thead>
<tr>
<th>Study type: Microsimulation model (based on MESA participants)</th>
<th>Inclusion criteria: Individuals were modeled based on AHA/ACC cholesterol treatment guideline using data from MESA</th>
<th>1st endpoint: Lifetime direct and indirect costs (societal perspective; 1 year intervals) comparing 2 strategies: 1) CAC testing among statin eligible individuals, where long-term statin therapy is guided by the reclassification of risk; versus 2) treating all statin-eligible individuals according to the ACC/AHA guideline recommendations</th>
<th>Limitations: Microsimulation study; Multiple assumptions regarding costs, benefits and utility;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong JC, et al. (91) 2017 28797417</td>
<td>Exclusion criteria: N/A</td>
<td>Results: • CAC testing-based strategy Costs: $11,579, 95% CI $5,417-$19,183 QALYs: 11.859, 95% CI: 10.859-12,838 • Treat per guideline-based strategy Costs: $11,498, 95% CI $2,048-$19,135 QALYs: 11.849, 95% CI $10.834-$12,829 • Both strategies had similar costs and QALYs. CAC resulted in increased costs (+$81) and near-equal QALY (+0.01) for an annualized life-time of $11.579, 95% CI $5,417-$19,183 and 11.859, 95% CI 10.859-12,838.</td>
<td>• Modeling suggests “both approaches have generally similar clinical and economic consequences.” • “Clinicians should account for individual preferences in context of shared decision making when choosing the most appropriate strategy to guide statin decisions.” • “CAC testing can supplement the shared decision-making process through more accurate risk prediction and help avoid low-value pharmacological therapy.”</td>
</tr>
<tr>
<td>• CAC>100 6 events/404 participants Adjusted HR 2.98, 95% CI 1.09-8.13 • Statin not recommended group (n=13,441; 10-year predicted risk <5%) • CAC=0 (reference) 36 events/10,484 participants • Any CAC 12 events/3091 participants Adjusted HR 1.21, 95% CI 0.61-2.39 • CAC=1-100 8 events/2554 participants Adjusted HR 0.93, 95% CI 0.43-2.06 • CAC>100 4 events/537 participants Adjusted HR 3.14, 95% CI 1.08-9.17</td>
<td>1° endpoint: Lifetime direct and indirect costs (societal perspective; 1 year intervals) comparing 2 strategies: 1) CAC testing among statin eligible individuals, where long-term statin therapy is guided by the reclassification of risk; versus 2) treating all statin-eligible individuals according to the ACC/AHA guideline recommendations</td>
<td>Results: • CAC testing-based strategy Costs: $11,579, 95% CI $5,417-$19,183 QALYs: 11.859, 95% CI: 10.859-12,838 • Treat per guideline-based strategy Costs: $11,498, 95% CI $2,048-$19,135 QALYs: 11.849, 95% CI $10.834-$12,829 • Both strategies had similar costs and QALYs. CAC resulted in increased costs (+$81) and near-equal QALY (+0.01) for an annualized life-time of $11.579, 95% CI $5,417-$19,183 and 11.859, 95% CI 10.859-12,838.</td>
<td>• Modeling suggests “both approaches have generally similar clinical and economic consequences.” • “Clinicians should account for individual preferences in context of shared decision making when choosing the most appropriate strategy to guide statin decisions.” • “CAC testing can supplement the shared decision-making process through more accurate risk prediction and help avoid low-value pharmacological therapy.”</td>
</tr>
</tbody>
</table>

© American Heart Association, Inc., and the American College of Cardiology Foundation.
incremental cost-effectiveness ratio of $8,100/QALY compared with the guideline strategy.
• For 10,000 patients, guideline-based strategy would avert 21 ASCVD events prevented and would add 47,294 person-years of statins

<table>
<thead>
<tr>
<th>Kavousi M, et al. (92)</th>
<th>Study type: Individual participant data meta-analysis</th>
<th>Inclusion criteria:</th>
<th>1st endpoint: Incident ASCVD, including nonfatal myocardial infarction, coronary heart disease (CHD) death, and stroke; Median follow-up of 7 to 11.6 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016 27846641</td>
<td>Size: Meta-analysis of 5 prospective, community-based cohorts (Dallas Heart Study, FHS, MESA, Heinz Nixdorf, Rotterdam), 6739 participants</td>
<td>Women with low predicted ASCVD risk using PCE variables (< 7.5% predicted event rate over 10 years)</td>
<td></td>
</tr>
</tbody>
</table>
Mahabadi AA, et al. 2017 (93) 27665163

Study type: Prospective cohort (Heinz-Nixdorf, 2000-2003)

Size: 3745 participants

Inclusion criteria:
- Asymptomatic adults age 45-75 years from 3 German cities

Exclusion criteria:
- Prevalent ASCVD, lipid lowering therapy, or missing risk factor or CAC data

1° endpoint: Incident coronary events, stroke, or cardiovascular death comparing strategies of 2012 ESC and 2013 ACC/AHA guidelines for statin eligibility; Median follow up of 10.4 years

Results:
- Low CAC score (<100) was common (60%) among those recommended for statin therapy by both guidelines

Events by guideline
- 2012 ESC guideline statin not indicated, n=2457
 - CAC, median (IQR): 2 (0, 43)
 - CVD events: 97 events (4.0%)
 - Coronary events: 60 events (2.4%)
- 2012 ESC guideline statin indicated, n=1288
 - CAC, median (IQR): 59 (5, 244)
 - CVD events: 144 events (11.2%)
 - Coronary events: 71 events (5.5%)
- 2013 PCE statin not indicated, n=1254 (plus 396 with predicted risk=5-7.5%)
 - CAC, median (IQR): 0 (0, 15)
 - CVD events: 35 events (2.1%)
 - Coronary events: 19 events (1.2%)
- 2013 PCE statin indicated, n=2095
 - CAC, median (IQR): 46 (3, 200)
 - CVD events 206 events (9.8%)
 - Coronary events 112 events (5.3%)

By CAC
- CAC=0, n=1272
 - CVD events: 30 (2.4%)
 - Coronary events: 17 (1.3%)

- Continuous NRI with CAC: 0.20 (95% CI 0.09, 0.31)
- Results evaluating CHD as outcome similar but generally more robust

- “Quantification of CAC score in addition to the guidelines improves stratification between subjects at high versus low risk for coronary events, indicating that CAC scoring may help to match intensified risk factor modification to atherosclerotic plaque burden as well as actual risk while avoiding therapy in subjects with low coronary atherosclerosis that have low 10-year event rate.”

- Limitations: Limited racial/ethnic diversity
- CAC 1-100, n=555
 CVD events: 88 (5.7%)
 Coronary events: 8 (2.4%)
- CAC 100-399, n=601
 CVD events: 58 (9.7%)
 Coronary events: 36 (6.0%)
- CAC≥400, n=17
 CVD events: 65 (20.5%)
 Coronary events: 40 (12.6%)

• By guideline + CAC
 - 2012 ESC statin indicated
 CAC=0: 5.7 per 1,000 p-y, 95% CI 2.7-8.7
 CAC 1-99: 7.8 per 1,000 p-y, 95% CI 5.5-10.0
 CAC≥100: 17.4 per 1,000 p-y, 95% CI 14.1-20.7
 - 2012 ESC statin not indicated
 CAC=0: 1.5 per 1,000 p-y, 95% CI 0.8-2.2
 CAC 1-99: 4.3 per 1,000 p-y, 95% CI 3.1-5.5
 CAC≥100: 8.7 per 1,000 p-y, 95% CI 6.0-11.5
 - 2013 PCE statin indicated
 CAC=0: 5.4 per 1,000 p-y, 95% CI 3.2-7.5
 CAC1-99: 7.5 per 1,000 p-y, 95% CI 5.8-10.9
 CAC≥100: 14.6 per 1,000 p-y, 95% CI 12.2-17.1
 - 2013 PCE statin not indicated
 CAC=0: 0.8 per 1,000 p-y, 95% CI 0.3-1.2
 CAC 1-99: 2.8 per 1,000 p-y, 95% CI 1.5-4.0
 CAC≥100: 6.5 per 1,000 p-y, 95% CI 2.2-11.8

• Number needed to screen to detect 1 individual with CAC>100
 ESC statin indicated: 2.4
 ESC statin not indicated: 6.3
 ACC/AHA statin indicated: 2.6
<table>
<thead>
<tr>
<th>Study</th>
<th>Study type</th>
<th>Inclusion criteria</th>
<th>1° endpoint</th>
<th>Results</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>McClelland RL, et al. 2015 (94) 26449133</td>
<td>Prospective cohort studies (MESA, Dallas Heart, Heinz-Nixdorf Recall Studies), risk score derivation and validation</td>
<td>- Adults age 45-84 years in derivation cohort; 45 to 75 years in HNR; 45-65 years in DHS</td>
<td>Incident hard CHD, including MI, resuscitated cardiac arrest, fatal CHD, and revascularization in setting of angina; Median follow up 10.2 years in derivation cohort</td>
<td>- 422 CHD events in derivation cohort</td>
<td>- Routine addition of CAC score to traditional risk scores in contemporary cohorts added significant utility to risk prediction</td>
</tr>
<tr>
<td>Mortensen MB, et al. 2016 (95) 27561760</td>
<td>Prospective Observational Cohort study (BioImage Study, 2008-2009)</td>
<td>- Men 55-80 years and women 60-80 years</td>
<td>Incident CHD, including MI, unstable angina, and coronary revascularization; Incident ASCVD, including CVD death, CHD or ischemic stroke; Median follow up of 2.7 years</td>
<td>- Assessed strategy of using ACC/AHA statin eligibility recommendations based on PCE, and added reclassification strategy of CAC and Revascularization using CAC ≥100 to up-risk intermediate or CAC=0 to de-risk individuals with 10-year risk ≥7.5% and <15% by PCE led to significant improvements in reclassification and correct assignment of therapy</td>
<td></td>
</tr>
</tbody>
</table>
down-classifying (to non-statin eligible) those with 10-year predicted risk ≥7.5% but with CAC=0, and up-classifying (to statin eligible) those with 10-year predicted risk 5% to <7.5% and CAC score ≥100.

- 91 CHD events; 138 ASCVD events
- Among these older participants, 86% were eligible for statins per ACC/AHA guideline recommendations
- After reclassification by CAC, 64% were eligible for statins
- NRI of reclassification strategy was 0.20 for CHD and 0.14 for ASCVD overall (both P<0.0001)
- Among participants with predicted 10-year risk <15%, CAC-guided reclassification strategy led to gain of 1% in sensitivity (P=0.56) and gain of 10% in specificity (P<0.0001) for correct prediction of CHD (NRI = 0.11, P<0.0001))
- Among participants with predicted 10-year risk <15%, CAC-guided reclassification strategy led to loss of 2% in sensitivity (P=0.26) and gain of 10% in specificity (P<0.0001) for correct prediction of ASCVD (NRI = 0.08, P<0.0001)

MESA
Nasir K, et al. 2015 (82)
26449135

Study type:	Prospective Observational Cohort study (MESA)
Size:	N=4758 participants,
Inclusion criteria:	All MESA participants,
Exclusion criteria:	Participants on lipid-lowering medications, >75yo, missing key covariates, LDL-C <70 mg/dL
1st endpoint:	Incident CHD: MI, resuscitated cardiac arrest, or CHD death; Incident ASCVD: CHD or fatal/non-fatal stroke
Median follow up	10.3 years

Results:
- 247 ASCVD Events; 155 hard CHD events
- CAC =0 is prevalent (≥35%), and reclassifies risk to <7.5% for all strata of predicted risk <20% and for patients recommended for or considered for statins under ACC/AHA 2013 guideline recommendations.
- CAC >100 identifies individuals with 10-year event rates ≥7.5%, even among those not recommended for statin therapy.
<table>
<thead>
<tr>
<th>Prevalence of CAC =0 among participants stratified by statin recommendation status using 2013 ACC/AHA recommendations (based on PCE)</th>
<th>Prevalence of CAC =0 among participants stratified by predicted 10-year ASCVD risk (based on PCE)</th>
</tr>
</thead>
</table>
| • 41% of pts recommended for moderate to high-intensity statin Rx had CAC = 0; 29% had CAC >100.
• 57% of pts considered for moderate-intensity statin had CAC = 0; 12% had CAC >100.
• 79% of pts not recommended for statin had CAC = 0; 4% had CAC >100. | • 7.5% - 9.9%: 55% of pts had CAC = 0; 17% had CAC >100.
• 10.0% - 14.9%: 43% of pts had CAC = 0; 24% had CAC >100.
• 15.0% - 19.9%: 35% of pts had CAC = 0; 33% had CAC >100.
• ≥20%: 26% of pts had CAC = 0; 46% had CAC >100. |
| • Observed 10-year ASCVD Event Rates by Statin Recommendation Groups:
• Statin recommended: 8.2% overall; 4.9% with CAC=0; 13.3% with CAC >100.
• Statin considered: 3.9% overall; 1.5% with CAC=0; 6.0% with CAC >100.
• Statin not recommended: 1.6% overall; 1.3% with CAC=0; 9.6% with CAC >100. | • In middle-aged people who are statin naïve, the addition of CAC scoring can help stratify risk and appropriately reclassify intermediate risk into lower risk categories and low risk into higher risk categories.
• Limitations: Overprediction of ASCVD risk by PCE in MESA has been described and is present in this analysis. This might overestimate the reclassification benefits of CAC = 0. |
<p>| • Observed 10-year ASCVD Event Rates by Predicted 10-Year Risk Stratum: |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Study type</th>
<th>Size</th>
<th>Inclusion criteria</th>
<th>1st endpoint</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Framingham Pursnani A, et al. 2015 (96) 26172893</td>
<td>Prospective Observational Cohort study</td>
<td>N=2435 participants</td>
<td>Framingham Offspring or Gen3 participants; men 35 and older, women 40 and older, weighted towards families with larger numbers in cohort</td>
<td>Incident ASCVD Median follow up 9.4 years</td>
<td>CAC = 0 identified individuals recommended for statin therapy who had very low ASCVD event rates.</td>
</tr>
<tr>
<td>Qureshi W.T. et al. 2015 (97) 26482753</td>
<td>Systematic review and meta-analysis of published studies</td>
<td>N=8 studies of CAC and N=22 studies of hsCRP</td>
<td>Studies examining change in discrimination for CVD events with addition of CAC or hsCRP to models with traditional CVD risk factors</td>
<td>Incident CVD</td>
<td>Addition of CAC score to models containing traditional risk factors changes the area under the ROC curve for prediction of CVD events significantly and substantially, and by more than addition of hsCRP.</td>
</tr>
<tr>
<td>Jackson Heart Study Shah R.V., et al. 2017 (98) 28315622</td>
<td>Prospective Observational Cohort study</td>
<td>N=2812 (N=1743 with CAC score) participants</td>
<td>African American men and women age 40-75 years</td>
<td>Incident ASCVD Median follow up 10 years</td>
<td>Among those who were recommended for statin by the ACC/AHA 2013 guideline, presence of CAC identified those with 10-year event rates >7.5%, whereas absence of CAC was associated with event rates <7.5%. Among those not recommended for statin, 10-year event rates were <1.0%.</td>
</tr>
</tbody>
</table>
CAC >0 prevalence increased in a dose dependent fashion from ~13% in those with 10-year predicted risk (by PCE) of 2.5% to ~75% in those with predicted risk ≥15%. ASCVD event rate for participants recommended for statin by ACC/AHA 2013 guideline:
With CAC: 8.1/1000 p-y
Without CAC: 3.1/1000 p-y; P=0.02
ASCVD event rate for participants not recommended for statin by ACC/AHA 2013 guideline:
With CAC: 0.9/1000 p-y
Without CAC: 0.8/1000 p-y; P>0.99

| St. Francis Heart Study Waheed S., et al. 2016 (99) [27693004] | **Study type:** Post hoc analysis of RCT | **Inclusion criteria:**
- Individuals aged 50-70 years with CAC score ≥80th percentile for age and sex enrolled in RCT of atorvastatin, vitamin C, and vitamin E vs placebos
- Exclusion criteria:
 - Prevalent ASCVD, diabetes, extreme values of cholesterol or blood pressure
| **1st endpoint:** Incident CVD (non-fatal myocardial infarction or coronary death, coronary revascularization, stroke, and peripheral arterial revascularization) Median follow up 4.8 years | **Results:**
- CVD incidence rates (per 100 p-y) by statin eligibility, randomization status and CAC score:
 - Statin ineligible by ACC/AHA 2013 guideline:
 - CAC <100 and treated: 0
 - CAC <100 and untreated: 0
 - CAC 100-300 and treated: 5
 - CAC 100-300 and untreated: 5
 - CAC >300 and treated: 17
 - CAC >300 and untreated: 23
 - Statin eligible by ACC/AHA 2013 guideline:
 - CAC <100 and treated: 0
 - CAC <100 and untreated: 0
 - CAC 100-300 and treated: 20
 - CAC 100-300 and untreated: 26
| **Limitations:** Post-hoc analysis, restricted population with high CAC for age and sex

© American Heart Association, Inc., and the American College of Cardiology Foundation.
99
| MESA Yeboah J., et al. 2015 (100) | **Study type:** Prospective Observational Cohort study (MESA)
Size: N=4185 participants with recalibrated (to MESA sample) PCE 10-year risk score <7.5%
Inclusion criteria:
- MESA participants age 45-84 years
Exclusion criteria:
- Missing data, participants receiving statin at baseline
1° endpoint: Incident ASCVD
Median follow up 10 years
Results:
- CAC ≥300 or ≥75th percentile for age, sex and race, hsCRP ≥2 mg/dl, AMBI <0.9, LDL-C ≥160 mg/dl, or positive family history of ASCVD each identified small proportions (<10%) of participants with predicted 10-year risk <7.5% who had observed 10-year event rates >7.5%. Of these additional tests, CAC identified the largest proportion.
- Among individuals with low predicted 10-year risk not expected to be in a statin benefit group, CAC ≥300 or ≥75th percentile for age, sex and race identified a subgroup with observed event rate >7.5%, and performed better than other additional tests or biomarkers. | CAC >300 and treated: 22
CAC >300 and untreated: 34 |

| MESA Yeboah J., et al. 2016 (101) | **Study type:** Prospective Observational Cohort study (MESA)
Size: N=5185 participants with recalibrated (to MESA sample) PCE score
Inclusion criteria:
- MESA participants age 45-84 years
Exclusion criteria:
- Missing data, participants receiving statin at baseline
1° endpoint: Incident ASCVD
Median follow up 10 years
Results:
- CAC, ABI, and family history were associated with ASCVD events independent of recalibrated PCE.
- Harrell’s C statistic with addition to recalibrated PCE:
 - Recalibrated PCE alone: 0.74
 - CAC score: 0.76 (P=0.04)
 - ABI: 0.75 (P=0.55)
 - hsCRP: 0.74 (P=0.25)
 - Family history: 0.74 (P=0.98)
 - NRI for threshold of 7.5% 10-year risk with addition to recalibrated PCE:
 - CAC score: 0.119, 95% CI 0.080-0.256
 - ABI: 0.017, 95% CI -0.031-0.058
- CAC improved discrimination and NRI beyond recalibrated PCE whereas other non-traditional risk markers did not. | | |

© American Heart Association, Inc., and the American College of Cardiology Foundation.
Data Supplement 16. Evidence Tables for Borderline and Intermediate Risk Group (5-<7.5%; 7.5 to 20%) (Section 4.4.2)

<table>
<thead>
<tr>
<th>Acronym; Study Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N) Duration</th>
<th>Patient Population</th>
<th>Study Intervention/ Study Comparator Definition of Outcomes Primary/Secondary</th>
<th>Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% CI)</th>
<th>Relevant 2°Endpoints (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOPE 3 Yusuf S, et al., 2016 (12) 27040132</td>
<td>Determine net benefit of moderate intensity statin therapy in intermediate ASCVD risk group; Study type: RCT Size: 12,705 participants Duration: 5.6 y</td>
<td>Inclusion Criteria: Men: ≥ 55 y Women ≥ 65 y with one of the following CV Risk factors: -Elev. waist/hip ratio, -History of low HDL-C, -Current or recent tobacco use -Dysglycemia, -Family Hx premature coronary disease, -Mild renal dysfunction Women ≥ 60 with 2 or more such risk factors. Exclusion Criteria: -Cardiovascular disease (CVD) -Indication for CVD drugs such as statins, angiotensin-receptor blockers, angiotensin-converting-enzyme inhibitors, or thiazide diuretics</td>
<td>Intervention: G1: Rosuvastatin 10 mg/d (6361) G2: Comparator: Placebo (6364) 46.4% Female in G1 46.1% Female in G2 Definitions of Outcomes -First co-primary outcome or “hard ASCVD” -Second co-primary outcome: -Secondary outcome First primary outcome: composite of death from CVD causes, nonfatal MI, or nonfatal stroke, Second primary outcome: included revascularization, heart failure, and resuscitated cardiac arrest. Secondary outcome –Above second co-primary outcome plus angina with evidence of ischemia</td>
<td>Frist primary outcome: G1: 3.7% G2: 4.8% 0.76 (0.64-0.91) p 0.002 Second primary outcome: G1: 4.4% G2: 5.7% 0.75 (0.66-0.88); p<0.001 LDL-C Changes with G1 lower than G2 at 1-y 39.6 mg/dL (1.02) 3 y: 34.7 mg/dL ((0.90) Overall mean diff: 34.6 mg/dL (0.90) 26.5%; p<0.001) ASCVD Risk Placebo Group (%/y) First primary outcome = 4.8%/5.6 y =8.6 Second primary outcome = 5.7%/5.6 y =10.1</td>
<td>Hospitalized for cardiovascular causes G1: 281 [4.4%] G2: 369 [5.8%], p<0.001 Total number of CVD hospitalizations G1: 444 G2: 596 Study limitations: Short duration of treatment and time to 1st event may underestimate events Despite decreased adherence with time, the reduction of risk of CVD increased with time Adverse events Muscle pain or weakness G1 (367 [5.8%]) G2: 296 [4.7%], p=0.005 Muscle symptoms G1 (83 [1.3%]) G2 76 [1.2%], p=0.63 Cataract surgery G1 241 [3.8%] vs. G2 194 [3.1%];</td>
</tr>
</tbody>
</table>
AFCAPS-TEXCAPS

Downs JR, et al., 1998 (102) 9613910

- **Does lowering of LDL-C with statins benefit men, women, elderly with normal TC levels.**

 - **Study Type:** RCT
 - **6805 Participants**
 - **Size:** 5608 men and 997 women.
 - **Duration:** 5.2 y
 - **Included Hispanics, African Americans, and older persons (baseline mean age, 58.2 y; upper limit, 73 y; 21% older than 65 y).**

- **Inclusion Criteria:**
 - Men aged 45-73 y;
 - Postmenopausal Women aged 55-73 y; Men: 85%; Women 15%.

 - **Exclusion Criteria:** Uncontrolled hypertension, secondary hyperlipidemia, type 1 or type 2 diabetes mellitus managed with insulin, a glycol-hemoglobin level ≥ 10%, or body weight ≥ 50% greater than the desirable limit for height.

 - **Lipid entry criteria**
 - TC 180-264; (4.65 - 6.82)
 - LDL-C, 130-190 (3.36- 4.91)
 - HDL-C: men <45 mg/dl (1.16)
 - HDL-C: women <47 mg/dl (1.22)
 - TG<400 mg/dl; (4.52) at both 4 and 2 wk before randomization, with <15% change in LDL-C values. In addition, those with LDL-C between 125-129 mg/dl (3.23 and 3.34) were included if the ratio of TC to HDL-C > 6.0.

- **G1: Lovastatin 20 or 40 mg/d N=3304**
 - **G2: Placebo N=3301**

- **Definition of Outcomes:**
 - Primary outcome (PO) First acute major coronary event defined as fatal or nonfatal myocardial infarction, unstable angina, or sudden cardiac death.

 - AFCAPS found that approximately equal numbers present with unstable angina or MI.

 - **Primary Outcome**
 - G1: 116/3301; 3.5%
 - G2: 183/3304; 5.5%
 - 0.63; (0.50 -0.70) p<0.001
 - Rates per 1000 patient y
 - G1 6.8% vs. G2 10.9%

 - The differences between the 2 treatment groups appeared as early as 1 y (40 w/events in G2 vs.23 in G1)

 - For the primary end point, these rates correspond to cumulative incidences of 4.0% and 6.8% for the lovastatin and placebo groups, respectively, during the study period (p 0.001).

 - LDL-C changes
 - G1: LDL-C 151 (3.89) (lower by 25% reduced to 115 (2.96)

 - **Primary end point risk reduction** with lovastatin was apparent across all baseline LDL-C tertiles with no threshold to benefit observed across baseline LDL-C levels LDL-C ≤142 (3.67); 143-156 (3.67-4.05) ≥157 (>4.05)

 - There were no clinically relevant differences in safety parameters between treatment groups.

- **Study Limitations:** Inclusion of unstable angina in the primary endpoint; but in this trial equal numbers presented with unstable angina or non-fatal MI.

 - **New Onset of Diabetes**
 - G1: 74
 - G2: 72

- **p=0.02**

Deep-vein thrombosis or pulmonary embolism
- G1 14 vs. G2 31; HR: 0.45; 95% CI: 0.24 to 0.84; p=0.01.

No excess of:
- DM: G1: 3.9% vs. 3.8%
- Rhabdomyolysis or myopathy;
- G1 2 vs. G2: 1 case

Cancer
- G1 267 vs. G2 286

© American Heart Association, Inc., and the American College of Cardiology Foundation.
<table>
<thead>
<tr>
<th>Study Title</th>
<th>Authors</th>
<th>Design</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
<th>Primary composite endpoint</th>
<th>Secondary end-points</th>
<th>Study Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 Diet + pravastatin (3866 participants) Initial 10 mg/d or 20 mg if TC >221 mg/dl</td>
<td>Men: Postmenopausal women AGE: 40-70 y Men: (31%)</td>
<td>First occurrence of coronary heart disease, which included fatal and non-fatal myocardial infarction, angina, cardiac and sudden death, and a coronary revascularization procedure.</td>
<td>Coronary heart disease (CHD) was significantly lower in G1 than in the G2 groups.</td>
<td>HR: 0.67; 95% CI: 0.49-0.91; p=0.01.</td>
<td>G1 66 events; G2 101 events HR: 0.67; 95% CI: 0.49-0.91; p=0.01.</td>
<td>Open label</td>
<td>No significant safety issues</td>
</tr>
<tr>
<td>G2: Diet (3966 participants)</td>
<td>Women: (69%) Body wt >40 kg; Total cholesterol levels measured on 2 or 3 occasions during ≥ 4 wk washout period on a low fat, low cholesterol diet Baseline cholesterol level required to be 220-270 mg/dl</td>
<td>G1: 66 events; G2 101 events HR: 0.67; 95% CI: 0.49-0.91; p=0.01.</td>
<td>No significant difference between the two groups in the incidence or primary site of malignancy, or for the site of malignant neoplasms.</td>
<td></td>
<td></td>
<td>No significant difference between the two groups in the incidence or primary site of malignancy, or for the site of malignant neoplasms.</td>
<td>No significant difference between the two groups in the incidence or primary site of malignancy, or for the site of malignant neoplasms.</td>
</tr>
<tr>
<td>Study Acronym; Author; Year Published</td>
<td>Study Type/Design; Study Size</td>
<td>Patient Population</td>
<td>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</td>
<td>Summary/Conclusion Comment(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------------------------</td>
<td>--------------------</td>
<td>--</td>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>of lipid-lowering therapy, current use of post-menopausal hormone-replacement therapy, evidence of hepatic dysfunction (an alanine amino transferase level > twice the upper limit of normal range), a creatine kinase level > three times the upper limit of the normal range, a creatinine level > 2.0 mg/dL (176.8 μmol/liter), diabetes, uncontrolled hypertension (systolic blood pressure >190 mm Hg or diastolic blood pressure >100 mm Hg), cancer within 5 years before enrollment (with the exception of basal-cell or squamous-cell carcinoma of the skin), uncontrolled hypothyroidism (a thyroid-stimulating hormone level >1.5 times the upper limit of the normal range), and a recent history of alcohol or drug abuse or another medical condition that might compromise safety or the successful completion of the study. Also excluded were those with inflammatory conditions such as severe arthritis, lupus, or inflammatory bowel disease and those taking immunosuppressant agents such as cyclosporine, tacrolimus, azathioprine, or long-term oral glucocorticoids.</td>
<td>G2: 189/8901; 2.1% HR: 0.57; 95% CI: [0.45, 0.72] MI: G1 vs. G2 0.17 and 0.37 (HR: 0.46; 95% CI: 0.30 to 0.70; p=0.0002), Stroke: G1 vs. G2 0.18 and 0.34 (HR: 0.52; 95% CI: 0.34 to 0.79; p=0.002), Revasc/UA: G1 vs. G2 0.41 vs. 0.77 (HR: 0.53; 95% CI: 0.40 to 0.70; p<0.00001). Combined end point of myocardial infarction, stroke, or death from cardiovascular causes G1 0.45; G2 0.85 (HR: 0.53; 95% CI: 0.40-0.69; p<0.00001).</td>
<td>y) due to persistent significant difference in primary endpoint. Longer duration of the trial may have provided a more refined estimate of efficacy and safety. (The magnitude of benefit may be overestimated if an RCT is terminated early.) Adverse events: Physician Reported DM more frequent in the rosuvastatin group G1: 270 (3%) G2: 216 (2.4%) p=0.01 G1 did not have a significant increase in myopathy or cancer. Non-significant increase in rhabdomyolysis G1: one non-fatal case of rhabdomyolysis occurred G2: No cases Can’t rule out that adverse events would have been more with longer exposure to intervention.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Acronym; Author; Year Published</td>
<td>Aim of Study; Study Type; Study Size (N)</td>
<td>Patient Population</td>
<td>Study Intervention(# patients) /Study Comparator(# patients)</td>
<td>Endpoint Results(Absolute Event Rates, P values; OR or RR; & 95% CI)</td>
<td>Relevant 2º Endpoint (if any);Study Limitations; Adverse Events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benner JS, et al.(104) 15669150</td>
<td>Retrospective cohort trial</td>
<td>Enrollees in a US managed care plan who initiated statin treatment between October 1999 & August 2001. Computerised pharmacy, medical and laboratory records used to study patterns and predictors of adherence with lipid therapy for up to 3 years</td>
<td>Adherence checked at 3-monthly intervals. Patients considered "adherent" if ≥ 80% of days were covered by lipid-lowering therapy. First 3 months: % of patients 40% had follow-up lipid tests; 21% had follow-up lipid visits ; 14% had both. Those who received followup care were substantially more likely to be adherent in subsequent intervals. Relative odds of adherence of those with vs. those without followup Odds 1.42 if one or more lipid tests Odds 1.27 if one or more lipid visits. (95% confidence intervals [CI] 1.33, 1.50 and 1.16, 1.39). P In other words, patients who received a follow-up visit and lipid test were 45% more likely to be adherent (95% CI 1.34, 1.55). Similar associations were observed when lipid tests and dyslipidaemia visits occurred later in therapy.</td>
<td>Conclusions: Early and frequent follow-up and especially if associated with lipid testing, was associated with improved adherence to lipid therapy. Limitations: Not a randomized prospective trial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Aim</td>
<td>Inclusion criteria</td>
<td>Intervention</td>
<td>Results</td>
<td>Study strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-------------------</td>
<td>--------------</td>
<td>---------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiavaroli L et al (105) 29807048</td>
<td>To determine the effectiveness of a Portfolio Dietary added to a Step II diet in reducing LDL-C</td>
<td>Randomized and non-randomized controlled trials</td>
<td>The combination of a portfolio dietary pattern and NCEP Step II diet • The Portfolio dietary pattern had to include these components as the intended intervention: 1) 1–3 g/day plant sterols (plant-sterol containing margarines, supplements), 2) 15–25 g/day viscous fibres (gel-forming fibres, such as from oats, barley, psyllium, legumes, eggplants, okra), 3) 35–50 g/day plant protein (such as from soy and pulses) and 4) 25–50 g/day nuts (including tree nuts and peanuts).</td>
<td>The Portfolio dietary pattern lowered LDL-C by 17% (7 trial comparisons, MD = −0.73 mmol/L [95% CI: −0.89 to −0.56 mmol/L], p < 0.0001)</td>
<td>Using the GRADE criteria, the certainty in the evidence was high for LDL-C, TC, TG, non-HDL-C, apoB and body weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stone NJ et al (106) 24239923</td>
<td>2013 Cholesterol Guideline Systematic Review and Meta-analysis Evidence Statement 45</td>
<td>In randomized controlled trials (RCTs) of high-intensity compared with moderate-intensity statins (clinical CVD), moderate-intensity statin compared with placebo (diabetes, primary prevention), high-</td>
<td>Participants were seen at visits that occurred at 4–13 weeks after randomization, and then every 3–6 months thereafter.</td>
<td>There was evidence of substantial heterogeneity (I^2 = 67%, P-heterogeneity = 0.006). Saw reduction in high-density lipoprotein cholesterol, apolipoprotein B, total cholesterol, triglycerides, systolic and diastolic blood pressure, C-reactive protein, and estimated 10-year coronary heart disease (CHD) risk, compared with an NCEP Step 2 diet alone (p < 0.05). No effect on HDL-C or body weight.</td>
<td>Using the Grade criteria it was only moderate for HDL-C, SBP, DBP, CRP and 10-year CHD risk. This was due to downgrades in certainty for serious imprecision.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
intensity statin compared with placebo (secondary and primary prevention), or statin-niacin versus placebo.

contractor chosen by the National Heart Lung Institutes

Study limitations:
Included only those RCTs available to the panel for the 2013 ACC-AHA guideline

Data Supplement 18. Evidence Table to discontinue therapy (Section 4.4.4.1)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study comparator</th>
<th>Endpoint Results (Absolute Event Rates, p values, OR or RR, and 95% CI)</th>
</tr>
</thead>
</table>
| Qi K, et al., 2015 (107) 26047944 | **Aim:** To study the feasibility of deprescribing statins in adults aged ≥65
Study Type: Cross-sectional observational study
Size: N=180 median age of 78 y, (interquartile range 71–85 y)
Inclusion criteria: adults aged ≥65 y, admitted to hospital (cardiology, geriatric, orthopedics, gen med)
Exclusion criteria: Cognitively or functionally impaired as judged by the nurses on each study ward or refused to participate. |
Intervention: Interview |
1st Endpoint: qualitative assessment regarding their willingness to discontinue statin |
| Garfinkel D, et al., 2010 (108) 20937924 | **Aim:** to study the impact of medication de-prescription in older adults
Study Type: prospective cohort
Size: N=70 43 patients (61%) had 3 or more and 26% had 5 or more comorbidities.
Inclusion criteria: Patients referred by their family physician or family for comprehensive geriatric assessments
Exclusion criteria: patients with advanced disease (cancer or noncancer) in whom the initial estimate of life expectancy was <3 mo and patients in whom follow-up availability was <4 mo. |
Intervention: removing medication |
1st Endpoint:
- Successful discontinuation of all meds was achieved in 81%; discontinuation of statins in 72%
- No significant adverse events or deaths were attributable to discontinuation
- 88% of patients reported global improvement in health. |
| Todd A, et al., 2016 (109) 26822776 | **Aim:** to explore the lived experience of patients, caregivers and healthcare
Inclusion criteria: Patients attending a day care center at a specialist palliative care unit |
Patient interview |
Medication formed a significant part of a patient’s day-to-day routine; this was also apparent for their caregivers who took on an
professionals in the context of medication use in life-limiting illness.

Size: N=12, 50% aged >70 y and 2 aged >80 y.

To be included in the study, patients and caregivers had to be aged >18 y of age and healthcare professionals had to be responsible for prescribing medication to this general patient group.

Intervention:

- Patients described the experience of a point in which, in their disease journey, they placed less importance on taking certain medications; healthcare professionals also recognize this and refer it as a ‘transition’.

| Kutner JS, et al., 2015 (110) 25798575 | **Aim:** To evaluate the safety, clinical and cost impact of discontinuing statin medications for patients in the palliative care setting

Study Type: Multicenter, parallel-group, unblinded pragmatic clinical trial

Size: 381 enrolled (189 discontinued statin and 192 continued statin). Mean age 74.1 y (SD 11.6)

Inclusion criteria:

- English-speaking, receiving statin for ≥3 mo for 1° or 2° prevention, documented diagnosis of advanced, life-limiting illness (life expectancy 1-12 mo), and reduced functional capacity

Exclusion criteria:

- Physician opinion that the patient had active CVD or sufficient CVD risk to require ongoing statin therapy, or symptoms of myositis, liver function test (aspartate aminotransferase, alanine aminotransferase, or alkaline phosphatase) or creatine kinase levels of >2.5 times the upper limits of normal, or other contraindications to continuing statins.

Intervention:

- Statin removed from patients randomized to the discontinuation group vs. continued in the continuation group

- Discontinuing statin was associated with improved QOL, reduced non-statin medications, and reduced medication costs.

| Tjia J, et al., 2017 (111) 28520522 | **Aim:** The aim of this study was to quantify the perceived benefits and concerns of statin discontinuation among patients with life-limiting illness.

Size: 297 participants, Mean age 72 y (SD 11)

Inclusion criteria:

- English-speaking, receiving statin for ≥3 mo for 1° or 2° prevention, with documented diagnosis of advanced, life-limiting illness (life expectancy 1-12 mo), reduced functional capacity, cognitively intact. (defined as a Short Portable Mental Status Questionnaire score ≥6)

Exclusion criteria:

- Physician opinion that the patient had active CVD or sufficient CVD risk to require ongoing statin therapy, or symptoms of myositis, liver function test (aspartate aminotransferase, alanine aminotransferase, or alkaline phosphatase) or creatine kinase levels of >2.5 times the upper limits of normal, or other contraindications to continuing statins.

Intervention:

- Responses to a 9-item questionnaire addressing patient concerns about discontinuing statins were collected.

- Few participants expressed concerns about discontinuing statins; many perceived potential benefits. Cardiovascular disease patients perceived greater potential positive impact from statin discontinuation.
Data Supplement 19. Evidence Table for Statin therapy for adults >75 years (Section 4.4.4.1)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Endpoint Results (Absolute Event Rates, p values, OR or RR, and 95% CI)</th>
<th>Relevant 2° endpoints (if any); Study limitations; Adverse events</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUPITER Ridker D, et al., 2008 (11) 18997196 Glynn RJ, et al., 2010 (11) 20404379</td>
<td>Aim: Study of primary prevention with rosuvastatin Study Type: RCT Size: 17,802 men and women 5695 (32%) ≥70 y of age (mean age 74 y)</td>
<td>Inclusion criteria: free of CVD with LDL cholesterol levels <130 mg/dL and high-sensitivity C-reactive protein levels >2 mg/L. (Intermediate risk) Exclusion criteria: intolerant to rosuvastatin</td>
<td>Intervention: rosuvastatin 20 mg Comparator: placebo</td>
<td>1° endpoint: • Overall trial: the JUPITER trial overall reported a 47% reduction in atherosclerotic CV events (nonfatal MI, nonfatal stroke, or CV death) (HR: 0.53; 95% CI: 0.40–0.69; p<0.0001), as well as a 20% reduction in all-cause mortality (HR: 0.80; 95% CI: 0.67–0.97; p=0.02). • Participants ≥70 y (mean age 74 y): amounted to 32% of the total JUPITER population, but suffered 55% of all the hard atherosclerotic cardiovascular events occurring in the trial • In adults >70: 39% reduction in risk atherosclerotic CV events (HR: 0.61; 95% CI: 0.43–0.86; p=0.004) • Nonsignificant 20% reduction in all-cause mortality in the older age strata (HR: 0.80; 95% CI: 0.62–1.0; p=0.09)</td>
<td>• Limitations: median follow-up of only 1.9 y • Relatively younger older adult cohort.</td>
</tr>
<tr>
<td>HOPE-3 Yusuf, S, et al., 2016 (12) 27040132</td>
<td>Aim: To evaluate benefits of statins in an intermediate-risk, ethnically diverse population without cardiovascular disease Study Type: RCT Size: 12,705 men ≥55 and women ≥65 with 1 or more risk factor ≥50% ≥65 (mean age 71 y) 3086 ≥70 y of age</td>
<td>Inclusion criteria: Free of CVD but with intermediate risk Exclusion criteria: intolerant to statins</td>
<td>Intervention: rosuvastatin 10 mg Comparator: placebo</td>
<td>1° Endpoint: • Overall trial: hard atherosclerotic cardiovascular events: 24% reduction in risk (HR: 0.76; 95% CI: 0.64–0.91; p=0.002) and a 7% nonsignificant reduction in all-cause mortality (HR: 0.93; 95% CI: 0.80–1.08; p=0.32) over 5.6 y. • Subjects ≥70 y of age represented 24% of the total trial population yet suffered 43% of all the hard atherosclerotic cardiovascular events • Among those ≥70 ye: Comparable nonsignificant 17% reduction in risk was found for the combined cardiovascular end point (HR: 0.83; 95% CI: 0.64–1.07; p=0.16), N/A</td>
<td></td>
</tr>
</tbody>
</table>
PROSPER
Shepherd J, 2002 (113) 12457784

Aim: risk factors for CVD or Hx CHD or to pravastatin 40 mg daily or placebo

Study Type: RCT

Size: 5804 men and women aged 70-82 -- subgroup with ASCV risk elevated due to tobacco, hypertension, DM

Inclusion criteria: high risk

Exclusion criteria:

Intervention: Pravastatin 40 mg

Comparator: placebo

1° Endpoint:
- Pravastatin therapy reduced the primary endpoint of CHD death, non-fatal MI and fatal or non-fatal stroke (HR: 0.85; 95% CI: 0.74–0.97, p=0.014).
- 3.2 y of average follow-up.

Safety Endpoint:
Rates of drug withdrawal in the rosuvastatin groups were 21.4%, 23.1%, and 29.1% among those <65, 65 to <70, and >70 y of age, respectively

Physicians Health Study
Orkaby, J, 2017 (114) 28892121

Aim: to determine whether statin use for primary prevention is associated with a lower risk of cardiovascular events or mortality

Study Type: Prospective cohort study

Size: 7,213 male physicians Median age 77 (77-102)

Inclusion criteria: ≥70 y without a history of cardiovascular disease (CVD)

Exclusion criteria: 2,670 participants were excluded because of prevalent CVD (MI, stroke, or peripheral vascular disease) and an additional 105 were excluded due to missing information on statin use at baseline.

Intervention: Completed annual questionnaires from 1999, the year a specific question regarding statin use was added.

Comparator: Non-users were matched to 1,130 statin users.

1° Endpoint:
- Statin use was associated with a significant lower risk of mortality in older male physicians ≥70 and a nonsignificant lower risk of CVD events. Results did not change in those who were >76 y at baseline or according to functional stat use. There was a suggestion that those with elevated total cholesterol may benefit.
- Median follow-up was 7 y.

Health Protection Study 2002 (115) 19442259

Aim: CHD or at high risk for CHD with diabetes,

Inclusion criteria:

Exclusion criteria:

Intervention: Simvastatin

Comparator:

1° Endpoint:
- reduced all-cause mortality and CHD death with treatment with simvastatin 40 mg daily as
<table>
<thead>
<tr>
<th>Study Type: RCT</th>
<th>Size: N=20,536 patients aged 40–80 y. N=5806 aged ≥65 y</th>
<th>1° Endpoint: compared to placebo (12.9% vs. 14.7%, p=0.0003) and (5.7% vs. 6.9%), respectively. • In 5806 patients aged ≥65, major CV events were reduced by absolute rates of 6.3% in patients aged 65–69 and 5.1% in patients 70–80.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CARDS</td>
<td>Aim: primary prevention in older pts with DM Study Type: Size: 1129 diabetic patients aged 65-75</td>
<td>Inclusion criteria: DM and at least one risk factor Exclusion criteria: Intervention: atorvastatin 10 mg Comparator: placebo</td>
<td>1° Endpoint: • Overall 37% CHD risk reduction • In, the older group, treatment with atorvastatin reduced the risk of first major CHD events by 38%; 95% CI: 58–8, p<0.017 No significant change in all cause mortality</td>
</tr>
<tr>
<td>Neil HA, 2006 (116) 17065671</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEGA</td>
<td>Aim: to evaluate the relationships between age, baseline patient characteristics, and pravastatin treatment with respect to the development of cardiovascular disease (CVD) in the MEGA study Study Type: RCT Size: 7832 patients (ages women up to 80, men 40–70); 6 age groups: <45, 45–49, 50–54, 55–59, 60–64 and ≥65 y.</td>
<td>Inclusion criteria: men and postmenopausal women aged 40–70 y with hypercholesterolaemia (TC levels of 5.7–7.0 mmol/L), no history of CHD and stroke, Exclusion criteria: Intervention: pravastatin 10–20 mg daily Comparator: placebo</td>
<td>1° Endpoint: • 30–40% reduction in clinical events across multiple age ranges including in patients greater than 65 y • Pravastatin (10–20 mg/d) reduced the risk of CVD by about 30–40% across all age groups (including those >65), and there was no difference between men and women. • Of particular note in this analysis, CVD risk lowering benefits (old vs. young) similar in men, but CVD risk lowering older women significantly greater in older vs. younger women. N/A</td>
</tr>
<tr>
<td>Nakaya N, 2011 (8) 21815708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Aim</td>
<td>Inclusion criteria</td>
<td>Intervention</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
</tbody>
</table>
| ALLHAT-LLT | to study benefits of statins among adults aged 65–74 and ≥75 in ALLHAT-LLT | Moderate hyperlipidemia and HTN in adults without evidence of atherosclerotic cardiovascular disease | Pravastatin 40 | UC | • All-cause mortality: HR for all-cause mortality in the pravastatin group vs. the UC group were 1.18; 95% CI: 0.97–1.42; p=0.09 for adults ≥65 y
• HR: 1.08; 95% CI: 0.85–1.37; p=0.55 for adults aged 65-74 y
• HR: 1.34; 95% CI: 0.98–1.84; p=0.07 for adults ≥75 y. | Significantly confounded by contamination with newer and more potent statins in the control group, with the effect that CHD event rates were not significantly different among the groups. |
| Cardiovascular Health Study | To assess effects of statins on CV events and all-cause mortality | Subjects with no CVD | Statin therapy | No statin | 56% lower risk of incident CVD events (HR: 0.44, 95% CI: 0.27–0.71) and 44% lower mortality (HR: 0.56, 95% CI: 0.36–0.88).
A subgroup aged >75 y had same benefit. | N/A |
| Jupiter—Hope-3 | To clarify efficacy of primary statin prevention in older adults | Low risk subjects with no CVD | Rosuvastatin (20 mg, Jupiter and 10 mg, Hope-3) | Placebo | • 26% relative risk reduction observed for those >70 y for the end point of nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death (HR: 0.74; 95% CI: 0.61–0.91; p=0.0048
• The much higher event rates in those ≥70 y of age, along with the comparable relative rate reductions, i.e., larger absolute rate reductions associated with statin treatment and hence smaller numbers needed to treat to prevent an event in older compared with younger people.
• In neither of these analyses was evidence of heterogeneity by age observed
• Rates of drug withdrawal in the rosuvastatin groups were 14.3%, 17.0%, and 21.6% among | For an expanded endpoint that includes revascularization, effects were virtually identical in those >70 y of age (HR: 0.74; 95% CI: 0.61–0.89; p=0.0016). |

© American Heart Association, Inc., and the American College of Cardiology Foundation.
<table>
<thead>
<tr>
<th>Study</th>
<th>Aim</th>
<th>Inclusion criteria</th>
<th>Intervention</th>
<th>1° Endpoint</th>
<th>Safety Endpoint</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Savarese GJ, 2013</td>
<td>Study of CV endpoints and mortality using statins in older adults</td>
<td>RTC comparing statins versus placebo with all-cause and CV mortality, MI, stroke, and new cancer onset in elderly subjects</td>
<td>Statin</td>
<td>Statins significantly reduced the risk of MI by 39.4% (RR: 0.606; 95% CI: 0.434–0.847; p=0.003) and the risk of stroke by 23.8% (RR: 0.762; 95% CI: 0.626–0.926; p=0.006). Risk of all-cause death (RR: 0.94; 95% CI: 0.856–1.035; p=0.210) and of CV death (RR: 0.907; 95% CI: 0.686–1.199; p=0.493) were not significantly reduced. New cancer onset did not differ between statin- and placebo-treated subjects (RR: 0.989; 95% CI: 0.851–1.151; p=0.890).</td>
<td>Uncertainties remain with regard to hemorrhagic stroke, cognitive function, drug interactions, adherence, quality of life, and cost-effectiveness. Concerns regarding DM</td>
<td>2.9 y; mean follow up 3.5±1.5 y</td>
</tr>
<tr>
<td>TENG M, et al., 2015</td>
<td>Study Type: Meta-analysis RCT</td>
<td>participants aged ≥65 y and without established CVD</td>
<td>statin therapy</td>
<td>Statins significantly reduced the risks of composite major adverse CV events (RR: 0.82, 95% CI: 0.74–0.92), nonfatal MI (0.75, 0.59–0.94) and total MI (0.74, 0.61–0.90). Treatment effects of statins were statistically insignificant in fatal MI (0.43, 0.09–2.01), stroke (fatal: 0.76, 0.24–2.45; nonfatal: 0.76, 0.53–1.11; total: 0.85, 0.68–1.06) and all-cause mortality (0.96, 0.88–1.04). No significant differences in myalgia (0.88, 0.69–1.13), elevation of hepatic transaminases (0.98, 0.86–1.12)</td>
<td>The occurrence of myopathy, rhabdomyolysis and cognitive impairment was largely unreported in the included trials.</td>
<td>26245770</td>
</tr>
<tr>
<td>CTT</td>
<td>Cholesterol Treatment Trialists’ Collaborators, 2012 (121) 22607822 PMC3437972</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Type:</td>
<td>Meta-analysis of RCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size:</td>
<td>22 RCT. N=134,537</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria:</td>
<td>A trial was eligible if it 1. it included at least one intervention whose main effect was to lower LDL cholesterol concentration 2. it was unconfounded with respect to this intervention (i.e., no other differences in risk factor modification between the treatment groups were intended) 3. it recruited at least 1000 participants with scheduled treatment duration of at least 2 y.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention:</td>
<td>Statin therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparator:</td>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall:</td>
<td>• Reduction of LDL cholesterol with a statin reduced the risk of major vascular events (RR: 0.79, 95% CI: 0.77–0.81, per 1.0 mmol/L reduction) • Among adults ≥70, effects on major vascular events per 1.0 mmol/L reduction in LDL cholesterol (RR: 0.83; 95% CI: 0.78 – 0.87; p<0.0001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ridker PM, et al., 2017 (118) 28385949</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aim: To describe the role of statin therapy in the elderly</td>
</tr>
<tr>
<td>Study type: Fixed-effects meta-analysis of age-specific data from JUPITER and HOPE-3</td>
</tr>
<tr>
<td>Size: 30,507</td>
</tr>
<tr>
<td>Inclusion criteria: • Participants in the JUPITER trial (rosuvastatin 20 mg daily vs. placebo) and H trial (rosuvastatin 10 mg daily vs. placebo) - All subjects were free of CVD and were divided into age groups <65 y (n=13, 517), 65–70 y (n=8,218) and >70 y (n=8,781). • Those >70 y comprised 32% and 24% of the J and H study populations respectively and suffered 55% and 43% of the CVD events</td>
</tr>
<tr>
<td>Exclusion criteria: N/A</td>
</tr>
<tr>
<td>Intervention: Rosuvastatin 20 mg or 10 mg</td>
</tr>
<tr>
<td>Comparator: Placebo</td>
</tr>
<tr>
<td>1st endpoint: non-fatal MI. non-fatal stroke and CVD death</td>
</tr>
<tr>
<td>Results: • Rates of primary outcome/100 pt.-y for rosuva/placebo and pooled HR: (95% CI): <65 y: • JUPITER: 0.27/0.59 • HOPE-3: 0.46/0.53 • 0.75 (0.5; 0.97) • 65–70 y: • JUPITER: 0.24/0.61 • HOPE-3: 0.50/0.91 • 0.51 (0.38; 0.69) • >70 y: • JUPITER: 0.82/1.36 • HOPE-3: 1.25/1.50 • 0.74 (0.61; 0.91)</td>
</tr>
<tr>
<td>Limitations: • In subjects >70 y of age there was a 26% RRR in the primary and in the expanded endpoint (included revascularizations) • There was no heterogeneity by age • The higher event rates in those >70 y of age implies larger absolute rate reductions and therefore lower NNTs</td>
</tr>
<tr>
<td>NA</td>
</tr>
</tbody>
</table>
Data Supplement 20. Nonrandomized Trials, Observational Studies, and/or Registries of Q4: Evidence regarding the cost-effectiveness of screening for familial hypercholesterolemia (Section 4.4.4.3)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
</table>
| Ademi Z, et al., 2013 (122) 23490080 | **Study type:** Systematic review
Size: 6 published studies | **Inclusion criteria:** English literature studies performing economic evaluations of screening for FH (defined by Dutch Lipid Clinic Network or modified UK Simon Broome criteria).
Exclusion criteria: Studies with duplicated data. | **1st endpoint:** Cost estimates of screening strategies.
Results:
- When compared with no screening, the incremental cost-effectiveness ratio (123) of screening ranged from €3177–€29,554 per life year gained. | - Rates of drug withdrawal in those <65, 65-<70 and >70 y of age:
- JUPITER: 14.3, 17.0, 21.6 y
H: 21.4, 23.1, 29.1 y
- Adverse event rates by age group are not provided, but >70 y old had higher drug withdrawal than younger groups
- Screening of relatives of those with diagnosed FH is cost effective compared with no screening across a range of assumptions and geographic locations.
- Across studies, results were sensitive to the prevalence of FH, the utility (sensitivity and specificity) of the screening test used and the assumed price and efficacy of lipid-lowering therapy.
- Specific studies included in this systematic review are also included in the table below (and indicate by an asterisk) for greater clarification of findings.
- Limitations: Numerous assumptions inherent in cost-effectiveness analysis. |
| Ademi Z, et al., 2014 (124) 25110220 | **Study type:** Decision and cost-effectiveness analysis
Study size: Consecutive index cases and newly screened relatives, 2008 - 2013 | **Inclusion criteria:** Consecutive index cases and newly screened relatives, 2008 - 2013 | **1st endpoint:** ICER per quality-adjusted life year (QALY) gained and per year of life saved (YoLS) for screening vs. no screening of relatives of index cases with FH. | - Cascade screening for FH using a combination of genetic and phenotypic testing represents a cost-effective means of preventing CHD in at-risk families. |
| **Size:** 81 consecutive index cases of FH and 175 1st and 2nd degree relatives, Royal Perth Hospital, used to model cost-effectiveness in Australian general population | **Exclusion criteria:** N/A | **Results:**
- Cascade screening for FH would prevent 1 CHD event over 10 y for every 7.4 people screened. The number needed to screen (125) to prevent one CHD-related death would be 18.3. In the population of relatives identified as having FH by cascade screening, the NNS to prevent one CHD event would be 4.0.
- The authors estimated that for every 100 people undergoing cascade screening in Australia (including the 45.7% of those without underlying FH), there would be an overall gain of 24.9 life y and 29.1 QALYs (discounted) over a 10-y period.
- ICERs over a 10-y period were AUD (Australian) $4154 per YoLS and AUD $3565 per QALY gained.
- In sensitivity analyses, using age- and gender-adjusted LDL-C thresholds (only) for diagnosis of close relatives with FH for cascade screening was deemed to be a cost-effective strategy compared with no screening. In this strategy, the yield of FH relatives detected per index case was comparable to genetic testing (1.09 vs. 1.17), with incrementally lower costs (because no DNA tests would be used). There was an 86.9% concordance between genetic testing and using age-gender adjusted LDL-C cutoffs for the detection of FH in relatives.
- Analysis using only plasma LDL-C for cascade screening found cascade screening to be a cost-effective approach when compared with no screening.
- ICERs were sensitive to the prevalence of FH, assumptions regarding annual risks of CHD and relative benefits of statins, but still led to favorable ICERs compared with no screening.
- Extending the time frame of this model to 20 or 30 y (compared with the 10-y examined in this analysis) would lead to even greater estimates of cost-effectiveness.

Limitations: Did not consider children; uncertain generalizability beyond Australian population; sensitivity and specificity of genetic testing assumed to be 100%; numerous assumptions inherent in cost-effectiveness analysis. | **Study type:** Decision and cost-effectiveness analysis
Inclusion criteria: N/A
Exclusion criteria: N/A
1st endpoint: Cost-effectiveness of genetic screening and lipid-based screening with statin adherence measures compared to lipid-based screening alone in the US.
Results:
- For each man with a family history of FH:
 - Results support implementation of enhanced lipid cascade screening, potentially with additional statin adherence measures, while showing that genetic cascade screening is currently not cost-effective in US males.
 - At a US willingness-to-pay threshold of $150,000/QALY Genetic Screening is not

Chen CX, et al., 2015 (126) 25569270
<table>
<thead>
<tr>
<th>Study type: Cost-effectiveness analysis</th>
<th>Study type: Cost-effectiveness analysis</th>
<th>Study type: Cost-effectiveness analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion criteria: Individuals aged ≥16 y who were related to genetically identified FH probands from a closed cohort in the Netherlands, 1994-1997</td>
<td>Inclusion criteria: Simulated population aged 16-54 y in England and Wales, using a lifetime event horizon.</td>
<td>Inclusion criteria: Simulated population aged 16-54 y in England and Wales.</td>
</tr>
<tr>
<td>Exclusion criteria: N/A</td>
<td>Exclusion criteria: N/A</td>
<td>Exclusion criteria: N/A</td>
</tr>
<tr>
<td>1st endpoint: Life years gained and life time costs of the screened cohort of relatives, theoretically subjected to various strategies of treatment compared with a strategy of no screening.</td>
<td>1st endpoint: Cost per life year gained using a lifetime horizon comparing different screening strategies: universal screening (all in the population), opportunistic screening in primary care (fasting lipid panel in those with non-fasting total cholesterol >95th percentile), screening of people admitted to hospital with premature CHD.</td>
<td>1st endpoint: Life years gained and life time costs of the screened cohort of relatives, theoretically subjected to various strategies of treatment compared with a strategy of no screening.</td>
</tr>
<tr>
<td>Results: Depending on the treatment strategy implemented, costs per year of life gained varied between 25,600 and 32,200 Euros</td>
<td>Results: Family tracing of FH-affected individuals followed by lipid screening and possible genetic confirmation was the most cost-effective strategy when compared with universal screening, screening of premature CHD patients, and opportunistic screening of those identified through routine lab testing.</td>
<td>Results: Family tracing of FH-affected individuals followed by lipid screening and possible genetic confirmation was the most cost-effective strategy when compared with universal screening, screening of premature CHD patients, and opportunistic screening of those identified through routine lab testing.</td>
</tr>
</tbody>
</table>

Limitations: Study performed at a time when there were limited data on CHD incidence rates in US population with FH; men only; numerous assumptions inherent in cost-effectiveness analysis.

Limitations: Generalizability beyond this Dutch population; time effects of costs given this is an older analysis; numerous assumptions inherent in cost-effectiveness analysis.
myocardial infarction, or tracing family members of known FH-affected patients and inviting them for screening.

Results:
- Tracing of family members and lipid screening was the most cost-effective strategy (at £3097/€5066/$4479 per life year gained) with a NNS of 2.6 to identify one case. If the genetic mutation was known within the family then the cost per life year gained (£4914) was only slightly increased by genetic confirmation of the diagnosis. Universal population screening was least cost effective (£13 029 per life year gained) with a NNS of 1365 to identify one case.
- For each strategy it was more cost effective to screen younger people and women.
- Universal lipid screening of 16-y old’s (only) in this hypothetical population had similar cost-effectiveness to family tracing.

Limitations: Generalizability beyond UK population; older study with high assumed drug costs; numerous assumptions inherent in cost-effectiveness analysis.

| Marks D, et al., 2003 (129) | **Study type:** Cost-effectiveness analysis | **Inclusion criteria:** Simulated population aged 16-54 y in England and Wales | **1st endpoint:** Cost per life year gained using a 10-y horizon comparing two different screening strategies: universal screening of all 16-y-old individuals in the population vs. tracing family members of known FH-affected patients and inviting them for screening. | **Results:**
• Screening all 16-y-olds in this population would result in an estimated 470 new diagnoses of FH and would avert 11.7 deaths over 10 y at a cost of £6,176,649 (including 10-y drug costs of £1,584,918). | • Although the two approaches compared in this study appeared similar in cost-effectiveness over a lifetime (see Marks 2002 analysis, above), results from this shorter-term (10-y) cost-effectiveness clearly favored the family tracing strategy. | Limitations: Generalizability beyond UK population; older study with high assumed drug cost; numerous assumptions inherent in cost-effectiveness analysis.
<table>
<thead>
<tr>
<th>Study type: Cost-effectiveness analysis</th>
<th>Inclusion criteria: N/A</th>
<th>Exclusion criteria: N/A</th>
<th>1st endpoint: Costs, QALYs and ICERs comparing different cascade screening strategies: using LDL-C levels only (cholesterol method); cascading only in patients with a causative mutation identified and using DNA tests to diagnose relatives (DNA method); DNA testing combined with LDL-cholesterol testing in families with no mutation identified, only in patients with clinically defined ‘definite’ FH (DNA+DFH method); and DNA testing combined with LDL-cholesterol testing in no-mutation families of both ‘definite’ and ‘probable’ FH patients (DNA+DFH+PFH).</th>
<th>All DNA-based methods were considered more cost-effective than the cholesterol only method. The DNA+DFH+PFH method had an ICER of £3666/QALY compared with DNA alone and of £4145/QALY compared with the cholesterol method.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nherera L, et al., 2011 (130) 21685482</td>
<td>Study type: Cost-effectiveness analysis</td>
<td>Size: Simulated cohort of 1000 people in the UK suspected of having FH aged 50 y for index cases and 30 y for relatives, followed for a lifetime.</td>
<td>1st endpoint: Costs, QALYs and ICERs comparing different cascade screening strategies: using LDL-C levels only (cholesterol method); cascading only in patients with a causative mutation identified and using DNA tests to diagnose relatives (DNA method); DNA testing combined with LDL-cholesterol testing in families with no mutation identified, only in patients with clinically defined ‘definite’ FH (DNA+DFH method); and DNA testing combined with LDL-cholesterol testing in no-mutation families of both ‘definite’ and ‘probable’ FH patients (DNA+DFH+PFH).</td>
<td>All DNA-based methods were considered more cost-effective than the cholesterol only method. The DNA+DFH+PFH method had an ICER of £3666/QALY compared with DNA alone and of £4145/QALY compared with the cholesterol method.</td>
</tr>
</tbody>
</table>
| Oliva J, et al., 2009 (131) 19150015 | **Study type:** Cost-effectiveness analysis | **Size:** Representative data from 503 individuals with FH and national data from Spain | **1st endpoint:** Costs and ICER per Life Year Gained (LYG) comparing genetic screening and treatment of 1st degree relatives of probands with genetically diagnosed FH compared with no screening. | Genetic screening of 1st degree relatives of those with FH appeared to be favorable in terms of cost-effectiveness compared with no screening of relatives. In sensitivity analyses, cost-effectiveness of genetic screening was favorable across a
<table>
<thead>
<tr>
<th>Study type:</th>
<th>Cost-effectiveness analysis</th>
<th>Inclusion criteria:</th>
<th>N/A</th>
<th>Exclusion criteria:</th>
<th>N/A</th>
</tr>
</thead>
</table>
| Size: | Data from nationwide screening program for FH in the Netherlands 1994-2002 | **1st endpoint:** | Costs per Life Year Gained (LYG) comparing genetic screening and treatment of relatives of probands with genetically diagnosed FH compared to national data, with a lifetime perspective. | **Results:** | • Compared with no screening, DNA testing of families with a known genetic defect was cost effective.
• Individuals with newly-diagnosed FH as a result of the screening program appeared to gain, on average, 3.3 y of life each at an average cost of US $7500 per new case identified.
• The cost per life-year gained was US$8700. |
| | | | | | |

Abbreviations:

Search Terms and Date of Search: Author to provide

- For the base case, the results were:
 - Group Cost Life Years
 - Screened €8891 56.7
 - Not screened €4298 55.4
 - Increment €4593 1.34
 - ICER = €3423 per LYG

- Genetic screening of families of those with FH appeared to be favorable in terms of cost-effectiveness compared with no screening of relatives.
- In sensitivity analyses, cost-effectiveness of genetic screening was favorable across a wide range of assumptions and was sensitive to the cost of statins.

Limitations: Generalizability beyond Spanish populations; numerous assumptions inherent in cost-effectiveness analysis.

© American Heart Association, Inc., and the American College of Cardiology Foundation.
120
Data Supplement 21. RCTs Comparing Screening of Children and Adolescents (Section 4.4.4.3)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published; PMID</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kusters DM, et al., 2015 (133) 25841542</td>
<td>Aim: To evaluate the safety and efficacy of ezetimibe monotherapy in young children with Heterozygous FH</td>
<td>Inclusion criteria: age 6-10 y diagnosed heterozygous FH or clinically important non-FH (LDL ≥160 mg/dL)</td>
<td>Intervention: Ezetimibe 10 mg per day</td>
<td>1° endpoint: Compared to placebo, Ezetimibe lowered LDL by 27%, TC by 21%, non-HDL by 26%, and apolipoprotein B by 20% (all p<0.001)</td>
<td>• Ezetimibe reduced markers of cholesterol absorption (placebo adjusted changes at wk 12: sitosterol, -63%; campesterol, -65%; cholestanol, -32%; p<0.001) and increased a marker of cholesterol synthesis (lathosterol, +24%; p<0.001) • Well tolerated without significant safety effects. One girl experienced persistent mild elevations in ALT that led to ezetimibe discontinuation.</td>
</tr>
<tr>
<td>APPLE Schanberg LE, et al., 2012 (134) 22031171</td>
<td>Aim: determine the 3-year efficacy and safety of atorvastatin in preventing subclinical atherosclerosis progression measured by mean-mean common carotid intima-media thickening (CIMT) in pediatric-onset SLE</td>
<td>Inclusion criteria: SLE, weight ≥25 kg, English or Spanish language</td>
<td>Intervention: atorvastatin 10 or 20 mg per day</td>
<td>1° endpoint: No difference in the rate of progression of mean-mean common CIMT between treatment groups (0.0010 mm/y for atorvastatin versus 0.0024 mm/y for placebo; p=0.24).</td>
<td>• The atorvastatin group achieved lower hsCRP (p=0.04), TC (p<0.001), and LDL-C (p<0.001) levels compared with placebo. • Post-pubertal patients with high hCRP seemed to benefit the most in post-hoc analyses • CIMT progressed in the placebo group over time (0.0023-0.0144 mm/y; p<0.05). • No significant safety concerns.</td>
</tr>
<tr>
<td>Ardion SP, et al., 2014 (135) 23436914</td>
<td>Aim: To evaluate the safety and efficacy of ezetimibe monotherapy in young children with Heterozygous FH</td>
<td>Study type: multicenter double-blind placebo controlled 12 wk RCT</td>
<td>Exclusion criteria: TG >300 mg/dL, evidence of secondary causes of hyperlipidemia, elevated LFTs, hypersensitivity or contraindication to ezetimibe or other major diagnoses</td>
<td>Comparator: Placebo</td>
<td></td>
</tr>
<tr>
<td>Study type: double blind RCT</td>
<td>Study type: randomized, controlled atherosclerosis-prevention study</td>
<td>Study type: double blind RCT</td>
<td>Study type: randomized, controlled atherosclerosis-prevention study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size: 221 youth with SLE (ages 10-21 y), 182 completed the trial</td>
<td>Size: complete data were available at age 15 (n=394), 17 (n=376), and 19 (n=298) y</td>
<td>Size: 221 youth with SLE (ages 10-21 y), 182 completed the trial</td>
<td>Size: complete data were available at age 15 (n=394), 17 (n=376), and 19 (n=298) y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria: treated with cyclosporine or tacrolimus, unwilling to follow AHA therapeutic lifestyle changes diet or use approved birth control methods</td>
<td>Exclusion criteria: starting infancy up to age 20 y</td>
<td>Exclusion criteria: treated with cyclosporine or tacrolimus, unwilling to follow AHA therapeutic lifestyle changes diet or use approved birth control methods</td>
<td>Exclusion criteria: starting infancy up to age 20 y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria: repeated dietary counseling and anti-smoking advice starting infancy up to age 14 y</td>
<td>Inclusion criteria: repeated dietary counseling and anti-smoking advice starting infancy up to age 14 y</td>
<td>Inclusion criteria: repeated dietary counseling and anti-smoking advice starting infancy up to age 14 y</td>
<td>Inclusion criteria: repeated dietary counseling and anti-smoking advice starting infancy up to age 14 y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparator: biannual clinical visits without diet or smoking counseling</td>
<td>Comparator: biannual clinical visits without diet or smoking counseling</td>
<td>Comparator: biannual clinical visits without diet or smoking counseling</td>
<td>Comparator: biannual clinical visits without diet or smoking counseling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1° endpoint: Saturated fat intakes, TC, and LDL-C values were lower (p<0.001) in the intervention than in control children over 14 y of follow-up.</td>
<td>1° endpoint: Adolescents in the control group had an increased risk of low ideal cardiovascular health (≤3 metrics) compared with the intervention adolescents (risk</td>
<td>1° endpoint: Saturated fat intakes, TC, and LDL-C values were lower (p<0.001) in the intervention than in control children over 14 y of follow-up.</td>
<td>1° endpoint: Adolescents in the control group had an increased risk of low ideal cardiovascular health (≤3 metrics) compared with the intervention adolescents (risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Patients ineligible for participation were at the highest risk of progression, and possibly could have demonstrated the most benefit</td>
<td>• No participants had all 7 ideal cardiovascular health metrics in adolescence.</td>
<td>• Patients ineligible for participation were at the highest risk of progression, and possibly could have demonstrated the most benefit</td>
<td>• No participants had all 7 ideal cardiovascular health metrics in adolescence.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STRIP
Niinikoski H, et al., 2007 (136) 17698729

Aim: effect of a dietary intervention on lipid levels

STRIIP
Pakhala K, et al., 2013 (137) 23613255

Aim: post hoc analysis of the effect of a dietary intervention on ideal cardiovascular health; relationship with intima-
media thickness and elasticity

Study type: longitudinal, randomized, controlled atherosclerosis-prevention STRIP study

Size: complete data were available at age 15 (n=394), 17 (n=376), and 19 (n=298) y

Comparator: biannual clinical visits without diet or smoking counseling

ratio=1.35; 95% confidence interval=1.04-1.77).

Safety endpoint: N/A

adolescents at 15, 17, and 19 y of age, respectively.
• Number of ideal cardiovascular health metrics was inversely associated with aortic IMT (p<0.0001) and directly associated with elasticity (p=0.045).
• Adolescents with a low number of metrics (≤3) had nearly double the risk of having high intima-media thickness (>85th percentile) compared with those with a higher score (risk ratio: 1.78; 95% confidence interval: 1.31-2.43).

Iannuzzi A, et al., 2009 (138)

Aim: to test the effect of hypocaloric diets with varying glycemic index on weight loss and subclinical atherosclerosis (aortic IMT) in obese children

Study type: 6-mo RCT

Size: 26 divided between the 2 groups

Inclusion criteria: obese children enrolled in an outpatient weight management clinic

Exclusion criteria: hypertensive, hypothyroid, or hyperlipidemic children

Intervention: hypocaloric low-glycemic index diet

Comparator: hypocaloric high-glycemic index diet

1st endpoint: No differences were detectable in fasting TG, TC, and HDL-C

Safety endpoint: N/A

• All participants: BMI decreased from 28.3 +/- 3.1 to 25.8 +/- 3.3 kg/m(2), SBP from 119 +/- 12 to 110 +/- 11 mmHg (p<0.001), DBP from 78 +/- 8 to 74 +/- 7 mmHg (p=0.001), IMT from 0.48 +/- 0.05 to 0.43 +/- 0.07 mm (p<0.001), stiffness from 3.57 +/- 1.04 to 2.98 +/- 0.94 mm (p=0.002), and CRP from 1.5 +/- 0.9 (values log transformed) to 0.4 +/- 1.1 (p<0.001).
• Insulin resistance (calculated by HOMA) was reduced only in the low-glycemic-index diet group (p<0.04).

Murphy EC, et al., 2009 (139)

Aim: To determine whether an exercise intervention using an active video game (Dance Dance Revolution) improves endothelial dysfunction and other risk factors in overweight children

Study type: RCT

Size: 35 children total

Inclusion criteria: BMI ≥85th percentile with endothelial dysfunction

Exclusion criteria: any history of diabetes, metabolic syndrome, or cardiovascular disease

Intervention: 12-wk of aerobic exercise using dance dance revolution

Comparator: non-exercising delayed-treatment

1st endpoint: Exercise group experienced significant improvements in FMD (5.56 +/- 5.04% compared with 0.263 +/- 4.54%, p=0.008)

Safety endpoint: N/A

• Intervention group had an increase in exercise time on the graded exercise test (53.59 +/- 91.54 compared with -12.83 +/- 68.10 seconds, p=0.025), mean arterial pressure (MAP) (-5.62 +/- 7.03 compared with -1.44 +/- 2.16 mmHg, p=0.05), weight (0.91 +/- 1.53 compared with 2.43 +/- 1.80 kg, p=0.017) and peak VO2 (2.39 +/- 3.91 compared with -1.23 +/- 3.18 mg/kg/min, p=0.005) compared with control.
<table>
<thead>
<tr>
<th>Study</th>
<th>Aim</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Intervention</th>
<th>1st endpoint</th>
<th>Safety endpoint</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farpour-Lambert NJ, 2009 (140) 20082930</td>
<td>to determine the effects of physical activity on SBP and subclinical atherosclerosis in pre-pubertal obese children</td>
<td>pre-pubertal obese children (BMI >97th percentile)</td>
<td>pubertal stage > Tanner 1, involved in any weight control, physical activity, or behavioral therapy, had a familial history of dyslipidemia or essential hypertension, took any medications or hormones that might influence cardiovascular function, body composition, or lipid or glucose metabolism, had an orthopedic affection limiting physical activity, had a genetic disorder or a chronic disease, or were followed a therapy for psychiatric problems.</td>
<td>trained 60 min 3 times/wk during 3 mo</td>
<td>exercise group at 3 months experienced a decrease in BMI z-score (-5.5%), whole body (-3.6%) and abdominal fat (-4.2%), TC (-3.7%), LDL-C (-4.2%), HDL-C (-5.3%), office SBP (-2.0%) and DBP (-4.1%), and 24-h SBP (-4.9%) and DBP (-3.2%). Fat-free mass (+4.6%) and VO2max (+6.0%) increased during the intervention (p <0.05).</td>
<td>N/A</td>
<td>Obese children had higher BP, arterial stiffness, body weight, BMI, abdominal fat, insulin resistance indexes, and C-reactive protein levels, and lower flow-mediated dilation, VO2max, physical activity, and high-density lipoprotein cholesterol levels than lean subjects.</td>
</tr>
<tr>
<td>Velázquez-López L, et al., 2014 (141) 24997634</td>
<td>to assess the efficacy of the Mediterranean style diet to decrease cardiovascular risk factors in children and adolescents with obesity</td>
<td>BMI ≥95th percentile and any metabolic syndrome component, according to modified International Diabetes Federation (IDF) criteria for children and adolescents</td>
<td>chronic illness, pharmacological treatment for obesity or comorbidities</td>
<td>16 wk dietary advice on following a Mediterranean style diet rich in polyunsaturated fatty acids, fiber, flavonoids and antioxidants (60% of energy from carbohydrate, 25% from fat, and 15% from protein, (n = 24);</td>
<td>Mediterranean diet group had a significantly decrease in BMI, lean mass, fat mass, glucose, TC, TG, HDL-C and LDL-C. (p < 0.05);</td>
<td>N/A</td>
<td>The standard diet group decrease in glucose levels and frequency of glucose >100 mg/dL (p < 0.05).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Comparator: standard diet (55% of carbohydrate, 30% from</td>
<td>Safety endpoint: N/A</td>
<td></td>
<td>dietary compliance increased consumption of omega 9 fatty acids, zinc, vitamin E, selenium, and decreased consumption of saturated fatty acids (p < 0.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Comparator: no training</td>
<td></td>
<td></td>
<td>Excluded non-adherent participants from the analysis</td>
</tr>
<tr>
<td>Study</td>
<td>Aim</td>
<td>Inclusion criteria</td>
<td>Intervention</td>
<td>1st endpoint</td>
<td>Safety endpoint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singhal A, et al., 2013 (142) 23817470</td>
<td>Test the hypothesis that DHA supplementation improves endothelial function and CVD risk factors</td>
<td>Healthy volunteers, aged 18 to 37 y</td>
<td>1.6 g DHA/d (from a microalgae source) together with 2.4 g/d carrier oil</td>
<td>Brachial Flow-mediated endothelium-dependent vasodilation (FMD) was the same at randomization (mean, SD; 0.27, 0.1 mm), but was higher after the intervention in the control group (0.29, 0.1 mm) compared with intervention (0.26, 0.1 mm; mean difference -0.03 mm; 95% CI: -0.005 to -0.06 mm; p=0.02)</td>
<td>Safety endpoint: N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vuorio A, et al., 2017 (143) 28685504</td>
<td>To describe the effectiveness and safety of statins in children with inherited high cholesterol in children and adolescents with heterozygous FH</td>
<td>RCTs of children up to age 18 y</td>
<td>Statin, 12-104 wk interventions</td>
<td>The mean change in serum LDL-C was 32.15% lower (95% CI: 34.90% lower to 29.40% lower) in the stains group (moderate quality evidence)</td>
<td>Safety endpoint: AST, ALT, CK levels did not differ between treated and placebo groups at any time points (low quality evidence) - Risks of myopathy (low quality evidence) and other adverse effects (moderate quality evidence) were low - no significant differences between statins and placebo with regard to pubertal progression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aim</td>
<td>To systematically review the evidence on benefits and harms of treating adolescents and children who have heterozygous FH with a statin (USPSTF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study type</td>
<td>systematic review through April 8, 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>2 to 18 studies depending on the question addressed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Fair and good quality studies in English with participants ages 0 to 20 y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria</td>
<td>poor quality studies and non-RCTs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td>Statins, ezetimibe and bile acid binding resins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparator</td>
<td>Placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st endpoint</td>
<td>meta-analysis of 8 placebo trials of statin drugs (n = 1071, 6-104 wk) found LDL-C decreases of 20% to 40%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Safety endpoint** | • Statins are well tolerated (18 studies)
• Adverse effects were minimal aside from those experienced by individuals in studies of bile acid-sequestering agents.
• Statins decrease cIMT 1% more than placebo (p=0.02)
• 3 placebo trials of bile acid-sequestering agents (n = 332, 8-52 wk) showed LDL-C reductions of 10% to 20%
• Ezetimibe decreased LDL-C 28% (monotherapy) or an additional 14% over and above simvastatin |

<table>
<thead>
<tr>
<th>Aim</th>
<th>to evaluate the effect of a modified Step II diet of cholesterol in childhood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study type</td>
<td>RCT</td>
</tr>
<tr>
<td>Size</td>
<td>663 (334 intervention, 329 control)</td>
</tr>
</tbody>
</table>
| **Inclusion criteria** | Prepubertal (age 8-10 y) with LDL ≥80th and <98th %tile for age and sex recruited from public and private elementary schools with TC level was ≥4.5 mmol/L (175 mg/dL) or greater (approximately the 75th age- and sex-specific percentile) with fasting LDL-C ≥ 70th and ≤99th age and sex-specific percentiles
Final lipid eligibility criterion was the average of the 2 screening LDL-C values ≥80th and ≤98th percentiles for age and sex.
| **Exclusion criteria** | medical condition or medication that might |
| **Intervention** | modified NCEP Step II delivered via family-based counseling for 0-3 y old’s and lower intensity counseling age 4-8 yrs.
Comparator: feedback to parent about child’s baseline cholesterol and written heart healthy diet materials |
| **1st endpoint** | • At 7 y of follow-up reductions in dietary total fat, saturated fat, and cholesterol were greater in the intervention than in the usual care group.
• At 1 y, 3 y, and 7 y, the intervention compared with the usual care group had 4.8 mg/dL (.13 mmol/L), 3.3 mg/dL (.09 mmol/L), and 2.0 mg/dL (.05 mmol/L) lower LDL-C, respectively.
• Follow-up of female participants at age ~18 y found Metabolic syndrome was uncommon, and its prevalence did not differ by treatment group.
• After adjustment for nondietary variables, mean ABP of intervention and control group participants were 107.7 and 110.0 mm Hg, respectively (p=0.03), whereas mean fasting plasma glucose levels were 87.0 and 89.1 mg/dl, respectively (p=0.01).
| **DISC 1995** | (146) 7723156
Obarzanek E, et al., 1997 (147)
Disc 3 y Results
Lavigne JV, et al., 1999 (148) 10619534
DISC Follow-up Study
Dorgan JE, et al., 2011 (149) 21994964 |
• statins decrease cIMT 1% more than placebo (p=0.02)
• 3 placebo trials of bile acid–sequestering agents (n = 332, 8-52 wk) showed LDL-C reductions of 10% to 20%.
• Bile-acid binding resins decreased LDL-C 10-20%
• Ezetimibe decreased LDL-C 28% (monotherapy) or an additional 14% over and above simvastatin |
<table>
<thead>
<tr>
<th>Study</th>
<th>Aim</th>
<th>Inclusion criteria</th>
<th>Intervention</th>
<th>Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shivakumar S, 2015 (150) 25847553</td>
<td>to explore the efficacy of plant-based formulation in the management of adolescent obesity and its associated biomarkers</td>
<td>adolescents, BMI above 25kg/m²</td>
<td>plant-based formulation two 500mg capsule containing test formulation</td>
<td>statistically significant differences mean (95% CI) were seen in the treatment group in TC mg/dl (-20.9±5.0 (-30.8 to -11.0), TG mg/dl (-12.9±5.7 (-23.9 to -1.2), HDL-C mg/dl (7.2±0.8 (5.6-8.8))</td>
</tr>
<tr>
<td>Kelishadi R, et al., 2010 (151) 21028969</td>
<td>to evaluate the effects of zinc sulfate in comparison with placebo on markers of insulin resistance, oxidative stress, and inflammation in a sample of obese prepubescent children.</td>
<td>children with BMI >25kg/m²</td>
<td>8 wk zinc supplement</td>
<td>decrease in Apo B/ApoA-I ratio, ox-LDL, leptin and malondialdehyde, total and LDL-cholesterol after receiving zinc, without significant change after receiving placebo.</td>
</tr>
</tbody>
</table>

- Safety endpoint: There were no differences at any data collection point in height or serum ferritin or any differences in an adverse direction in red blood cell folate, serum retinol and zinc, sexual maturation, or body mass index.
- Safety endpoint: no significant differences between the groups in adjusted mean height or serum ferritin levels (P > .05) or other safety outcomes up to 18 y after randomization.

- Plant-based test formulation may prevent the future cardiovascular risk incidence in obese adolescents by reducing inflammation, overweight, lipid profile and by regulating adipokines.
- Other differences in favor of the plant-based extract include CRP mg/l (-1.0±0.01 (-1.2 to -0.8)), adiponectin µg/ml (4.9±0.4 (4.2-5.7)), leptin ng/ml (-8.0±1.4 (-10.7 to -5.3)), DBP mmHg (-10.4±0.8 (-12.0 to -8.7)) and SBP mmHg (-6.7±0.7 (-8.1 to -5.3)).
| **Study type:** RCT double blind
Size: 60 youth from Iran | **Aim:** To compare the effects of aerobic, resistance, and no exercise on Pulse wave velocity, carotid IMT, LV mass indexed and cardiometabolic risk factors
Inclusion criteria: 12-18 y old, obese (BMI >95th%tile)
Exclusion criteria:
Intervention: aerobic exercise, resistance exercise
Comparator: no exercise
1° **endpoint:**
- significant reductions in total fat and improvements in cardiorespiratory fitness in the AE and RE groups
- aPWV, cIMT, LVMI, BP, lipids and body weight did not change compared to controls (p>0.05 for all)
Safety endpoint (if relevant): N/A | | |
| de Ferranti SD, 2015 (153)
26337820 | **Aim:** to compare the effects of a reduced-calorie low glycemic diet to a low saturated fat diet in youth with overweight/obesity and cardiometabolic risk factors
Study type: RCT of home delivered food and nutritional counseling
Size: 27 adolescents;
Inclusion criteria: 12-17 y old, obese (BMI >95th%tile)
Exclusion criteria: known endocrine diagnoses or other conditions associated with lipid abnormalities or insulin resistance
Intervention: calorie restricted low glycemic diet
Comparator: calorie restricted low saturated fat diet
1° **endpoint:** Overall, participants (n = 27) showed substantial improvement during the Intensive Phase, including InsAUC (-59 ± 18.2 µU/ml × 120 min, p=0.004), total cholesterol (-9.9 ± 3.6 mg/dl, p=0.01), weight (-2.7 ± 0.5 kg, p<0.001), waist circumference (-3.1 ± 0.8 cm, p<0.001), HOMA-IR (-1.7 ± 0.4, p<0.001), SBP (-5 ± 1.4 mm Hg, p=0.002), and CRP (-0.1 ± 0.1 mg/dl, p=0.04).
- There were minimal between-group differences; the LF group showed greater declines in HDL (p=0.005) and fasting glucose (p=0.01) compared to the LGL group.
- Improvements waned during 4-mo maintenance period.
Safety endpoint (if relevant): Home delivery of LF or LGL diets resulted in improvements in CV risk factors that diminished without food delivery and did not differ based on dietary intervention. | | |
<table>
<thead>
<tr>
<th>Study</th>
<th>Aim</th>
<th>Inclusion Criteria</th>
<th>Intervention</th>
<th>Comparator</th>
<th>1st endpoint</th>
<th>Safety endpoint (if relevant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gidding SS, 2014 (154) 25008950</td>
<td>To evaluate the effect of omega-3 fatty acids supplements on TG levels in hypertriglyceridemic adolescents.</td>
<td>Hypertriglyceridemia and low-density lipoprotein (LDL) cholesterol <160 mg/dL</td>
<td>8 wk fish oil</td>
<td>8 wk placebo</td>
<td>TG levels decreased on fish oil treatment compared with placebo but did not reach statistical significance (-52 ± 16 mg/dL vs. -16 ± 16 mg/dL).</td>
<td>N/A</td>
</tr>
<tr>
<td>de Ferranti SD, 2014 (155) 24707021</td>
<td>To evaluate the effect of omega-3 fatty acids supplements on TG levels in hypertriglyceridemic adolescents.</td>
<td>10-19 y, TG levels 150 to 1000 mg/dL</td>
<td>Lovaza (~3360 mg docosahexaenoic acid + eicosapentaenoic acid per day)</td>
<td>placebo (corn oil)</td>
<td>TG levels declined at 3 mo in the Lovaza group by 54 ± 27 mg/dL (mean ± standard error; p=0.02) and by 34 ± 26 mg/dL (p=0.16) in the placebo group. The difference in TG lowering between groups was not significant (p=0.52). There were no between-group differences in endothelial function, blood pressure, body mass index, C-reactive protein, or side effects.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Safety endpoint (if relevant): N/A

Abbreviations: 1° indicated primary; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; and RR, relative risk. ICVH – Ideal cardiovascular health

HOMA HOmeostatic Model Assessment index

Search Terms and Date of Search: Author to provide
Data Supplement 22. Nonrandomized Trials, Observational Studies, and/or Registries of Metabolic Syndrome of Children and Adolescents (Section 4.4.4.3)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published’ PMID</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gunnarsdottir T., 2014 (156) 24636901</td>
<td>Study type: Weight loss obs.</td>
<td>Inclusion criteria:</td>
<td>1st endpoint: body-mass index standard deviation score - Laeknabladid. 2014 Mar; 100(3):139-45. – Article in Icelandic…</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size: 84 obese children (age-range: 8-13 y) and a participating parent</td>
<td>Exclusion criteria:</td>
<td>Results: Among treatment completers BMI-SDS (body-mass index standard deviation score) decreased significantly from pre- to post-treatment (F (2.60) =110.31, p<0.001) which was maintained at one-y (F (2.60) =1.33; p=0.253) and two-y (F (2.60) = 3, 19; p=0.079) post treatment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Among a subsample (n=23) of participants, significant reductions were observed in fasting insulin levels, (t (22) =6.1, p<0.05), triglycerides (t (22) =0.31, p<0.05) and total cholesterol (t (22) =0.35, p<0.05).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Analysis was done only among study completers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Written in Icelandic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size: 491 children, 1,900 middle-aged men, 614 older women and 555 older men from Finland</td>
<td>Exclusion criteria:</td>
<td>Results: The risk of type 2 diabetes, myocardial infarction, cardiovascular death and overall death increased 3.67, 1.38, 1.56 and 1.44-fold, respectively, for a 1 SD increase in the MetS score.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Factor analysis was used to develop a metabolic syndrome score which was related to hard outcomes.</td>
<td></td>
</tr>
<tr>
<td>Benson M., et al., 2012 (158) 22819275</td>
<td>Study type: cross sectional description of lipoprotein subtypes in lean and obese children</td>
<td>Inclusion criteria:</td>
<td>1st endpoint: lipoprotein sub-fractions using a novel ion mobility assay</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size: 162 pediatric subjects—75 were lean (41 prepubertal and 34 pubertal, 43 boys and 32 girls) and 87 obese (39 prepubertal and 48</td>
<td>Exclusion criteria:</td>
<td>Results: Lean children had higher HDL-large (76%), HDL-small (13%), and HDL-total (27%) compared with obese (p<0.01), and lower LDL-medium (30%, p<0.01) and medium + small (-21%, p=0.02) as well as LDL-total (-13%, p=0.035).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• In both groups, the LDL component was higher in males and pubertal children (p<0.01).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Prepubertal children had a higher HDL component than pubertal ones (p<0.004).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Adjusting for sex and pubertal status LDL component was positively, and HDL component negatively, correlated with obesity (p<0.004).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Despite relatively normal triglycerides and cholesterol measured with standard assays at</td>
<td></td>
</tr>
</tbody>
</table>

© American Heart Association, Inc., and the American College of Cardiology Foundation.
<table>
<thead>
<tr>
<th>Study Authors (Year)</th>
<th>Study Type</th>
<th>Size</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
<th>1° endpoint</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elkiran O., et al., 2013 (159)</td>
<td>Substudy of a cross sectional school-based survey of Turkish schoolchildren</td>
<td>123 children: 67 obese and 24 overweight and 32 healthy weight</td>
<td>Inclusion criteria: 6th, 7th and 8th graders from 18 schools in eastern Turkey with available clinical data.</td>
<td>Exclusion criteria: no subject or parental consent</td>
<td>1° endpoint: carotid intima-media thickness (IMT)</td>
<td>Carotid IMT was significantly higher in overweight (0.52±0.008 mm) and obese (0.53±0.008 mm) groups compared to the controls (0.36±0.009 mm) (p=0.001). Carotid IMT was significantly correlated to the body mass index (r=0.396, p=0.001), fat mass percentage (r=0.257, p=0.036), waist circumference (r=0.390, p=0.001), diastolic BP (r=0.250, p=0.042), and high-sensitivity C-reactive protein levels (r=0.269, p=0.001) in the obese group. Waist circumference (p=0.045), and diastolic BP (p=0.031) persisted in multivariable analyses.</td>
</tr>
<tr>
<td>Dalili S., et al., (160)</td>
<td>Cross sectional</td>
<td>859 children age 12 y: 550 boys and 309 girls</td>
<td>Inclusion criteria: 12-y-old junior students referred to 15 urban health centers of Rasht, Iran</td>
<td>1° endpoint: correlates of hypertension in childhood</td>
<td>Results: weight, waist and hip circumferences, insulin levels, high TG and low HDL were correlated with high blood pressure. Children with one cardiovascular risk factor (elevated BP) should be screened for additional risk factors.</td>
<td></td>
</tr>
<tr>
<td>de Jong M., et al., (161)</td>
<td>observational longitudinal cohort</td>
<td>38 very low birth weight (VLBW) children and 82 term born children, 64 average for gestational</td>
<td>1° endpoint: Metabolic syndrome components in early childhood in children born at VLBW, SGA and AGA.</td>
<td>1° endpoint: Metabolic syndrome components in early childhood in children born at VLBW, SGA and AGA.</td>
<td>Results: At age 2 y corrected, VLBW children had lower BMI and higher glucose level compared to AGA children. In early childhood, VLBW and term SGA children already have a high prevalence of some metabolic syndrome components compared to term AGA children. Body fat was a significant correlate of cardiovascular risk factors in children born at low birth weight.</td>
<td></td>
</tr>
<tr>
<td>Study Type</td>
<td>Inclusion Criteria</td>
<td>Exclusion Criteria</td>
<td>1st Endpoint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma CM, et al., 2015 (162)</td>
<td>Study type: cross-sectional population-based study</td>
<td>Inclusion criteria: Elevated TC (≥5.18 mmol/L), high LDL-C (≥3.37 mmol/L), low HDL-C (<1.03 mmol/L), and high non-HDL-C (≥3.76 mmol/L) could be used as screening tools for the identification of adolescents characterized by atherogenic lipid profile.</td>
<td>Hypertriglyceridemic waist-to-height ratio phenotype identified Han adolescents with atherogenic lipid profile in a non-age dependent fashion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size: 3136 Han adolescents age 13-17 y</td>
<td>Exclusion criteria:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Lima Sanches P, et al., 2011 (163)</td>
<td>Study type: non-randomized 1 y weight loss intervention</td>
<td>Inclusion criteria: post-pubertal (Tanner 5) obese adolescents</td>
<td>1st endpoint: common carotid artery intima-media thickness (IMT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Results: The weight-loss program promoted a significant improvement in body composition, insulin concentration, HOMA-IR, lipid profile, BP and inflammatory state, in addition to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Type/Design; Study Size</td>
<td>Patient Population</td>
<td>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</td>
<td>Summary/Conclusion Comment(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross-sectional 42 US middle schools with student populations at increased risk for type 2 diabetes, i.e., with at least 50% of students eligible for free or reduced-price lunch or belonging to a racial or ethnic minority group. Size: 6097 adolescents</td>
<td>10-13 y-old with available data</td>
<td>1° endpoint: cardio-metabolic risk among youth defined as glucose ≥ 100 mg/dL, fasting insulin ≥ 30 μU/mL, SBP or DBP ≥95th percentile, TC ≥200 mg/dL, LDL ≥130 mg/dL, triglycerides ≥ 130 mg/dL, and HDL ≤40 mg/dL</td>
<td>Obesity defined by BMI ≥95th%tile identifies elevated insulin and a clustering of ≥3 cardio-metabolic risk factors.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria:</td>
<td></td>
<td></td>
<td>Evidence does not support WC percentile or WtHR as superior screening tools compared with BMI percentile for identifying cardio-metabolic risk</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exclusion criteria: other metabolic or endocrine diseases; chronic alcohol consumption; previous use of drugs, such as anabolic androgenic steroids or psychotropics that may affect appetite regulation; pregnancy

- 1-y interdisciplinary weight-loss program including nutrition and aerobic and resistance exercise programming improved cIMT (-0.06 mm, P≤0.01)
- Change in HOMA-IR (ΔHOMA-IR) was negatively correlated with concomitant changes in the adiponectin concentration (Δadiponectin; r=-0.42; p=0.02) and positively correlated with changes in common carotid artery IMT (Δcarotid IMT; r=0.41; p=0.03).

• Only reported results on participants completing >75% of the exercise sessions

Abbreviations: 1° indicated primary; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; and RR, relative risk.

Search Terms and Date of Search: Author to provide

Data Supplement 23. Nonrandomized Trials, Observational Studies, and/or Registries of Treatment (Section 4.4.4.3)

© American Heart Association, Inc., and the American College of Cardiology Foundation.
<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type /Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (include P value; OR or RR; & 95% CI)</th>
<th>Summary /Conclusion Comment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muntner P, et al., 2014 (81) 24682252</td>
<td>AIM: Assess the calibration and discrimination of the PCE in a contemporary US cohort.</td>
<td>REGARDS study: 45-79 y old. Inclusion: Regards participants with characteristic similar to</td>
<td>Primary Outcome: adjudicated atherosclerotic CVD incidence (nonfatal myocardial infarction, coronary heart</td>
<td>The Pooled Cohort Equation is well calibrated in African Americans and Whites and</td>
</tr>
</tbody>
</table>

Abbreviations: 1° indicated primary; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; and RR, relative risk.

Search Terms and Date of Search: Author to provide

Data Supplement 24. Nonrandomized Trials, observational studies and / Registries for African Americans. (Section 4.5.1)
Fox ER, et al., 2016 (168) 27437649

Aim: develop and validate risk prediction models for CVD incidence in black adults, incorporating standard risk factors, biomarkers, and subclinical disease.

Study Type: Prospective study

Study Size: N= 3689 African Americans

Jackson Heart Study.

Inclusion: Participants who JHS examination # 1 and had available data on key covariates considered for prediction models

Primary Endpoint: First occurrence of MI, CHD death, CHF, stroke, incident angina, or intermittent claudication.

Results:

<table>
<thead>
<tr>
<th>Predicted ASCVD Risk</th>
<th>Medicare Linked</th>
<th>Non-Medicare Linked</th>
</tr>
</thead>
<tbody>
<tr>
<td><5%</td>
<td>0.75 (0.71-0.79)</td>
<td>0.75 (0.72-0.79)</td>
</tr>
<tr>
<td>5-7.5%</td>
<td>0.72 (0.69-0.75)</td>
<td>0.72 (0.70-0.75)</td>
</tr>
<tr>
<td>7.5-10%</td>
<td>0.72 (0.69-0.75)</td>
<td>0.72 (0.70-0.75)</td>
</tr>
</tbody>
</table>

The Pooled Cohort Equation (PCE) has good discrimination in African Americans. The discriminative ability of the PCE in African Americans was not improved by the 6 models built and validated in this study using other subclinical markers.

George MD, et al., 2016 (169) 27537560

Aim: Evaluate clinical factors associated with CK among healthy individuals and to develop practical reference ranges for important subgroups to improve test interpretation.

Study Type: Cross-sectional

Exclusion: Pregnant, <20y old, strenuous exercise in the last 3 d.

Primary Outcome: None

Results: Provided data on 90%, 95% and 97.5% percentile and their corresponding confidence intervals.

- **Males**
 - Race
 - 95th %tile
 - White 312(268,356)

African Americans have a high CK levels compared with other race/ethnic groups. The 95th percentile of the 97.5th in sex and race specific subgroups provides a practical guide for clinicians interpreting CK levels.
<table>
<thead>
<tr>
<th>Study Size: N = 10,096 (3156 used to derive the race/ethnicity and sex specific normal CK levels)</th>
<th>Note: thyroid disease, cholesterol medications, heavy alcohol use not excluded because they were not associated with higher levels in their models. Exclusion did not substantially change the percentile estimates.</th>
<th>Black 712(530,894) Hispanic 394(258,530) Asian 378(185,571)</th>
<th>Years: Yeboah J, et al., 2016 (100) 26791059</th>
<th>Aim: To assess the predictive accuracy and improvement in reclassification gained by the addition of the coronary artery calcium (133) score to the Pooled Cohort Equation in the Multi Ethnic Study of Atherosclerosis (MESA). Study Type: Prospective cohort study Study Size: N=5,185 (1402 were African Americans)</th>
<th>Primary Outcome: Composite of myocardial infarction, coronary heart disease–related death, or fatal or nonfatal stroke Results: CAC was an independent predictor of atherosclerotic cardiovascular (ASCVD) events. HR(95%CI): 1.58(1.40-1.79), p<0.001 CAC improved the C statistics of the calibrated PCE: 0.74 vs. 0.76, p=0.04. CAC improved Net Reclassification Index (NRI): Event NRI: 0.178(0.080-0.256) and Non-Event NRI: -0.059(-0.075-0.030). In this Multi-Ethnic Cohort which included African Americans, CAC improved ASCVD risk assessment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHS (Dallas Heart Study), a multiethnic probability-based population sample of Dallas County Adults with deliberate oversampling of African Americans. Inclusion: All participants free of cardiovascular disease and diabetes mellitus Exclusion: Uninterpretable CT scans, prior CHD, End stage renal disease, missing data,</td>
<td>Primary outcome: composite of CHD death, myocardial infarction, coronary revascularization after 9.2 y of follow up. Results: Mean age 44 y, CAC was an independent predictor of CHD events: HR: 1.90; 95%CI: 1.51-2.38; p<0.0001. CAC improved the C statistics of the base traditional risk factor model: 0.86(0.83-91) vs. 0.89(0.86-0.93), p=0.03. CAC also improved the Net reclassification index of the base model. NRI = 0.216, p=0.012</td>
<td>Years: Paixao ARM, et al., 2015 (170) 26476504</td>
<td>Aim: To assess the effect of coronary artery calcium (133) on coronary heart disease risk prediction in a younger population Study type: Prospective cohort study Study Size: N=2084 (956 were African Americans)</td>
<td>Primary Outcome: Coronary artery calcium (133) score</td>
<td>CAC improved coronary heart disease risk classification in this multi-ethnic younger cohort (included ~46% African Americans)</td>
</tr>
</tbody>
</table>
Carr JJ, et al., 2017 (87) 28196265

Aim: To determine if CAC in adults aged 32 to 46 y is associated with incident clinical CHD, CVD, and all-cause mortality during 12.5 y of follow-up

Study type: Prospective cohort study

Study Size: N= 3980 had CAC ever measured (1918 were African American).

Inclusion: All participants who had CT scanning in the CARDIA study

Exclusion: Participants who died before their 15th recruitment anniversary, unable to be contacted, never had a CT scan and those ineligible for CT scanning: i.e. pregnant, weight above the limit for the CT scan table.

Primary outcome: Incident CHD included fatal or nonfatal myocardial infarction, acute coronary syndrome without myocardial infarction, coronary revascularization, or CHD death. Incident CVD included CHD, stroke, heart failure, and peripheral arterial disease. Death included all causes.

Results: 57 CHD, 108 CVD events occurred

CAC vs. CAC=0:

For CHD: HR: 5.0; 95% CI: 2.8-8.7; p<0.001

Similar association for CVD

For all-cause mortality: HR: 1.6; 95% CI: 1.0-2.6; p=0.05

The presence of CAC among individuals aged 32-46 was independently associated with incident CHD, CVD and death in this cohort which included African Americans.

Data Supplement 25. Nonrandomized Trials, Observational Studies, and/or Registries of Pooled Cohorts Equation Risk Estimation in Adults of Asian Descent (Section 4.5.1)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cho YK, et al., 2016 (172) 27543305</td>
<td>Study type: Retrospective cohort study Size: 1,246 1019 male (82%)</td>
<td>Inclusion criteria: Adults aged 20-79 y Exclusion criteria: CVD; Prescribed statins</td>
<td>1st endpoint: Risk Assessment and CAC progression Results: The 10-y FRS and 10-y PCE score were significantly higher in CAC progressors than nonprogressors Individuals with PCE score ≥7.5% were more likely to have progression of CAC When compared to those recommended to take a statin under ATP III guideline, subjects considered statin eligible by PCE had a higher OR for CAC progression:</td>
<td>The PCE predicts CAC score progression in a Korean population.</td>
</tr>
<tr>
<td>Study type: Retrospective cohort study</td>
<td>Study type: Retrospective cohort study</td>
<td>Study type: Risk Assessment</td>
<td>Study type: Risk Assessment</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Size: 307,591</td>
<td>Size: 192,605</td>
<td>2.73 (95% CI: 2.07–3.61) versus 2.00 (95% CI: 1.49–2.68).</td>
<td>The PCE predicted CAC progression more accurately than the ATP III guideline (p=0.006)</td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria: Adults aged ≥21 y; LDL 70–189 mg/dL</td>
<td>Inclusion criteria: Adults aged 40–79 y without clinical ASCVD who were registered in the Republic of Korea</td>
<td>Overall observed 5-y ASCVD risk was substantially lower than predicted in each risk category:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria: Unknown sex or race/ethnicity; Prescribed statins or other lipid-lowering therapies within 5 y before the index date; Prior hospitalization for acute myocardial infarction, ischemic stroke, or receipt of CABG or PCI; <12 mo of continuous membership and pharmacy benefit before the index date; Patients who received statins during follow-up if used for primary prevention of ASCVD (i.e., statin initiated before a documented ASCVD event)</td>
<td>Exclusion criteria: Age <40; Receiving lipid-lowering medication at baseline; CVD or stroke; Missing values of variables such as BP, TC, HDL, glucose, smoking status or BMI</td>
<td>0.20% for predicted risk <2.50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52,917 Asian/Pacific Islander</td>
<td>114,622 males (60%)</td>
<td>0.65% for predicted risk 2.50 to 3.74%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study type: Retrospective cohort study</td>
<td>Study type: Retrospective cohort study</td>
<td>0.90% for predicted risk 3.75 to 4.99%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size: 307,591</td>
<td>Size: 192,605</td>
<td>1.85% for predicted risk ≥5.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria: Adults aged ≥21 y; LDL 70–189 mg/dL</td>
<td>Inclusion criteria: Adults aged 40–79 y without clinical ASCVD who were registered in the Republic of Korea</td>
<td>The observed 5-y ASCVD risk was also lower than predicted in Asian/Pacific Islanders:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria: Unknown sex or race/ethnicity; Prescribed statins or other lipid-lowering therapies within 5 y before the index date; Prior hospitalization for acute myocardial infarction, ischemic stroke, or receipt of CABG or PCI; <12 mo of continuous membership and pharmacy benefit before the index date; Patients who received statins during follow-up if used for primary prevention of ASCVD (i.e., statin initiated before a documented ASCVD event)</td>
<td>Exclusion criteria: Age <40; Receiving lipid-lowering medication at baseline; CVD or stroke; Missing values of variables such as BP, TC, HDL, glucose, smoking status or BMI</td>
<td>0.20% for predicted risk <2.50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52,917 Asian/Pacific Islander</td>
<td>114,622 males (60%)</td>
<td>0.75% for predicted risk 2.50 to 3.74%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study type: Retrospective cohort study</td>
<td>Study type: Retrospective cohort study</td>
<td>0.75% for predicted risk 3.75 to 4.99%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size: 307,591</td>
<td>Size: 192,605</td>
<td>1.65% for predicted risk ≥5.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria: Adults aged ≥21 y; LDL 70–189 mg/dL</td>
<td>Inclusion criteria: Adults aged 40–79 y without clinical ASCVD who were registered in the Republic of Korea</td>
<td>The PCE statistically overestimated actual 5-y ASCVD risk in eligible adults without diabetes, known ASCVD and with LDL 70 to 189 mg/dL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria: Unknown sex or race/ethnicity; Prescribed statins or other lipid-lowering therapies within 5 y before the index date; Prior hospitalization for acute myocardial infarction, ischemic stroke, or receipt of CABG or PCI; <12 mo of continuous membership and pharmacy benefit before the index date; Patients who received statins during follow-up if used for primary prevention of ASCVD (i.e., statin initiated before a documented ASCVD event)</td>
<td>Exclusion criteria: Age <40; Receiving lipid-lowering medication at baseline; CVD or stroke; Missing values of variables such as BP, TC, HDL, glucose, smoking status or BMI</td>
<td>c-statistic 0.72 for Asian/Pacific Islander</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52,917 Asian/Pacific Islander</td>
<td>114,622 males (60%)</td>
<td>The PCE statistically overestimated the ASCVD event rates observed in a Korean cohort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study type</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>1st endpoint</td>
<td>Results</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>Lee CH, et al., 2015 (77)</td>
<td>Study type: Population-based prospective cohort study</td>
<td>Inclusion criteria: Chinese men and women aged 25-74 y</td>
<td>Exclusion criteria: Age<40 y or >79 y; CVD; LDL>190 mg/dl</td>
<td>1st endpoint: Risk Assessment</td>
</tr>
<tr>
<td>Size: Male 804 (46%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASALA Kandula NR, et al., 2014 (173)</td>
<td>Study type: Longitudinal cohort study</td>
<td>Inclusion criteria: Self-identify as South Asian ethnicity; Speak English, Hindi, or Urdu; 40-84 y</td>
<td>Exclusion criteria: Clinical ASCVD, HF, pacemaker, current atrial fibrillation, active treatment for cancer; Live in nursing home; Life expectancy < 5 y; Impaired cognitive ability; Plans to move out of study region in next 5 y; Weight >300 lbs.</td>
<td>1st endpoint: Risk Assessment</td>
</tr>
<tr>
<td>Size: Male 486 (54%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chia YC, et al., 2014 (65)</td>
<td>Study type: Retrospective cohort study</td>
<td>Inclusion criteria: Adults aged 40-79 y without clinical ASCVD who were registered in the outpatient primary care clinic of University Malaya Medical Centre</td>
<td>Exclusion criteria: Age<40 or >79 y; Lack of all clinical variables to calculate the pooled cohort</td>
<td>1st endpoint: Risk Assessment</td>
</tr>
<tr>
<td>Size: Male 307 (33%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data Supplement 26. Nonrandomized Trials, Observational Studies, and/or Registries of Hispanic (Section 4.5.1)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MESA Qureshi WT, et al., 2016 (174) 27445216</td>
<td>Aim: Compare accuracy of the PCE, modified FRS and the SCORE, and their impact on statin eligibility using the ≥7.5% 10-y risk threshold recommended in the new ACC/AHA cholesterol guidelines.</td>
<td>Inclusion criteria: Adults between 45 and 84 y with no cardiovascular disease.</td>
<td>1º endpoint: Incident of ASCV, composed of fatal and nonfatal myocardial infarction, other fatal and nonfatal coronary heart disease, fatal and nonfatal cerebrovascular disease, and fatal/nonfatal other atherosclerotic disease. 342 (6%) of which 22 % were Hispanic.</td>
<td>- Impact of replacing the PCE with either the modified FRS or the SCORE. Study shows PCE to have the best discrimination. Limitations - Not relevant in determining special considerations for Hispanics. Hispanics were not classified by their race and were applied the white race estimates.</td>
</tr>
<tr>
<td>MESA</td>
<td>Aim: Evaluated the ASCVD risk score</td>
<td>Inclusion criteria: Adults between the ages of 45 and 79 y.</td>
<td>1º endpoint:</td>
<td>- Overestimation was observed in all race/ethnic groups, men and women</td>
</tr>
</tbody>
</table>

Abbreviations: 1º indicated primary; AA African American; ASCVD atherosclerotic cardiovascular disease; ATP, Adult Treatment Panel; AUC area under curve; AUROC area under receiver operating curve; BMI body mass index; CABG coronary artery bypass grafting; CAC coronary artery calcium; CI, confidence interval; CVD, cardiovascular disease; FRS Framingham risk score; HF heart failure; HR, hazard ratio; N/A, not available; OR, odds ratio; PCE pooled cohort equation; PCI percutaneous coronary intervention; RCT, randomized controlled trial; and RR, relative risk; SBP systolic blood pressure; TC total cholesterol.

Search Terms and Date of Search: Risk Calculator, Asians 5/20/2017
<table>
<thead>
<tr>
<th>DeFilippis AP, et al., 2017 (71)</th>
<th>among four different race/ethnic groups and to ascertain which factors are most associated with risk overestimation by the AHA-ACC-ASCVD score. Study type: Prospective cohort study Size: 6441</th>
<th>Exclusion criteria: Adults age 80 and over. Participants with missing data required for risk score calculation (n=53, 1%) or no follow up after baseline (n=3, <1%) Intervention: Calculation of the predicted 10 y ASCVD risk. Observation of the 10 y ASCVD. Comparator: Discordance between predicted and observed 10 y risk. Impact of individual risk factors on the discordance. Risk discrimination was similar for women (100%) and men (93%). Observed rates were roughly half of that predicted by the risk score. Overestimation was highest among Chinese (252% for women and 314% for men) and lowest in White women (72%) and Hispanic men (67%). The lowest discordance between observed and calculated ASCVD event rates was seen in Hispanic men (71%) and women (49%)</th>
<th>Limitations - Risk score specifically recommended for White Americans used for Hispanics, not considering that there are White and Black Hispanics.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rana JS, et al., 2016 (83)</td>
<td>Aim: Evaluated the accuracy of the 2013 ACC/AHA risk equation within a large, multiethnic population in clinical care. Study type: prospective Size: 307,591 Also identified 4,242 patients that were diabetic and did not have prior lipid-lowering therapy, known ASCVD or any other exclusion criteria. Duration: 2008-2013</td>
<td>Inclusion criteria: Adults between 40 and 75 y of age. LDL between 70 and 189 mg/dl Exclusion criteria: Unidentified sex or race/ethnicity. Having known ASCVD or diabetes. Statin use. Missing systolic blood pressure, total cholesterol or high-density lipoprotein cholesterol information. Compared predicted versus observed 5-y risks of ASCVD events, overall and within sex and ethnic subgroups</td>
<td>1 endpoint: Among the patient without diabetes, 2,061 events were observed. Observed incidence was lower that the predicted risk in each category: 0.20% (95% CI: 0.20% to 0.25%) for predicted risk <2.50%, 0.65% (0.55% to 0.70%) for predicted risk 2.50% to <3.75%, 0.90% (0.75% to 1.00%) for predicted risk 3.75% to <5.00%; and 1.85% (1.75% to 1.95%) for predicted risk ≥5.00% Overestimation was similar in both men and women and across the 4 major ethnic groups. Poor calibration reported in each subgroup. Limitations 5 y instead of 10 y FU Poor calibration Hispanics were not classified by their race and were applied the white race estimates.</td>
</tr>
</tbody>
</table>
Data analyzed from the 2005-2012 surveys

Study type: Cross sectional

Size: 8644

Inclusion criteria: Adults age 21 and older

Exclusion criteria: Pregnant women
Missing fasting laboratory specimen.
Not able to determine treatment eligibility.

1 endpoint: Half of treatment eligible adults were receiving cholesterol lowering medication. There were significant differences on treatment eligibility between racial/ethnic groups in (24.2% for Mexican-Americans, 38.4% for whites, and 39.5% for blacks; p<0.001). There were also significant differences on the proportion of adult taking cholesterol lowering medication between racial/ethnic groups.

(58.0% for whites, 47.1% for Mexican-Americans, and 46.0% for blacks; p<0.001)

Significant differences were also found among men and women and subgroups of age, poverty-to-income ratio, body mass index and presence of diabetes or hypertension.

Results: Prevalence of cholesterol-lowering medication use among adults eligible for treatment varied within racial/ethnic subgroups, with the lowest prevalence (5.7%) among blacks without health care access and the highest among persons who reported making lifestyle modifications.

Cholesterol use medication lower for Mexican Americans than no Hispanic whites.
Cholesterol use medication was lowest among blacks.

Limitations

Adults in nursing homes not included
Limited data on estimation of lifestyle modifications.
Recall bias.
Potential for overestimation of eligibility in following the 2013 ACC/AHA guidelines.
Patient taking cholesterol lowering medication included any type of medication.

More studies are needed to determine disparities and programs are needed to increase screening and management of hyperlipidemia.

Abbreviations:

¹ indicated primary; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; and RR, relative risk; HCHS/SOL Hispanic Community Health Study; /Study of Latinos; ACC/AHA American College of Cardiology/ American Heart Association; ATP Adult Treatment Panel; MESA Multi-Ethnic Study of Atherosclerosis; PCE Poole Cohort Equation; FRS Framingham Risk Score; SCORE Systematic Coronary Risk Evaluation

Search Terms and Date of Search: ASCVD RISK and Hispanic, 6/28/17

Data Supplement 27. Nonrandomized Trials, Observational Studies, and/or Registries of Hispanic (Section 4.5.1)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCHS/SOL Qureshi, WT, et al., 2017 (176) 28495699</td>
<td>Study type: Cross sectional</td>
<td>Study type: Cross sectional</td>
<td>Inclusion criteria: Hispanic/Latino adults aged 18 to 74 y at recruitment, recruited from 4 US metropolitan areas.</td>
<td>1° endpoint: Out of 16415 participants. 4160 (26.9%; 95% CI: 25.7-28.0%) were statin eligible under the 2013 ACC/AHA guidelines compared to 2609 (15.9%; 95 CI: 15.0-16.7 %) under the NCEP/ATP III</td>
</tr>
</tbody>
</table>

Exclusion criteria: None

Aim: Prevalence of statin eligibility among Hispanic/Latinos living in the US under the new 2013 ACC/AHA guidelines. Comparison with NCEP/ATP III guidelines.

<table>
<thead>
<tr>
<th>Study type:</th>
<th>Cross sectional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size:</td>
<td>12,406</td>
</tr>
</tbody>
</table>

Inclusion criteria:
- Hispanic/Latino, aged 18 -74 free of diabetes.
- (Multicenter population-based)

Exclusion criteria:
- Diabetes, self-report or in the laboratory values.
- Aimed to compare diet quality, using AHEI, Range 0-110 lowest to highest quality.
- With the association of MetS and its cardiometabolic components across 6 groups of Hispanic/Latinos. Mexicans Puerto Ricans Cuban Dominicans Central Americans South Americans

1st endpoint: The prevalence of Metabolic Syndrome was 23.2% overall.
- Adjusted odds (95% CI) of having MetS were 22% (9%-33%) lower for each 10 – unit increase in AHEI.

Results:
- Adjusted mean AHEI differed by ethnic background (p<0.001), ranging from 43.0 for Puerto Ricans to 52.6 for Mexicans.
- Lower odds observed only for Mexicans (30%; 95%CI: 13%, 44%) and Central Americans (42%; 95% CI: 9%, 64%).
- AHEI inversely associated with waist circumference, blood pressure and glucose among Mexicans and Puerto Ricans and with triglycerides among Mexicans only.

It was noticed too that using the 10 y ASCVD risk for White non-Hispanics, one fourth were statin eligible (26.9%; 95% CI: 5.8-28.0%); and using the black coefficient for Dominicans, Puerto Ricans and Central Americans, 28.2%; 95% CI: 27.0-29.4%; were statin eligible, which is a 1.3 % absolute increase in statin eligibility.

LIMITATIONS
- Hispanic not well defined.
- Hispanic is not a race and the study does not take into consideration the race. Hispanics are classified by geographical area, not by ancestry.

- Diet varies with Hispanic/Latino background. This is important because a healthier diet is associated with lower odds of MetS. Association of AHEI and cardio metabolic risk factors, varies by ethnic background.
- The conclusion of the studies is that research and interventions should be different among ethnically diverse groups. There is a need to consider individual ethnic backgrounds to optimized results.
- CVD prevention strategies should address the fact that Hispanics have high rates of multiple risk factors and that interventions should differ by individual ethnic background.
- Ethnicity-specific analysis helps clarify inconsistent results of diet-disease association in Hispanics as a group and it will help tailor disease prevention.
- Suggest types of foods and nutrients targeted for specific ethnic groups.
Previous studies reported one ethnicity or put them all together

AHEI positively associated HDL cholesterol among Puerto Ricans and Central Americans (all p<0.05)

Most ethnicities had unhealthy intake of sugar-sweetened beverages, and fruit juices, whole grains and whole fruit and favorable intakes of trans fats and nuts and legumes.

It helps understand why previous studies have inconsistent results.

Understand ethnic differences in diet and health and direct culturally appropriate diet quality components

Overall reinforce reducing sugar sweetened beverages and increasing whole grains and fruits.

Reduce sodium intake among Cubans,
Increase vegetable intake among Puerto Ricans

AVOID GENERALIZATIONS on diet and cardiometabolic health for Hispanics.

Variation of diet among geographical areas but it was consistently best for Mexicans and poor for Puerto Ricans.

LIMITATIONS
Cross sectional
Recall bias
AHEI is a measurement that is not specific for Hispanic population

Study type: cross sectional

Size: 14,757

Aims to determine the prevalence of Low cardiovascular risk profile among Hispanics and its association with acculturation. (SASH short acculturation Scale for Hispanics)

Inclusion criteria: adults aged 18 to 74 Hispanic/Latino background and free of CVD

Exclusion criteria: CVD or diabetes Missing data for LR Lack of self-identification as any of the 6 Hispanic backgrounds.

1st endpoint: Prevalence of LR profile among Hispanics is low, (8.4% overall; 5.1% for men, 11.2% for women), and varied by background, (4.2% for Mexican men versus 15.0% in women of Cuban heritage). Acculturation is associated with higher odds of a LR only among women.

Results: OR of having LR were 1.64% (95% CI: 1.24-2.17) for foreign born versus US-born women and 1.96 (95% CI: 1.49-2.58) for women residing in the US less than 10 y versus 10 or more years.

Lack of current smoking the most predominant favorable risk factor. LR was higher among women

- Prevalence of LR is low
- Lower acculturation is associated with higher odds of a LR profile among women but no men.
- In general, LR adults were younger and more educated.
- Variations across Hispanic backgrounds. Men with Dominican and Mexican background had the lowest LR prevalence. Women with Puerto Rican background had the lowest rate of favorable risk factors.

Almost 1 in 4 Hispanic adult men and women (ranging from 15% Puerto Rican women to 36% South American men) have unfavorable or borderline risk status. This together with the fact that almost half of men and more than half of women have no health insurance, points to the need of developing public health initiatives to lower CVD risk in this growing population.

HCHS/SOL

Daviglus ML, et al., 2016 (178) 27543802

HCHS data allow a level of granularity in examining the US Hispanic/Latino population by ethnic background and other characteristics that was not available previously.
<table>
<thead>
<tr>
<th>Study type</th>
<th>Inclusion criteria</th>
<th>1st endpoint</th>
<th>Further research need to understand acculturation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qi, Q, et al., 2015 (107)</td>
<td>Adults aged 18 to 74 Hispanic/Latino background Complete data on cardiometabolic biomarkers</td>
<td>Sedentary lifestyle associated with decreased HDL cholesterol, cholesterol and increased blood pressure, elevated TG, 2-H glucose, fasting insulin, HOMA-IR and CRP (all p for trend p<0.0001)</td>
<td>Association between sedentary life and elevated TG and insulin resistance. No association with blood pressure or cholesterol levels.</td>
</tr>
<tr>
<td></td>
<td>Not adherent to accelerometer protocol</td>
<td></td>
<td>Need to reduce sedentary behaviors for the prevention of cardiometabolic disease, even among those who meet physical activity guidelines.</td>
</tr>
<tr>
<td></td>
<td>- Objectively measured, not self-reported - Differences between Hispanic/Latino background groups. - Analysis stratified by physical activity.</td>
<td></td>
<td>LIMITATIONS Accelerometers placement and not discernment between sitting and standing up. Epoch length Self-reporting of some cardiovascular risk factors</td>
</tr>
<tr>
<td>Kershaw K, et al., 2012 (179)</td>
<td>Missing data on study covariates, pregnant women.</td>
<td>No differences in low risk among foreign born Mexican-Americans versus non-Hispanic White Americans when adjusted for sex and age (OR: 0.90; 95% CI: 0.62-1.33).</td>
<td>HEALTHY MIGRANT HYPOTHESIS Foreign born Mexican-Americans more likely to be low risk than Whites when adjusting for education and insurance status. Healthier, but education and insurance suppresses this, and</td>
</tr>
</tbody>
</table>
0-100
0-50 poor
51-80 needs improvement
>80 good
Only 1% good poor vs. needs improvement | When adjusted for education odds of being low risk was 1.40 (95% CI: 0.92, 2.12) higher for foreign born Mexican-Americans versus non-Hispanic Whites. Unchanged after adjusting for diet and physical activity.
When adjusted for sex and age, being low risk was lower (OR: 0.49; 95% CI: 0.34, 0.71) among US-born Mexican-American compared to non-Hispanic Whites. Adjustment for education attenuates the difference but remains significant (OR: 0.59; 95% CI: 0.41, 0.84).
Language of the questionnaire not associated with low risk, but language spoken at home is Spanish versus English or a mixture of Spanish and English (OR: 2.25; 95% CI: 1.20-4.23)
The language spoken at home attenuated the association between low risk and nativity
Living less than 10 y foreign born Mexican-Americans are more likely to be low risk than US born Mexican-Americans 4.30 (95% CI: 2.61-7.10).
Living more than 10 y decreased the ratio to 1.61 (95% CI: 0.99-2.61)
Results: Low CV risk prevalence among men was less common for US born Mexican-Americans and non-Hispanic Whites. Low CV risk makes that without adjusting there is no difference in low risk between Mexican-Americans and Whites
• In contrast disparities between US born Mexican Americans and Whites persist after adjusting, suggesting that there are other factors, like discrimination and the stress associated with acculturation.
Language associated with close communities, where there might be less discrimination and more support.
• Ethnic and nativity variations
• Effect of acculturation
LIMITATIONS
Cross sectional, so it does not capture changes over time.
Measure of acculturation.
Influence of discrimination not measured. |

© American Heart Association, Inc., and the American College of Cardiology Foundation.

147
prevalence among women was less common for foreign born and US born Mexican-American versus non-Hispanic Whites.

Acculturation attenuates the effect of nativity.

Abbreviations: 1º indicated primary; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; and RR, relative risk.

HCHS/SOL, Hispanic Community Health Study/Study of Latinos; ACC/AHA, American college of cardiology/American Heart Association; NCEP/ATP III 3rd National cholesterol Education Program Adult Treatment Panel; MetS M, metabolic syndrome; AHEI, Alternate Healthy Eating Index; LR, low risk; CVD, cardiovascular disease; LDL, Low density lipoprotein; HDL, High Density Lipoprotein; BMI, Body Mass Index, HOMA – IR Homeostatic Model Assessment of Insulin Resistance; CRP, C-reactive protein; CV, cardiovascular; NHANES, National Health and Nutrition Examination Survey

Search Terms and Date of Search: Cholesterol guidelines and Hispanic, 6/28/17

Data Supplement 28. Nonrandomized Trials, Observational Studies, and/or Registries of Hispanic (Section 4.5.1)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoshida YX, et al., 2016 (180) 27524787</td>
<td>Study type: Cross sectional Size: 622</td>
<td>Inclusion criteria: Hispanic, 20 y or older, with a previous diagnosis of diabetes. Exclusion criteria: NA</td>
<td>1º endpoint: Only 51%, 18% and 38% of HA with diabetes met saturated fat, fiber and sodium intake recommendations. Female HA were more likely to reach recommendations for cholesterol and sodium intake. The lowest achievement was among individuals between the ages of 20 to 45 y. UNEXPECTED RESULTS Low education had higher frequencies of meeting, fat, fiber, sodium, and three or more target recommendations No insurance and public insurance had higher frequencies of meeting fiber, sodium, and alcohol intake target recommendations Poverty had higher frequency of meeting fiber, sodium, and three or more criteria.</td>
<td>Only 49% of Hispanic met 3 recommendation criteria. Poor recommendation adherence associated with male gender and younger age (equal or less than 45). Female HA with diabetes more likely to achieve recommendation for cholesterol sodium and alcohol intake. Older HA with diabetes more likely to achieve recommendation for fiber, sodium and three or more recommendations. Interesting positive association with low socioeconomic status, lack of insurance and lower education. LIMITATIONS -Cross sectional (not causality)</td>
</tr>
</tbody>
</table>
| Rana JS, et al., 2016 (83) 27151343 | **Study type:** Prospective cohort
Size: 307,591 subset of 4/242 with diabetes | **Inclusion criteria:** Adults 40-75
Exclusion criteria: Known ASCVD, diabetes mellitus, LDL less than 70 or more than 190, prior use of lipid lowering therapy or incomplete 5 y follow up. Sex or race. Ethnicity unknown missing criteria | **Results:**
Male lower odds to achieve daily cholesterol and sodium reductions recommendations than female (OR: 0.3; CI: 0.1–0.5 and OR: 0.4; CI: 0.2–0.6, respectively).
Age between 45-60 and over 60 higher odds of achieving dietary fiber and sodium recommendations than younger than 45 (OR 4.0; CI: 2.0–7.9 and OR: 6.2; CI: 3.2–11.9, respectively).
Highest income 50% lower odds of meeting dietary fiber recommendation than individuals under the poverty line (OR: 0.5; CI: 0.2–0.9).
Lower odds for acculturated individuals to achieve saturated fat (OR: 0.5; CI: 0.2–0.7), fiber (OR: 0.5; CI: 0.2–0.9), sodium (OR 0.5; CI: 0.3–0.9) and cholesterol intake (OR 0.5; CI: 0.3–0.8) recommendations than less acculturated individuals. | -Self reported, so individuals with undiagnosed diabetes not included. Not motivated for diet if not diabetic
-Type I and II
-Study does not include undocumented immigrants.
Female and older ROLE OF FAMILY IN HISPANIC CULTURE important to develop programs |

1° endpoint:
Observed 5-y ASCVD incidence was lower than the predicted risk in each category: 0.20% vs. 1.04% (95% CI: 0.20 to 0.25) for predicted risk <2.50%; 0.65% vs. 3.08% (95% CI: 0.55 to 0.70) for predicted risk 2.50% to <3.75%; 0.90% vs. 4.34% (95% CI: 0.75 to 1.00) for predicted risk 3.75% to <5.00%; and 1.85% vs. 8.72% (95% CI: 1.75 to 1.95) for predicted risk ≥5.00%
Overestimation and poor calibration with moderate discrimination observed in sex, racial/ethnic, and socioeconomic status subgroups (C statistic: 0.68 to 0.74) | **LIMITATIONS**
5 y
<table>
<thead>
<tr>
<th>Study type:</th>
<th>Inclusion criteria:</th>
<th>Exclusion criteria:</th>
<th>1° endpoint:</th>
<th>Results:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross sectional</td>
<td>MA enrollees.</td>
<td>Younger than 65; Enrollees that were not Hispanic or non-Hispanic White; Not residents in Puerto Rico or the United States; Puerto Ricans enrolled in an MA plan outside of Puerto Rico; Puerto Rican residents who were not Hispanic.</td>
<td>For 15 of the 17 measures, MA enrollees in Puerto Rico, received worse care than Hispanics in the United States.</td>
<td>BP control was worse for Hispanics in Puerto Rico versus Hispanics in the United States by 5.3% percentage points (95% CI: -9.7 to -0.8)</td>
</tr>
<tr>
<td>Cross sectional</td>
<td>Adults 20 y and older who completed the interview.</td>
<td>NA</td>
<td>Uninsured and Hispanic persons were less likely to be on statin compared to non-Hispanic whites (ORs 0.33 and 0.70 respectively) (no CIs reported).</td>
<td>Hispanic ethnicity and lack of insurance remain barriers to statin use.</td>
</tr>
</tbody>
</table>

Abbreviations: 1° indicated primary; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; and RR, relative risk.

Search Terms and Date of Search: Cholesterol treatment and Hispanic, 6/28/17
Another major knowledge gap is the lack of accurate ASCVD risk estimation specific to persons of Asian/Pacific Islander and Hispanic ethnicities, who are currently combined with the white population in the Pooled Cohort Risk Equation.

Data Supplement 29. Nonrandomized Trials, Observational Studies, and/or Registries of Hispanics (Section 4.5.1)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCHS/SOL Daviglus M, et al., 2014</td>
<td>Study type: cross sectional</td>
<td>Size: 5079</td>
<td>Participants of the HCHS/SOL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Results:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HTN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NHANES data MA lower prevalence among MA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HCHS/SOL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dominican men highest prevalence of HTN followed by Puerto</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rican women</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA, both men and women, had the lowest rates.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Awareness, rate of treatment and control vary by group,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lowest for Central Americans</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hypercholesterolemia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HCHS/SOL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean levels higher for HL than non-Hispanic whites and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>blacks.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Highest for CA men and Puerto Rican women</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diabetes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Higher rates for HL in the NHANES</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HCHS/SOL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Similar rates for all groups as a whole</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Highest for MA men and Puerto Rican women, lowest for SA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>men and women</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Obesity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HCHS/SOL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Highest for Puerto Rican women and lowest for SA women</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Smoking</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HCHS/SOL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Higher rates of smoking than National average</td>
<td></td>
</tr>
</tbody>
</table>

• Large proportion of men and women (80% and 71% respectively) have at least one major CVD risk factor
• Prevalence of 3 or more CV disease RF was highest among Puerto Ricans.
• Prevalence of 3 or more CV disease RF higher among participants with lower education.
• Acculturation associated to higher levels of CV RF

BURDEN OF CV RISK FACTORS

Marked variations

HETEROGENEITY OF HISPANIC GROUPS IS THE CONCLUSION OF THIS STUDY

Previous studies underestimated the CVD burden and masked heterogeneity

Rates in general higher

The risk factors highly prevalent among HL are in this order

MEN

Hypercholesterolemia

Obesity

HTN

Smoking

WOMEN

Obesity

Hypercholesterolemia

HTN
<table>
<thead>
<tr>
<th>Study</th>
<th>Study type</th>
<th>Participants</th>
<th>Results</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davglus M, et al., 2012 (183)</td>
<td>Cross sectional</td>
<td>Participants of the HCHS/SOL</td>
<td>RF association with CHD and stroke</td>
<td>Same as above in RF distribution. HTN and smoking associated with CHD. In both sexes, hyperlipidemia and obesity in women and diabetes in men (ORs 1.5-2.2). HTN associated with stroke in both sexes, smoking in women and diabetes in men (ORs 1.7-2.6). Adverse CVD risk profile was higher among participants with Puerto Rican background, lower SES and higher levels of acculturation.</td>
</tr>
<tr>
<td>Schneiderman N, et al., 2014 (184)</td>
<td></td>
<td></td>
<td>Diabetes associated with CHD and stroke. Diabetes prevalence varied by group. Less awareness and less control. MetS significant variability in prevalence among participants of different HL background. Puerto Rican women highest prevalence and SA women the lowest. Prevalence increased with age. Obesity among HL women more likely to be obese than men. HTN significant variability among groups, highest among Dominican men and lowest among SA women. Difference across geographical location. No variation with education level or income. Less awareness and control. Sleep disorders, unawareness and lack of treatment in consequence. Smoking Highest among Puerto Ricans and Cuban. Nutrition: Puerto Ricans and Dominicans reported higher intakes of foods that are a risk for CVD and the opposite for SA.</td>
<td>To be successful in preventing CVD among HL we need to understand the diversity within this population. Target of specific groups. Attention to Access to health care and Lifestyle variables to lighten the burden of CVD RF and disease burdens among HL.</td>
</tr>
</tbody>
</table>

Abbreviations: 1° indicated primary; CI, confidence interval; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; and RR, relative risk; HCHS/SOL, Hispanic Community Health Study/Study of Latinos; NHANES, Hispanic Health and Nutrition Examination; CV, cardiovascular; CVD, cardiovascular Disease; HL, Hispanic/Latino; MA, Mexican-American; SA, South American; CA, Central American; RF Risk factors; HTN, Hypertension; MetS, Metabolic Syndrome

Search Terms and Date of Search: Cardiovascular disease risk factors and Hispanic

© American Heart Association, Inc., and the American College of Cardiology Foundation.
Study Acronym; Author; Year Published
Study Type/Design; Study Size
- **HCHS/SOL** Arguelles W, et al., 2015 (185) 25745986
 - **Study type**: cross sectional
 - **Size**: 15,825
 - To see if distinct subtypes of MetS could be identified and how these subtypes relate to CVD prevalence
 - **Patient Population**
 - HCHS/SOL participants
 - Excluded participants who had missing data on HL background or self-reported as more than one heritage
 - Covariates: age, sex, HL background, smoking, family History of CHD and stroke, education and family income
 - **Primary Endpoint and Results**
 - Including covariates, changed classification, more individuals classified as MetS.
 1. Being older (OR: 1.32 for men and OR: 1.29 for women) and having family history of CHD (OR: 1.12 for men and OR: 1.16 for women) increases the odds of belonging to the MetS cluster.
 2. Being of SA compared to Mexican descent associated with lower odds (OR = 0.46 for men and 0.61 for women) of belonging to the MetS cluster.
 3. In women, Lower education (OR: 0.77), lower income (OR: 0.87), never smoking (OR: 0.72) and being Puerto Rican compared to Mexican descent associated with higher odds of belonging to the MetS cluster (OR: 2.01)
 - **Results**
 - This is consistent with previous studies, except for the non-smoking. Family History of stroke and other backgrounds did not affect classification. Mexicans had the highest prevalence of MetS in MESA< followed by Puerto Ricans
 - **Summary/Conclusion**
 - Unable to distinguish subtypes of MetS in HL.
 - Waist circumference cut off may not optimize diagnosis for HL women (Elevated WC among HL women with an otherwise healthy CV profile, clustered in the non-MetS)
 - Ethnic specific cut offs? Aschner et al. (reference) suggest 90 cm instead of 88 cm, but this reduces the prevalence by only 1-2%)
 - HDL differentiates poorly between US HL with and without MetS (mean= 45.4 vs. 44.6 mg/dL for men and 51.3 vs. 52.0 mg/dL for women)
 - Current criteria may not optimize diagnosis of Metabolic Syndrome among HL
 - Not consensus in the role of MetS as screen for risk of CV disease.
 - Use individual cardiovascular risk factors, whether they occur alone or in clusters.

HCHS/SOL Heiss G, et al., 2014 (184) 25061141
- **Study type**: cross sectional
- **Size**: 16,319
- Prevalence of MetS higher among HL, but unknown
- **Patient Population**
 - HCHS/SOL participants
 - Excluded participants who had missing data on HL background or self-reported as more than one heritage
- **Primary Endpoint and Results**
 - Different prevalence by age, sex and HL background.
 - Worse with age.
 - Increased more with age for women.
 - Highest among Puerto Rican women and lowest among women and men SA.
 - **Summary/Conclusion**
 - Prevalence of METS higher for HL than non-white but varies with age, sex and HL background.
 - Abdominal adiposity is the main contributor for women.
 - WC cutoff discussion need for sex race and ethnic specific thresholds.
<table>
<thead>
<tr>
<th>HCHS/SOL participants</th>
<th>Abdominal obesity was higher in women than men (96% vs. 73%). Hyperglycemia was worse among men than women (73% vs. 62%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Not consensus in the role of MetS as screen for risk of CV disease. Use individual cardiovascular risk factors, whether they occur alone or in clusters.</td>
<td></td>
</tr>
</tbody>
</table>

Study type: Cross sectional
Size: 15,823
PREVIOUS STUDIES
Most studies before on Mexican-American. MESA showed that Mexican-American had a higher prevalence of MetS compared to Puerto Ricans. Hispanic higher incidence of obesity, diabetes and elevated TG and low HDL, but HDL does not predict myocardial infarction in HL. HTN lower. CVD lower among Mexican-Americans. Do RF and cut off values apply to HL?

Results:
Of all the indicators HDL has the weakest association with the others
No variation in clustering among subgroups
Association with diabetes OR: 2.39 (95% CI: 2.25-2.55) for men and OR: 2.78 (95% CI: 2.60-2.97) for women. The odds of having diabetes with MetS increase by 130% both for men and women.
Association with CHD OR: 1.18 [95% CI: 1.08-1.29] for men and OR: 1.22 (95% CI: 1.11-1.35) for women. The odds of having CHD with MetS increase by 20% for both men and women.

• Current indicators of MetS cluster together in HL. Similarity for men and women, except for BP, stronger indicator for women.
• HDL does not cluster together as strong as the other risk factors that define MetS. HDL is a weak indicator. (UNEXPECTED) Correlation with cardio protection not seen in HL. Not all components equally important for HL.
• Not difference across HL ancestry groups for the components of MetS. The cluster of risk factors is comparable across subgroups. DESPITE what it was shown in the study by Heiss et al prevalence of MetS different for groups but the clustering does not vary.
• MetS associated with CHD and Diabetes.

Needs studies to determine sensitivity and specificity of cut-points for HL.

Abbreviations:
1° indicated primary; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; and RR, relative risk. HCHS/SOL, Hispanic Community Health Study/Study of Latinos; HL, Hispanic/Latinos; US, United States; MetS, Metabolic Syndrome; SA, South American; WC< waist circumference; HDL, High Density Lipoprotein; NCEP ATP, National Cholesterol Education Program Adult Treatment Panel; CHD, Coronary Heart Disease; MESA, Multi-ethnic Study of Atherosclerosis;
Search Terms and Date of Search: Metabolic syndrome and Hispanic
Data Supplement 31. Hypertriglyceridemia: RCT, Meta Analyses (4.5.2)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
</table>
| HOPE-3 Yusuf S, et al., 2016 (12) 27040132 | **Aim:** Assess impact of moderate intensity statin on ASCVD risk in an intermediate risk population Double blind RCT N=12,705 | **Inclusion criteria:**
Men age ≥55 y and women ≥ 65 y with at least one of the following cardiovascular risk factors:
elevated waist-to-hip ratio, history of a low level of HDL-C, current or recent tobacco use, dysglycemia, family history of premature coronary disease, and mild renal dysfunction.
Also enrolled women age 60 y or older with at least two of the above risk factors.
Exclusion criteria:
1. Clinical atherothrombotic CVD
2. Symptomatic hypotension
3. Chronic liver disease
4. Inflammatory muscle disease creatine kinase (CK > 3 x ULN)
5. Moderate renal dysfunction defined as serum creatinine > 2.0 mg/dL (180μmol/L) or eGFR <45ml/min/1.73m²
6. Treatment with cyclosporine or fibrates | Rosuvastatin 10 mg daily (6361 subjects) vs. Placebo (6344 subjects) followed over a median of 5.6 y | **Co-primary endpoints:**
1. Composite of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke.
2. Revascularization, heart failure, and resuscitated cardiac arrest.
Results:
1. Composite of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke occurred in 235 subjects (3.7%) in the rosuvastatin group and in 304 subjects (4.8%) in the placebo group (hazard ratio, 0.76; 95% CI: 0.64 to 0.91; p=0.002; NNT 91)
2. Revascularization, heart failure, and resuscitated cardiac arrest occurred in 277 subjects (4.4%) in the rosuvastatin group and in 363 subjects (5.7%) in the placebo group (HR: 0.75; 95% CI: 0.64 to 0.88; p<0.001; NNT 73)
3. Median predicted 5-y major vascular event rate in placebo group for first co-primary endpoint: 4.28%; for secondary co-primary endpoint: 5.09% | NA |
| Frick MH, et al., 1987 (Frick, 1987 #3268) 3313401 | **Aim:** To assess the effect of gemfibrozil therapy on incident cardiac events. | **Inclusion criteria:**
French men age 40–55y with no clinical cardiovascular disease and
triglycerides ≥500 mg/dL (≥5.7 mmol/L).
Exclusion criteria:
1. Use of any other lipid-lowering drug, or
2. History of cancer, diabetes mellitus, or
3. History of cardiac events, or
Intervention/Comparator
Gemfibrozil 600 mg twice daily (2051 subjects) vs. placebo (2030 subjects) followed over a median of 5.6 y | **1°endpoint:** Fatal and non-fatal myocardial infarction and cardiac death.
Results:
No increase in incidence of cancer or total mortality |
<table>
<thead>
<tr>
<th>Study Type: Placebo controlled, double blind RCT N=4081</th>
<th>Inclusion criteria: Clinical coronary heart disease, electrocardiographic abnormalities or other diseases that would impact study outcomes.</th>
<th>Intervention/Comparator: Lipids/lipoproteins in subjects taking rosvastatin vs. atorvastatin vs. simvastatin</th>
<th>Results: 1. Doubling the dose of each statin resulted in a 4-7% greater reduction in all atherogenic lipids/lipoproteins 2. Mean reduction in non-HDL-C with moderate intensity simvastatin, atorvastatin or rouvastatin was ≥30.1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOYAGER</td>
<td>Aim: To assess dose-dependent reductions in levels of atherogenic lipids/lipoproteins in statin-treated patients. Study Type: Individual patient data pooled analysis N=32,258</td>
<td>Inclusion criteria: 37 studies assessing fasting atherogenic lipids/lipoproteins in studies involving fixed-dose comparisons of rosuvastatin with either atorvastatin or atorvastatin and recording data at baseline and on therapy for which individual patient data were available.</td>
<td>N/A</td>
</tr>
<tr>
<td>Cholesterol Treatment Trialists Collaborators 2012 (Cholesterol Treatment Trialists, 2012 #3245)</td>
<td>Aim: To assess the effect of statin therapy on incident ASCVD in “low risk” individuals. Study Type: Meta-analysis of individual participant data from statin RCT ASCVD outcomes trials N=174,179</td>
<td>Inclusion criteria: Major statin primary prevention trials with at least 1,000 participants with 5-y risk of major vascular events of <10%, with a minimum follow-up of 2 y.</td>
<td>1º endpoint: Effect of statin therapy on non-fatal MI or coronary death, strokes or coronary revascularization, cancer incidence and cause-specific mortality.</td>
</tr>
<tr>
<td>Study Acronym; Author; Year Published</td>
<td>Aim of Study; Study Type; Study Size (N)</td>
<td>Patient population</td>
<td>Study Intervention (# patients) / Study Comparator (# patients)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>VOYAGER Nicholls SJ, et al., 2010 (186) 20102893</td>
<td>Aim: To assess dose-dependent reductions in levels of atherogenic lipids/lipoproteins in statin-treated patients. Study Type: Individual patient data pooled analysis N= 32,258</td>
<td>Inclusion criteria: 37 studies assessing fasting atherogenic lipids/lipoproteins in studies involving fixed-dose comparisons of rosuvastatin with either atorvastatin or atorvastatin and recording data at baseline and on therapy for which individual patient data were available. Exclusion criteria: N/A</td>
<td>Intervention/Comparator: Lipids/lipoproteins in subjects taking rosuvastatin vs. atorvastatin v. simvastatin</td>
</tr>
<tr>
<td>Cholesterol Treatment Trialists Collaborators 2012 (121) 22607822</td>
<td>Aim: To assess the effect of statin therapy on incident ASCVD in “low risk” individuals. Study Type: Meta-analysis of individual participant data from statin RCT ASCVD outcomes trials N=174,179</td>
<td>Inclusion criteria: Major statin primary prevention trials with at least 1,000 participants with 5-y risk of major vascular events of <10%, with a minimum follow-up of 2 y. Exclusion criteria: N/A</td>
<td>Intervention/Comparator: 22 RCT’s statin versus control (N=134,537, median follow-up 4.8 y) and 5 RCT’s of more versus less statin (N=39,612, median follow-up 5.1 y)</td>
</tr>
</tbody>
</table>

JUPITER: 4.4%; AFCAPS/TEXCAPS: 5.2%; ASCOT-LLA: 8.1%
4. Statin therapy had no effect on cancer incidence, cancer mortality or other non-vascular mortality
<table>
<thead>
<tr>
<th>Cholesterol Treatment Trialists Collaborators 2010 (Cholesterol Treatment Trialists, 2010 #3244)</th>
<th>21067804</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aim: Assess the safety and efficacy of more intensive statin therapy.</td>
<td>2. Specifically in the intermediate risk group (5- to <10 % 5 y risk) the relative risk reduction with statins was 0.69 (99% CI: 0.60-0.79)</td>
</tr>
<tr>
<td>Study Type: Meta-analysis of individual participant data from statin RCT with ASCVD outcomes (N=169,138)</td>
<td>3. Reported 5 y major vascular event rates in statin RCT's: JUPITER: 4.4%; AFCAPS/TEXCAPS: 5.2%; ASCOT-LLA: 8.1%</td>
</tr>
<tr>
<td>Inclusion criteria: Major statin primary and secondary prevention trials with at least 1000 participants with a minimum follow-up of 2 y, including trials of more versus less intensive statin regimens (five trials; 39, 612 subjects; median follow-up 5.1 y) and statin versus control (21 trials; 129, 526 subjects; median follow-up 4.8 y).</td>
<td>4. Statin therapy had no effect on cancer incidence, cancer mortality or other non-vascular mortality</td>
</tr>
<tr>
<td>Exclusion criteria: For acute coronary syndrome subjects, revascularization not related to recurrent ischemia or occurring <30 d from the time of randomization</td>
<td></td>
</tr>
<tr>
<td>Intervention/Comparator: Statin versus control More intense versus less intense statin</td>
<td>1° endpoint: Cause-specific mortality, major coronary event defined as coronary death or non-fatal MI percutaneous coronary intervention or bypass grafting, stroke (subdivided by type), and new cancer diagnosis (subdivided by site).</td>
</tr>
<tr>
<td>Results: 1. More intensive versus less intensive regimens produced a 15% (95% CI: 11-18; (p<0.0001)) further reduction in major vascular events, including a 13% (95% CI: 7-19; (p<0.0001)) further reduction in coronary death or non-fatal MI, a 19% (95% CI: 15-24; (p<0.0001)) reduction in coronary revascularization, and a 16% (95% CI: 5-26; (p=0.005)) in ischemic stroke 2. For every 39 mg/dL reduction in LDL-C, there was a 22% (rate ratio 0.78; 95% CI: 0.76-0.80; (p<0.0001)) reduction in the relative risk of major vascular events. 3. All-cause mortality was reduced by 10% for every 39 mg/dL LDL-C reduction (rate ratio 0.9; 95% CI: 0.87-0.93; (p<0.0001)) primarily due to reduction in coronary heart disease death (risk ratio 0.8, 99% CI: 0.74-0.87)</td>
<td>N/A</td>
</tr>
<tr>
<td>MARINE Trial</td>
<td>Aim: to investigate the efficacy and safety of omega-3 EPA ethyl ester in reducing triglyceride levels and other lipid parameters in patients with fasting triglycerides ≥ 500 mg/dL in patients treated with omega 3 EPA ethyl ester or placebo.</td>
</tr>
<tr>
<td>Study Type: Multi-center, placebo-controlled, randomized, double-blind, 12-wk study with an open-label extension</td>
<td>N= 229</td>
</tr>
<tr>
<td>Bays HE, et al., (187) 21683321</td>
<td></td>
</tr>
<tr>
<td>upper limit of normal or creatine kinase elevation due to known muscle disease; the consumption of >2 alcoholic beverages per day after screening; a history of illicit drug use within 1 y before screening; a history of symptomatic gallstone disease unless treated with cholecystectomy; known nephrotic syndrome or >3 g/d proteinuria; and use of a variety of weight loss or triglyceride-raising drugs</td>
<td></td>
</tr>
</tbody>
</table>
Data Supplement 32. Hypertriglyceridemia: Observational Studies (Section 4.5.2)

<table>
<thead>
<tr>
<th>Study Acronym Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hokanson JE and Austin MA, 1996 (188) 8368686</td>
<td>Study Type: meta-analysis of 17 prospective population-based studies N=57,277.</td>
<td>Inclusion criteria: 46,413 men; 10,864 women; Age 15-81 y; Caucasians only; multinational</td>
<td>Primary endpoint: Incident fatal and non-fatal cardiovascular endpoints relative to fasting triglycerides (TG); average follow-up in men 8.4 y; in women 11.4 y. Results: Men: Univariate RR for TG: 1.32 (95% CI: 1.26-1.39; p<0.05) Women: Univariate RR for TG: 1.76 (95% CI: 1.50-2.07; p<0.05) With adjustment for HDL-C: Men: Univariate RR for TG: 1.14 (95% CI: 1.05-1.28; p<0.05) Women: Univariate RR for TG 1.37 (95% CI: 1.13-1.66; p <0.05)</td>
<td>Conclusions: Suggest TG is a risk factor for cardiovascular disease events for Caucasian men and women, independent of HDL-C Limitations: Study limited to Caucasians</td>
</tr>
<tr>
<td>The Emerging Risk Factors Collaboration 2009 (189) 19903920</td>
<td>Patient level meta-analysis of 68 long-term prospective studies, mostly in North America and Europe. N=302,430.</td>
<td>Inclusion criteria: At baseline: Men and women with no history of MI, angina or stroke who had complete information on total cholesterol, HDL-C, triglycerides and risk factors including age, sex, smoking status, history of diabetes mellitus, systolic blood pressure and body mass index. Outcomes based on death certificates, medical records, autopsy findings, and "other supplementary sources to classify deaths." Stroke diagnosis based on clinical features and characteristic findings on brain imaging, and all studies attempted to classify stroke subtype.</td>
<td>1ª outcome (regarding triglycerides): Hazard ratios, adjusted for conventional risk factors, calculated for 1-standard deviation higher values of 0.52 log e triglyceride. Within-study meta regression analysis adjusted for within person variation and combined using meta-analysis. Results: Mean age 59 ± 8 y. 43% women. 60% Western European, 32% North American. CHD rates per 1,000 person-y in the bottom and top thirds of baseline lipids, respectively, were 2.6 and 6.2. Highest usual mean TG level was 250 mg/dL. Unadjusted hazard ratio for CHD of fasting or non-fasting triglycerides for CHD was 1.37 (95% CI: 1.31-1.42) after adjustment for non-lipid risk factors, but after additional adjustment for HDL-C and non-HDL-C was 0.99 (95% CI: 0.94-1.05) for CHD, and for ischemic stroke 1.02 (95% CI: 0.94-1.11).</td>
<td>Population-wide fasting or non-fasting triglyceride concentrations are not independently related to CHD or ischemic stroke risk when controlling for standard risk factors and HDL-C and non-HDL-C.</td>
</tr>
<tr>
<td>Reference</td>
<td>Study Type</td>
<td>Inclusion Criteria</td>
<td>Exclusion Criteria</td>
<td>Endpoint</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Nordestgaard, BG, et al., 2007 (190) 17635890</td>
<td>Prospective cohort study N=13,981</td>
<td>Inclusion criteria: 7587 men and 6394 women from the general population of Copenhagen, Denmark; age 20-93 y; followed from baseline (1976-1978) until 2004.</td>
<td>N/A</td>
<td>1st endpoint: Hazard ratios for incident MI, ischemic heart disease (IHD) and total death over a mean follow-up of 28 y, according the 88.5 mg/dL quintiles of non-fasting triglycerides (TG), as compared to those with TG <88.5 mg/dL.</td>
</tr>
<tr>
<td>Freiberg JJ, et al., 2008 (191) 19001625</td>
<td>Prospective cohort study N=13,956 in the prospective study; N=9,367 in the cross-sectional study</td>
<td>Inclusion criteria: Men and women age 20-93 y of age in the Copenhagen City Heart Study, with enrollment initiating in 1976 and with follow-up through July 2007. Cross sectional study of men and women attending the 1991-1994 examination of the prospective study.</td>
<td>N/A</td>
<td>Primary endpoint: Prospective study: Baseline non-fasting TG (NFTG), other risk factors at baseline and at follow-up examination and incidence of ischemic stroke. Cross sectional study: NFTG, levels of remnant cholesterol and prevalence of ischemic stroke.</td>
</tr>
<tr>
<td>Karlson, BW, et al., 2016 (192) 26969416</td>
<td>Inclusion criteria: Subjects with baseline fasting triglycerides of ≥177 mg/dL derived from The VOYAGER (Of Statin Therapy in At-Risk Groups: Effects of Rosuvastatin, Atorvastatin and Simvastatin) database who were treated with daily doses of rosvastatin 5, 10, 20 and 40 mg; atorvastatin 10, 20, 40 and 80 mg; and simvastatin 10, 20, 40 and 80 mg</td>
<td>Primary endpoint: Percent changes from baseline in LDL-C and triglycerides and least square means calculated. Percentage of patients reaching on treatment triglycerides of <150 mg/dL was calculated after adjusting for study and baseline triglyceride level. Results: 1. The mean percent reduction in triglycerides ± standard error of the means across all statins and all doses ranged from -15.1% (3.2%) to -31.3% (1.4%) 2. Atorvastatin 80 mg produced greater triglyceride reduction than rosvastatin 10 mg (p=0.003) 2. Triglyceride reduction with atorvastatin 20 and 40 mg were similar to that seen with rosvastatin 20 and 40 mg (P non-significant). 3. Triglyceride reduction with atorvastatin 80 mg was similar to that seen with rosvastatin 40 mg (P non-significant)</td>
<td>1. High-intensity statin therapy is associated with triglyceride reductions of up to 31% in patients with baseline triglycerides 2. High-intensity statins therapy produces greater triglyceride reduction than moderate intensity statins Limitations: 1. No cardiovascular outcomes data available 2. Short duration of the individual studies (typically 4-6 wk)</td>
<td></td>
</tr>
<tr>
<td>Study Authors</td>
<td>Design</td>
<td>Inclusion criteria</td>
<td>1st endpoint: Hazard ratio (HR) for acute pancreatitis (N=434) and myocardial infarction (N=3,942)</td>
<td>Results</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Pederson SB, et al., 2016 (193)</td>
<td>Prospective cohort study</td>
<td>N=116,550 subjects from the Copenhagen General Population Study in 2003 to 2015 and 17,901 from the Copenhagen City Heart Study from 1976-8 with follow-up examinations in 1981-3, 1991-4 and 2001-3. All followed until occurrence of an event, death, emigration or end of follow-up in November 2014. Median follow-up 6.7 y.</td>
<td>TG ≥ 89 mg/dL: 1.6 (95% CI: 1.0-2.6; 4.3 events/10,000-person y). For MI: 1.6 (95% CI: 1.4-1.9; 41 events/10,000-person y)</td>
<td>Non-fasting TG above 177 mg/dL predicts and increased risk of acute pancreatitis, with incremental risk proportionate to NFTG level.</td>
</tr>
<tr>
<td>Rhodes KS, et al., 2015 (194)</td>
<td>Prospective outcomes study</td>
<td>New patients referred to a University Medical Center lipid management program with fasting triglycerides ≥500 mg/dL between September 10, 2001 and October 5, 2007. Patents received fasting baseline lipid, lipoprotein, apolipoprotein, and additional screening blood testing followed by a 75 min.</td>
<td>Triglyceride level achieved at the second visit and the median percent change in triglyceride level from the first to the second visit.</td>
<td>A lifestyle intervention comprised of dietary change focusing on low simple and refined carbohydrates, high soluble fiber (>10 g/d), low saturated and minimal trans-fat, limited or no alcohol, and aerobic exercise of 30-60 min. most days of the week is associated with significant short-term reduction of fasting triglycerides in patients with severe hypertriglyceridemia, regardless of the absence or presence of concomitant lipid lowering therapy.</td>
</tr>
</tbody>
</table>
Christian JB, et al., 2012 (195)

Inclusion Criteria:
Patients ≥ age 18 y of age enrolled from January 2001 through December 2010 in >46 different health care plans with full insurance coverage for professional, hospital and outpatient prescription medication services with continuous enrollment with medical and pharmacy claims for 6 mo before the index date and at least 90 d after the index date.

Had to have baseline triglyceride result and follow-up triglyceride result between 6 and <24 wk after the index date.

Exclusion criteria:
Medical claims indicating pregnancy during the study period.

Primary outcomes:
Incidence of:
- Cardiovascular events
- Pancreatitis episodes
- Diabetes-related events
- Combined chronic kidney disease and end-stage renal disease
- Disease-related health care costs among those patients whose follow-up triglyceride levels:
 1) remained ≥ 500 mg/dL (8,493 patients) vs.
 2) fell to <500 mg/dL (32,217 patients)

Results:
Those with triglycerides ≥ 500 mg/dL had a greater rate of:
1. Pancreatitis episodes (hazard ratio [HR]: 1.79; 95% confidence interval [CI]: 1.47-2.18)
2. Cardiovascular events (HR: 1.19; 95% CI: 1.10-1.28)
3. Diabetes-related events (HR: 1.42; 95% CI: 1.27-1.59)
4. Kidney disease (HR: 1.13; 95% CI: 1.04-1.22)

Conclusions:
The group with triglycerides <500 mg/dL had a lower rate of clinical events as compared to those with triglycerides that remained ≥ 500 mg/dL

Limitations:
1. Retrospective design and potential for measured and unmeasured residual confounding
2. Etiology of high triglyceride levels could not be determined
3. Smoking and body mass index information not available

Limitations: Short follow-up period does not assure maintained long term adherence to the lifestyle change program

Exclusion criteria: Age <20 y, pregnant or lactating, history of organ transplant, creatinine >1.5 mg/dL

2. With median baseline triglycerides of 961.5 mg/dL at first visit, 123 (78%) achieved greater than 20% reduction in triglyceride levels.

3. The reduction in median fasting triglyceride level from the first to the second visit was 468.5 mg/dL, representing a 48.8% (IQR -73.3 to -23.2) Wilcoxon P <0.0001

4. Among those whose lipid-lowering medication regimen remained stable between the first and second visits, there was no difference in the median percentage reduction in triglycerides after lifestyle intervention between those not taking lipid medication, those taking a fibrate, those taking other lipid-lowering medication, or those on combination lipid-lowering therapy (p=0.376)

Limitations: Short follow-up period does not assure maintained long term adherence to the lifestyle change program

Inclusion Criteria:
- Patients ≥ age 18 y of age
- Enrolled from January 2001 through December 2010 in >46 different health care plans with full insurance coverage for professional, hospital and outpatient prescription medication services with continuous enrollment with medical and pharmacy claims for 6 mo before the index date and at least 90 d after the index date.
- Had to have baseline triglyceride result and follow-up triglyceride result between 6 and <24 wk after the index date.
- Exclusion criteria: Age <20 y, pregnant or lactating, history of organ transplant, creatinine >1.5 mg/dL

2. With median baseline triglycerides of 961.5 mg/dL at first visit, 123 (78%) achieved greater than 20% reduction in triglyceride levels.

3. The reduction in median fasting triglyceride level from the first to the second visit was 468.5 mg/dL, representing a 48.8% (IQR -73.3 to -23.2) Wilcoxon P <0.0001

4. Among those whose lipid-lowering medication regimen remained stable between the first and second visits, there was no difference in the median percentage reduction in triglycerides after lifestyle intervention between those not taking lipid medication, those taking a fibrate, those taking other lipid-lowering medication, or those on combination lipid-lowering therapy (p=0.376)

Limitations: Short follow-up period does not assure maintained long term adherence to the lifestyle change program
Those with triglycerides <500 mg/dL had lower adjusted all-cause and cardiovascular related costs in the first three years of follow-up

Data Supplement 33. Randomized Trials of Statins in Women for Primary Prevention of CVD (Section 4.5.3.)

<table>
<thead>
<tr>
<th>Study Acronym</th>
<th>Aim of Study</th>
<th>Patient Population</th>
<th>Study Intervention (include # patients)</th>
<th>Endpoint Results (include Absolute Event Rates, P value; OR or RR; and 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
</table>
| AFCAPS/TexCAPS | To compare lovastatin with placebo for prevention of first acute major coronary event in men and women without clinically evident atherosclerotic cardiovascular disease with average total cholesterol and LDL-C levels and below average HDL-C levels. | Men 45-73 y old, women 55-73 y old, TC 180-264 mg/dL, LDL-C 130-190 mg/dL, HDL-C ≤ 45 mg/dL for men and ≤ 47 for women, TG < 400 mg/dL. When LDL-C 125-129 mg/dL, if TC/HDL-C ratio > 6.0, subjects were included. | AHA Step I diet + lovastatin 20-40 mg daily (2805 men, 499 women) Comparator: AHA Step I diet alone + placebo (2803 men, 498 women) | 1st endpoint: First acute major coronary event (fatal or nonfatal MI, unstable angina, sudden cardiac death)
 - Lova 116 events (6.8 per 1000 patient-y), placebo 183 events (10.9 per 1000 patient-y)
 - RR for lova 0.67; 95% CI: 0.52 to 0.85, p<0.001
Unstable angina
 - Lova 60 events (3.5 per 1000 patient-y), placebo 87 events (5.1 per 1000 patient-y) | Coronary revascularizations
 - Lova 106 events (6.2 per 1000 patient-y), placebo 157 events (9.3 per 1000 patient-y)
 - RR for lova 0.67; 95% CI: 0.52 to 0.85, p=0.001
Unstable angina
 - Lova 60 events (3.5 per 1000 patient-y), placebo 87 events (5.1 per 1000 patient-y) |
AFCAPS/TexCAPS
Clearfield M, et al., 2001 (196)
11788107

Aim: To examine the efficacy and safety of long-term lovastatin treatment in the 997 women enrolled in AFCAPS/TexCAPS

Inclusion criteria:
- Men 45-73 y old, women 55-73 y old
- TC 180-264 mg/dL, LDL 130-190 mg/dL, HDL ≤ 45

Intervention: AHA Step I diet + lovastatin 20-40 mg daily (2805 men, 499 women)

1° endpoint: First acute major coronary event (fatal or nonfatal MI, unstable angina, sudden cardiac death)

Safety endpoint:

- **Total mortality:** 80 lovastatin (4.6 per 1000 person-y), 77 placebo 4.4 per 1000 person-y
- **Cardiovascular mortality:** 17 lovastatin (1.0 per 1000 person-y), 25 placebo 1.4 per 1000 person-y
- **Noncardiovascular mortality:** 63 lovastatin (3.6 per 1000 person-y), 52 placebo 3.0 per 1000 person-y
- **Fatal and nonfatal cancer:** 252 lovastatin (15.1 per 1000 person-y), 259 placebo (15.6 per 1000 person-y); p=0.75

Adverse events
- Any adverse event leading to discontinuation similar in both groups (Lova 13.6%, placebo 13.8%).
- Consecutive LFT > 3 times ULN rare (< 1% in both groups)
- Myalgia leading to discontinuation 0.3% for both groups
- CK > 10 times ULN rate (< 1% in both groups)

3 cases of rhabdo (2 in placebo group, 1 in lovastatin group).

Secondary Endpoints in Women

 Coronary revascularizations
- RR for lovastatin 0.89; 95% CI: 0.32-2.44; p=0.814

 Unstable angina
Study type: RCT

Size: 5608 men and 997 women

Inclusion criteria:
- mg/dL for men and ≤ 47 for women, TG < 400 mg/dL.
- When LDL-C 125-129 mg/dL, if TC/HDL-C ratio > 6.0, subjects were included.

Comparator: AHA Step I diet alone + placebo (2803 men, 498 women)

- Women: 2.65 per 1000 person-y for lova vs. 4.92 for placebo
- Men: 7.57 per 1000 person-y for lova vs. 11.95 for placebo

Exclusion criteria:
- Clinical evidence of CVD
- Secondary hyperlipidemia
- IDDM
- Uncontrolled HTN
- Ventricular ectopy requiring medication
- Impaired hepatic transaminase > 20% above normal
- Body weight > 50% over ideal for height
- Use of other lipid-lowering or investigational agents.

Safety endpoint in women:
- Total mortality: 11 lova (4.11 per 1000 person-y), 7 placebo (2.61 per 1000 person-y)
- Noncardiovascular mortality: all of the above except for 1 death in lova group
- Fatal and nonfatal cancer: 32 lova (12.38 per 1000 person-y), 28 placebo (10.71 per 1000 person-y); p=0.69 (pre-existing cancer was not an exclusion)

Study Limitations
- Women comprised only 15% of the total cohort
- Insufficient power to detect a treatment group difference in the primary endpoint in women
- Small number of events in women
- 54% of women took HRT during the trial

Adverse events
- Fewer women taking lova than placebo had serious cardiovascular adverse events (5.2% vs. 8.6%; p=0.034)
- Consecutive LFT > 3 times ULN rare (< 1% in both groups)
- CK > 10 times ULN rare (1 woman in each group)
- No cases of myopathy or rhabdomyolysis

MEGA

Nakamura H, et al., 2006 (103) 17011942

AIM: To evaluate the usefulness of pravastatin in the primary prevention of CVD in daily clinical practice in Japan.

Inclusion criteria:
- Men and postmenopausal women aged 40-70 y (mean age: 59.7 women, 55.2 men)

Intervention: NCEP step I diet plus pravastatin 10-20 mg daily (2638 women, 1228 men)

1° endpoint: Composite of first occurrence of CHD (fatal and nonfatal MI, cardiac and sudden death, coronary revascularization procedure, and angina)

Secondary Endpoints
- Stroke: 50 events in the diet plus prava group vs. 62 events in the diet alone group (HR: for prava 0.83; 95% CI: 0.57 to 1.21; p=0.33)

© American Heart Association, Inc., and the American College of Cardiology Foundation.
168
MEGA

Mizuno K, et al., 2008 (197)

AIM: To summarize the comparison of the results of the MEGA study between men and women.

<table>
<thead>
<tr>
<th>Study type:</th>
<th>RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size:</td>
<td>5356 women, 2476 men</td>
</tr>
</tbody>
</table>

Inclusion criteria:
- Men and postmenopausal women aged 40-70 y (mean age: 59.7 women, 55.2 men)
- Body weight of 40 kg or more
- Hypercholesterolemia (total cholesterol 220 mg/dL to 270 mg/dL)

Exclusion criteria:
- History of CVD or cerebrovascular disease
- Familial hypercholesterolemia
- Current diagnosis of malignancy
- Secondary hyperlipidemia

<table>
<thead>
<tr>
<th>Intervention:</th>
<th>NCEP step I diet plus pravastatin 10-20 mg daily (2638 women, 1228 men)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparator:</td>
<td>NCEP step I diet alone (2718 women, 1248 men)</td>
</tr>
</tbody>
</table>

1st endpoint:
- Composite of first occurrence of CHD (fatal and nonfatal MI, cardiac and sudden death, coronary revascularization procedure, and angina)
 - Women: 2.2 per 1000 person-y for diet + prava vs. 2.9 for diet only
 - Men: 5.7 per 1000 person-y for diet + prava vs. 8.9 for diet only
 - Women: HR: 0.75; 95% CI: 0.45-1.25; p=0.27
 - Men: HR: 0.65; 95% CI: 0.41-1.02; p=0.06
 - P for heterogeneity 0.67

Secondary Endpoints
- **Stroke**
 - Women: HR: 0.63; 95% CI: 0.67 to 1.10; p=0.10
 - Men: HR: 0.66; 95% CI: 0.37 to 1.20; p=0.17
 - Heterogeneity, p=0.90
 - Women ≥ 60 y: HR: 0.36; 95% CI: 0.17 to 0.77; p=0.008
- **CHD plus cerebrovascular disease**
 - Women: HR: 0.74; 95% CI: 0.50 to 1.12; p=0.15
 - Men: HR: 0.59; 95% CI: 0.40 to 0.87; p=0.007
 - Heterogeneity, p=0.42
 - Women ≥ 60 y: HR: 0.50; 95% CI: 0.31-0.83; p=0.007

© American Heart Association, Inc., and the American College of Cardiology Foundation.
<table>
<thead>
<tr>
<th>JUPITER</th>
<th>Aim: To investigate whether treatment with rosuvastatin, 20 mg daily, as compared with placebo, would decrease the rate of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inclusion criteria:</td>
</tr>
<tr>
<td></td>
<td>• Women ≥ 60 y of age</td>
</tr>
<tr>
<td></td>
<td>• Men ≥ 50 y</td>
</tr>
<tr>
<td></td>
<td>• LDL-C < 130 mg/dL</td>
</tr>
<tr>
<td></td>
<td>• hsCRP ≥ 2.0 mg/L</td>
</tr>
<tr>
<td></td>
<td>Intervention: Rosuvastatin 20 mg daily (3426 women; 5475 men)</td>
</tr>
<tr>
<td></td>
<td>1st endpoint: First major cardiovascular event (MI, stroke, hospitalization for unstable angina, arterial</td>
</tr>
<tr>
<td></td>
<td>Secondary Endpoints</td>
</tr>
<tr>
<td></td>
<td>• Fatal or nonfatal MI: 0.17 and 0.37 per 100 person-y for rosuva vs. placebo (HR: for rosuva 0.46; 95% CI: 0.30 to 0.70; p=0.0002)</td>
</tr>
</tbody>
</table>

- **Secondary hyperlipidemia**
- **Women ≥ 60 y:** HR: 0.55; 95% CI: 0.30-1.01; p=0.054

- **Total mortality**
 - **Women:** HR: 0.59; 95% CI: 0.35 to 1.00; p=0.046.
 - **Men:** HR: 0.81; 95% CI: 0.46 to 1.43; p=0.46.
 - heterogeneity p=0.43
 - **Women ≥ 60 y:** HR: 0.52; 95% CI: 0.28-0.97; p=0.04

Study Limitations
- Lower percentage of women with risk factors is probably associated with less incidence of events in women compared with men.
- Insufficient number of younger women were enrolled.
- Analyses in subgroups of women by age are exploratory because of small numbers of events.
- Japanese people have a lower CVD risk compared with other countries.

Adverse Events
- No difference in the incidence of severe adverse events in women in the diet plus prava group (252; 9.6%) vs. diet only group (242; 8.9%)
- Total incidence of cancer did not differ between the diet plus prava group (74; 5.46 per 1000 person-y) vs. diet only group (78; 5.55 per 1000 person-y)
<table>
<thead>
<tr>
<th>first major cardiovascular events.</th>
<th>TG < 500 mg/dL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusion criteria:</td>
<td></td>
</tr>
<tr>
<td>Prior history of CAD, stroke or DM</td>
<td></td>
</tr>
<tr>
<td>ALT > twice the ULN</td>
<td></td>
</tr>
<tr>
<td>CK > 3 times ULN</td>
<td></td>
</tr>
<tr>
<td>Creatinine > 2.0 mg/dL</td>
<td></td>
</tr>
<tr>
<td>Uncontrolled HTN</td>
<td></td>
</tr>
<tr>
<td>Cancer within 5 y</td>
<td></td>
</tr>
<tr>
<td>Uncontrolled hypothyroidism</td>
<td></td>
</tr>
<tr>
<td>Recent history of alcohol or drug abuse</td>
<td></td>
</tr>
<tr>
<td>Inflammatory conditions such as arthritis, lupus, or inflammatory bowel disease</td>
<td></td>
</tr>
<tr>
<td>Current use of hormone therapy</td>
<td></td>
</tr>
<tr>
<td>Previous or current use of lipid-lowering therapy</td>
<td></td>
</tr>
<tr>
<td>Immunosuppressant agents.</td>
<td></td>
</tr>
</tbody>
</table>

Comparator: Placebo (3375 women; 5526 men) revascularization, cardiovascular death
- After 1.9 y median follow-up; maximal follow-up 5 y
- Rosuva 142 events (0.77 per 100 person-y), placebo 251 (1.36 per 100 person-y)
- HR: for rosuva 0.56; 95% CI: 0.46-0.69; p<0.00001
- Relative hazard reductions in the rosuvastatin group were similar for women (46%) and men (42%)

Potential limitations
- Did not include people with low hsCRP along with low LDL-C (unlikely to show a benefit).
- Trial was stopped early (median follow up <2 y); effect of longer-term therapy is not known.
- Trial evaluated the use of rosuvastatin for the prevention of first CV events; absolute event rates are lower than expected among patients with vascular disease; must consider cost effectiveness of statins in patients with low LDL-C but elevated hsCRP.

Adverse Events
- Similar total number of adverse events in the rosuva (1352) and placebo (1377) groups; p=0.60
- 19 myopathic events in rosuva vs. 9 in placebo groups; p=0.82

Comparator: Placebo (3375 women; 5526 men)
- Fatal or nonfatal stroke: 0.18 and 0.34 per 100 person-y for rosuva vs. placebo (HR: 0.52; 95% CI: 0.34 to 0.70; p=0.002)
- Arterial revascularization or unstable angina: 0.41 and 0.77 per 100 person-y for rosuva vs. placebo (HR: 0.53; 95% CI: 0.40 to 0.70; p<0.00001)
- Nonfatal MI, nonfatal stroke, or death from cardiovascular causes: 0.45 and 0.85 per 100 person-y for rosuva vs. placebo (HR: 0.53; 95% CI: 0.40 to 0.69; p<0.00001)

Adverse Events
- Similar total number of adverse events in the rosuva (1352) and placebo (1377) groups; p=0.60
- 19 myopathic events in rosuva vs. 9 in placebo groups; p=0.82

© American Heart Association, Inc., and the American College of Cardiology Foundation.
171
JUPITER
Mora S, et al., 2010 (199) 20176986

AIM: 1) To conduct a prespecified sex-specific analysis in JUPITER comparing the efficacy and safety of rosuvastatin therapy in women vs. men; 2) Perform an updated met-analysis of statin therapy for the primary prevention of CVD events and total mortality in women

Study type: RCT and meta-analysis

Size: 6801 women, 11,0001 men

<table>
<thead>
<tr>
<th>JUPITER</th>
<th>Inclusion criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women ≥ 60 y of age</td>
<td></td>
</tr>
<tr>
<td>Men ≥ 50 y</td>
<td></td>
</tr>
<tr>
<td>LDL-C < 130 mg/dL</td>
<td></td>
</tr>
<tr>
<td>hsCRP ≥ 2.0 mg/L</td>
<td></td>
</tr>
<tr>
<td>TG < 500 mg/dL.</td>
<td></td>
</tr>
</tbody>
</table>

Exclusion criteria:
- Prior history of CAD, stroke or DM
- ALT > twice the ULN
- CK > 3 times ULN
- Creatinine > 2.0 mg/dL
- Uncontrolled HTN
- Cancer within 5 y
- Uncontrolled hypothyroidism
- Recent history of alcohol or drug abuse
- Inflammatory conditions such as arthritis, lupus, or inflammatory bowel disease
- Current use of hormone therapy
- Previous or current use of lipid-lowering therapy
- Immunosuppressant agents.

<table>
<thead>
<tr>
<th>JUPITER</th>
<th>Intervention:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosuvastatin 20 mg daily (3426 women; 5475 men)</td>
<td></td>
</tr>
</tbody>
</table>

Comparator: Placebo (3375 women; 5526 men)

JUPITER 1st endpoint: First major cardiovascular event (MI, stroke, hospitalization for unstable angina, arterial revascularization, cardiovascular death)
- Women: 0.56 per 100 person-y for rosuva vs. 1.04 for placebo
- Men: 0.88 per 100 person-y for rosuva vs. 1.54 for placebo

Meta-analysis
- Statin vs. placebo

JUPITER Secondary Endpoints

Revascularization/unstable angina
- Women: HR: 0.24; 95% CI: 0.11 to 0.51
- Men: HR: 0.63; 95% CI: 0.46 to 0.85; Heterogeneity, p=0.01

Nonfatal stroke
- Women: HR: 0.84; 95% CI: 0.45 to 1.58
- Men: HR: 0.33; 95% CI: 0.17 to 0.63
- Heterogeneity, p=0.04)

All-cause death
- Women: HR: 0.77; 95% CI: 0.55 to 1.06
- Men: HR: 0.82; 95% CI: 0.66 to 1.03
- Significant only when men and women were combined

Adverse Events
- *Muscle weakness, stiffness, pain, myopathy* – no difference in women vs. men regardless of treatment assignment
- *Newly diagnosed cancer* – no difference in women vs. men regardless of treatment assignment

- One nonfatal case of rhabdomyolysis in the rosuva group
- No sign between-group differences in newly diagnosed cancer, ALT elevation > 3 times ULN, or intracranial hemorrhage
- Physician-reported diabetes was more frequent in the rosuva (270 cases) vs. the placebo (216 cases) group; p=0.01.
<table>
<thead>
<tr>
<th>Study type: Meta-analysis</th>
<th>Inclusion criteria:</th>
<th>Intervention:</th>
<th>1st endpoint: All-cause mortality and the primary endpoint as defined by the investigators of each study.</th>
</tr>
</thead>
</table>
| Aim: Meta-analysis of sex-specific outcomes in controlled randomized clinical trials of statin therapy | • Controlled, randomized trials
• Investigator- and patient-blinded
• Data presented by sex. | • Statin
• Analyses were done separately for primary prevention and secondary prevention trials, by level of baseline risk and by type of endpoint. | - Women - OR 0.81; 95% CI: 0.75 to 0.89, p<0.0001
- Men - OR: 0.77; 95% CI: 0.71-0.83, p<0.0001
- Interaction effect p=0.1837
- Women, secondary prevention trials – OR: 0.78; 95% CI: 0.70-0.88; p<0.0001 |
| Exclusion criteria: | • Studies with fewer than 100 patients
• Fewer than deaths per randomized group | | |
| | | Comparator: | |
| Size: 18 studies (8 primary prevention, 10 secondary prevention); 5 primary prevention studies included patients with CVD. Overall, 141,235 | | | |

Meta-analysis inclusion criteria:
• RCTs through 2009
• Predominantly or exclusively primary prevention individuals
• Mean follow-up > 1 y
• Sex-specific clinical outcomes on CVD or total mortality

Inclusion criteria:
• Control:
• Investigator- and patient-blinded
• Data presented by sex.

Exclusion criteria:
• Studies with fewer than 100 patients
• Fewer than deaths per randomized group

Intervention:
• Analyses were done separately for primary prevention and secondary prevention trials, by level of baseline risk and by type of endpoint.

Comparator:
Cancer deaths – no difference in women based on treatment assignment; more deaths in placebo group for men (p=0.03)

Hepatic disorder – no difference in women based on treatment assignment; more adverse events in men assigned to rosuva than placebo (p=0.02)

Physician reported diabetes – Higher in women on rosuva vs. placebo (1.53 vs. 1.20 per 100 person-y; HR: 1.49; 95% CI: 1.71 to 2.20; p=0.008). Men on rosuva vs. placebo (1.36 vs. 1.20 per 100 person-y; HR: 1.14; 95% CI: 0.91 to 1.43; p=0.24). Test for heterogeneity of DM by sex was not significant (heterogeneity, p=0.16).

RR 0.63; 95% CI: 0.49-0.82; p<0.001
Heterogeneity, p=0.56

CVD in predominantly and exclusively primary prevention women (+ ALLHAT-LLT, ASCOT-LLA)
RR: 0.79; 95% CI: 0.59-1.05; p=0.11
Heterogeneity, p=0.05

Total mortality in exclusively primary prevention women
RR: 0.78; 95% CI: 0.59-1.05; p=0.21
Heterogeneity, p=0.20

Total mortality in predominantly and exclusively primary prevention women
RR: 0.86; 95% CI: 0.67-1.12; p=0.27
Heterogeneity, p=0.13.

Kostis WJ, et al., 2012 (200) 22300691

© American Heart Association, Inc., and the American College of Cardiology Foundation.

173
patients were included, 21,468 primary events, 13,710 events (3898 deaths in studies with sex-specific mortality data).

- Placebo or lower intensity statin
- Women, primary prevention trials -- OR: 0.85; 95% CI: 0.75-0.98; p=0.0209
- Interaction, p=0.3397.

Women, Meta-analysis by level of risk:
- High risk – OR: 0.88; 95% CI: 0.81-0.95; p=0.0014
- Medium risk – OR: 0.75; 95% CI: 0.64-0.89; p=0.0011
- Low risk – OR: 0.59; 95% CI: 0.41-0.87; p=0.006.

Taylor F, et al., 2013 (201)

Aim: To assess the effects, both harms and benefits, of statins in people with no history of CVD

Study type: Systematic review

Size: 18 RCTs, 15,934 patients

Inclusion criteria:
- RCTs comparing treatment with statins for at least 12 mo with placebo or usual care
- Men and women (aged 18 or more) with no restrictions on total, low- or high-density lipoprotein cholesterol levels
- RCTs with less than or equal to 10% of patients with a previous history of CVD

Exclusion criteria: Trials in which statins were used to treat or control chronic conditions (e.g. Alzheimer’s disease, rheumatoid arthritis, renal disease, macular degeneration, aortic stenosis)

Intervention: Statins

Comparator: Placebo or usual care

1° endpoints:
- Total mortality – OR: 0.86; 95% CI: 0.79-0.94
- Total CHD events – RR: 0.73; 95% CI: 0.67-0.80
- Total number of CVD events – RR: 0.75; 95% CI: 0.70-0.81
- Total number of stroke events – RR: 0.78; 95% CI: 0.68-0.89
- Total number of fatal and nonfatal CHD, CVD and stroke events – RR: 0.65; 95% CI: 0.58-0.73
- Number of study participants who underwent revascularization – RR: 0.62; 95% CI: 0.54-0.72

Adverse events:
- No difference in adverse events between groups (RR: 1.00; 95% CI: 0.97 to 1.03
- No difference in participants who stopped treatment due to adverse events (RR: 0.86; 95% CI: 0.65 to 1.12
- No difference in study participants who developed cancer (RR: 1.01; 95% CI: 0.93 to 1.10
- No difference in study participants who developed myalgia (RR: 1.03; 95% CI: 0.97 to 1.09
- No difference in study participants who developed rhabdo (RR: 1.00; 95% CI: 0.23 to 4.38
- No difference in study participants who developed diabetes (RR: 1.18; 95% CI: 1.01 to 1.39
Aim: To provide a more detailed assessment of the effects of statin therapy on particular vascular and non-vascular outcomes in men and women in the settings of both primary and secondary prevention.

Study type: Meta-analysis

Size: 27 trials; 174,149 patients (26.8% women)

Inclusion criteria:
- Trials of statin therapy vs. placebo or lower intensity statin
- Main effect of at least one of the trial interventions was to reduce LDL-C; trial was uncounfounded with respect to this intervention
- Trial investigators aimed to recruit 1000 or more participants
- Treatment duration of at least 2 years

Intervention: Statin or high-intensity statin

Comparator: Placebo or lower intensity statin

1° endpoint: Major vascular events, major coronary events (non-fatal MI or coronary death), coronary revascularization (angioplasty or bypass grafting), stroke, site-specific cancers, cause-specific mortality.

Overall Result for Primary and Secondary Prevention Trials (irrespective of vascular risk or subtype of vascular outcome):
- Women: Proportional reduction in major vascular events per 1.0 mmol/L LDL-C reduction (RR 0.84; 95% CI: 0.78 to 0.91)
- Men: Proportional reduction in major vascular events per 1.0 mmol/L LDL-C reduction (RR 0.78; 95% CI: 0.75 to 0.78)

Secondary endpoints:
- Major Coronary Events: No difference in study participants who developed hemorrhagic stroke (RR: 0.97; 95% CI: 0.54 to 1.75)
- All women: RR per 1 mmol/L reduction in LDL-C based on vascular risk at baseline
 - < 10% = 0.74 (0.60-0.93)
 - 10 to <20% = 0.88 (0.77,1.00)
- All men: RR per 1 mmol/L reduction in LDL-C based on vascular risk at baseline
 - < 10% = 0.74 (0.60-0.93)
 - 10 to <20% = 0.88 (0.77,1.00)
- Coronary revascularization in all women—RR per 1 mmol/L reduction in LDL-C: 0.86 (0.77-0.94)
- Coronary revascularization in all men—RR per 1 mmol/L reduction in LDL-C: 0.86 (0.77-0.94)
- Adjusted heterogeneity: P=0.02

Adjusted endpoint: Major vascular events (% annum) in women and men without history of vascular disease and men without history of myocardial infarction (MI) or coronary death:
- Women: 50.0 (1.3%) statin vs. 56.9 (2.1%) control (RR: 0.92; 95% CI: 0.80 to 1.07)
- Men: 99.0 (1.4%) statin vs. 104.0 (1.6%) control (RR: 0.92; 95% CI: 0.80 to 1.07)

Secondary endpoints:
- No difference in study participants who developed elevated liver enzymes (RR: 1.16; 95% CI: 0.87 to 1.54)

Inclusion criteria:
- Trials reported up to 2010
- Trials of statin therapy vs. control and trials comparing statin regimens of differing intensity
- Main effect of at least one of the trial interventions was to reduce LDL-C; trial was uncounfounded with respect to this intervention
- Trial investigators aimed to recruit 1000 or more participants
- Treatment duration of at least 2 years

Comparative endpoints:
- Major vascular events (% annum) in women and men without history of vascular disease and men without history of myocardial infarction (MI) or coronary death:
 - Women: 50.0 (1.3%) statin vs. 56.9 (2.1%) control (RR: 0.92; 95% CI: 0.80 to 1.07)
 - Men: 99.0 (1.4%) statin vs. 104.0 (1.6%) control (RR: 0.92; 95% CI: 0.80 to 1.07)

Secondary endpoints:
- No difference in study participants who developed elevated liver enzymes (RR: 1.16; 95% CI: 0.87 to 1.54)
<table>
<thead>
<tr>
<th>HOPE-3 Yusuf S, et al., 2016 (a) (203) [27039945]</th>
<th>Aim: To evaluate the effects of a moderate dose of a potent statin (without lipid monitoring) versus placebo, a fixed combination of moderate doses of an angiotensin-receptor blocker plus a diuretic (without blood pressure targets) versus placebo, and the combination of both treatments versus dual placebo on the</th>
<th>Inclusion criteria:</th>
<th>Intervention:</th>
<th>Primary endpoint #1: Composite of death from cardiovascular causes, nonfatal MI, or nonfatal stroke</th>
<th>Secondary outcome: Composite of cardiovascular death, nonfatal MI, nonfatal stroke, resuscitated cardiac arrest, heart failure, revascularization, or angina with objective evidence of ischemia</th>
<th>Adverse events: Muscle weakness and dizziness were more common in the combined therapy than in the dual placebo group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Men 55 y of age or older, women 65 y of age or older</td>
<td>Candesartan 16 mg- HCTZ 12.5 mg per day plus rosvastatin 10 mg per day (N=3180, 1465 women)</td>
<td>3.6% in combined therapy group vs. 5.0% in dual placebo group</td>
<td>4.6% in combined therapy group vs. 6.5% in placebo group</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No cardiovascular disease</td>
<td>Rosuvastatin 10 mg per day plus placebo (N=3181)</td>
<td>HR: for combined therapy 0.71, 95% CI: 0.56 to 0.90, p=0.005</td>
<td>HR: for combined therapy 0.71; 95% CI: 0.57 to 0.87, p=0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At least 1 additional risk factor besides age (elevated waist-to-hip ratio, history of low HDL-C, current or recent tobacco use, dysglycemia, family history of premature coronary disease, mild renal dysfunction)</td>
<td>Candesartan 16 mg-HCTZ 12.5 mg per day plus placebo (N=3176)</td>
<td>Women: HR: for combined therapy 0.70; 95% CI: 0.48 to 1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Women 60 y of age or older were included if they had at</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic stroke in all Women –RR per 1.0 mmol/L reduction in LDL-C based on vascular risk at baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 10 % = 0.73 (0.50-1.07)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-<20% = 0.92 (0.67-1.25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-cause mortality in combined primary and secondary prevention studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Women -- 9% reduction with statin per 1.0 mmol/L reduction in LDL-C (RR: 0.91; 99% CI: 0.84 to 0.99)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Men -- 10% (RR: 0.90; 99% CI: 0.86 to 0.95)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Limitations</td>
<td></td>
<td>Fewer women than men recruited for clinical trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Primary prevention trials/subjects were difficult to tease out in this meta-analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fewer events in women, particularly low-risk women</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
prevention of major cardiovascular events.

Study type: RCT with a 2 x 2 factorial design

Size: 12,705 (women 5874, men 6831)

least 2 of the above risk factors.

Exclusion criteria:
- Cardiovascular disease
- An indication for or contraindication to statins, angiotensin-receptor blockers, angiotensin-converting enzyme inhibitors, or thiazide diuretics.

Comparator
- Placebo plus placebo (N=3168, 1478 women)

- Men: HR: for combined therapy 0.71; 95% CI: 0.52 to 0.97
- Subgroup analyses showed no significant heterogeneity in the effects of combination therapy according to sex (p=0.980).

Primary endpoint #2: Composite of the above events plus resuscitated cardiac arrest, heart failure or revascularization
- 4.3% in combined therapy group vs. 5.9% in dual placebo group
- HR: for combined therapy 0.72; 95% CI: 0.57 to 0.89, p=0.003
- Women: HR: for combined therapy 0.71; 95% CI: 0.49 to 1.01
- Men: HR: for combined therapy 0.72; 95% CI: 0.54 to 0.95
- Subgroup analyses showed no significant heterogeneity in the effects of combination therapy according to sex (p=0.936)

Safety endpoints:
- No difference in cancer, myopathy, or total hospitalizations between

- Rates of permanent discontinuation for any reason did not differ between the combined therapy group (26.3%) and the dual placebo group (28.8%)
Aim: To evaluate the long-term effects of rosuvastatin 10 mg per day (without dose adjustment or lipid targets) among persons of various ethnic backgrounds on six continents who did not have cardiovascular disease and were at intermediate risk.

Study type: RCT with a 2 x 2 factorial design (including both cholesterol lowering and blood pressure lowering arms)

Size: 12,705 (women 5874, men 6831)

Inclusion criteria:
- Men 55 y of age or older, women 65 y of age or older
- No cardiovascular disease
- At least 1 additional risk factor besides age (elevated waist-to-hip ratio, history of low HDL-C, current or recent tobacco use, dysglycemia, family history of premature coronary disease, mild renal dysfunction)
- Women 60 y of age or older were included if they had at least 2 of the above risk factors.

Exclusion criteria:
- Cardiovascular disease
- An indication for or contraindication to statins, angiotensin-receptor blockers, angiotensin-converting enzyme inhibitors, or thiazide diuretics.

Intervention: Rosuvastatin 10 mg per day (N=6361)

Comparator: Placebo (N=6344)

Primary endpoint #1: Composite of death from cardiovascular causes, nonfatal MI, or nonfatal stroke
- 3.7% in rosuva group vs. 4.8% in placebo group
- HR: for rosuva 0.76; 95% CI: 0.64 to 0.91, p=0.002
- **Women:** HR: for rosuva 0.83; 95% CI: 0.64 to 1.09
- **Men:** HR: for rosuva 0.72; 95% CI: 0.58 to 0.90
- Subgroup analyses showed no significant heterogeneity in the effects of rosuva according to sex (p=0.427).

Primary endpoint #2: Composite of the above events plus resuscitated cardiac arrest, heart failure, revascularization, or angina with objective evidence of ischemia
- 4.4% in combined therapy group vs. 5.7% in dual placebo group
- HR: for rosuva 0.75; 95% CI: 0.64 to 0.88, p<0.001

Secondary outcome: Composite of cardiovascular death, nonfatal MI, nonfatal stroke, resuscitated cardiac arrest, heart failure, revascularization, or angina with objective evidence of ischemia
- 4.8% in rosuva group vs. 6.2% in placebo group
- HR: for rosuva 0.77; 95% CI: 0.66 to 0.89; p<0.001

Limitations:
- Relatively short mean duration of treatment (5.6 y); may underestimate the benefits of longer-term statin treatment.

Adverse events:
- Muscle pain or weakness were higher in the rosuva group (5.8%) than in the placebo group (4.7%); p=0.005
- Rates of permanent discontinuation due to muscle symptoms were similar in both groups (rosuva 1.3%, placebo 1.2%; p=0.63)
- Rates of rhabdo and myopathy were similar
- Rates of cataract surgery were higher in the rosuva group (3.8%) than in the placebo group (3.1%); p=0.02
Abbreviations:

- AFCAPS/TexCAPS indicates Air Force/Texas Atherosclerosis Prevention Study; AHA, American Heart Association; ALLHAT-LLT, Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial--Lipid Lowering Trial; ALT, alanine aminotransferase; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial--Lipid-Lowering Arm; atorva, atorvastatin; CARDS, Collaborative Atorvastatin Diabetes Study; CHD, coronary heart disease; CI, confidence interval; CK, creatine kinase; CVA, cerebrovascular accident; CVD, cardiovascular disease; CTT, Cholesterol Treatment Trialists’ Collaboration; DM, diabetes mellitus; HbA1C, hemoglobin A1C; HDL-C, high density lipoprotein cholesterol; HOPE-3, Heart Outcomes Prevention Evaluation-3; HR, hazard ratio; hsCRP, high sensitivity C-reactive protein; HTN, hypertension; IDDM, insulin dependent diabetes mellitus; JUPITER, Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin; LDL-C, low density lipoprotein cholesterol; LFT, liver function tests; lova, lovastatin; MEGA, Primary Women: HR: for rosuvastatin 0.82; 95% CI: 0.64 to 1.06
- Men: HR: for rosuvastatin 0.72; 95% CI: 0.59 to 0.87
- Subgroup analyses showed no significant heterogeneity in the effects of rosuvastatin according to sex (p=0.404)

Safety endpoints for rosuvastatin vs. placebo:

- No difference in cancer, myopathy, or total hospitalizations between rosuvastatin and placebo groups
- Hospitalizations for cardiovascular causes were higher in the placebo group (5.8%) vs. rosuvastatin group (4.4%); p=0.0004
- No difference in death from any cause
- No different in new-onset diabetes
- CHD was higher in placebo group (2.2%) than in rosuvastatin group (1.7%); p=0.02
Prevention of Cardiovascular Disease with Pravastatin in Japan; mg/dL, milligram per deciliter; MI, myocardial infarction; mmol/L, millimole per liter; NCEP, National Cholesterol Education Program; PAD, peripheral arterial disease; patient-y, patient-years; prava, pravastatin; RCT, randomized controlled trial; rhabdo, rhabdomyolosis; rosuva, rosuvastatin; RR, relative risk; TC, total cholesterol; TG, triglycerides; ULN, upper limit of normal.

Data Supplement 34. Nonrandomized Studies of the Utility of Coronary Artery Calcium in Women (Section 4.5.3)

<table>
<thead>
<tr>
<th>Study Acronym</th>
<th>Author Year Published</th>
<th>Study Type/Design Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR & 95% CI)</th>
<th>Summary/Conclusion Comments</th>
</tr>
</thead>
</table>
| MESA | McClelland RL, et al., 2006 (204) 16365194 | Prospective cohort study designed to investigate subclinical CVD in a multiethnic cohort free of clinical CVD | Inclusion Criteria
- 45 to 84 y of age
- Self-identified as white, black, Hispanic, or Chinese
- Free of clinically apparent CVD
Exclusion Criteria
- Treated diabetes
- Pregnancy
- Active treatment for cancer
- Weight > 300 pounds
- Cognitive inability as judged by interviewer
- Living in a nursing home
- Plans to leave the community within 5 y
- Language barrier
- CT scan of chest within past year
- Any serious medical condition that would prohibit long-term participation | CAC measured by either EBT or MDCT
- Men had higher CAC than women, greatest difference for whites
- Amount and prevalence of calcium increased with age
- Women – whites had highest percentiles, Hispanics had lowest
- Distribution curves are presented according to age, sex, race/ethnicity | Substantial differences for CAC distribution were observed among the 4 race/ethnicity groups, as well as significant interactions for both age and gender with race/ethnicity. |
| MESA | Jain A, et al., 2011 (205) 21068189 | Prospective cohort study to compare 3 noninvasive imaging tests (CAC, carotid intima-media thickness, left ventricular mass and geometry) for their CVD events considered separately: all CHD (MI, resuscitated cardiac arrest, definite angina, probable angina if followed by revascularization, CHD death), stroke, heart failure, all CVD | Inclusion Criteria
- Men and women aged 45 to 84 y
- Free of clinically recognized CVD at enrollment | Compared with carotid IMT and LV mass and geometry, CAC was the most strongly associated with CHD and CVD in both men and women. |
<table>
<thead>
<tr>
<th>Kelkar AA, et al., 2016 (206) 27072301</th>
<th>Inclusion Criteria</th>
<th>Time to all-cause mortality</th>
<th>CAC may effectively risk stratify women who are classified as low- to intermediate-risk according to FRS. In this cohort, women had a greater prevalence of CAC, an elevated mortality, and an increased relative hazard for 15-y death when compared with men.</th>
</tr>
</thead>
</table>
| Prospective cohort study to determine long-term prognostic use of CAC in asymptomatic women and men with a low-intermediate Framingham Risk Score (FRS) | Patients referred for CAC scanning
Without CAD diagnosis or symptoms suggestive of CAD
Calculated low-intermediate FRS (10-y risk of CAD, 6%-9.9%) | Women were older than men (55.6 vs. 46.7 y; p<0.0001)
CAC scores ≥ 100 occurred in 18.8% of women and 15.1% of men
Cumulative 15-y mortality was 8.8% for women and 6.0% for men; p<0.0001 (HR: for women 1.44, p=0.022)
Mortality in relation to CAC scores: women 5% for CAC score of 0, 23.5% for CAC score ≥ 400 (p<0.001); men 3.5% for CAC score of 0, 18.0% for CAC score ≥ 400 (p<0.001)
Multivariate model for women (covariates include age, family history, HTN, dyslipidemia, smoking, DM) – HR: (95% CI; p-value) for CAC score: 1-10 1.92: (0.82-4.47; p=0.13)
11-99 2.37: (1.29-4.35; p=0.005) |
| 2363 participants, 1072 women | | | |
| overall and sex-specific ability to predict CVD.
• 4965 participants, 2600 women) | Available measures of CAC, carotid IMT, and LV mass and volume | Men had a higher burden of subclinical disease at baseline (p<0.001 for all measures)
297 incident CVD events occurred over 5.8 y follow-up; men experienced a higher incidence of CHD, HF, and CVD than women (p<0.05)
CAC was most strongly associated with CHD in men (HR: 2.4 per 1 SD; 95% CI: 1.9 to 2.9) and women (HR: 2.2 per 1 SD; 95% CI: 1.5 to 3.1); p≤0.001
CAC was most strongly associated with all CVD in men (HR: 1.9 per 1 SD; 95% CI: 1.6 to 2.3) and women (HR: 1.5 per 1 SD; 95% CI: 1.2 to 1.8); p≤0.001
No significant interactions for imaging measures with sex and ethnicity
For women, compared with traditional risk factors alone, CAC added most to AUC for CHD prediction (0.805 vs. 0.835; p=0.04) | |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>To assess the potential utility of CAC testing for CVD risk estimation and stratification among low-risk women</td>
<td>Availability of CAC data</td>
<td>CAC was present (CAC > 0) in 36.1% of all low-risk women</td>
<td></td>
</tr>
<tr>
<td>6739 women mean age 44 to 63 y</td>
<td>Women with 10-y ASCVD risk < 7.5%</td>
<td>165 ASCVD events occurred in 7.0 to 11.6 y follow-up (total ASCVD incidence rate 1.5 to 6.0 per 1000 person-y)</td>
<td></td>
</tr>
<tr>
<td>Exclusion Criteria</td>
<td>Previous history of CAD, stroke, chronic kidney disease</td>
<td>CAC presence = ASCVD incidence rate 4.33 per 1000 person-y vs. CAC absence = ASCVD incidence rate 1.41 per 1000 person-y (difference 2.92; 95% CI: 2.02-3.83)</td>
<td></td>
</tr>
<tr>
<td>Treatment with statin</td>
<td>LDL-C ≥ 190 mg/dL</td>
<td>HR for CAC > 100 vs. CAC absence = 4.02; 95% CI: 2.61-6.19 (fixed effects)</td>
<td></td>
</tr>
<tr>
<td>> 79 y of age</td>
<td>Incident ASCVD</td>
<td>Addition of CAC to the base model (risk factors from pooled cohort equation) resulted in an increase in C statistic in all 5 cohorts (overall C statistic increased from 0.73; 95% CI: 0.69-0.77, to 0.77; 95% CI: 0.74-0.81)</td>
<td></td>
</tr>
<tr>
<td>Nakanishi R, et al., 2016 (207)</td>
<td>Prospective cohort study to examine the relationship between CAC and all-cause mortality, used as a proxy for CVD risk, in a cohort with a median follow-up of at least 10 y.</td>
<td>Inclusion Criteria</td>
<td>All-cause mortality</td>
</tr>
<tr>
<td>13,092 participants, 4379 women, mean age 58 ± 11 y</td>
<td>No known CAD</td>
<td>Compared to men, women were older (58.7 ± 11.3 vs. 57.7 ± 11.5 y, p=0.0001).</td>
<td></td>
</tr>
<tr>
<td>Referred for a CAC scan</td>
<td>Prior known CVD</td>
<td>Women had a greater number of risk factors (1.77 ± 0.99 vs. 1.64 ± 1.01, p=0.0001).</td>
<td></td>
</tr>
<tr>
<td>ExclusionCriteria</td>
<td>Age < 20 y</td>
<td>Compared to women, men had higher CAC across age groups.</td>
<td></td>
</tr>
<tr>
<td>Chest pain</td>
<td>Prior known CVD</td>
<td>Among both genders, patients with more risk factors had increased CAC burden.</td>
<td></td>
</tr>
<tr>
<td>Follow-up of ≤ 365 d</td>
<td>All-cause mortality</td>
<td>522 (4%) died; no significant difference in mortality risk between men and women.</td>
<td></td>
</tr>
<tr>
<td>CAC was present in a large proportion of women with a 10-y risk < 7.5%. The hazard of a woman having an ASCVD event was higher when CAC was present. CAC has the potential to further risk stratify asymptomatic women categorized as having low 10-y ASCVD risk.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Heart Association, Inc., and the American College of Cardiology Foundation.

182
| **MESA** | **Prospective cohort study to determine whether CAC could be used to optimize statin allocation among individuals for whom trial-based evidence supports efficacy of statin therapy.**
• 5600 participants, 2965 women, ages 53-69 y, 10-y follow-up | **Inclusion Criteria**
• Free of clinical ASCVD
• 45-84 y of age | **ASCVD events (MI, resuscitated cardiac arrest, CHD death, stroke)**
• 1929 women (65%) were eligible for statin therapy based on 7 RCTs
• Of statin eligible women, 54% had no CAC, 27% had CAC score of 1-100, 20% had CAC score > 100
• Event rate per 1000 person-y in women: CAC=0, 3.77 (2.72-5.23); CAC 1-100, 9.37 (6.95-12.63); CAC > 100, 17.89 (13.74-23.31)
• HR: for ASCVD event when CAC > 100 vs. 0 in women: 4.99 (3.27-7.62)
• CAC=0 at baseline was associated with low ASCVD event rates for at least 10 y in women, whereas CAC > 100 was associated with a high event rate. Since evidence from RCTs supports primary prevention with statins in nearly all women > 55 y of age, and over half of women eligible for statin therapy have a CAC score of 0 and a low event rate, having a CAC score may help patients and providers in shared decision-making regarding treatment with statins. | **HR:** (95% CI) for men 45-74 y: CAC 1-99 1.8 (1.1-2.8), CAC 100-399 2.5 (1.5-4.0), CAC ≥ 400 4.5 (2.8-7.1)
HR: (95% CI) for women 55-74 y: CAC 1-99 2.4 (1.2-4.8), CAC 100-399 3.8 (1.8-7.9), CAC ≥ 400 5.8 (2.8-12.4)
In men and women, CAC showed an incremental prognostic value over traditional risk factors alone at 15 y (men: AUC 0.723 vs. 0.656, p<0.0001; women: AUC 0.690 vs. 0.624, p<0.0001). |
| **FHS, MESA, CHS** | **Prospective cohort study using pooled individual participant data from 3 US cohorts (FHS, MESA, CHS), examined the predictive ability of CAC score vs. age for ASCVD, including CHD and stroke.**
• 4778 participants, 2582 women, aged ≥ 60 y | **Inclusion Criteria**
• Adults older than 60 y
• Without known CVD at baseline
• Participant in FHS, MESA, or CHS
Exclusion Criteria:
• Younger than 60 y of age
• Known CHD, stroke, or heart failure at baseline | **Incident ASCVD during follow-up, including CHD and stroke**
• 598 ASCVD events during median 10.7 y follow-up
• Event rates increased across CAC strata
• 11% of ASCVD events (8% of CHD, 16% of stroke) occurred with CAC=0; 42% of ASCVD events (45% of CHD, 38% of stroke) occurred with CAC ≥ 300
• CAC score vs. age had greater association with incident CHD (C statistic, 0.733 vs. 0.690; C statistics difference, +0.043; 95% CI: 0.009-0.075) and modestly improved prediction of stroke. | **CAC=0 at baseline was associated with low ASCVD event rates for at least 10 y in women, whereas CAC > 100 was associated with a high event rate. Since evidence from RCTs supports primary prevention with statins in nearly all women > 55 y of age, and over half of women eligible for statin therapy have a CAC score of 0 and a low event rate, having a CAC score may help patients and providers in shared decision-making regarding treatment with statins.**

© American Heart Association, Inc., and the American College of Cardiology Foundation.
| **Catov JM et al., 2007 (209)** | **Study type:** Cross-sectional sub study | **Inclusion criteria:** Age 70-79 years, self-report of no difficulty walking one-quarter mile or climbing 10 steps without resting, no difficulty performing basic activities of daily living, no use of assistive devices to ambulate, no history of active treatment for cancer in the past 3 years, no plans to move out of the area in the subsequent 3 years. | **1st endpoint:** CVD status at the time of interview | **Results:**
- 6% of women reported delivering a preterm infant and 9% reported having a term infant weighing less than 2500 g.
- Compared with delivering a term infant ≥ 2500 g, a preterm delivery was associated with a higher prevalence of CVD (OR 2.05; 95% CI 0.93-4.52); adjusted OR was 2.85 (95% CI 1.10-6.85)
- Delivery of a small term infant -- OR of CVD of 1.33 (0.66-2.70)
- Delivery of a preterm and < 2500 g infant -- OR of CVD 2.55 (0.99-6.60); adjusted OR 3.31 (1.06-10.37)
- Women who reported delivering a preterm first birth had an increased prevalence of CVD after adjusting for demographics, smoking, and other cardiovascular risk factors.
- This effect was greater in women who delivered both small and preterm infants. Authors suggest that earlier preterm delivery or preterm birth with growth restriction are associated with a greater CVD risk.
- These results suggest that women who deliver a preterm infant may benefit from early CVD risk screening and intervention. |
| **Grandi SM et al., 2017 (210)** | **Study type:** Population-based cohort study using data extracted from the United Kingdom’s Clinical Practice Research Datalink | **Inclusion criteria:** Women between 15 and 45 years of age; first recorded delivery between January, 1990 and December, 2013 | **1st endpoint:** Incident CVD – any diagnosis of cerebrovascular disease, coronary artery disease, coronary revascularization, myocardial infarction, peripheral arterial disease, transient ischemic attack, stroke | **Results:**
- 1.8% (6433 women) had one pregnancy affected by hypertensive disorders of pregnancy (HDP)
- 997 women had incident CVD during 902,897 person-years of follow-up
- In women with HDP, rate of subsequent CVD was 2-fold higher
- Women who experienced HDP had an approximate 2-fold increased rate of incident CVD and a 5-fold increased rate of hypertension.
- As a result of a higher CVD risk, women with HDP may warrant a close long-term follow-up for early risk factor identification and management. |
gestation; younger than 15 or older than 45 years at first pregnancy; used an anti-hypertensive medication before 18 weeks gestation

than in women with no history of HDP (HR 2.2, 95% CI 1.7, 2.7)
- In women with a HDP, rate of hypertension was 5 times that of women without HDP (HR 5.6, 95% CI 5.1, 6.3)
- In the time-fixed analyses for CVD and hypertension, none of the potential confounders were found to change the point estimate more than 10%

Shostrom DC et al., 2017 (211) 28694789

Study type: Population-based cross-sectional survey: NHANES

Size: 8127 women

Inclusion criteria: Female, aged 20 years or older, prior history of pregnancy

Exclusion criteria: Individuals who reported a diagnosis of CVD or diabetes present before or during the same time as diagnosis of gestational diabetes (GDM)

Results:
- 787 women developed CVD among 7572 women without a history of GDM; 42 women developed CVD among 555 women with a history of GDM
- Compared to women without a history of GDM, women with a history of GDM were more likely to develop CVD (multivariable-adjusted OR 1.63, 95% CI 1.02, 2.62). Association was attenuated and became non-significant after adjustment for BMI.

1st endpoint: CVD, self-reported during interview: congestive heart failure, coronary heart disease, angina, heart attack, stroke

• Women with a history of GDM are at greater risk of developing CVD later in life than women without a history of GDM, however this association may be explained, in part, by BMI.
• Targeted interventions may be implemented to reduce CVD risk at a young age for women with a history of GDM.

Abbreviations: ASCVD, atherosclerotic cardiovascular disease; AUC, area under the curve; CAC, coronary artery calcium; CAD, coronary artery disease; CHD, coronary heart disease; CHS, Cardiovascular Health Study; CI, confidence interval; CT, computed tomography; CVD, cardiovascular disease; DM, diabetes mellitus; EBT, electron beam tomography; FHS, Framingham Heart Study; FRS, Framingham Risk Score; HR, hazard ratio; HTN, hypertension; IMT, intima-media thickness; LDL-C, low density lipoprotein cholesterol; LV, left ventricular; MDCT, multidetector computed tomography; MESA, Multi-Ethnic Study of Atherosclerosis; person-y, person-years; RCT, randomized controlled trial.
Data Supplement 35. CAC to guide therapy (Section 4.5.3)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients)/Study comparator (#patients)</th>
<th>Endpoint Results (Absolute Event Rates, p values, OR or RR, and 95% CI)</th>
</tr>
</thead>
</table>
| BioImage Mortensen MB, et al., 2016 (95) 27581760 | **Aim:** Disease-guided reclassification **Study Type:** prospective observational cohort **Size:** 5,805 adults men and women 55–80 y; mean 68.9±6 Follow-up: median follow-up of 2.7 y. | **Inclusion criteria:** without known ASCVD at baseline examination | **Intervention:** those with an estimated 10 y ASCVD risk ≥7.5% were down-classified from statin eligible to ineligible if imaging revealed CAC=0 Intermediate-risk individuals were up-classified from optional to statin eligibility if CAC was ≥100 | • 1° Endpoint:
 - With CAC-guided reclassification, specificity for coronary heart disease events improved
 - 22% (p<0.0001) without any significant loss in sensitivity, yielding a binary net reclassification index (NRI) of 0.20
 - (p<0.0001).
 - CAC scores of 0 were common (32%) and were associated with low event rate |
| MESA Nasir, K, et al., 2015 (82) 26449135 | **Aim:** to determine whether quantification of CAC score may discriminate risk in subjects with and without statin indication according to AHA/ACC guidelines **Study Type:** population-based prospective longitudinal cohort study **Size:** 4,758 subjects (59±9 y of age, 47% men) | **Inclusion criteria:** MESA is a prospective observational cohort of 6,814 men and women, 45–84 y of age, without known CVD at enrollment. | **Intervention:** N/A **Comparator:** N/A | • A total of 247 (5.2%)
 - ASCVD and 155 (3.3%) hard coronary heart disease events occurred over a median (interquartile range) follow-up of 10.3
 - 9.7–10.8 y.
 - The absence of CAC reclassifies approximately one-half of candidates as not eligible for statin therapy
 - The new ACC/AHA guidelines recommended 2,377 (50%) MESA participants for moderate- to high intensity statins; the majority (77%) was eligible because of a 10-y estimated ASCVD risk ≥7.5%. Of those recommended statins, 41% had CAC=0 and had 5.2 ASCVD events/1,000 person-y. Among 589 participants (12%) considered for moderate-intensity statin, 338 (57%) had a CAC=0, with an ASCVD event rate of 1.5/1,000 person-y. Of participants eligible (recommended or considered) for statins, 44% (1,316 of 2,966) had CAC=0 at baseline and an observed 10 y ASCVD event rate of 4.2 /1,000 person-y. |
<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
</table>
| **Tonelli M, et al., 2012 (125)** 22717317 | **Study type:** Observational cohort; medical claims data in Alberta, Canada
Size: 1,268,029 DM and CKD: 15,368 CKD: 59,117 | **Inclusion criteria:** Persons with measures of eGFR and proteinuria in Alberta, Canada between 2002-2009, age >18
Exclusion criteria: no kidney measures, ESRD, eGFR<15 | **1st endpoint:** hospital admission for MI
Results:
• 11340 admitted with MI (1% of cohort)
• Rates of MI per 1000-person y
• Prior MI: 18.5
• With no prior MI: Diabetes and no CKD: 5.4 (5.2 to 5.7)
CKD no diabetes: 6.9 (6.6 to 7.2)
• When eGFR <45 used to define CKD
Diabetes no CKD: (approx.7.5)
CKD no DM: 10
• Absolute rates of MI increased with more severe CKD (especially if also had proteinuria). Risks higher than diabetes without CKD
• Specific data on proteinuria:
Moderate proteinuria (ACR >=30 or trace on dipstick);
Severe proteinuria (ACR>=300 or dipstick >=2+)
• Figure appendix eFigure3: CKD stage 1-4 (Rate about 5 per 1000PY)- similar to diabetes with no CKD
If egfr <60 and severe proteinuria and no diabetes, rate >10 per 1000PY and this is higher than diabetes with no CKD (5.4)
• Note: from same cohort, published in the KDIGO guideline, table 3
CKD stage g1-g2, rates of coronary death or non-fatal MI 9.7 per 1000 PY (higher for age >50; rate 12.9 age >50) | • Among persons with no prior MI: Rates of hospitalized MI higher for persons with CKD-absolute rates even higher than persons with diabetes (and no CKD) |
| **Matsushita K, et al., 2010 (212) 20483451** | **Study type:** Observational cohort Meta-analysis
Size: 1,128,310 from 7 studies with dipstick | **Inclusion criteria:** study N≥1000 participants from a general population with eGFR and urine albumin concentrations or dipstick proteinuria, and information on | **1st endpoint:** all cause and cardiovascular mortality
Results:
• HR for CVD mortality elevated starting at eGFR 75-associations stronger with more severely reduced eGFR
• HR for CVD mortality linearly increases for ACR | • eGFR and albuminuria are each independently associated with all cause and CVD mortality, independent of traditional CVD risk factors (and independent of each other) |
| Study type: Meta-analysis of observational cohorts | Inclusion criteria: patients from 10 cohorts, selected because of increased risk for chronic kidney disease, defined as a history of hypertension, diabetes, or CVD | Exclusion criteria: Low risk persons | 1st endpoint: all cause and cardiovascular mortality | Results: • Compared with eGFr >95, HR for all cause and CVD death increased at eGFRs of 60, 45, and 15 ml/min. • Log albuminuria was linearly associated with log risk for all-cause and CVD mortality without thresholds. Albuminuria and eGFR were multiplicatively associated with all-cause mortality, without evidence for interaction. | • Association appears around eGFR 75 and is linear and monotonic for albuminuria | • Association is multiplicative | |
|---|---|---|---|---|---|---|---|
| van der Velde M, et al., 2011 (213) | Study type: Meta-analysis of observational cohorts | Size: 266,975 patients from 10 cohorts | Exclusion criteria: Low risk persons | 1st endpoint: all cause and cardiovascular mortality | Results: • Compared with eGFr >95, HR for all cause and CVD death increased at eGFRs of 60, 45, and 15 ml/min. • Log albuminuria was linearly associated with log risk for all-cause and CVD mortality without thresholds. Albuminuria and eGFR were multiplicatively associated with all-cause mortality, without evidence for interaction. | • In persons at high CVD risk (hypertension, DM, CVD), eGFR and ACR are independently associated with all cause and CVD death. Risk is multiplicative by eGFR/ACR |
| Fox CS, et al., 2012 (214) | Study type: Meta-analysis of observational cohort studies | Size: 1,024,977 30 general population and high-risk CVD cohorts and 13 chronic kidney disease cohorts. | Inclusion criteria: cohorts with >1000 persons, at least 50 events of interest with information on eGFR and albuminuria (ACR or dipstick); Age >18 | Exclusion criteria: N/A | 1st endpoint: All cause death, ESRD CVD death in cohorts with this outcome CVD death included deaths due to myocardial infarction, heart failure, sudden cardiac death, or stroke | Results: • In the 23 studies with data for cardiovascular mortality, 21,237 deaths occurred from cardiovascular disease during a mean follow-up of 9.2 y (SD 4.9). Finding #1-Persons with DM at higher risk than without diabetes across eGFr and ACR spectrum (HR: 1.2 to 1.9) Finding #2 (figure 1) - All-cause mortality and CVD death increased with lower eGFR and higher albuminuria categories in both the diabetes and no diabetes groups. No interaction by DM • Examples from figure 1 | • Lower eGFR (threshold around 60) and albuminuria (no threshold) are independently associated with cardiovascular mortality in persons with and without diabetes • The association of CKD with CVD death is similar magnitude as that seen in persons with diabetes and no CKD |
Compared with category eGFR >95 and no diabetes, HR for CVD death for eGFR 60 no diabetes 1.3, eGFR 60 diabetes 2.0, eGFR 45 no diabetes 1.5, eGFR 45 diabetes 2.0

- Figure 2: Risk for ACR linear
 Compared with category no DM and ACR <5
 ACR 30 no DM: HR: 1.5
 ACR 30 DM: HR: 3
- Table 2
 All-cause mortality and cardiovascular mortality increased with lower eGFR and higher albuminuria categories in both the diabetes and no diabetes groups
 Risk multiplicative
 - Notes on albuminuria with preserved egF r (>60)
 For example: Among persons with no diabetes, compared with egF r >95 and ACR <5:
 ACR 30-299 and egF r 75-89: 1.6
 ACR >300 and egF r 75-89 HR: 2.57

| Colantonio LD, et al., 2015 (215) 25395432 | **Study type:** Observational cohort

Size: 4,726

Inclusion criteria: age 50-79 with CKD (eGFR <60 or ACR ≥30) not on dialysis

Exclusion criteria: missing information on kidney function, CVD risk equation variables or outcomes

1st endpoint: incident ASCVD events - adjudicated

Results:
- Among 1,110 participants age 50-80 not already on statin, free of ASCVD and diabetes and LDL 70-89
- 24% had pooled risk equation <7.5%
- If eGFR <60, 17.6% had <7.5% predicted risk
- Pooled risk cohort well calibrated
- Incidence rate for ASCVD for eGFR <60 was 14.3 (9.4 to 19.2) per 1,000-person y, ACR ≥30 15.8 (11.7 to 19.7)
- If ASCVD predicted risk <7.5%, incidence rates <5 per 1000-person y
- If ASCVD predicted risk >7.5%, persons with CKD had observed ASCVD rates >15% per 1,000-person y eGFR <60 or ACR ≥30 17.7 per 1,000-person y (13.6 to 21.7), eGFR <60 17.3 per 1000-person y (11.4 to 23.2)
- ACC/AHA would recommend statin for 92% of participants for whom statins recommended by KDIGO
- The 8% with predicted risk <7.5%, risk low even if CKD where not recommended low risk (<0 to 4 depending on CKD definition)

- Risk equation well calibrated in CKD
- Majority of persons with CKD have estimated risk >7.5%
- If risk predicted >7.5%, observed rates >15%
- If predicted risk <7.5%, observed risk is low
- The simpler guideline by KDIGO would potentially overtreat a very small proportion of persons with CKD
- No data on persons age <50
- Limited data on persons with estimated risk 5-7.5%
Data Supplement 37. RCTs Comparing PLACEBO VS. Statin (or Statin plus another agent) to reduce CVD events in persons with CKD (Section 4.5.4)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
</table>
| SHARP; Baigent C, et al., 2011 (13) 21663949 | **Aim:** To assess safety and efficacy of reducing LDL in persons with CKD Placebo vs. simvastatin 20mg + ezetimibe 10 mg daily
Study type: RCT
Size: 9,270 randomized Study duration: 4 y (median 4.9 y) | **Inclusion criteria:**
- Age ≥40, Cr 1.7 men, 1.5 women, With or without dialysis
- Total randomized: 9,438

Exclusion criteria:
- 6 wk run-in period with placebo to identify noncompliers
- Prior CVD
- Note re eGFR: among non-dialysis, mean eGFR was 26.6 (SD 13), 36% stage 3, 43% stage 4, 20% stage 5, 20% ACR <30, 38% 30-300 and 42% >300
- 33% on dialysis
- 23% diabetes | **Intervention:** Placebo (N=4,620) vs. simvastatin 20mg + ezetimibe 10 mg daily (N=4,650)

Comparator:
- Placebo, N=4620
- Duration: median 4.9 y | **1° endpoint:**
- major atherosclerotic events (non-fatal MI or coronary death, non-hemorrhagic stroke, arterial revascularization)
 - Placebo: 619 (13.4%)
 - Intervention: 526 (11.3%)
 - RR 0.83 (0.74 to 0.94), p 0.0021
- LDL chol. reduction for intervention: Overall, -1.08 y 1, -0.84 at 44 mo
 - 1.1 mmol/L for non-dialysis (39%), -0.75 for dialysis
 - Effects consistent across eGFR category
 - No statistically significant differences by CKD stage

Dialysis subgroup:
- 3023 on dialysis (2527 hemodialysis, 496 peritoneal dialysis)
 - Intervention: 230 (15%)
 - Placebo: 246 (16.5%)
 - RR 0.90 (0.75 to 1.08)

Safety endpoint (if relevant):
- No differences in Cancer, cancer mortality, CK concentration, myopathy, rhabdomyolysis, persistently raised transaminases, hepatitis, gallstones, pancreatitis

- lack of power for dialysis subgroup
- Crossover: 33% discontinued intervention, 14% in placebo started non-statin therapy
- Few persons on peritoneal dialysis

Important Note: initially randomized 3 ways (placebo, statin alone, ezetimibe plus simva) – the statin only was then re-randomized to intervention vs. placebo after 1 y
<table>
<thead>
<tr>
<th>Study Title</th>
<th>Aim</th>
<th>Study type</th>
<th>Size</th>
<th>Inclusion criteria</th>
<th>Intervention</th>
<th>1st endpoint</th>
<th>Limitation</th>
<th>Particular strength</th>
</tr>
</thead>
</table>
| Cholesterol Treatment Trialists’ (CTT) Collaboration* Herrington WG, et al., 2016 (216) 27477773 | Note: 34% transitioned to ESRD during the trial | Meta-analysis | 28 trials, N=183,419 | Included all trials in renal populations, primary and secondary prevention | Statin vs. placebo 23 trials; 5 trials compared statin dose Comparator: Placebo | • Major vascular events (non-fatal MI, coronary death, stroke, coronary revascularization)
 Note: able to readjudicate AURORA coronary deaths
 • Estimates as rate ratios per mmol/L of LDL lowering
 • Overall, RR 0.79 (0.77 to 0.81)
 • Smaller relative effects as GFR declined (p=0.008 for trend), benefit not seen on dialysis
 N, % events per year, and RR by eGFR
 - eGFR 45-60 (N=34,417)
 4.6% vs. 3.6%
 0.76 (0.70 to 0.81)
 - eGFR 30-45 (N=10,634)
 5.2 vs. 4.5%
 0.85 (0.75 to 0.96)
 - eGFR <30 (5,368)
 3.5 vs. 3.0
 0.85 (0.71 to 1.02)
 - Dialysis (N=7053)
 5.0 vs. 4.7
 0.94 (0.79 to 1.11)
| | | | | | | | • Concern over agreement of causes of vascular death adjudication in patients with kidney disease | • Particular strength: considers differences in achieved LDL levels across trials, uniform definition of outcome in dialysis trials (coronary death) |
| Palmer SC, et al., 2012 (217) 22910937 | Aim: To summarize benefits and harms of statin therapy in CKD And whether effects vary by CKD stage | Meta-analysis of RCT | | Inclusion criteria: RCT statin vs. placebo (or no therapy or standard care) or another statin
 Exclusion criteria: <8 wk follow-up, pediatric | Statin Comparator: Placebo or no treatment, standard care (86 comparisons) Vs. other statin (9 comparisons) | 1st endpoint: Focus here on CVD mortality, major cardiovascular events, MI, stroke
 Event Rates (Estimate of control group risk per year)
 - CKD not on dialysis: | • Statins beneficial Benefit varies by CKD severity (dialysis vs. not) |

© American Heart Association, Inc., and the American College of Cardiology Foundation.
191
| Upadhyay 2012 (218) 22910936 | **Aim:** synthesize evidence of lipid lowering on clinical outcomes in persons with CKD | **Inclusion criteria:**
- RCT
- 1 or more lipid lowering agent vs. no treatment or other lipid lowering | **Intervention:** Statin
Comparator: Placebo or no treatment, usual care | **1° endpoint:**
- For Cardiovascular events
9 trials composite fatal and non-fatal CV events or need for revascularization | **Safety endpoint:**
- Cancer, elevated CKD, abnormal liver function, withdrawal from treatment, LDL reduction
- Adverse events (33 comparisons, 45,568 patients)
- No differences from statin
Cancer 0.96 (0.89 to 1.04)
Elevated CK 1.11 (0.80 to 1.56)
- Estimates for CKD not on dialysis includes posthoc subgroup of prior trials
- Risk of bias: highest risk for selective outcome reporting
For CKD not on dialysis not all reported concealment, 8 trials were post hoc analyses of general population
Overall related high-quality evidence
- Limited by not able to report risk reduction per unit of LDL lowering |

| **Size:** 89 trials 56,857 participants total
Size differed by comparison and outcome considered | **Major CV events:** 2.0
CV mortality 1.5%
- On dialysis:
 - Major vascular event: 15%
 - CV death: 10%
 - CVD mortality: 27 comparisons, 35417 patients
 - CKD not dialysis- 8 studies
 RR 0.78 (0.68 to 0.89)
 Dialysis 13 studies
 RR 0.94 (0.82 to 1.07)
 Major CV events 7899 patients (included data from SHARP)
 Stat significant difference by CKD stage p <0.001:
 - CKD not on dialysis 14 studies or subsets
 Statin 2525/17912 (14%) vs.
 3361/18121 (18.5%)
 RR 0.76 (0.73 to 0.80)
 Dialysis 4 studies
 0.95 (0.87 to 1.03)
 LDL reduction: -43.1 (-49.5 to -36.7) | | **RR 0.94 (0.82 to 1.07)**
RR 0.94 (0.82 to 1.07) |
<table>
<thead>
<tr>
<th>Study type</th>
<th>Aim</th>
<th>Inclusion criteria</th>
<th>Intervention</th>
<th>Comparator</th>
<th>1st endpoint</th>
<th>Safety endpoint</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meta-analysis</td>
<td>Meta-analysis of RCT Focused on Primary Prevention in CKD</td>
<td>RCT of lipid lowering, CKD patients usually seen in primary care, with no CVD, minimum 6 mo follow up</td>
<td>Statin</td>
<td>Placebo</td>
<td>In CKD stage 1-3 Major cardiovascular events RR 0.59 (0.48 to 0.72)</td>
<td>Adverse events</td>
<td>Excluded SHARP Represents a lower CVD risk group of CKD patients but also those more likely to be seen in primary care</td>
</tr>
<tr>
<td>Meta-analysis</td>
<td>Meta-analysis of RCT</td>
<td></td>
<td></td>
<td></td>
<td>Major vascular event (first occurrence of any major coronary event, stroke or revascularization) eGFR <60 statin group 2712 events (4.1% per y) vs. 3354 (5.15 per y), RR: 0.77 (0.72-0.83) No heterogeneity when considering eGFR 60-90 or >90; p=0.9</td>
<td></td>
<td>Benefit of statin does not differ by GFR (when comparing eGFR >90, 60-90, <60)</td>
</tr>
</tbody>
</table>

Study type: Meta-analysis
Size: 18 trials

Exclusion criteria: trials of dietary supplements, binders, sterols.

- RR 0.78 (0.71 to 0.86) estimate across studies
- Did not report for dialysis studies only
- 9 trials on MI RR 0.74 (0.67 to 0.81) Consistent across all studies
- 9 trials on stroke RR 0.90 (0.63 to 1.27)

Safety endpoint: Adverse events
No differences

- Heterogeneity in study populations
- Subgroup analyses are majority of CKD data- can introduce bias
- Combined LIPID, WOSCOPS AND CARE and used meta-analysis estimates for these studies published together

Major RW, et al., 2015 (219) 25833405

Inclusion criteria: RCT of lipid lowering, CKD patients usually seen in primary care, with no CVD, minimum 6 mo follow up
Exclusion criteria: trials that included persons on dialysis, or persons with macroalbuminuria (ACR ≥300) or primary renal pathologies

- 9 trials on MI RR 0.74 (0.67 to 0.81) Consistent across all studies
- 9 trials on stroke RR 0.90 (0.63 to 1.27)

Safety endpoint: Adverse events
No differences

- Heterogeneity in study populations
- Subgroup analyses are majority of CKD data- can introduce bias
- Combined LIPID, WOSCOPS AND CARE and used meta-analysis estimates for these studies published together

Baigent C, et al., 2010 (13) 21067804

Inclusion criteria: RCT that included >1000 participants At least 2 y follow up
- More vs. less intensive statin (5 trials) OR Statin vs. control (12 trials)
- Note: included trials of persons with known CVD

Exclusion criteria: N/A

- RR 0.78 (0.71 to 0.86) estimate across studies
- Did not report for dialysis studies only
- 9 trials on MI RR 0.74 (0.67 to 0.81) Consistent across all studies
- 9 trials on stroke RR 0.90 (0.63 to 1.27)

Safety endpoint: not reported for CKD subgroup

- Heterogeneity in study populations
- Subgroup analyses are majority of CKD data- can introduce bias
- Combined LIPID, WOSCOPS AND CARE and used meta-analysis estimates for these studies published together
<table>
<thead>
<tr>
<th>Study</th>
<th>Aim</th>
<th>Inclusion criteria</th>
<th>Intervention</th>
<th>1st endpoint</th>
<th>Safety endpoint</th>
</tr>
</thead>
</table>
| Wanner C, et al., 2005 (220) 16034009 | Effectiveness and safety of statin use in persons with type 2 diabetes on dialysis | **Aim:** Effectiveness and safety of statin use in persons with type 2 diabetes on dialysis
Study type: RCT
Multicenter, double blind
Size: 1,255 | **Inclusion criteria:**
- 18-80 y, type 2 diabetes, on dialysis for <2 y
- Total N = 1255 randomized
Exclusion criteria: LDL <80 or >190, triglycerides >1000, LFTs >3x normal limit, congestive HF, vascular intervention, MI within 3 mo, unsuccessful kidney transplant, resistant HTN | **Intervention:** N=619
Placebo run-in period 4 wk (discontinued any prior lipid lowering medication)
Placebo vs. atorvastatin 20 mg
Comparator: Placebo N=636 | **1st endpoint:**
- Composite of death from cardiac causes, fatal stroke, nonfatal MI or stroke (only 1 event per patient)
- Secondary endpoint: all cause death, all cardiac events combined, all cerebrovascular events combined
- LDL reduction: 42% in intervention vs. 1.3% in placebo
- Cumulative incidence of primary outcome: 31.9 at 3 y in intervention vs. 30.5% in placebo 0.92 (0.77 to 1.10), p=0.37
- Secondary endpoint of all cardiac events combined 0.82 (0.68 to 0.99) but not significant for cerebrovascular events combined (RR: 1.12; 95% CI: 0.81-1.55) or total mortality, RR: 0.93; 95% CI: 0.79-1.08. |

| AURORA Fellstrom BC, et al., 2009 (221) 19332456 | Effect of rosuvastatin to reduce CV events in patients on hemodialysis | **Aim:** Effect of rosuvastatin to reduce CV events in patients on hemodialysis
Study type: multicenter, double blind RCT
Size: 2,776 | **Inclusion criteria:** Age 50-80
On hemodialysis at least 3 mo
Exclusion criteria: Prior statin therapy within prior 6 mo
Expected kidney transplant within 1 y
Serious hematologic, neoplastic, gastrointestinal, infectious or metabolic | **Intervention:** Rosuvastatin 10 mg daily
Comparator: Placebo | **1st endpoint:**
- LDL reduction 43% in statin group
- Follow-up mean 3.2 y
- Time to major CV event (non-fatal MI or stroke or death from CV causes)
Event rate: 9.2 statin vs. 9.5 placebo (per 100 patient y)
HR: 0.96 (0.84-1.11)
- Selected Secondary endpoints (event rates per 100-person-y: rosvastatin vs. placebo): total |

- IF LDL fell below 50, atorvastatin dose reduced to 10 mg
- Higher rate of stroke in atorvastatin group RR: 2.03 (1.05-3.93)
- Revascularization procedures not included in primary outcome
- Excluded patients already on statins (and so could have recruited lower risk HD population)
- Lower event rate than 4D, lower than observed in population and lower than expected
- Relatively high rate of drug discontinuation
- Uncertainty on adjudication of vascular deaths |
disease, malignancy, active liver disease, elevation in CK

mortality (13.5 vs. 14), nonfatal MI (2.1 vs. 2.5), stroke 1.2 vs. 1.1), procedures for stenosis or thrombosis (10.9 vs. 10) of vascular access, death from cardiovascular causes (7.2 vs. 7.3).

Safety endpoint:
- Serious adverse events requiring permanent discontinuation of drug (31.5 vs. 32.1), p=0.78
- No significant differences in CK levels, LFTs, rhabdomyolysis

Data Supplement 38. RCTs Comparing PLACEBO VS. Statin (or Statin plus another agent) to reduce CVD events in persons with Albuminuria and preserved eGFR (Section 4.5.4)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
</table>
| Colhoun HM, et al., 2009 (222) 19540640 | **Aim:** Subgroup analysis of major RCT to evaluate whether eGFR or albuminuria status modify effect of statin to reduce CVD
Study type: Posthoc subgroup of RCT
Size: 2,838 | **Inclusion criteria:**
- Type 2 diabetes +1 risk factor (hypertension, retinopathy, albuminuria, smoking)
- No prior CVD
Exclusion criteria:
- Cr >1.7
- HgbA1c >12%
- LD >160 mg/dL | **Intervention:** Atorvastatin 10 mg
Comparator: Placebo | **1° endpoint:**
- Major CVD event (median 4 y)
- No difference in CVD reduction with statin by eGFR at baseline
- No difference in treatment effect by albuminuria
Major CV events
Albuminuria 13.8 vs. 8.7%, HR: 0.59 (95% CI: 0.36-0.99)
No albuminuria: 7.8 vs. 5.1%, HR: 0.64 (95% CI:0.46-0.89) | Note: eGFR<60 had no increased incidence of CV events or death compared with eGFR >60 |

| Asselbergs FW, et al., 2004 (223) 15492322 | **Aim:** assess ability of fosinopril and pravastatin to reduce CVD events in persons with microalbuminuria
Inclusion criteria:
- Persistent microalbuminuria (15 to 300 mg/24 H)
- BP <160/100
- No use of antihypertensive medication | **Intervention:** 2x2 factorial
- Pravastatin 40 mg
- Fosinopril
- Placebo | **1° endpoint:**
- Combined incident CV mortality, hospitalization for CV morbidity (non-fatal MI or ischemia, congestive HF, PAD or CVA)
- In pravastatin vs. placebo | Fewer events than expected
Study powered to detect 35% reduction in events for statin vs. placebo assuming incidence rate of 15% in placebo |
Study type: 2x2 factorial RCT
Single center
Double blind

Size: 864, <3% had diabetes

Study type: Population-based cohort of patients with rheumatoid arthritis (RA) with matched general population comparators who developed an ACS

Size: 1,135 with RA and 3184 matched comparators

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
</table>
| Mantel A, et al., 2015 (224)28279294 | Study type: Population-based cohort of patients with rheumatoid arthritis (RA) with matched general population comparators who developed an ACS | Inclusion criteria:
• Age ≥18 living in Sweden
• with ≥2 medical visits with a diagnosis of actively monitored RA
• developed an acute coronary syndrome (ACS)
• Population comparators matched for age, sex, education level, and area of residency
Exclusion criteria: If clinical visit did not occur from 2006-9 | 1st endpoint: Short-term mortality
Results:
• Within first wk after ACS, 10.4% of RA cases vs. 6.7% of population cases died (age/sex-adjusted HR: 1.65; 95% CI: 1.32-2.08)
• Rates of deaths within 1 month after ACS was 15.7% among RA cases vs. 10.7% of population cases (age/sex-adjusted HR: 1.43; 95% CI: 1.18-1.72
After adjustment for prior comorbidities, demographics, education, 7-d (HR: 1.50; 95% CI: 1.19-1.90); 30-d HR: 1.43; 95% CI: 1.18-1.72) | Patients with RA sustained more severe ACS with increased short-term mortality as compared with general population. They have worse outcomes after ACS, and this can only partly be explained by increased event severity.
• RA patients may have an increased frequency of vulnerable plaques as well as markers of endothelial damage, and prothrombotic factors.
• RA patients have an increased incidence of ACS |
| Westenweel PE, et al., 2007 (225) 17469095 | Study type: review of prospective and retrospective studies looking at CVD endpoints in adults with systemic lupus erythematosus (SLE) | Inclusion criteria: Studies that reported CV endpoints for populations with SLE vs. general population or those vs. healthy controls | 1st endpoint: Incidence of CVD
Results:
• Incidence of MI was considerably higher in all age groups of women with SLE with | • The increased CVD risk in adults with SLE is likely related to a propensity for thrombotic complications and accelerated atherosclerosis. |
| Lupus erythematosus (SLE) | Exclusion criteria: N/A | a 7-fold higher incidence in the Framingham cohort
• Longer disease duration and treatment with glucocorticoids was associated with a higher MI incidence | Adults with SLE tend to develop subclinical atherosclerosis at an earlier age.
• Hypertension and Dyslipidemia are more prevalent in adults with SLE. |
|-------------------------|------------------------|---|--|
| **Study type:** Cohort study using the General Practice Research Database
Size: 3,603 adults with severe psoriasis and up to 4 patients without psoriasis from the same United Kingdom practices and start dates for each adult with psoriasis | **Inclusion criteria:** Patients with severe psoriasis who were >18 y of age between 1987-2002
Exclusion criteria: Psoriasis patients who did not receive systemic therapy | **1° endpoint:** CV death defined as diagnoses consistent with MI, CVA, PVD, arrhythmia, or left ventricular thrombus
Results:
• When adjusting for age, smoking, diabetes, sex, hypertension, and hyperlipidemia, severe psoriasis was an independent risk factor for CV mortality (HR: 1.57; 95% CI: 1.26-1.96)
• Severe psoriasis patients sustained 1 extra CVD death per 283 patients per y after adjusting for major risk factors | Adults with severe psoriasis have a higher risk of CV mortality, independent of traditional CV risk factors.
• Counselling and aggressive management of risk factors in patients with severe psoriasis is warranted. |
| **Study type:** Surveillance registry
Size: 145,845 HIV-infected adults | **Inclusion criteria:** Individuals diagnosed with HIV infection in the New York City HIV Surveillance Registry compared with those without HIV in the New York City Vital Statistics Registry
Exclusion criteria: If persons were <13 y old | **1° endpoint:** Age-specific and age-standardized mortality rates due to major CVD events
Results:
• 10% of the 29,588 deaths were caused by CVD; 42% were due to ischemic heart disease, 27% to hypertension, and 10% were due to cerebrovascular disease.
• Proportionate mortality due to CVD among HIV+ persons increased from 6% in 2001 to 15% in 2012
• CVD mortality rate was highest among viremic persons (adjusted rate ratio [RR], 3.53; 95% CI: 3.21-3.87), but still elevated among virally suppressed (<400 copies/ml) persons (adjusted RR, 1.53; 95% CI: ? (227)) compared with general population | Clinicians who care for patients with HIV should aggressively manage traditional CVD risk factors and focus on viremic control via ART. |
<table>
<thead>
<tr>
<th>Study type</th>
<th>Inclusion criteria</th>
<th>1st endpoint</th>
<th>Results</th>
<th>AMI rates and CVD risk factors are increased in HIV + patients vs. non-HIV patients, especially among women.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort study</td>
<td>Patients who were seen at one of two hospitals in the Partners HealthCare System at least 2 times</td>
<td>Occurrence of AMI</td>
<td>• AMI rates per 1000 person-y were increased in HIV vs. non-HIV patients (11.13; 95% CI: 9.58-12.68) vs. 6.98 (95% CI: 6.89-7.06)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Individuals who were not billed for their encounter</td>
<td></td>
<td>• RR (for HIV vs. non-HIV) were 2.98 (95% CI: 2.33-3.75) for women and 1.40 (95% CI: 1.16-1.67) for men after adjustment for age, race, hypertension, gender, diabetes, and dyslipidemia</td>
<td></td>
</tr>
<tr>
<td>Study type: Retrospective, observational study of individuals with HIV and/or HCV infection</td>
<td>Consecutive individuals with HIV and/or HCV seen at outpatient clinic in Madrid, Spain as compared to a control group with HCV monoinfection</td>
<td>Composite endpoint of angina, MI, CVA, or CVD death</td>
<td>• HIV/HCV-coinfected patients had a higher incidence of CVD events and/or death than HIV-monoinfected adults (4% vs. 1.2%, p=0.004) and HCV-monoinfected persons (4% vs. 1.4%, p=0.5)</td>
<td>Chronic hepatitis C and hypertension are independently associated with increased CVD risk in adults with HIV.</td>
</tr>
<tr>
<td></td>
<td>Patients with HCV who had been treated</td>
<td></td>
<td>• After adjustments for demographics, traditional CVD risk factors, and viral parameters, both HIV/HCV coinfected patients and HIV+ patients regardless of any liver fibrosis staging.</td>
<td></td>
</tr>
<tr>
<td>Study type: Cross-sectional study</td>
<td>Participants in the UK Biobank with diagnosis of RA, SLE, psoriasis, AS, systemic vasculitis, and inflammatory bowel disease composed the exposed group; those with none of these disorders were the comparison group.</td>
<td>MI, type 2 diabetes mellitus, PAD, and VTE events; all-cause mortality and CVD-related mortality.</td>
<td>• SLE had the strongest association with risk of cardiometabolic disease (RR: 6.36; 95% CI: 4.37-9.25), followed by RA (RR: 1.70; 95% CI: 1.59-1.83), AS (RR: 1.28; 95% CI: 1.09-1.52), vasculitis (RR: 1.21; 95% CI: 1.05-1.38).</td>
<td>Inflammatory disorders increase risk of cardiovascular events.</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td>Excess risk varies with use of anti-inflammatory therapy and duration of the underlying inflammatory disorder.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Increased risk associated with inflammatory disorders is similar to that of diabetes or chronic kidney disease.</td>
</tr>
</tbody>
</table>
| Bartels CM, et al., 2011 (230) 21305507 | **Study type:** Retrospective cohort study
Size: 3,298 RA patients enrolled in Medicare | **Inclusion criteria:** Age > 65 who were alive from 1/1/04-12/31/06 and had a diagnosis of RA who were considered eligible for lipid screening
Exclusion criteria: no baseline CVD, diabetes mellitus, or hyperlipidemia | 1.64; 95% CI: 1.42-1.90), and psoriasis (RR: 1.25; 95% CI: 1.16-1.35).
- Magnitude of association was higher among adults on anti-inflammatory drugs or corticosteroids with risk greatest in SLE patients (RR: 12.35; 95% CI: 7.18-21.24) followed by RA patients (RR: 3.06; 95% CI: 2.44-3.85)
- Patients with SLE had the highest adjusted HR: for all-cause mortality (HR: 2.06; 95% CI: 1.37-3.10) vs. comparison group. |
- Lipid screening was performed in less than half of eligible adults with RA.
- Annual visits to a PCP improved lipid screening; there needs to be better partnerships between rheumatologists and PCPs for assessing CVD risk |
| --- | --- | --- | --- | --- |
| Feinstein MJ, et al., 2017 (72) 28002550 | **Study type:** Multicenter cohort study of HIV patients
Size: 11,288 adults | **Inclusion criteria:** Patients age 18 or older with HIV enrolled in Centers for AIDS Research Network of Integrated Clinical Systems 9CNICS)
Exclusion criteria: Prior ASCVD | 1* endpoint: MI rates and accuracy of the 2013 Pooled Cohort Equations (PCE) vs. two data-derived model incorporating HIV-specific covariates |
- MI rates were increased in black men (6.9/1000 person-y and black women (7.2/1000 person-y) as compared to white men and women (4.4 and 3.3 per 1000 person-y, respectively) and subjects who were not virally suppressed (6.3 vs. 4.7 per 1000 person-y for
- The PCE discriminated MI risk and were only moderately calibrated in this multicenter HIV cohort
- The addition of HIV-specific factors did not improve model performance.
- As more ASCVD events accrue in this cohort, HIV-specific risk estimation models should be compared again to the PCE in this population |
<table>
<thead>
<tr>
<th>Study type</th>
<th>Inclusion criteria</th>
<th>1st endpoint</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts EE, et al., 2015 (231)</td>
<td>Adults with RA enrolled in Nijmegen, early RA inception cohort in The Netherlands</td>
<td>First CV event – either ACS, MI, angina pectoris, CVA, TIA, PVD, and heart failure and discriminatory ability for CV risk prediction was estimated by ROC curves; calibration, sensitivity and specificity were also calculated.</td>
<td>• PCE adequately discriminated MI risk (C statistic 0.75 [95% CI: 0.71-0.78], while two data-derived models with HIV-specific covariates did not discriminate risk any better. • The PCE predicted consistently lower MI rates than what occurred.</td>
</tr>
<tr>
<td>Yu HH, et al., 2015 (232)</td>
<td>Adults with SLE and hyperlipidemia and 935 who had never used lipid-lowering medications and a separate group of statin users</td>
<td>Development of coronary artery disease (CAD), CVD, ESRD, or mortality</td>
<td>• Multivariate adjusted HRs for statin users, as compared with patients never on lipid lowering medication were 0.67 [0.54-0.83] for death from any cause.</td>
</tr>
</tbody>
</table>
Exclusion criteria: SLE that was not diagnosed between 1/1/97 and 12/31/08

- High dose statin for >1 y reduced risk of mortality (HR: 0.44 [0.32-0.60]); CAD (HR: 0.20; 95% CI: 0.13-0.31); CVD (HR: 0.14; 95% CI: 0.08-0.25) with similar results in the nested matched study.

Study type: Nationwide longitudinal cohort study
Size: 945 HIV-infected patients

Inclusion criteria: Patients who had started on a statin after a diagnosis of HIV; 801 without history of CVD and 144 with prior CVD.

Exclusion criteria: Those who had used statin therapy within 1 y before the index date (date of first statin treatment) after HIV diagnosis

1° endpoint: Composite of hospitalizations with diagnosis of ischemic CVA, CAD, or heart failure.

Results:
- In HIV+ persons with history of CVD, the high-dose statin group had a lower CVD risk compared to that of the low-dose group (HR: 0.88; 95% CI: 0.39-1.99).
- The high-potency group showed a lower CVD risk compared to that of the low-potency group (HR: 0.42; 95% CI: 0.06-3.13).
- For those without a history of CVD, the HR values were 0.64 (95% CI: 0.30-1.35) and HR: 0.67 (95% CI: 0.16-2.87).
- No muscle complaints or dementia was observed in statin users.
- New-onset diabetes in the high-dose statin group was higher than in the low-dose statin group (15.3% vs. 8.3%).

Study type: Cohort study of Kaiser members
Size: 24,768 HIV+ and 257,600 HIV− subjects

Inclusion criteria: Enrollees age >18 in Kaiser Permanente in Southern and Northern California

Exclusion criteria: HIV+ adults who were not in care

1° endpoint: Occurrence of MI

Results:
- The adjusted MI rate ratio for HIV status declined over time and reached 1.0 [95% CI: 0.7-1.4] in 2011; this was down from 1.8 [95% CI: 1.3-2.6] from 1996-9.
- There were 320 MIs among HIV+ (268 cases/100,000 person-y) and 2,483 MIs among HIV-negative (165 cases/100,000 person-y) with an adjusted RR:1.4 [95% CI: 1.2-1.6].
<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study Details</th>
<th>Findings</th>
<th>Interpretation</th>
</tr>
</thead>
</table>
| Myasoedova E, et al., 2011 (235) 21216812 | **Study type:** Population-based incidence cohort
Inclusion criteria: Residents of Olmstead County, MN at least 18 y of age with RA
Exclusion criteria: Those who did fulfill the 1987 ACR criteria for RA | **1° endpoint:** Interactions between lipids and risk of CVD
Results: There was a significant non-linear association for TC with CVD risk with 3.3-fold increased risk for TC <4 mmol/l and increased risk of CVD for TC >4 mmol/l. There was no increased risk of CVD for LDL-C >2 mmol/l. | Lipids may have paradoxical associations with CVD risk in RA; lower TC and LDL-C are associated with increased CVD risk. Patients with lower TC and LDL-C levels have increased CVD risk. The associations of lipids with CVD in RA likely confounded by inflammation. |
| Post WS, et al., 2014 (236) 24687069 | **Study type:** Cross-sectional study
Inclusion criteria: HIV-infected and uninfected men who had sex with men, Age: 40-70 y, weighed <300 lbs.
Exclusion criteria: Prior coronary revascularization | **1° endpoint:** Presence of any coronary atherosclerotic plaque and degree of any stenosis on CTA.
Results:
- After adjustments for age, race, center, and cohort, HIV-infected men had a greater prevalence of CAC (Prevalence ratio (PR): 1.21; 95% CI: 1.08-1.35) as well as any plaque (PR=1.14), including non-calcified plaque (PR =1.28) and mixed plaque (PR=1.45) than HIV-uninfected men.
- HIV-infected men also had a greater extent of non-calcified plaque after CAD risk factor adjustment (p=0.026).
- Longer duration of ART and lower nadir CD4+ T cell count were associated with coronary stenosis diameter >50%. | Independent of traditional CHD risk factors, coronary arterial plaque, especially non-calcified plaque, is more extensive and prevalent in HIV-infected men. Men with more advanced HIV infection (lower nadir CD4+ T cell count and higher number of years on ART) have a higher prevalence of more advanced CAD. |
| Kao AH, et al., 2008 (237) 18774002 | **Study type:** Cross-sectional
Inclusion criteria: Women with SLE or RA in the Univ. of Pittsburgh Arthritis Network
Exclusion criteria: No history of a CVD event or diabetes in control group | **1° endpoint:** Presence of CAC in age- and race-matched women with SLE, RA, or in controls and its relationship with CHD risk factors
Results:
- The prevalence of any CAC was higher in asymptomatic women with either SLE | There is generally a higher burden of CAC in patients with chronic inflammatory diseases. Inflammation and endothelial cell activation may play significant role in excess risk of CVD in women with RA or SLE. |
or RA (both 48%) compared with controls (35%).
• Independent of traditional risk factors, women with SLE or RA were more likely to have any CAC as well as more extensive CAC as compared to age- and race-matched controls.
• After adjustments for levels of C-reactive protein and/or soluble intercellular adhesion molecule-1, women with RA or SLE no longer had increased odds of having any CAC compared with controls.

Kawai VK, et al., 2015
(238)
25371313

Study type: Cohort study
Size: 98 adults with RA
Inclusion criteria: Ages 40-75, LDL-C < 190 mg/dL
Exclusion criteria: Prior CVD event, statin use, history of diabetes
1st endpoint: Accuracy of the 2013 ACC/AHA PCE compared to FRS and RRS to identify RA patients with high CAC

Results:
• All 3 risk scores were higher in patients with high CAC (>300 Agatston units or >75th percentile of expected CAC for age, sex, and ethnicity, p<0.05)
• The percentage of patients with high CAC correctly assigned to the elevated risk category was similar among the 3 scores (FRS 32%, RRS 32, PCE 41%).
• The C-statistics for each score predicting high CAC were nearly identical (0.65-0.66)

Lerman JB, et al., 2017
(239)
28483812

Study type: Prospective observational cohort study
Size: 105 adults with psoriasis, 100 adults with hyperlipidemia, and 25 healthy volunteers
Inclusion criteria: adults with psoriasis, adults with hyperlipidemia eligible for statin Rx by ATP III, and healthy volunteers matched by age and sex to those with psoriasis.
Exclusion criteria: age < 18, eGFR < 30, pregnancy, lactating women
1st endpoint: Assessment of coronary plaque burden on CTA

Results:
• Subjects with psoriasis had increased noncalcified coronary plaque burden (NCB) (1.18±0.33 vs. 1.11±0.32, p=0.02) and similar prevalence of high-risk plaque (HRP) (p=0.58), despite being younger with lower traditional risk factors.
• Compared to healthy volunteers, subjects with psoriasis had increased total coronary plaque burden (1.22±0.31 vs. 1.04±0.22),

• The PCE did not outperform the FRS or RR in the identification of RA patients with high CAC.
• Standard risk prediction models do not accurately identify many RA patients with high CAC.

<table>
<thead>
<tr>
<th>Study type:</th>
<th>Inclusion criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data from TEAR RCT: a 2-year, investigator-initiated, randomized, 4-arm, placebo-controlled trial of 755 patients with early RA and no prior treatment with disease-modifying anti-rheumatic drugs.</td>
<td>- Participants naive to treatment with disease-modifying antirheumatic drugs (DMARDs). Patients randomized to 4 different treatment groups: MTX plus etanercept therapy monotherapy (n = 155) and a Placebo arm; Two arms included MTX monotherapy aggressively titrated to 20 mg/week, with "step-up" to MTX plus etanercept 50 mg/week or to triple therapy at 6 months for patients who did not achieve a low Disease Activity Score in 28 joints using the erythrocyte sedimentation rate (DAS28-ESR; <3.2 at 6 months). The other two arms were MTX plus etanercept initiated at baseline and triple therapy initiated at baseline. Triple therapy: 1) MTX (titrated to 20 mg/week) 2) SSZ 500 mg twice a day. If this was tolerated, then escalated to 1,000 mg twice a day.</td>
</tr>
</tbody>
</table>

Size:	459 patients
RA disease duration:	(mean ± SD 3.8 ± 1.1 months)
White:	80%
Female:	73.6%; 76.9% & 70.8% in three groups
DAS28-ESR:	5.8 ± 1.1
On prednisone:	40% in each treatment group
No significant baseline differences between treatment groups.	

1° endpoint:	Lipid levels at 24 weeks.
Results:	Significant changes in total cholesterol, HDL-C, and LDL-C levels (all in mg/dL) compared to baseline (p<0.0001) Mean decrease in Total Cholesterol to HDL-C compared to baseline (p<0.0001)
MTX plus etanercept	MTX monotherapy
LDL-C	LDL-C
31.4	30.0
TC/HDL-C	TC/HDL-C
-0.1	-0.2

Although lipid levels increase with intensive treatment of RA with 3 different protocols, the ratio of TC/HDL-C, a robust lipid measure of risk actually decreased slightly in all treatment arms. Comments: Strength of study was use of a blinded (TEAR) study comparing various regimens for patients with early RA. Caution: Significant number of patients on prednisone that increases all lipid fractions including HDL-C. Study suggests that lipid levels are worth watching, although in these patients there can be multiple factors that can affect lipid levels.

- Aggressive management of CVD risk factors in person with moderate to severe psoriasis is warranted.
day, plus HCQ 200 mg twice a day

Abbreviations:
RA = rheumatoid arthritis, ACS = acute coronary syndrome, HR = hazard ratio, CVD = cardiovascular disease, CI = confidence interval, MI = myocardial infarction; CVA = cerebrovascular accident, PVD = peripheral vascular disease, VTE = venous thromboembolic, PCP = primary care provider, ROC = Receiver Operator Characteristic, SCORE = Systematic Coronary Risk Evaluation; FRS = Framingham Risk Score; RRS = Reynold’s Risk Score, ESRD = end stage renal disease, CTA = Computed Tomographic Angiography, NCB = noncalcified coronary plaque burden

Data Supplement 40. RCTs Comparing Statin Safety and Statin Associated Side Effects (Section 5)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOPE 3 Yusuf S, et al., 2016 (12) 27040132 NCT00468923</td>
<td>Aim: Determine net benefit Study type: RCT Size: 12,705 participants 46.4% female G1 46.1% female G2</td>
<td>Inclusion criteria: Men > 55yrs, Women > 65 y with at least 1 CVRF; Women > 60 with 2 RFs Worldwide recruitment 21 countries Exclusion criteria: • Pts with CVD Indications or contraindications to statins, ARBs, ACE-I or thiazide diuretics</td>
<td>Intervention: G1: Rosuvastatin 10 mg/d (6361) Comparator: G2: placebo (6344)</td>
<td>1° endpoint: Composite of CV death, nonfatal MI/nonfatal stroke (G1:3.7% vs. G2: 4.8%; HR: 0.76; 95% CI: 0.64-0.91; p=0.002; NNT=91) Second co- 1° endpoint: composite of CV death, MI, stroke, resuscitated cardiac arrest, heart failure or revascularization (G1 4.4% vs. G2 5.7%; HR: 0.75; 95% CI: 0.64-0.88; p<0.001; NNT=73) LDL-C with G1 lower than G2 at 1 y: 39.6 (1.02) 3 y: 34.7 (0.90) Overall mean Diff: 34.6 (0.9) 26.5%; p=0.001 ASCVD Risk G2 (%/y) PO1=4.8%/5.6 y=8.6 PO2=5.7%/5.6 y=10.1</td>
<td>•Muscle pain or weakness G1: 5.8% vs. G2: 4.7%; p=0.005 •Cataract surgery G1:3.8% vs. G2 3.1%; p=0.02 No excess of: •New-onset DM: G1:3.9% vs. 3.8%, p=0.82 •Muscle symptoms leading to discontinuation of treatment: G1: 1.3% vs. G2: 1.2%, p=0.63 •Rhabdomyolysis or myopathy: G1 2 cases vs. G2:1 case •Cancer: G1 267 vs. G2 286</td>
</tr>
<tr>
<td>Study</td>
<td>Aim</td>
<td>Inclusion criteria</td>
<td>Intervention</td>
<td>1° endpoint</td>
<td>Secondary endpoint</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>STOMP</td>
<td>To study the effect of statins on muscle symptoms, strength and exercise performance</td>
<td>Healthy, statin-naive men and women</td>
<td>atorvastatin 80 mg for 6 mo (203)</td>
<td>incidence of myalgias in atorvastatin vs. placebo groups (19 vs. 10; p=0.05)</td>
<td>No excess risk of functional abnormalities of the liver in G1.</td>
</tr>
<tr>
<td></td>
<td>Study type: RCT</td>
<td>Exclusion criteria: Cancer within 5 y, baseline ALT>2x ULN, Cr level >2 mg/dL, abnormal thyroid function, CVD, DM, pretreatment muscle symptoms, disability limiting exercise testing</td>
<td>Comparator: placebo for 6 mo (217)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size: 420 51% women</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAUSS-3</td>
<td>Identify patients with statin induced muscle symptoms with statin re-challenge and compare effectiveness of evolocumab and ezetimibe in patients with muscle related statin intolerance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aim: Identify patients with statin induced muscle symptoms with statin re-challenge and compare effectiveness of evolocumab and ezetimibe in patients with muscle related statin intolerance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study type: Two-stage RCT</td>
<td>Inclusion criteria: ●Phase A: pts 18 to 80 y unable to tolerate a statin Phase B: Patients with muscle related symptoms or CK ≥10x ULN on statin re-challenge during phase A: ●LDL-C≥100 mg/dl with CHD or ≥130 mg/dl with ≥2 risk factors, ≥160 mg/dl with ≥1 risk factor, or ≥190 mg/dl with no risk factors</td>
<td>Phase A: Atorvastatin 20 mg for first 10 wk then cross over to placebo Phase B: Evolocumab 420 mg monthly (145) Comparator: Phase A: Placebo for first 10 wk then cross over to atorvastatin Phase B: ezetimibe 10 mg daily (73)</td>
<td>Mean % change in LDL-C from baseline to wk 24 with evolocumab vs. ezetimibe (-52.8% vs. -16.7%, p<0.001) % change in LDL-C from baseline to means of wk 22 and 24 with evolocumab vs. ezetimibe (-54.5% vs. -16.7%, p<0.001)</td>
<td>Muscle symptoms occurred in 209 of 491 (42.6%) of patients while on atorvastatin but not on placebo during phase A Muscle related symptoms in evolocumab vs. ezetimibe: 20.7% vs. 28.8% P>0.05 Drug discontinuation due to muscle symptoms in evolocumab vs. ezetimibe: 0.7% vs. 6.8% CK ≥10x ULN with evolocumab vs. ezetimibe: 2.8% vs. 1.4%, P>0.05</td>
</tr>
<tr>
<td></td>
<td>Study type: Two-stage RCT</td>
<td>Exclusion criteria: ●MI, unstable angina, coronary revascularization or stroke within 3 mo before randomization ●NYHA class III or IV heart failure</td>
<td>Comparator:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size: 491</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Heart Association, Inc., and the American College of Cardiology Foundation.
| **ODYSSEY ALTERNATIVE** | **Aim:** study the safety and efficacy of LDL-C reduction with alirocumab vs. ezetimibe in patients with statin intolerance and primary hypercholesterolemia
Study type: RCT
Size: 314 |
|---|---|
| **Inclusion criteria:**
- Statin intolerance (inability to tolerate at least 2 statins due to muscle related symptoms, including one at the lowest dose) with LDL-C ≥ 70 mg/dL (very high CV risk) or ≥ 100 mg/dL (moderate/high CV risk).
- Uncontrolled thyroid disease
- Use of fibrates other than fenofibrate within 6 wk before screening.
- Hx of rhabdomyolysis or known myopathy other than statin-associated myopathy. |
| **Intervention:**
- alirocumab 75 mg SQ Q2W plus oral placebo (126)
- Comparator: ezetimibe 10 mg daily plus SQ placebo Q2W (125) or atorvastatin 20 mg daily plus SQ placebo Q2W (63) |
| **1º endpoint:**
- % LDL-C change from baseline to wk 24 in alirocumab vs. ezetimibe group (-45% vs. -14.6%, difference of 30.4%, p<0.0001) |
| • Muscle related side effects were lower in alirocumab vs. atorvastatin groups (HR: 0.61, 95% CI: 0.38-0.99, p=0.042)
• 27% had myalgias, 6.3% had muscle weakness and 11.1% had muscle spasms in the atorvastatin group |

| **N-of-1 Trial** | **Aim:** compare effect of statin rechallenge in patients with Hx of statin-related myalgia
Study type: RCT, 3 double-blind, crossover comparisons
Size: 8 |
|---|---|
| **Inclusion criteria:**
- pts ≥ 18 y age with hypercholesterolemia and statin-related myalgia without clinically significant elevation in CK levels (<3x ULN or <3x the baseline value)
- Hx of rhabdomyolysis, metabolic or inflammatory myopathy or neuropathy |
| **Intervention:**
- Re-challenge with previously intolerant statin (80)
- Comparator: placebo (80) |
| **1º endpoint:** difference in mean visual analogue scale (VAS) myalgia score between statin treatment and placebo (No statistically significant difference in VAS myalgia score between the two groups, p>0.05)
Secondary outcome: mean difference in symptom specific VAS score, pain severity score (PSS) and pain interference score (PIS) (No statistically significant differences between statin treatment and placebo groups, p>0.05). |
<p>| • No statistically significant difference in CK or liver enzyme levels between statin treatment and placebo groups |</p>
<table>
<thead>
<tr>
<th>Study name</th>
<th>Aim</th>
<th>Inclusion criteria</th>
<th>Intervention</th>
<th>1° endpoint</th>
<th>Secondary endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUPITER-Diabetes risk</td>
<td>to evaluate the balance between net CV benefit versus incident DM risk with rosuvastatin in pts with none or ≥1 risk factors for DM (fasting glucose >100 mg/dL, but <126 mg/dL, metabolic syndrome, BMI ≥ 30 kg/m² or glycated hemoglobin A1c >6%)</td>
<td>Healthy men ≥50 y age and women ≥ 60 y age with LDL-C <130 mg/dL and high sensitivity C-reactive protein (hsCRP) ≥ 2 mg/L</td>
<td>rosuvastatin 20 mg</td>
<td>MI, stroke, hospitalization for unstable angina, revascularization, or CV death</td>
<td>More frequent incident DM in rosuvastatin vs. placebo group (270 vs. 216, HR: 1.25; 95% CI: 1.05-1.49; p=0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>placebo</td>
<td></td>
<td>Average time to DM diagnosis for rosuvastatin vs. placebo group was 84.3 wk vs. 89.7 wk respectively</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>simvastatin 20 mg and CoQ10 600 mg/d (20)</td>
<td>pain assessed by Pain Severity Score (PSS) and Pain Interference Score (PIS)</td>
<td>More subjects reported pain in the CoQ10 vs. placebo group (70% vs. 39; p=0.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>simvastatin 20 mg and placebo (18)</td>
<td></td>
<td>Increase in PSS and PIS in both groups (p<0.01) with statin therapy however no difference with CoQ10 or placebo (p=0.53 and p=0.56)</td>
</tr>
</tbody>
</table>

| Study type: RCT | Size: 17,603 | Study type: RCT | Size: 41 | Study type: RCT | Size: 70 |

© American Heart Association, Inc., and the American College of Cardiology Foundation.
St. Francis Heart Study RCT

Foster T, et al., 2011

Aim:
To evaluate the effectiveness of statin therapy for non-alcoholic fatty liver disease (NAFLD).

Study type: RCT

Size: 455

Inclusion criteria:
- Healthy men and women between ages 50-70 y

Exclusion criteria:
- History of CAD, insulin dependent DM, bleeding diathesis, severe anemia
- Cancer within 5 y prior to enrollment
- Condition likely to lead to death within 5 y of enrollment
- Use of anticoagulants or cyclosporine
- LDL >174 mg/dL or <90 mg/dL
- Systolic blood pressure >180 mmHg
- Diastolic blood pressure >100 mmHg
- Elevated transaminases >1.5x ULN
- Pts without both visible liver and spleen on imaging

Intervention:
- Atorvastatin 20 mg, vitamin C 1g and vitamin E 1000 IU (n=229)

Comparator:
- Placebo (n=226)

1° endpoint:
Effect of atorvastatin, vitamin C and Vitamin E vs. placebo on NAFLD
- Reduced odds of NAFLD in the intervention group vs. placebo (70% vs. 34%, OR: 0.29; p<0.001)

- Only 3 patients had transaminase elevation >2x ULN that resolved on follow up

Findings:
- 53% reduction in VTE (HR: 0.47; 95% CI: 0.21-1.03; p=0.05)
- 22% reduction in total mortality (HR: 0.78; 95% CI: 0.59-1.03; p=0.08)
- No increase in incident DM (0.99; 95% CI: 0.45-2.21; p=0.99)

Individuals with ≥ 1 risk factor for DM (rosuvastatin vs. placebo):
- 36% reduction in VTE (HR: 0.64; 95% CI: 0.39-1.06; p=0.08)
- 17% reduction in total mortality (HR: 0.83; 95% CI: 0.64-1.07; p=0.15)
- 28% increase in incident DM (HR: 1.28 (95% CI: 1.07-1.54; p=0.01)
Data Supplement 41. Nonrandomized Trials, Observational Studies, Meta-analyses and/or Registries of Statin Safety and Statin-Associated Side Effects (Section 5)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
</table>
| **ASCOT-LLA** Gupta A, et al., 2017 (248) 28476288 | **Study type**: Non-blinded, non-randomized extension of ASCOT-LLA RCT
Size: 9899 patients
• 6409 (65%) in atorvastatin user group
• 3490 (35%) non-atorvastatin user group | **Inclusion criteria**:
• pts aged 40–79 y with hypertension and three or more CVD risk factors
• fasting total cholesterol concentrations 6·5 mmol/L or lower and not taking a statin or fibrate
• no hx of MI and were not being treated for angina | **1° endpoint**: compare rates of AEs in blinded vs. non-blinded phase of the study
Results:
Blinded phase:
• Muscle related AEs were similar between atorvastatin and placebo groups (2.03% vs. 2.0%/y, HR: 1.03; 95% CI: 0.88-1.21; p=0.72)
• Erectile dysfunction (1.86% vs. 2.14%/y, HR: 0.88; 95% CI: 0.75-1.04; p=0.13)
• Sleep disturbance lower in atorvastatin group vs. placebo (1.0% vs. 1.46%, HR: 0.69, 95% CI: 0.56-0.85; p=0.0005)
• Few cases of reported cognitive impairment (not statistically reliable for analysis per authors)
Unblinded phase:
• Muscle related AEs higher in patients on atorvastatin vs. those not on it (1.26% vs. 1.0%/y, HR: 1.41; 95% CI: 1.10-1.79; p=0.006)
• No significant differences between statin and non-statin users for erectile dysfunction, sleep disturbance or cognitive impairment | • muscle related adverse effects were higher when patients were unblinded suggesting nocebo effect |
| **Banach M, et al., 2015 (249) 25440725** | **Study type**: Meta-analysis of RCTs
Size: 6 studies with 302 patients receiving statin therapy, 5 studies with 226 participants evaluating the effect of CoQ10 on plasma CK, and 5 studies with 253 participants assessing the | **Inclusion criteria**:
Randomized, placebo-controlled, parallel or crossover trial; adults 18 y and older; intervention group received CoQ10 and comparison group received placebo; availability of data on CK levels or severity of myopathic pain | **1° endpoint**: impact of CoQ10 on plasma CK activity and muscle pain
Results:
• Non-significant increase in plasma CK activity increased after CoQ10 supplementation (mean difference 11.69 U/L; 95% CI: -14.25 to 37.63 U/L; p=0.38) | • No significant benefit of CoQ10 supplementation in improving statin-induced myopathy |
<table>
<thead>
<tr>
<th>Exclusion criteria:</th>
<th>Non-significant decrease in muscle pain after CoQ10 supplementation (standardized mean difference = -0.53; 95% CI: -1.33 to 0.28; p=0.20)</th>
</tr>
</thead>
</table>
| Preiss D, et al., 2011 (250) 21693744 | Study type: Meta-analysis of RCTs
Size: 5 trials of 32,752 participants
Inclusion criteria: trials of 1000 or more participants without DM exposed to moderate or intensive dose statin therapy with a minimum mean follow-up of 1 y
Exclusion criteria: Placebo-controlled trials, patients with diabetes, other agents or treatments
1° endpoint: incidental DM, determined by an adverse event report of new diagnosis during the trial, participant starting glucose-lowering medication during the trial or 2 fasting plasma glucose values of 126 mg/dL or greater during the trial
• composite of CV events (CV death, nonfatal MI, nonfatal stroke, CAbG or PCI)
Results:
• Participants receiving intensive dose statin were more likely to develop new-onset DM compared with moderate-dose statin (OR: 1.12; 95% CI: 1.04-1.22; I²=0%)
• Participants receiving intensive dose statin vs. moderate dose statin had OR: 0.84; 95% CI: 0.75-0.94; I²=74% for CV events.
• Intensive-dose statin therapy was associated with an increased risk of new-onset diabetes compared to moderate-dose statin therapy
• 2 additional cases of DM per 1000 patient-y vs. 6.5 fewer cases of CV events per 1000 patient-y in the intensive statin therapy group
• NNH=498 for new onset DM and NNT=155 for CV events in intensive-dose statin therapy group |
| Navarese EP, et al., 2013 (251) 23352266 | Study type: Meta-analysis of RCTs
Size: 17 RCTs including a total of 113,394 patients
Inclusion criteria: RCTs comparing either a statin vs. placebo or high-dose vs. moderate-dose statin therapy
Exclusion criteria: Trials investigating surrogate markers, patients already diagnosed with DM, new-onset DM data not published, different follow-up per group
1° endpoint: the incidence of new-onset DM with different type and doses of statins
Results:
• Pravastatin 40 mg/d was associated with the lowest risk of new-onset DM compared to placebo (OR: 1.07; 95% CI: 0.86-1.30)
• Rosuvastatin 20mg/d associated with increased risk for new-onset DM compared to placebo (OR: 1.25; 95% CI: 0.82-1.90)
• Atorvastatin 80mg/d was associated with increased risk of DM compared to placebo (OR: 1.15; 95% CI: 0.90-1.50)
• Various doses of different types of statins show varying potential to increase the incidence of DM |
| Sattar N, et al., 2010 (252) | **Study type:** Meta-analysis of RCTs
Size: 13 trials with 91140 participants | **Inclusion criteria:** RCTs of more than 1000 patients, identical follow-up in both groups, and duration of more than 1 y
Exclusion criteria: Trials of patients with organ transplants or needed hemodialysis | **1st endpoint:** Incident DM
Results:
• Statin therapy associated with an increased risk for incident DM (OR: 1.09; 95% CI: 0.02-1.17) with little heterogeneity between trials ($I^2=11\%$)
• One case of DM for every 255 patients (0.4% absolute increase) treated with statins for 4 y
• Incidence of DM was 12.3 cases/1000 patient-y in the statin group and 11.25 cases/1000 patient-y in the control group
• Statin therapy was associated with a slightly increased risk of diabetes development.
• Absolute risk of DM development is low and low-risk when compared with the reduction in coronary events. |
| Taylor F, et al., 2013 (201) | **Study type:** Systematic Review and Meta-Analysis
Size: 18 RCTs with 19 groups; 56,934 participants | **Inclusion criteria:** RCTs of statins vs. placebo or usual care in adults \geq 18 y age; with treatment duration of \geq 12 mo and follow-up \geq 6 mo; 10% or less had a history of CVD
Exclusion criteria: Studies in which >10% of patients had previous CVD
Studies where statins were used to control/treat chronic conditions | **1st endpoint:** All-cause mortality, fatal and non-fatal CHD, CVD and stroke, combined endpoints (fatal and non-fatal CHD, CVD and stroke), revascularization
Results: AEs (statin vs. control)
• Pooled event rates from 12 trials showed no difference in overall rate of AEs (RR: 1; 95% CI: 0.97-1.03).
• No excess risk of cancer from pooled estimate from 11 trials (RR: 1.01; 95% 0.93-1.10) and no heterogeneity.
• No excess risk of myalgia and rhabdomyolysis from pooled estimate of 9 trials (RR: 1.03; 95% CI: 0.97-1.09) with some heterogeneity ($I^2=41\%$)
• Excess risk of Type 2 DM observed from only two trials (RR: 1.18; 95% CI: 1.01-1.39).
• No excess risk of hemorrhagic stroke from pooled estimate of 2 trials (RR: 0.97; CI: 0.54-1.75).
• Weak evidence for elevation in transaminases from pooled estimate of 10 studies (RR: 1.16; 95% CI: 0.87-1.54).
• Weak evidence for renal dysfunction from pooled estimate of 4 studies (RR: 1.11; 95% CI: 0.99-1.26).
• Weak evidence for arthritis from pooled estimate of 2 studies (RR: 1.2; 95% CI: 0.82-1.75).
• In patients without CVD, statins reduce all-cause mortality, major vascular events and revascularization without a significant increase in AEs. |
<table>
<thead>
<tr>
<th>Richardson K, et al., 2013</th>
<th>Study type: Systematic Review and Meta-Analysis</th>
<th>Inclusion criteria: Studies evaluating cognitive function in adults receiving statins</th>
<th>1st endpoint: Incidence of dementia, Alzheimer’s disease, or mild cognitive impairment in statin vs. placebo treated patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size: 27 studies (3 RCTs, 16 cohort, 4 case–control, and 4 cross-sectional)</td>
<td>were included in meta-analysis</td>
<td></td>
<td>Results:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Moderate-strength evidence showed no increased risk for dementia with statins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- One RCT of statin vs. placebo – RR: 1.00; 95% CI: 0.61-1.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- pooled analysis of 10 cohort studies showed statins were associated with decreased risk for dementia (RR: 0.87; CI: 0.82-0.92)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Low-strength evidence demonstrates no association between statins and increased risk of Alzheimer disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Pooled analysis of 10 cohort studies suggest statins are associated with decreased risk of Alzheimer disease (RR: 0.79; CI: 0.63-0.99)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Moderate-strength evidence suggests no increase in risk of mild cognitive impairment (MCI) or cognitive impairment without dementia with statins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- One RCT showed no significant difference in incidence of MCI with statin therapy vs. placebo (RR: 0.98; 95% CI: 0.93-1.03)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Pooled analysis of 4 cohort studies showed a decrease in risk with statin therapy (RR: 0.66; CI: 0.51-0.86)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Lack of large RCTs to evaluate effect of statin therapy on cognitive function</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• currently available data does not suggest adverse effect of statins on cognitive function</td>
</tr>
<tr>
<td>Ganga HV, et al., 2014</td>
<td>Study type: Systematic Review</td>
<td>Inclusion criteria: Placebo controlled studies with a minimum follow-up of 6 mo. and published from 1990 through November 2012.</td>
<td>Exclusion criteria: nonrandomized trials, observational studies, case</td>
</tr>
<tr>
<td>Size: 42 trials (113,695 patients)</td>
<td></td>
<td>1st endpoint: Incidence of muscle symptoms in patients treated with statin vs. placebo</td>
<td>Results:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Incidence of any muscle problems was 12.7% (n = 7,544) in 59,237 statin treatment group and 12.4% (n = 6,735) in 54,458 placebo group (p=0.06)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• incidence of muscle symptoms is almost identical in statin and placebo-treated patients in clinical trials (about 13% of the participants)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• statin related adverse effects are less frequent in clinical trials compared to clinical practice</td>
</tr>
</tbody>
</table>

© American Heart Association, Inc., and the American College of Cardiology Foundation.

213
| Study type: | Post-hoc analysis of the GREACE population randomized to statin or usual care | Inclusion criteria: Patients with coronary artery disease, aged <75 y, with LDL-C>2.6 mmol/L and triglycerides <4.5 mmol/L | 1ª endpoint: safety and effectiveness of statin therapy in risk reduction for first recurrent CV event in patients with abnormal liver tests |
| Study type: | Systematic Review | Inclusion criteria: English language studies related to statin exposure and pregnancy | 1ª endpoint: Teratogenicity associated with statin use |

GREACE
Athyros VG, et al., 2010 (23) 21109302

- **Study type:** Post-hoc analysis of the GREACE population randomized to statin or usual care
- **Size:** 1600 patients
- **Inclusion criteria:** Patients with coronary artery disease, aged <75 y, with LDL-C>2.6 mmol/L and triglycerides <4.5 mmol/L
- **1ª endpoint:** safety and effectiveness of statin therapy in risk reduction for first recurrent CV event in patients with abnormal liver tests

- CK>3 times ULN reported in 0.5% (63/13,734) of the statin group vs. 0.3% (42/13,740) of the placebo group (p=0.04)
- CK >10 times ULN reported in 0.2% (77/39,893) of the statin group vs. 0.16% (55/34,499) of the placebo group (p=0.28)
- Rhabdomyolysis occurred in 0.03% (15/49,691) of the statin group vs. 0.02% (12/52,301) of the placebo group (p=0.48)

Kralis DG, et al., 2016 (256) 27678424

- **Study type:** Systematic Review
- **Size:** 16 studies (5 case series, 3 cohort studies, 3 registry-based studies, 1 RCT and 4 systematic reviews)
- **Exclusion criteria:** Single case reports, Animal studies, Studies only published in abstract form, and non-English language
- **1ª endpoint:** Teratogenicity associated with statin use

- No clear relationship between statin use and congenital anomalies in pregnancy
- More studies are needed to determine the safety of statins in pregnancy

© American Heart Association, Inc., and the American College of Cardiology Foundation.
Data Supplement 42. RCTs Comparing Patient Interventions to Usual Care (Section 6)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park LG, et al., 2014 (257) 24321403</td>
<td>Aim: To determine the effectiveness of a mobile text messaging intervention in improving adherence to antiplatelet and statin medications. Study type: Parallel randomized controlled clinical trial Size: N recruited = 90 N randomized = 90 N reported outcomes = 84 Inclusion criteria: • ≥ 21 y of age • Hospitalized for non-ST elevation MI, ST elevation MI, or PCI • Prescribed an antiplatelet medication • Prescribed a statin medication • Owned mobile phone with text messaging capability • Able to speak, read, understand English Exclusion criteria: • Cognitive impairment that limited ability to understand and complete questionnaires • Inability to operate a mobile phone</td>
<td>Intervention: • TM for medication reminders and education (n = 30) • Educational TM only (n = 30) Comparator: • No TM (n = 30)</td>
<td>1° endpoint: Comparison of medication adherence using TM response rates and MEMS data over 30-d intervention period. • Patients receiving educational and reminder text messages for antiplatelets had a higher percentage of correct doses taken (p=0.02) and percentage of prescribed doses taken on schedule (p=0.01) compared to the No TM group. • TM response rates were significantly higher for anti-platelets than statins (p=0.005), which authors attribute to the fact that statins are prescribed for the evening.</td>
<td>Study limitations: (1) Low frequency of analyzable MEMS data caused by poor usage among patients recruited in acute-settings and/or patients resistant to changing habit of using pill organizers. (2) Small convenience sample could undermine external validity of the findings to a more diverse group. (3) Short follow-up period does not allow for measurement of long-term adherence trends or clinical outcomes. (4) Use of MEMS may have added attention to medication-taking habits across all groups.</td>
<td></td>
</tr>
<tr>
<td>ORBITAL Willich SN, et al., 2009 (258) 19174696</td>
<td>Aim: To measure the effect of a compliance-enhancing program on the level of lipid control for patients taking rosuvastatin. Study type: Parallel randomized controlled clinical trial</td>
<td>Inclusion criteria: • LDL-C ≥ 115 mg/dl if statin naïve • LDL-C ≥ 125 mg/dl otherwise • Participants had one of the following risk factors: history of CHD or other atherosclerotic disease, 10-</td>
<td>Intervention: Rosuvastatin 10/20 mg with compliance program (videotape, educational leaflet, information about free phone patient helpline and website, labels with reminder to take medication) (n = 4064)</td>
<td>1° endpoint: Medication adherence, expressed as proportion of participants who were adherent at 3, 6, and 12 mo • Compliance program effective among statin-naïve patients at 3 mo (80% vs. 76%, p<0.01) and 6 mo (78% vs. 73%, p<0.01), when</td>
<td>Study limitations:</td>
</tr>
</tbody>
</table>
| **Size:**
| N recruited = 8108
| N randomized = 8108
| N reported outcomes = 6872
| **Inclusion criteria:**
| y CHD risk Z20%, or diabetes
| Exclusion criteria:
| • Fasting triglycerides > 400 mg/dl
| • Familial or secondary hypercholesterolemia
| • Active liver disease (elevations of aspartate aminotransferase or alanine aminotransferase)
| **Comparator:**
| Rosuvastatin 10/20 mg without compliance program (n = 4044)
| **1° endpoint:** Percentage of patients with serum LDL-C < 100 mg/dl at 12 mo.
| • There was not a significant difference between patients who received the intervention (64.51) when compared to those receiving routine care (60.15) (p=0.293, FET)
| **2° endpoint:** CMA for statin medication use was 0.88 (SD = 0.3) for PI group vs. 0.90 (SD = 0.03) for UC (p=0.51).
| **Study limitations:** (1) Small sample size available for LDL-C outcome limited power to detect level of LDL-C difference; (2) Limitations of using pharmacy refill data – no information to indicate whether dispensed medications were actually taken by patients, no information for patients who did not fill prescriptions; (3) No data on cost of medication or insurance coverage; (4) Study does not account for effects of co-management (e.g., by pharmacists, cardiologists, etc.); (5) No lipid levels at baseline to account for the drop in LDL-C following acute CHD event; (6) Majority of study patients Caucasian, limiting generalizability; (7) Possibility of selection bias, explaining high adherence rate in control group.

| **Size:**
| N recruited = 689
| N randomized = 689
| N reported outcomes = 559
| **Aim:** To evaluate the efficacy of a pharmacist-delivered intervention in improving LDL-C goal attainment.
| **Study type:** Parallel randomized controlled clinical trial
| **Inclusion criteria:**
| • 30-85 y of age
| • CHD (defined as ≥ 1 coronary lesion ≥ 50% at the time of coronary angioplasty)
| Exclusion criteria:
| • Unable or unwilling to give informed consent in English
| • History of intolerance to two or more statin drugs
| • Planned to move out of the area within 1 y of recruitment
| • Estimated life expectancy < 5 y
| • Major psychiatric illness
| • No telephone
| **Intervention:**
| Pharmacist-delivered intervention (PI). Initial inpatient contact and 5 patient-centered pharmacist-delivered telephone counseling calls after discharge (n = 338)
| **Comparator:** Routine care as determined by provider (UC) (n = 331)

Ma Y, et al., 2010 (259)
21490915
<table>
<thead>
<tr>
<th>Nieuwkerk PT, et al., 2012 (253) 22621795</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aim: To evaluate the potential for nurse-led counseling to improve statin adherence and lipid levels without increasing anxiety levels.</td>
</tr>
<tr>
<td>Study type: Parallel randomized controlled clinical trial</td>
</tr>
<tr>
<td>Size:</td>
</tr>
<tr>
<td>N recruited = 201</td>
</tr>
<tr>
<td>N randomized = 201</td>
</tr>
<tr>
<td>N reported outcomes = 181</td>
</tr>
<tr>
<td>Inclusion criteria:</td>
</tr>
<tr>
<td>• ≥ 18 y of age</td>
</tr>
<tr>
<td>• Indication for statin use (1° or 2° prevention of cardiovascular event)</td>
</tr>
<tr>
<td>Exclusion criteria:</td>
</tr>
<tr>
<td>• Severe fasting dyslipidemia (total cholesterol >9.0 mmol/L or triglyceride >4.0 mmol/L)</td>
</tr>
<tr>
<td>• Statin use >3 mo before inclusion</td>
</tr>
<tr>
<td>• History of drug and/or alcohol abuse</td>
</tr>
<tr>
<td>• Pregnant or breastfeeding</td>
</tr>
<tr>
<td>Intervention: Extended Care (EC). Patients received multifactorial (modifiable and non-modifiable) risk-factor counselling by NP. Counselling focused on increasing medication adherence, reducing overweight, smoking cessation, and increasing physical activity. Data summarized in “personal risk-factor passport,” a graphical presentation of 10-y CVD risk. (n = 100)</td>
</tr>
<tr>
<td>Comparator: Routine Care (RC). Measurement of body weight, blood pressure, capillary lipid profile at each visit. All patients received 10 mg atorvastatin, unless baseline cholesterol levels indicated more aggressive therapy. Subsequent dose escalation was allowed, as deemed fit by providers. (n = 101)</td>
</tr>
<tr>
<td>1° endpoints: Serum LDL; Adherence to lipid lowering medication (subjects asked what percentage of their prescribed lipid-lowering medications they took during the past month, 1 = <30%, 9 = 100%). Both measures were averaged over follow-up (mo 3, 9, and 18).</td>
</tr>
<tr>
<td>• Among 1° prevention patients, LDL levels were significantly lower for EC group (3.0 ± 0.10 mmol/L) vs. RC group (2.66 ± 0.10 mmol/L) (p<0.05).</td>
</tr>
<tr>
<td>• Adherence to statins was significantly higher for EC (4.90 ± 0.05) vs. RC (4.60 ± 0.05) (p<0.01).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kooy MJ, et al., 2013 (260) 3665928</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aim: To evaluate the ability of an ERD with or without counseling to improve adherence for statin treatment in non-adherent patients.</td>
</tr>
<tr>
<td>Inclusion criteria:</td>
</tr>
<tr>
<td>• ≥ 65 y of age</td>
</tr>
<tr>
<td>• Started statin therapy at least 1 y prior to study</td>
</tr>
<tr>
<td>• Non-adherent in the year prior to study (refill rate between 50-80%).</td>
</tr>
<tr>
<td>Intervention:</td>
</tr>
<tr>
<td>• ERD: Patients received ERD by mail with written instructions for use. ERD beeped at the same time every day until patient turned it off. (n = 131)</td>
</tr>
<tr>
<td>1° endpoint: Refill adherence for statin treatment for 360-d period after inclusion (refill rate ≥ 80% considered adherent)</td>
</tr>
<tr>
<td>• The proportion of adherent patients was not significantly higher in the</td>
</tr>
</tbody>
</table>

| Study limitations: |
| (1) Some pharmacists did not follow study protocol. Only 54 of the 116 invited patients actually received the counseling; (2) Small sample size could limit power to demonstrate statistically significant effect; |

© American Heart Association, Inc., and the American College of Cardiology Foundation.

217
<table>
<thead>
<tr>
<th>Study type:</th>
<th>Parallel randomized controlled clinical trial</th>
<th>Exclusion criteria:</th>
</tr>
</thead>
</table>
| Size: | N recruited = 399 N randomized = 399 N reported outcomes = 381 | - Persons not personally responsible for medication intake
- Life expectancy < 5 y
- < 65 y of age
- Patients who had changed statins in the 540 d before inclusion |
| ERD and Counseling: | Patients participated in 10-min counseling session with pharmacist based on stages of change model. Patients received ERD device and instructions for use. (n = 134) |
ERD group (72.4%, p=0.18) or the ERD and counseling group (69.2%, p=0.55), when compared to the control group (64.8%).
- For women using statins for 2° prevention, adherence was significantly higher among those in the ERD group (86.1%), when compared to the control group (52.6%) (p<0.005). |
| Comparator: | Usual Care (UC). Patients received information about therapy and medication at start of therapy. (n = 134) |
(3) Some patients may have been selected as non-adherent who were actually more than 80% adherent; (4) Researchers were unaware of whether or not patients who received ERD with the instructions actually utilized the device; (5) Odds ratio overestimates the effect size when interpreted as relative risk. |

Aim: To determine whether the provision of adherence information with or without motivation interviewing has a positive effect on diabetes and lipid control.
Study type: Parallel randomized controlled clinical trial
Size: N recruited = 3799 N randomized = 1692 N reported outcomes = 1692
Inclusion criteria:
- ≥ 18 y of age
- Member of health plan with prescription coverage
- ≥ 1 HbA1c measurement with the last value ≥ 7%
- ≥ 1 LDL-C measurement with the last value ≥ 100 mg/dL
- ≥ 1 Prescription for both an oral diabetes medication and a lipid-lowering medication.
Exclusion criteria:
- Hospice care or hospitalized ≥ 90 d
- Participation in any other study involving diabetes management or medication adherence
- Primary care provider did not consent to participate
Intervention:
- Adherence information provided to clinicians to discuss with patients (Al). (n = 569)
- Adherence information provided to clinicians and motivational interviewing provided to patients via nurses and pharmacists in “adherence clinic” (Al + MI). (n = 556)
Comparator: Usual care (UC) (n = 567)
1° endpoints: HbA1c; LDL-C at 18 mo.
- HbA1c not significantly different for Al (7.91 ± 1.53, p=0.763) or Al + MI (7.79 ± 1.34, p=0.285), when compared with UC (7.88 ± 1.53)
- LDL-C not significantly different for Al (87.27 ± 35.67, p=0.084) or Al + MI (85.56 ± 32.86, p=0.084), when compared with UC (89.02 ± 32.11)
Study limitations: (1) Possibility of selection bias toward individuals already motivated to change; (2) Study carried out in single integrated health system, may not be generalizable to other systems; (3) Significant baseline differences between randomized groups, although not thought to be clinically significant; (4) Measurement of primary laboratory outcome measures was not standardized and relied on PCPs ordering tests during routine care.
Abbreviations:

1° indicated primary; 2° indicated secondary; CHD, coronary heart disease; CMA, continuous multiple interval; ERD, electronic reminder device; FET, Fisher’s exact test; HbA1c, hemoglobin A1c; LDL-C, low density lipoprotein cholesterol; MEMS, medication event monitoring system; MI, myocardial infarction; N/A, not available; NP, nurse practitioner; PCI, percutaneous coronary intervention; PI, pharmacist-delivered intervention; RCT, randomized controlled trial; and TM, text message.

Search Terms:

Cholesterol, adherence, compliance

Date of Search:

9/17

Data Supplement 43. RCTs Comparing System Interventions to Usual Care (Section 6)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
</table>
| Tamblyn R, et al., 2010 (262) 19675319 | **Aim:** To determine whether integrating a cardiovascular medication tracking and alert system into electronic medical records would increase drug profile review by PCP, increase likelihood of therapy change, or improve adherence. **Study type:** Parallel cluster-randomized controlled trial **Size:** N screened = 2138 N randomized = 2004 N reported outcomes = 1921 | **Inclusion criteria:**
 - Insured with provincial drug insurance program
 - ≥ 1 active lipid-lowering or antihypertensive drug prescribed by study physician in 3 mo. prior to index visit.

Exclusion criteria:
 - N/A | **Intervention:** PCP provided with detailed drug profile (total medication cost per month, out of pocket expenditure for patient, graphic representation of unfilled prescriptions, and days of supply for each medication); patient adherence calculated at each visit; physician alerted to check for potential adherence problems if treatment adherence < 80% (n = 1002). **Comparator:** PCP had access only to current list of prescribed and dispensed drugs; PCPs did not receive alerts for low adherence (n = 1002). | **1° endpoints:** Review of drug profile by physician; change in drug therapy (increase or discontinuation of therapy)

 - Participants in the intervention group were more likely to have their drug profile reviewed when compared to the control group (44.5% vs. 35.5%; OR: 1.4; 95% CI: 1.21- 1.76; p<0.0001)
 - The intervention did not have a significant effect on increased drug therapy (28.5% vs. 28.8%; OR: 0.98; 95% CI: 0.80 to 1.21; p=0.08) or discontinuation of therapy (23.0% vs. 2.0%; OR: 1.18; 95% CI: 0.63 to 2.19; p=0.61). | **2° endpoint:** Adherence rates to cardiovascular medications in the 6 mo before and after the intervention. Measured as difference in post-pre-compliance rates.

 - The intervention did not have a significant effect on adherence (-6.2 vs. -6.4; SD = 24.1; 95% CI: -1.8, -2.1; p=0.90) | **Study limitations:** (1) Insufficient number of new users to evaluate whether there is greater benefit of adherence monitoring tools for new users; (2) Insufficient statistical power to assess clinically important changes to therapy; (3) Risk of contamination due to study design (i.e., physicians reviewing drug profiles for non-adherent patients in control group).
| **Aim:** To determine whether eliminating the costs associated with prescriptions improves medication adherence. | **Inclusion criteria:**
- Patients discharged following MI
- Patients received medical and prescription drug benefits through Aetna. | **Intervention:** Participants’ pharmacy benefits were changed so that they had no cost sharing for any statins, betablockers, ACE inhibitors, or ARBs after randomization. All copayments were waived at point of care. (n = 2845). | **1st endpoint:** Fatal or nonfatal vascular event or revascularizations (rate/100 person-y).
- The rate of total fatal or nonfatal vascular events was lower in the intervention group (21.5) than in the control group (23.3) (HR: 0.89, 95% CI: 0.80 to 0.99; p=0.03).
- Rates of full adherence for statins were significantly higher in the full-coverage group (49.3%) than in the usual care group (41.9%) (OR: 1.36; 95% CI: 1.18 to 1.56; p<0.001).
- The elimination of co-payments for intervention group did not increase the total spending for the health system (USD 66,008 in full-coverage group vs. USD 71,778 for usual coverage group). (Relative spending 0.89; 95% CI: 0.50 to 1.56; p=0.68).
- Participants in the full coverage group paid significantly less for drugs and other services (Relative spending 0.75; 95% CI: 0.68 to 0.80; p<0.001). | **2nd endpoint:** Medication adherence rates (full adherence defined as having a supply of medications available on ≥ 80% of days during follow-up); Cost of intervention.
- Reliance on administrative claims to identify patients and evaluate outcomes may have diminished the observed effect of the intervention. (2) Nature of sample (relatively young patients, insured by large national insurer) may limit generalizability to other groups. |
| **Study type:** Parallel randomized controlled clinical trial | **Exclusion criteria:** N/A | **Comparator:** Usual copayment arrangements (n = 3010) | **Study limitations:** (1) Reliance on administrative claims to identify patients and evaluate outcomes may have diminished the observed effect of the intervention. (2) Nature of sample (relatively young patients, insured by large national insurer) may limit generalizability to other groups. |
Abbreviations: ACE, angiotensin-converting-enzyme; ARB, angiotensin-receptor blocker; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; PCP, primary care provider; RCT, randomized controlled trial; and SD, standard deviation.

Search Terms: Cholesterol, adherence, compliance

Date of Search: 9/17

Data Supplement 4. RCTs Comparing Small Number of Pills/Day to Large Number of Pills/Day (Section 6)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention (# patients) / Study Comparator (# patients)</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown BG, et al., 1997 (264) 9230143</td>
<td>Aim: To evaluate the efficacy, safety, and tolerability of a moderate dose, 3-drug lipid-lowering regimen. Study type: Cross-over randomized controlled clinical trial Size: N recruited = 31 N randomized = 31 N reported outcomes = 29 Inclusion criteria: • Male • ≤ 65 y of age • High risk for future cardiac events (apolipoprotein B ≥ 125 mg/dl; ≥ 1 coronary lesion ≥ 50% stenosis or 2 lesions ≥ 30% stenosis; family history of premature cardiovascular events). Exclusion criteria: • N/A</td>
<td>Preliminary treatment: For first 12 mo, all enrolled patients received 3-drug regimen (niacin, lovastatin, colestipol). At 12 mo, patients were randomly assigned to intervention/control groups. At 20 mo, intervention status was reversed. Intervention: Reduced daily dosage: Intervention group changed to controlled-release niacin, administered twice daily, rather than 4 times/d. (n = 31) Comparator: Continued regular niacin at dosage established during first 12 mo. (n = 31)</td>
<td>1° endpoint: Lipid levels • Target LDL of < 100 mg/dl was achieved at 8 mo by 83% of participants on controlled-release niacin compared to 52% of participants on regular niacin (p<0.01) 2° endpoint: Medication adherence • Reducing medication intake from 4 times/d to 2 times/d improved mean medication intake by 11% (96% in intervention vs. 85% in control; p=0.01) Study limitations: Small sample size limits statistical power and generalizability of findings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOCUS Castellano JM, et al., 2014 (265) 25193393</td>
<td>Aim: To compare the effects of an FDC polypill (aspirin, simvastatin, ramipril) Inclusion criteria: Participants previously included in Phase 1 (cross-sectional study of FOCUS)</td>
<td>Intervention: FDC polypill containing aspirin 100 mg, simvastatin 40 mg, and ramipril 2.5, 5, or 10 mg</td>
<td>1° endpoint: Attending final visit with MAQ of 20 and high pill count (80% to 110%) 2° endpoints: • Among study participants, the risk of being non-adherent (MAQ < 20) was associated with younger age, depression, complex</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
with administering the 3 drugs separately.

Study type: Parallel randomized controlled clinical trial

Size:
N recruited = 695
N randomized = 695
N reported outcomes = 695 for intention-to-treat analysis; 458 completed all visits for per protocol analysis

but not in Phase 2 (RCT of FOCUS)

10 mg, given once daily.
(n = 350)

Comparator: Received aspirin, simvastatin, and ramipril as 3 separate drugs, administered once daily (n = 345)

Exclusion criteria:
- Secondary dyslipidemia
- Contraindication to polypill
- Participation in another trial
- Previous percutaneous transluminal coronary angioplasty with drug eluting stent within previous year
- Severe congestive heart failure
- Serum creatinine > 2 mg/dl
- Life expectancy < 2 y
- Pregnancy
- Premenopausal

Comparator: Received aspirin, simvastatin, and ramipril as 3 separate drugs, administered once daily (n = 345)

- The intervention group showed improved adherence over the control group at 9 mo in the intention-to-treat population (50.8% vs. 41.0%; p=0.019) and per protocol population (65.7% vs. 55.7%; p=0.012)

medication regimen, poorer health insurance coverage, and lower levels of social support.

- No significant differences were seen between intervention and control for mean LDL-C (89.9 mg/dl vs. 91.7 mg/dl) or mean SBP (129.6 mmHg vs. 129.6 mmHg).

Adverse events: No difference in adverse events or serious adverse events in groups receiving polypill (35.4%, 6.0%) or the 3 drugs separately (32.5%, 6.6%). There was 1 death in each group (0.3% vs. 0.3%).

Patel A, et al., 2015 (266) 24676715

Aim: To determine whether FDC polypills of generic drugs would promote use of preventive drugs for individuals at high risk of CVD.

Study type: Parallel randomized controlled clinical trial

Size:
N recruited = 731
N randomized = 623
N reported outcomes = 623

Inclusion criteria:
- ≥ 18 y of age
- High CVD risk
 (established CVD or estimated 5-y Framingham CVD risk of 15%)
- Indications for all and no contraindications to any component of at least 1 of 2 polypills

Exclusion criteria:
- Participants for whom it was clinically inappropriate to alter medications

- Participants in the intervention group demonstrated greater use of treatment compared to those who received the drugs as separate doses (70% vs. 47%; RR: 1.49, 95% CI: 1.30 to 1.72; p<0.0001).

Comparator Usual care. Medications administered as separate doses, as prescribed by physician. (n = 312)

1° endpoint: Use of treatment after median of 18 mo.

- Participants in the intervention group demonstrated greater use of treatment compared to those who received the drugs as separate doses (70% vs. 47%; RR: 1.49, 95% CI: 1.30 to 1.72; p<0.0001).

2° endpoint:
- No significant differences between intervention and control for total cholesterol levels (0.08 mmol/l; 95% CI: 0.06-0.22; p=0.26) or SBP (1.5 mmHg; 95% CI: 4.0-1.0; p=0.24).

Adverse events: ≥ 1 serious adverse event reported in 46.3% of intervention participants and 40.7% of control participants (p=0.16).
| **Pill Collaborative Group, et al., 2011 (267) 21647425** | **Aim:** To evaluate the effect of a polypill on systolic BP, LDL-C, and tolerability.
Study type: Parallel randomized controlled clinical trial
Size:
N recruited = 859
N randomized = 378
N reported outcomes = 373
Inclusion criteria:
• Raised cardiovascular risk (7.5% using Framingham risk equation)
• No contraindication to polypill
• ≥ 18 y of age
Exclusion criteria:
• Patients taking other antiplatelet, blood pressure lowering, or cholesterol lowering medicine
• Patients with diabetes mellitus
Intervention: Intervention group received polypill containing aspirin 75 mg, lisinopril 10 mg, hydrochlorothiazide 12.5 mg, and simvastatin 20 mg. (n = 189)
Comparator: Placebo (n = 189)
1ª endpoints: Change in SBP, LDL-C, and tolerability (withdrawal from study) measured at 12 wk.
• There was a reduction in SBP (9.9 mmHg; 95% CI: 7.7-12.1) and LDL-C (0.8 mmol/L; 95% CI: 7.7-12.1) with the polypill, as compared to the placebo.
• Discontinuation rates were higher in polypill group (23%) than the placebo group (18%) (RR: 1.33; 95% CI: 0.89-2.0; p=0.2).
Study limitations: (1) Short follow-up period did not allow for assessment of long-term drop-out rates. (2) Narrow sample may limit generalizability of findings.
Adverse events: 58% of participants in the intervention group reported adverse events compared to 42% in control group (p=0.001). Authors note that reported side effects were consistent with known side effects of medications within the polypill. Within each group, 4 serious adverse events were reported (polypill: chest pain, newly diagnosed Type II diabetes, removal of wisdom teeth, syncope; placebo: syncope, depression, transient ischemic attack; hip fracture). |
| **Selak V, et al., 2014 (268) 24868083** | **Aim:** To evaluate the effectiveness of FDC treatment in improving adherence and risk factor control among high risk cardiovascular patients.
Inclusion criteria:
• 18-79 y of age
• High risk of CVD (established coronary, cerebrovascular, or peripheral vascular disease; or ≥ 15% 5-y risk of cardiovascular event)
• PCP determined all drugs in at least 1 of the 2
Intervention: FDC treatment was administered by PCP. PCPs could choose between 2 FDCs: (1) aspirin 75 mg, simvastatin 40 mg, lisinopril 10 mg, atenolol 50 mg; or (2) aspirin 75 mg, simvastatin 40 mg, lisinopril 10 mg,
1ª endpoint: Adherence rate at 12 mo
• FDC was associated with higher adherence compared to usual care (81% vs. 46%; RR: 1.75, 95% CI: 1.52 to 2.03; p<0.001).
• FDC was associated with higher adherence compared to usual care (81% vs. 46%; RR: 1.75, 95% CI: 1.52 to 2.03; p<0.001).
2ª endpoint: Mean change in LDL-C, SBP
• There was not a significant difference in LDL-C levels between the intervention and control groups (-0.05 mmol/L; 95% CI: -0.17, 0.08; p=0.46). |
| Study type: Parallel randomized controlled clinical trial | Study type: Parallel randomized controlled clinical trial | \begin{itemize}
 \item Versions of the FDC treatment were recommended
 \item Patients had started statins ≥ 1 y prior to inclusion, and were non-adherent in the year prior to inclusion (refill rate between 50% and 80%)
 \item Exclusion criteria:
 \begin{itemize}
 \item Contraindications to any components of FDC
 \item Congestive heart failure, hemorrhagic stroke, active stomach or duodenal ulcer, receipt of oral anticoagulant
 \item Concerns of PCP about risk of study
 \item Participant unlikely to complete the trial (i.e., terminal illness)
 \end{itemize}
\end{itemize} | \begin{itemize}
 \item Comparator: Cardiovascular drug regimen was prescribed according to PCP’s usual method. (n = 257)
\end{itemize} |
| Size: \begin{itemize}
 \item N recruited = 513
 \item N randomized = 513
 \item N reported outcomes = 513
\end{itemize} | \begin{itemize}
 \item Comparator: Cardiovascular drug regimen was prescribed according to PCP’s usual method. (n = 257)
\end{itemize} |
| Intervention: Patients were assigned to an FDC of either (1) aspirin 75 mg, simvastatin 40 mg, lisinopril 10 mg, and atenolol 50 mg; or (2) aspirin 75 mg, simvastatin 40 mg, lisinopril 10 mg, and hydrochlorothiazide 12.5. (n = 1002) | 1st endpoint: Self-reported adherence (defined as taking medication for ≤ 4 d during week preceding visit); mean changes in LDL-C and SBP at 15 mo
\begin{itemize}
 \item Adherence was significantly greater for patients receiving FDC, when compared to the usual care (86% vs. 65%, RR: 1.33, 95% CI: 1.26 to 1.41; p<0.001).
\end{itemize} |
| Study limitations: (1) Moderate statistical power limits ability to rule out small increases or decreases in risk factor levels. (2) Baseline treatment rates were higher than national averages, limiting ability to test FDC among patients currently taking few or no preventive drugs. (3) Open label trial design may have contributed to differential treatment or reporting between groups. | Study limitations: (1) Participants selected based on their willingness/ability to attend study visits, which may limit the generalizability of the findings. (2) High level of adherence reported at baseline findings when compared with the general population. |
| Adverse events: There was not a significant difference in serious adverse events between the intervention group (99) and the control group (93) (p=0.56). There were 4 deaths in the intervention group and 6 in the usual care group (p=0.75). | Adverse events: There was no significant different in adverse |
Data Supplement 45. RCTs for Implementation (Section 6)

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events</th>
</tr>
</thead>
</table>
| Choudhry, NK, et al., 2011 (263) 22080794 | Study type: investigator-initiated, cluster-randomized, controlled policy study
Size: 5855 patients (2845 full prescription coverage; 3010 patients with usual prescription coverage)
Inclusion criteria: Patients received both medical and prescription drug benefits through Aetna, discharged from the hospital with a principal or secondary diagnosis code of International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) 410 (except when the fifth digit was 2), and a length of stay of 3 to 180 d.
Exclusion criteria: Patients enrolled in a health savings account offering full coverage for the study medications or | 1° endpoint:
First major vascular event or revascularization.
Results:
Primary endpoint - no difference
17.6 per 100 person-y in the full-coverage group vs. 18.8 in the usual coverage group;
HR: 0.93; 95% CI: 0.82-1.04; p=0.21.
• Secondary endpoints better for full-coverage total major vascular events or revascularization (21.5 vs. 23.3; HR: 0.89; 95% CI: 0.90 to 0.99; p=0.03)
• Rate of first major vascular event or revascularization (11.0 vs. 12.8; HR: 0.93; 95% CI: 0.82–1.04).
 Elimination of copayments improved adherence and secondary outcomes.
Although out-of-pocket costs to the patient were reduced, total spending did not increase. | events between the FDC group (5%) and the usual care group (3.5%) (p=0.09). There were 17 deaths in the FDC group compared to 15 in the usual care group (p=0.72). |

Abbreviations: 1° indicated primary; CI, confidence interval; CVD, cardiovascular disease; FDC, fixed-dose combination; HR, hazard ratio; LDL-C, low density lipoprotein cholesterol; MAQ, Morisky Green questionnaire; N/A, not available; OR, odds ratio; PCP, primary care provider; RCT, randomized controlled trial; and RR, relative risk; and SBP, systolic blood pressure.

Search Terms and Date of Search:

Study Acronym; Author; Year Published
Aim of Study; Study Type; Study Size (N)
Patient Population
Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)
Relevant 2° Endpoint (if any); Study Limitations; Adverse Events

© American Heart Association, Inc., and the American College of Cardiology Foundation.
> 65 y of age at time of hospital discharge, since Medicare was primary health insurer

- Adherence rates statins, beta-blockers, ACE inhibitors, and ARBs for all comparisons (p<0.001)

No difference in total spending between groups ($66,008 for the full-coverage group vs. $71,778 for the usual-coverage group; relative spending, 0.89; 95% CI: 0.50-1.56; p=0.68).

Abbreviations: 1° indicated primary; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; and RR, relative risk.

Search Terms and Date of Search: Author to provide
ACC/AHA Special Report: Clinical Practice Guideline Implementation Strategies, 2017 (270) 28132746

<table>
<thead>
<tr>
<th>Study Acronym; Author; Year Published</th>
<th>Study Type/Design; Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results (P values; OR or RR; & 95% CI)</th>
<th>Summary/Conclusion Comment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study type: Summary of systematic reviews (SR) Size: 39 SR 16 overviews of SR</td>
<td>Inclusion criteria: For critical questions (CQ) 1,2: SRs focused on implementation of guidelines or clinical practice directly affecting patient care + aimed at clinicians [4 interventions: • audit and feedback (any summary of clinical performance over a specified time period; may include recommendations for clinical active); • educational outreach visits (academic detailing = trained person met with providers in their practice setting to give information with the intent of changing practice; the information may have included feedback on performance); • reminders (patient or encounter specific information given verbally or on paper/computer screen, which was designed to prompt information recall; computer-aided decision support and drug doses are included); • provider incentives (pay for performance = direct or indirect financial reward/benefit to the individual for doing a specific action).]</td>
<td>1° endpoint: Critical questions 1,2: • Generally effective: > 2/3 studies had positive intervention effects • Mixed effectiveness: 1/3 to 2/3 studies had positive intervention effects • Generally ineffective: < 1/3 studies had positive intervention effects Critical questions 3, 4: Conclusions are drawn from contractor's qualitative coding of included reviews during abstraction process for a variety of categories of contextual factors identified a priori.</td>
<td>Results: Generally effective for improving process of care and clinical outcomes: • audit and feedback (15 of 21 reviews; 7 of 12 reviews) • educational outreach visits (12 of 13 reviews; 3 of 5 reviews) Generally effective for cost reduction: • outreach visits (2 of 2 reviews) • reminders (3 of 4 reviews) • provider incentives (1 of 1 review) Generally effective for cost-effectiveness outcomes: • Gaps exist in the evidence of effectiveness of implementation strategies. • Audit and feedback and educational outreach visits were generally effective in improving process of care and clinical outcomes. • Educational outreach visits were generally effective for cost reduction and cost effectiveness outcomes. • Reminders and provider incentives were generally effective for cost reduction. • Reminders and provider incentives showed mixed effectiveness for improving process of care. • Implementation strategies may not be effective across all practice settings. • It may take multiple strategies to implement guidelines in clinical practice.</td>
<td></td>
</tr>
</tbody>
</table>
For critical questions (CQ) 3,4: SRs and overviews of SRs focused on contextual issues affecting guideline implementation.

Exclusion criteria: Studies focused on interventions targeting patients (e.g. patient education/reminders).

- Educational outreach visits (1 of 1 review) and provider incentives (1 of 1 review).

Mixed effectiveness for improving process of care and clinical outcomes:
- Provider incentives (3 of 4 reviews; 3 reviews equally distributed between generally effective, mixed, and generally ineffective).

Mixed effectiveness for improving process of care and generally ineffective for clinical outcomes:
- Reminders (27 reviews with 11 mixed and 3 generally ineffective results; 18 reviews with 6 mixed and 9 generally ineffective results).

Facilitating factors to adoption/adherence:
- Guideline characteristics, e.g. format, resources, and end-user involvement (6 reviews/overviews).
- Involving stakeholders (5 reviews/overviews).
- Leadership support (5 reviews/overviews) scope of implementation (5 reviews/overviews).
- Organizational culture such as multidisciplinary teams and low-baseline adherence (9 reviews/overviews).
<table>
<thead>
<tr>
<th>Study type: Scoping review</th>
<th>Study type: Scoping review</th>
<th>Study type: Scoping review</th>
<th>Study type: Scoping review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size: 69 articles (42 studies, 27 reviews)</td>
</tr>
<tr>
<td>Exclusion criteria: If did not include: • generalizable strategies • direct reference to strategies/barriers for guideline implementation • clinical guidelines • comparability (e.g. developing countries) • study protocol</td>
<td>Exclusion criteria: If did not include: • generalizable strategies • direct reference to strategies/barriers for guideline implementation • clinical guidelines • comparability (e.g. developing countries) • study protocol</td>
<td>Exclusion criteria: If did not include: • generalizable strategies • direct reference to strategies/barriers for guideline implementation • clinical guidelines • comparability (e.g. developing countries) • study protocol</td>
<td>Exclusion criteria: If did not include: • generalizable strategies • direct reference to strategies/barriers for guideline implementation • clinical guidelines • comparability (e.g. developing countries) • study protocol</td>
</tr>
<tr>
<td>Results: Physician factors • Barriers: knowledge (lack of awareness or familiarity); attitudes (lack of agreement, self-efficacy, skills, learning culture, outcome expectancy, or motivation). • Strategies: dissemination (standardize notification process, training material), continuing education/meetings, active learning with expert opinion leaders, individualized audit and feedback, group performance audit, quality circle, financial, standing orders Guideline-related factors • Barriers: lack of evidence, applicability, or clear intervention goals; plausibility of</td>
<td>Results: Physician factors • Barriers: knowledge (lack of awareness or familiarity); attitudes (lack of agreement, self-efficacy, skills, learning culture, outcome expectancy, or motivation). • Strategies: dissemination (standardize notification process, training material), continuing education/meetings, active learning with expert opinion leaders, individualized audit and feedback, group performance audit, quality circle, financial, standing orders Guideline-related factors • Barriers: lack of evidence, applicability, or clear intervention goals; plausibility of</td>
<td>Results: Physician factors • Barriers: knowledge (lack of awareness or familiarity); attitudes (lack of agreement, self-efficacy, skills, learning culture, outcome expectancy, or motivation). • Strategies: dissemination (standardize notification process, training material), continuing education/meetings, active learning with expert opinion leaders, individualized audit and feedback, group performance audit, quality circle, financial, standing orders Guideline-related factors • Barriers: lack of evidence, applicability, or clear intervention goals; plausibility of</td>
<td>Results: Physician factors • Barriers: knowledge (lack of awareness or familiarity); attitudes (lack of agreement, self-efficacy, skills, learning culture, outcome expectancy, or motivation). • Strategies: dissemination (standardize notification process, training material), continuing education/meetings, active learning with expert opinion leaders, individualized audit and feedback, group performance audit, quality circle, financial, standing orders Guideline-related factors • Barriers: lack of evidence, applicability, or clear intervention goals; plausibility of</td>
</tr>
<tr>
<td>Barriers to adoption/ adherence: • time constraints (8 reviews/overviews) limited staffing resources (2 overviews). • timing (5 reviews/overviews) • clinician skepticism (5 reviews/overviews). • clinician knowledge of guidelines (4 reviews/overviews). • higher age of the clinician (1 overview).</td>
<td>Barriers to adoption/ adherence: • time constraints (8 reviews/overviews) limited staffing resources (2 overviews). • timing (5 reviews/overviews) • clinician skepticism (5 reviews/overviews). • clinician knowledge of guidelines (4 reviews/overviews). • higher age of the clinician (1 overview).</td>
<td>Barriers to adoption/ adherence: • time constraints (8 reviews/overviews) limited staffing resources (2 overviews). • timing (5 reviews/overviews) • clinician skepticism (5 reviews/overviews). • clinician knowledge of guidelines (4 reviews/overviews). • higher age of the clinician (1 overview).</td>
<td>Barriers to adoption/ adherence: • time constraints (8 reviews/overviews) limited staffing resources (2 overviews). • timing (5 reviews/overviews) • clinician skepticism (5 reviews/overviews). • clinician knowledge of guidelines (4 reviews/overviews). • higher age of the clinician (1 overview).</td>
</tr>
</tbody>
</table>

© American Heart Association, Inc., and the American College of Cardiology Foundation.
229
| Study type: Updated search (2012 to April 2015) in CENTRAL; MEDLINE; EMBASE; PsycINFO; and grey literature; includes CINAHL to September 2008. **Size:** 105 studies, 34,043 participants | **Inclusion criteria:** RCTs comparing decision aids to usual care and/or alternative interventions. **Exclusion criteria:** Studies comparing detailed versus simple decision aids. | **1st endpoint:** Difference in attributes of choice made and the decision-making process. **Results:** Decision aids improved these attributes compared to usual care: **Choice made**
- participants' knowledge (mean difference 13.27/100; 95% CI: 11.32 - 15.23; 52 studies; N = 13,316; high-quality evidence),
- accuracy of risk perceptions (risk ratio 2.10; 95% CI: 1.66 - 2.66; 17 studies). | After using a decision aid,
- knowledge improved
- patients had more accurate risk perception
- More patients were willing to start a new medication. **Decision aids added 2.6 min to the consultation time.** |
• congruency between informed values and care choices (risk ratio 2.06; 95% CI: 1.46 to 2.91; 10 studies; N = 4626; low-quality evidence)

Decision-making process
• decisional conflict related to feeling uninformed (mean difference −9.28/100; 95% CI: −12.20 to −6.36; 27 studies; N = 5707; high-quality evidence)
• indecision about personal values (mean difference −8.81/100; 95% CI: −11.99, −5.63; 23 studies; N = 5068; high-quality evidence)
• Proportion of people who were passive in decision making (risk ratio 0.68; 95% CI: 0.55–0.83; 16 studies; N = 3180; moderate-quality evidence).

Relevant secondary outcomes
• increased those choosing to start new medications for diabetes (risk ratio 1.65; 95% CI: 1.06 to 2.56; 4 studies; N = 447).
• median effect of decision aids on length of consultation was 2.6 min longer (24 versus 21; 7.5% increase).
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study type: Study type: retrospective cohort study</th>
<th>Size: 796 patients with baseline LDL-C not at goal</th>
<th>Inclusion criteria: ≥18 y old; ≥ 2 patient encounters, with primary care provider, cardiologist, or endocrinologist, and lipid panels drawn in 2007.</th>
<th>Exclusion criteria: LDL-C could not be determined (triglycerides > 400 mg/dL); LDL-C goal could not be determined.</th>
<th>1° endpoint: LDL-C goal attainment with e-prescription with formulary decision support (FDS) versus manual prescription. Results: Patients with e-prescription using FDS reached LDL-C goal more often (51%) than patients with manual prescription (44%), OR: 1.59 (95% CI: 1.12-2.25).</th>
<th>Use of e-prescription with formulary decision support may increase adherence and LDL-C goal attainment. Generic statin prescribed more often with an e-prescription using FDS than with a manual prescription (38% vs. 22.9%; p=0.0004). For each $10 increase in prescription price, the likelihood of being at goal decreased by 5% (OR: 0.95; 95% CI: 0.93-0.98).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michelis KC, et al., 2011 (273) 21462218</td>
<td>Study type: retrospective cohort study</td>
<td>Size: 4886 patients</td>
<td>Inclusion criteria: New users of statins (no active statin prescription in 6 mo prior), dyslipidemia (International Classification of Diseases, Ninth Revision, Clinical Modification ICD-9-CM code 272), within the Veterans Integrated Service Network 22 for at least 2 y prior, and initiated a statin between November 30, 2006, and December 2, 2007. Required to have medical and pharmacy benefits throughout the study period. Study subjects were required to have at least 1 primary care visit prior to index date, at least 2 primary care visits after index date, and at least 1 prescription prior to index date. Patients included in the analysis were required to have complete data for exposure, outcome, and regression adjustment variables.</td>
<td>Exclusion criteria: N/A</td>
<td>1° endpoint: Adherence rate [determined via the medication possession ratio (MPR), defined as number of days supplied with prescription medication divided by days of observation]. Results: Patients with copayment for their statin had higher adherence rates (≥0.8 MPR and ≥0.9 MPR) than patients with copayments, odds ratios (OR) of 1.19 (95% CI: 1.03-1.37) and 1.28 (95% CI: 1.11-1.48).</td>
<td>Elimination of copayments increased adherence rate.</td>
</tr>
<tr>
<td>Watanabe JH, 2014 (274) 24372459</td>
<td>Study type: retrospective cohort study</td>
<td>Size: 45,029 patients</td>
<td>Inclusion criteria: New PCSK9 inhibitor prescription from 8/1/15 to 7/31/16</td>
<td>Exclusion criteria: N/A</td>
<td>1° endpoint: Proportion of PCSK9 inhibitor prescriptions approved and abandoned Results: 20.8% approved on first day; 47.2% ever received approval</td>
<td>About 1/3 of approved prescriptions for PCSK9 inhibitors were not filled because of cost.</td>
</tr>
</tbody>
</table>
Of those approved, 65.3% filled the prescription
30.9% of those prescribed PCSK9 inhibitor ever received therapy

Prescription abandonment by patients associated with cost
7.5% with copay = $0
75% with copay ≥ $350

<table>
<thead>
<tr>
<th>Study type: Retrospective, descriptive cohort study using pharmacy claims linked to electronic medical records from nationwide data warehouse</th>
<th>Inclusion criteria: ≥18 y old; ≥1 submitted claim for PCSK9 inhibitors from 7/1/15 to 8/31/2016, ≥1 private practitioner or facility medical claims from 1/1/2010 to 7/31/15, and >1 LDL-C test result (<400 mg/dL) from 7/1/2015 to the patient's index date.</th>
<th>1° endpoint: Percentage of patients approved or rejected for PCSK9 inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hess GP, et al., 2017 (276) 29084735</td>
<td>Exclusion criteria: N/A</td>
<td>Results: 47% of PCSK9 inhibitor prescriptions were approved for coverage by payer</td>
</tr>
<tr>
<td></td>
<td>Variables associated with PCSK9 inhibitor approval:</td>
<td>Approval rates</td>
</tr>
<tr>
<td></td>
<td>• > 65 y of age (p<0.01)</td>
<td>• Highest: Medicare (60.9%)</td>
</tr>
<tr>
<td></td>
<td>• history of ASCVD (p<0.01)</td>
<td>• Lowest: commercial third-party payers (24.4%)</td>
</tr>
<tr>
<td></td>
<td>• prescription from cardiologist or nonprimary care provider (p<0.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• statin intolerance (p=0.03)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• longer statin duration (p=0.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• noncommercial payers (p<0.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cost to the patient (mean patient responsibility) influenced therapy possession and abandonment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Approved/possessed: $202.87±12.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Approved/abandoned: $478.83±27.32</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: 1° indicated primary; CI, confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; and RR, relative risk.
Data Supplement 47. Cost-Effectiveness Models of PCKS9 Inhibitors in Secondary Prevention (Section 7)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Patient Population</th>
<th>Incremental Lifetime Cost</th>
<th>Incremental Effectiveness</th>
<th>Value</th>
<th>Summary/Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazi DS, et al., 2016</td>
<td>State-transition Markov Model</td>
<td>ASCVD with LDL>=70 despite maximally tolerated statin therapy (including individuals who are statin intolerant)</td>
<td>3.282×10^9 (US Population)</td>
<td>7.92 $\times 10^6$ Quality Adjusted Life Years (US Population)</td>
<td>$414,000/QALY added (relative to ezetimibe) $316,000/QALY (relative to statin standard of care)</td>
<td>“Assuming 2015 [US] prices, PSCK9 inhibitor use…did not meet generally accepted incremental cost-effectiveness thresholds”</td>
</tr>
<tr>
<td>Kazi DS, et al., update</td>
<td>State-transition Markov Model</td>
<td>ASCVD with LDL>=70 despite maximally tolerated statin therapy (including individuals who are statin intolerant)</td>
<td>2.500×10^9 (US Population)</td>
<td>5.56 $\times 10^6$ Quality Adjusted Life Years (US Population)</td>
<td>$450,000/QALY added (relative to ezetimibe) $339,000/QALY (relative to statin standard of care)</td>
<td>“PCSK9 inhibitor use in patients with ASCVD was not cost-effective at 2017 [US] prices…Reducing annual drug costs by 71% (to ≤$4215) would be needed for PCSK9 inhibitors to be cost-effective at a threshold of $100 000/QALY”</td>
</tr>
<tr>
<td>Gandra SR, et al., 2016</td>
<td>State-transition Markov Model</td>
<td>ASCVD with LDL >70 mg/dl despite maximally tolerated statin therapy</td>
<td>$158,307 (per patient)</td>
<td>1.12 Quality Adjusted Life Years (per patient)</td>
<td>$141,700/QALY (relative to statin standard of care)</td>
<td>“Elovocumab added to standard of care may provide a cost-effective treatment option for lowering LDL-C”</td>
</tr>
<tr>
<td>Toth PP, et al., 2017</td>
<td>State-transition Markov Model</td>
<td>ASCVD with a prior CV event, LDL >=70 mg/dl despite maximally tolerated statin therapy</td>
<td>$127,088 (per patient)</td>
<td>0.68 Quality Adjusted Life Years (per patient)</td>
<td>$190,400/QALY (relative to statin standard of care)</td>
<td>“The expected value-based price for evolocumab is higher than its current annual cost, as long as the payer discount off list price is greater than 20%”</td>
</tr>
<tr>
<td>Fonarow GC, et al., 2017</td>
<td>State-transition Markov Model</td>
<td>ASCVD with a prior CV event, LDL >70 mg/dl despite maximally tolerated statin therapy</td>
<td>$105,398 (per patient)</td>
<td>0.39 Quality Adjusted Life Years (per patient)</td>
<td>$268,600/QALY (relative to statin standard of care)</td>
<td>“At its current list price of $14 523, the addition of evolocumab to standard background therapy in patients with atherosclerotic cardiovascular disease exceeds generally accepted cost-effectiveness thresholds.”</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Patient Population</td>
<td>Incremental Lifetime Cost</td>
<td>Incremental Effectiveness</td>
<td>Value</td>
<td>Summary/Conclusions</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Arrieta A, et al., (282) 28081164</td>
<td>State-transition Markov Model</td>
<td>Patients who would have been eligible the OSLER (Open-Label Study of Long-Term Evaluation against LDL Cholesterol) study</td>
<td>$231,918 (per patient)</td>
<td>0.66 Quality Adjusted Life Years (per patient)</td>
<td>$348,800/QALY (relative to statin standard of care)</td>
<td>“At current prices, our study suggests that PCSK9 inhibitors do not add value to the U.S. health system...to be the breakthrough drug in the fight against cardiovascular disease, the current price of PCSK9 inhibitors must be reduced by more than 70%”</td>
</tr>
<tr>
<td>Arrieta A, et al., update (282) 29049467</td>
<td>State-transition Markov Model</td>
<td>Patients who would have been eligible the FOURIER (Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk) trial</td>
<td>$136,101 (per patient)</td>
<td>0.36 Quality Adjusted Life Years (per patient)</td>
<td>$337,700/QALY (relative to statin standard of care)</td>
<td>“At current prices, the addition of PCSK9 inhibitor to statin therapy is estimated to provide an additional quality-adjusted life year for $337,729. Significant discounts are necessary to meet conventional cost-effectiveness standards.”</td>
</tr>
<tr>
<td>Kazi DS, et al., 2016 (277) 27533159</td>
<td>State-transition Markov Model (CVD Policy Model)</td>
<td>Heterozygous familial hypercholesterolemia with either: (1) a family history of premature CHD and LDL-C >= 190 mg/dL without statin therapy or >= 150 mg/dL with statin therapy OR (2) no family history of premature CHD and LDL-C >= 250 mg/dL without statin therapy or >= 200 mg/dL with statin therapy</td>
<td>$ 316 x 10^6 (US Population)</td>
<td>628 x 10^3 Quality Adjusted Life Years (US Population)</td>
<td>$503,000/QALY added (relative to ezetimibe)</td>
<td>“Assuming 2015 [US] prices, PSCK9 inhibitor use...did not meet generally accepted incremental cost-effectiveness thresholds”</td>
</tr>
<tr>
<td>Gandra SR, et al., (279) 27092712</td>
<td>State-transition Markov Model</td>
<td>Heterozygous familial hypercholesterolemia with LDL > 100 md/dl</td>
<td>$153,289 (per patient)</td>
<td>2.02 Quality Adjusted Life Years (per patient)</td>
<td>$75,900/QALY (relative to statin standard of care)</td>
<td>“Evolocumab added to standard of care may provide a cost-effective treatment option for lowering LDL-C”</td>
</tr>
</tbody>
</table>
References

© American Heart Association, Inc., and the American College of Cardiology Foundation.

© American Heart Association, Inc., and the American College of Cardiology Foundation.

© American Heart Association, Inc., and the American College of Cardiology Foundation.

© American Heart Association, Inc., and the American College of Cardiology Foundation.
244

199. Mora S, Glynn RJ, Hsia J, et al. Statins for the primary prevention of cardiovascular events in women with elevated high-sensitivity C-reactive protein or dyslipidemia: results from the Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) and meta-analysis of women from primary prevention trials. Circulation. 2010;121:1069-77.

© American Heart Association, Inc., and the American College of Cardiology Foundation.

