2017 Heart Failure Focused Update Data Supplement

(Section numbers correspond to the 2013 full-text guideline.)

Table of Contents

Data Supplement A. RCTs and Meta-analyses With Biomarkers (Section 6.3)	3
Data Supplement B. Nonrandomized Trials/ Observational Studies/ Registries for Changes in or Discharge NP Levels in ADHF – Biomarkers (Section 6.3)	15
Data Supplement 1. RCTs Comparing ARNI (Section 7.3.2.10)	27
Data Supplement 2. RCTs Comparing RAAS Inhibition (Section 7.3.2.3)	29
Data Supplement 3. RCTs Comparing Pharmacological Treatment for of ARNI With ACE (Section 7.3.2.10)	31
Data Supplement 4. RCTs Comparing Pharmacological Treatment for Stage C HFrEF (Section 7.3.2.11)	33
Data Supplement C. RCTs Comparing Pharmacologic Treatment for HFpEF: Recommendations (Section 7.3.3)	36
Data Supplement D. RCTs Comparing Anemia (Section 9.2)	41
Data Supplement E. RCTs Comparing HTN (Section 9.5)	44
Data Supplement F. Nonrandomized Trials for Hypertension (Section 9.5)	50
Data Supplement G. RCTs Comparing Treatment of Sleep Disorders (CPAP makers) (Section 9.6)	51
2013 HF Guideline Data Supplement 18. ACE Inhibitors (Section 7.3.2.2)	62
2013 HF Guideline Data Supplement 19. ARBs (Section 7.3.2.3)	65
2013 HF Guideline Data Supplement 20. Beta Blockers (Section 7.3.2.4)	66

Key Search Terms: Heart Failure, Angiotensin Receptor-Neprilysin Inhibitor, Ivabradine, Angiotensin Receptor Blockers, Angiotensin-Converting Enzyme Inhibitors, Beta Blockers, Angioedema, Natriuretic Peptides, Ferric Carboxymaltose, Iron deficiency, hypertension, sleep apnea, natriuretic peptide biomarker.

Master Abbreviation List:

1° indicates primary; 2°, secondary; ~, approximately; 6MWT, 6 min walk test; ACE, angiotensin-converting enzyme; ACEI indicates angiotensin-converting-enzyme inhibitor; ACS, acute coronary syndrome; ADHF, acute decompensated heart failure; ADHERE, Acute Decompensated Heart Failure National Registry; AF, atrial fibrillation; AHI, apneahypopnea index; AHRQ, Agency for Healthcare Research and Quality; AIRE, Acute Infarction Ramipril Efficacy; ALLHAT, Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial; ALT, alanine aminotransaminase; AMI; acute myocardial infarction; APE, acute pulmonary embolism; ARB, angiotensin-receptor blocker; AKI/ARF, acute kidney injury/acute renal failure; ARNI, angiotensin receptor-neprilysin inhibitor; ASA, aspirin; AST, aspartate transaminase; ATLAS, Assessment of Treatment with Lisinopril and Survival; AUC, area under the curve; AV, atrioventricular; ; BEAUTIFUL, Morbidity-Mortality Evaluation of the If Inhibitor Ivabradine in Patients With Coronary Disease and

Left-Ventricular Dysfunction; BID, twice a day; BL, baseline; BNP, plasma B-type natriuretic peptide; BP, blood pressure; bpm, beats per minute; BSA, body surface area; CABG, coronary artery bypass graft; CAD, coronary artery disease; CANPAP, Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure Trial; CCB, calcium channel blockers; CKD, chronic kidney disease; cGMP, cyclic guanosine monophosphate; CHARM, Candesartan in Heart Failure Assessment of Reduction in Mortality and Morbidity; CHD, chronic heart disease; CI, confidence interval; CM, contrast media; CONFIRM-HF, Ferric carboxymaltose evaluation on performance in patients with iron deficiency in combination with chronic heart failure: CONSENSUS Cooperative North Scandinavian Enalapril Survival Study; COPD, chronic obstructive pulmonary disease; CPAP, Continuous positive airway pressure: Cr, creatinine; CRT, cardiac resynchronization therapy; CSA, central sleep apnea; cTnl, cardiac troponin I; CTR, cardiothoracic ratio; CV, cardiovascular; CVA, cerebrovascular accident; CVD, cardiovascular disease; C/W, compared with; DBP, diastolic blood pressure; DM, diabetes mellitus; DOSE-AHF, Diuretic Optimization Strategy Evaluation in Acute HF; DPB, diastolic blood pressure; ECG, electrocardiography; ED, emergency department; EF, ejection fraction; eGFR, estimated glomerular filtration rate; ELAN-HF, European Collaboration on Acute Decompensated Heart Failure; ESRD, end-stage renal disease; EMPHASIS, Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure: EQ-5D. EuroQoL five dimensions questionnaire: ET. : FAIR-HF. Feriniect Assessment in Patients with Iron Deficiency and Chronic Heart Failure; FCM, ferric carboxymaltose; FU, follow-up; GDEM, guideline-directed evaluation and management; GDMT, guideline-directed management and therapy; GP, ; HCM, ; HDL, high density lipoprotein; HEAAL study, effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure; HF, heart failure; HFpEF, Heart failure with preserved ejection fraction; h/o, history of; HFrEF, Heart failure with reduced ejection fraction; HR, hazard ratio; hs-CRP, high sensitivity Creactive protein; HTN, hypertension; HYVET, Hypertension in the Very Elderly Trial; Hx, history; ICD, implantable cardioverter defibrillator; ID, iron deficiency; IDI, integrated discrimination improvement; IHD, ischemic heart disease; IMPRESS, Comparison of Vasopeptidase Inhibitor, Omapatrilat, and Lisinopril on Exercise Tolerance and Morbidity; I-PRESERVE, Irbesartan in Heart Failure with Preserved Ejection Fraction Study; IQR, interguartile range; ITT, intent to treat; IV, intravenous; KCCQ, Kansas City Cardiomyopathy Questionnaire; LCZ, ; LV, left ventricular; LVD, Left ventricular dysfunction; LVEF, left ventricular ejection fraction; LVEDD; left ventricular end-diastolic dimension; LVH, left ventricular hypertrophy; MACE, major adverse cardiac event; MI, myocardial infarction; MR-proANP, ; MR-proADM, ; MRA, mineralocorticoid receptor antagonists; MTD, maximal tolerated dose; MV, mitral valve; MWT, minute walk test; N/A, not available; NEAT-HFpEF, Nitrate's Effect on Activity Tolerance in Heart Failure With Preserved Ejection Fraction; NEP, neutral endopeptidase; NNH, number needed to harm; NNT, number needed to treat; NP, natriuretic peptide; NRI, net reclassification improvement; NS, nonsignificant; NSTEMI, non-ST-elevation myocardial infarction: NT-proBNP, N-terminal pro-B-type natriuretic peptide: NYHA, New York Heart Association: OCTAVE, The Omapatrilat Cardiovascular Treatment vs. Enalapril; ONTARGET, The Ongoing Telmisartan Alone and in Combination With Ramipril Global Endpoint Trial; OPTIMIZE-HF, Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure; OR, odds ratio; OSA, obstructive sleep apnea; OVERTURE, Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events; PAD, peripheral artery disease; PARADIGM-HF, Prospective Comparison of ARNI With ACE to Determine Impact on Global Mortality and Morbidity in Heart Failure: PARAMOUNT, Prospective Comparison of ARNI With ARB on Management of Heart Failure With Preserved Ejection Fraction; PAP, positive airway pressure: PCI, percutaneous coronary intervention: PCP, Primary Care Physician: PDE, phosphodiesterase: PEP-CHF, Perindopril in Elderly People With Chronic Heart Failure: PGA, patient global assessment; PPM, permanent pacemaker; PSG, polysomnography; PTCA, percutaneous transluminal coronary angioplasty; PONTIAC, NT-proBNP Guided Primary Prevention of CV Events in Diabetic Patients; PRIMA, Can Pro-Brain-Natriuretic Peptide Guided Therapy of Chronic Heart Failure Improve Heart Failure Morbidity and Mortality?: PROTECT, ProBNP Outpatient Tailored Chronic Heart Failure Therapy; pts, patients; PVD, peripheral vascular disease; QoL, guality of life; RAAS, renin-angiotensinaldosterone system: RAS, renin-angiotensin system: RCT, randomized controlled trial; RED-HF, Reduction of events by darbepoetin alfa in heart failure; RELAX, Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Heart Failure With Preserved Ejection Fraction; ROC, receiver-operating characteristic; RR, relative risk; SBP, systolic blood pressure; SCr, serum creatinine; SERVE-HF, Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure; SHEP, Systolic Hypertension in the Elderly Program; SHIFT, Systolic Heart Failure Treatment with the If Inhibitor Ivabradine Trial; SIGNIFY, Study Assessing the Morbidity–Mortality Benefits of the If Inhibitor Ivabradine in Patients with Coronary Artery Disease; SOB, shortness of breath; SPRINT, Systolic Blood Pressure Intervention Trial; SR, systematic review; SSS, sick sinus syndrome; STARBRITE, the Strategies for Tailoring Advanced Heart Failure Regimens in the Outpatient Setting; STARS-BNP, Systolic Heart Failure Treatment Supported by BNP; STEMI, ST-elevation myocardial infarction; STOP-HF, St. Vincent's Screening to Prevent Heart Failure; SUPPORT, Supplemental Benefit of ARB in Hypertensive Patients With Stable Heart Failure Using Olmesartan; SURVIVE, Survival of Patients with Acute Heart Failure in Need of Intravenous Inotropic Support; TIA, transient ischemic attack; TIME-CHF, ; TOPCAT, Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist; TRANSCEND, the Telmisartan Randomised Assessment Study in ACE Intolerant Subjects With Cardiovascular Disease; TSAT, transferrin saturation; UA, unstable angina; UL, UPSTEP, Use of Peptides in Tailoring Heart Failure Project: VF, ventricular fibrillation; VHD, valvular heart disease VT, ventricular tachycardia; and w/o, without,

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events					
Biomarker Studies Per	Biomarker Studies Pertinent to Stage A / B HF Patients									
PONTIAC Huelsmann et al. 2013 (1) 23810874 • Medical University of Vienna • Roche Pharma AG	Aim: To assess the effectiveness of neurohumoral therapy for the prevention of cardiac events in pts with type 2 DM with increased biomarker NT- proBNP Study type: RCT Size: 300	Inclusion criteria: Pts with type 2 DM, age ≥18 y, elevated NT-proBNP (≥125 pg/mL) Exclusion criteria: Free of heart disease, chronic infections or malignancies, systemic cortisone treatment, renal replacement therapy, nondiabetic conditions that lowered life expectancy to <1 y and absence of reliable contraception in women of childbearing age	Intervention: Individualized up-titration of RAS antagonists and beta blockers in addition to diabetes treatment (150), treated at cardiology clinic Comparator: "Control" group treated for diabetes, (150), treated at diabetes care units	 <u>1° endpoint</u>: Hospitalization or death due to cardiac disease following 24 mo Results: Significant reduction of 1° endpoint in intervention group (HR: 0.351; 95% CI: 0.127–0.975; p=0.044) <u>1° Safety endpoint</u>: BP was significantly reduced in both intervention and control (p<0.05); heart rate was only reduced in the intensified group (p=0.004) 	 All-cause hospitalizations, HF hospitalizations and unplanned CV hospitalizations or death (p<0.05 reduction) Study limitations: Absence of pt randomization for treatment, pt population mainly Caucasian, statistical analysis done without adjustment of co-variates Pts treated with a RAS antagonist/beta-blocker and the dosage reached higher in intensified group (p<0.0001) No difference in NT-proBNP levels 					
STOP-HF Ledwidge et al. 2013 (2) <u>23821090</u> • Heartbeat Trust, Health Research	Aim: To establish efficacy of BNP screening and collaborative care in at-risk population in reducing newly	Inclusion criteria: Pts ≥40 y, and history of HTN (on meds ≥1 mo), hypercholesterolemi a, obesity, vascular disease including	Intervention: BNP screening at BL and annually and protocol referral for BNP ≥50 pg/mL for echocardiography and collaborative care. (697)	 <u>1° endpoint:</u> LV dysfunction (systolic: LVEF <50% or diastolic: E/E' ratio >15) with or without newly diagnosed HF(with symptoms of HF requiring admission to 	 Emergency hospitalizations for major MACE [40 vs. 22 (0.60 OR; 95% CI: .45-0.81; p=.002)]] CV investigations more likely to be done in the intervention group with BNP levels ≥50 pg/mL 					

Data Supplement A. RCTs and Meta-analyses With Biomarkers (Section 6.3)

Board of the Irish Government; and European Commission Framework Programme. The Heartbeat Trust received unrestricted grants from Pfizer, A. Menarini, Alere, Roche, Takeda, Abbott, Covidien, and Servier.	diagnosed HF and prevalence of significant LV systolic and /or diastolic dysfunction. <u>Study type</u> : RCT (unblinded) <u>Size</u> : 1,374	CAD,, cerebrovascular disease or peripheral vascular disease, DM, arrhythmia therapy, or moderate to severe valvular disease Exclusion criteria: Established LV systolic dysfunction, symptomatic HF, diagnosis compromising survival	Comparator: Usual 1° care (677)	hospital, confirmed by d/c summary) • 59 (8.7 %) vs. 37 (5.3%) (0.55 OR; 95% Cl: 0.37– 0.82; p=0.003)	 Intervention group In the subgroup with BNP levels ≥50 pg/mL, increase in BNP levels in the intervention group was ~1/2 of that in the control group The results might not be applicable to general population (single center), non-blinding introduces bias. Event rate was lower than expected. Cost-effectiveness unclear. Incremental value of and cut-off of BNP may change in population studied.
Meta-Analyses or SRs	of RUIS of NP Guided	Therapy in Stage C HF		I	
Brunner-La Rocca et al. 2015 (3) <u>26419999</u>	Aim: To assess which HF pts benefit from NT-pro BNP therapy Study type: Meta-Analysis Size: 2,137 pts from 8 NT- proBNP trials	Inclusion criteria: Studies that included individual pt data HF <i>p</i> EF and HFrEF. EF ≤45% Exclusion criteria: Pts with unknown LVEF, STARBRITE study, 1° meta- analyses that aggregated data	Intervention: (NT-pro)BNP-guided therapy and HF <i>r</i> EF (1,731) <u>Comparator</u> : (NT-pro)BNP- guided therapy and HF <i>p</i> EF (301)	 <u>1° endpoint</u>: All-cause mortality and admission for HF Results: Lower mortality in HF<i>r</i>EF with guided treatment (HR: 0.78; 95% CI: 0.62–0.97; p=0.03). Lesser HF admissions in HF<i>r</i>EF (HR: 0.80; 95% CI: 0.67–0.97; p=0.02) 	 NT pro BNP-guided treatment harmful in HFpEF without HTN and in pts with renal failure Limitations: Bias due to exclusion of aggregate data, Lack of specific testing for diagnosis of comorbidities, absence of comorbidity index, insufficient sample size for pts with HFpEF, treatment management aspects unaddressed and statistical tests are not powerful
Don-Wauchope et al. 2015 (4) <u>25448029</u>	Aim: Review evidence of SRs regarding utility of NPs in clinical practice. Study type: Review of SRs	Inclusion criteria: SRs that authors were aware of through their participation in an AHRQ comparative effectiveness review.	Intervention: NP-guided therapy <u>Comparator</u> : Clinically-guided care	 1° endpoint 8 SRs assessed all-cause mortality and "generally found there was a benefit." 4 SRs examined all cause-hospitalization and did not find decrease with NP- 	 Underlying SRs largely comprised analysis of the same RCTs. Results were qualitative.

	<u>Size</u> : 9 reviews	<u>Exclusion criteria</u> : N/A		guided therapy • 4 SRs assessed HF hospitalization and "consistently" found a significant reduction with NP-guided therapy	
Xin W. et al. 2015 (5) <u>24888383</u>	Aim: To assess the effects of NP- guided treatment of chronic HF on outcomes Study type: Meta-analysis Size: 14 studies, 3,004 pts	Inclusion criteria: Prospective RCTs with adult HF pts comparing the effects of BNP or NT- proBNP-guided therapy with clinically guided therapy	Intervention: BNP or NT-proBNP-guided therapy (1,503) Comparator: Clinically guided therapy (1,501)	 In eguided therapy In eguided therapy All-cause mortality, HF hospitalization, all-cause hospitalization, safety (adverse events) Results: Compared with clinical group, BNP-guided treatment significantly decreased the risk of HF-related hospitalization (RR: 0.79; 95% CI: 0.63–0.98; p=0.03), although did not significantly affect the risk of all-cause mortality (RR: 0.94, 95% CI: 0.81–1.08, p=0.39) or all-cause hospitalization (RR: 0.97; 95% CI: 0.89–1.07; p=0.56). I Safety endpoint: NP-guided therapy was not associated with increased risk for serious adverse events 	 BNP-guided therapy improved LV systolic function in HF pts (LVEF: weighted mean difference=2.80%, 95% Cl: 0.90–4.69%; p=0.01), But did not significantly affect NYHA class or QoLs (p=ns)
Troughton RW et al. 2014 (6) <u>24603309</u>	Aim: To assess the effects of NP- guided treatment of chronic HF on outcomes <u>Study type</u> : Meta-analysis	Inclusion criteria: RCTs reporting all- cause mortality and comparing BNP- guided treatment of HF with clinically guided treatment and 1 study (PROTECT trial) that did not	Intervention: BNP-guided therapy (1,006) Comparator: Clinically guided therapy (994)	 <u>1° endpoint:</u> All-cause mortality Results: All-cause mortality was significantly reduced by NP-guided treatment [HR: 0.62 (0.45–0.86); p=0.004] 	 HF hospitalizations were reduced in the NP-guided group, compared with clinically guided pts [HR: 0.80 (0.67–0.94); p=0.009] as were CV admissions [HR: 0.82 (0.67–0.99); p=0.048] Each of the included RCTs was relatively small and 2 trials did not

	<u>Size:</u> 11 studies, 2,000 pts	report mortality (11 studies, 9 with individual pt data) Exclusion criteria: For 2 studies, data from the 3rd ('usual care') groups were not included.		 Significant interaction between age and treatment efficacy (p=0.028), with a survival benefit for BNP- guided vs. clinical treatment in pts <75 y [HR: 0.62 (0.45– 0.85); p=0.004] but not in pts ≥75 y [HR: 0.98 (0.75–1.3); p=ns] 	provide individual pt data.
De Vecchis et al. 2014 (7) <u>24522083</u>	Aim: To assess the effects of NP- guided treatment of chronic HF on outcomes Study type: Meta-analysis Size: 6 studies, 1,775 pts	Inclusion criteria • RCT to a strategy of titrating drug therapy based on the level of a circulating NP (BNP or NT-proBNP) compared to clinical conventional criteria, and they reported all-cause mortality. Should have included >60 pts and its follow-up should have been longer than 90 d.	Intervention: BNP or NT-proBNP-guided therapy <u>Comparator:</u> Clinically guided therapy	 <u>1° endpoint</u>: Combined endpoint of all- cause mortality and HF hospitalization <u>Results:</u> NP-guided therapy for outpatients with HF was shown to be associated with a decreased risk of death and HF hospitalizations (OR: 0.64; 95% CI: 0.43–0.95; p=0.026) 	 Limitations: Each of the included RCTs was relatively small Benefit was not seen in some of the studies
Balion et al. 2014 (8) <u>25074674</u>	Aim: To assess the effects of NP- guided treatment of chronic HF on outcomes Study type: SR Size: 9 RCTs; 2,104 pts	Meta-analysis was not done due to study heterogeneity.	Intervention: BNP or NT-proBNP-guided therapy (1,503) <u>Comparator:</u> Clinically guided therapy (1,501)	 <u>1° Outcome:</u> Review: Overall, there was a wide variation in study design and how parameters were reported including pt selection, BL characteristics, therapy goals, BNP/NT-proBNP cutpoint, and outcome types. The strength of evidence for the outcome of mortality, reported in 7 studies, was found to be low due to inconsistency and 	N/A

				imprecision.	
Savarese et al. 2013 (9) <u>23472172</u>	Aim: To determine whether NP-guided (BNP or NT- proBNP) therapy, compared to clinically guided therapy, improves outcomes Study type: Meta-analysis Size: 12 trials enrolling 2,686 participants (730 in BNP, 1,956 in NT-proBNP related trials)	Inclusion criteria: All randomized trials reporting clinical endpoints (all- cause mortality and/or HF related hospitalization and/or all-cause hospitalization) with comparison of BNP or NT-proBNP guided therapy vs. a control group in chronic HF pts	Intervention: • BNP-guided therapy: BNP-guided: 373 • NT-proBNP guided: 872 Comparator: Clinically guided therapy • BNP group control 357 • NT-proBNP group control 1,084 • Separate analyses on pts ≤ or >75 y using data reported in 3 trials.	 <u>1° endpoints</u> All-cause mortality, all-cause hospitalization, HF hospitalization Results: NP-guided therapy (either BNP or NT-proBNP) significantly reduced all-cause mortality (OR: 0.738; 95% CI: 0.596–0.913; p=0.005) and HF related hospitalization (OR: 0.554; 95% CI: 0.399–0.769; p=0.000), but not all-cause hospitalization (OR: 0.803; 95% CI: 0.629–1.024; p=0.077) 	• When separately assessed, NT- proBNP-guided therapy reduced all-cause mortality (OR: 0.717; 95% CI:0.563–0.914; p=0.007) and HF hospitalization (OR: 0.531; 95% CI: 0.347–0.811; p=0.003), but not all-cause hospitalization (OR: 0.779; CI:0.414–1.465; p=0.438), whereas BNP-guided therapy did not significantly reduce all-cause mortality (OR: 0.814; CI:0.518–1.279; p=0.371), HF related hospitalization (OR: 0.599; 95% CI: 0.303–1.187; p=0.14) or all-cause hospitalization (OR: 0.726; 95% CI:0. 0.509 – 1.035; p=0.077) • Analysis from 3 trials showed the composite outcome of all-cause mortality and HF hospitalization was significantly reduced by NP- guided therapy in younger pts (\leq 75 y) (OR: 0.449; 95% CI: 0.207– 0.973; p=0.043), but not in older pts (\geq 75 y) (OR: 0.800; 95% CI: 0.423–1.513; p=0.5).
Li et al. 2013 (10) <u>23602555</u>	Aim: To assess the effects of NP- guided treatment of chronic HF on all- cause mortality and HF hospitalization	Inclusion criteria Studies with >40 pts and involved comparison of BNP- guided vs. guideline-guided drug therapy of the pts with chronic HF in the outpatient	Intervention: BNP-guided therapy Comparator: Clinically guided therapy	 <u>1° endpoint</u>: Combined end point of all- cause mortality and HF hospitalization Results: Significantly decreased risk of all-cause mortality (RR: 0.83; 95% CI: 0.69–0.99; p=0.035; and HF 	In the subgroup analysis, HF rehospitalization was significantly decreased in the pts <70 y (RR: 0.45; 95% CI: 0.33–0.61; p=0.000; or with BL higher BNP (≥2114 pg/mL) (RR: 0.53; 95% CI: 0.39–0.72; p=0.000)

	Study type: Meta-analysis Size: 11 studies, 2,414 pts	setting		rehospitalization (RR: 0.75; 95% CI: 0.62–0.91; p=0.004; in the BNP-guided therapy group.	
Felker et al. 2009 (11) 19699866	Aim: To determine whether titration of therapy based on NP measurements improves mortality in chronic HF <u>Study type:</u> Meta-analysis <u>Size:</u> 6 studies; 1,627 pts	Inclusion criteria Prospective RCTs of pts with chronic HF randomized pts to a strategy of titrating medical therapy based on the level of a circulating biomarker compared to a parallel control group, reporting all- cause mortality	Intervention: BNP-guided therapy Comparator: Clinically guided therapy	1° endpoint: • All-cause mortality Results: Significant mortality advantage for biomarker- guided therapy (HR: 0.69, 95% CI: 0.55–0.86) compared to control	N/A
Porapakkham et al. 2010 (12) <u>20308637</u>	Aim: To determine whether BNP guided therapy improves CV outcomes in chronic HF <u>Study type:</u> Meta-analysis <u>Size:</u> 8 studies; 1,726 pts	Inclusion criteria Eligible RCTs were those that enrolled >20 pts and involved comparison of BNP- guided drug therapy vs. usual clinical care of the pt with chronic HF in an outpatient setting	Intervention: BNP-guided therapy Comparator: Clinically guided therapy	<u>1° endpoint:</u> • All-cause mortality Results: Significantly lower risk of all- cause mortality (RR: 0.76; 95% CI: 0.63–0.91; p=0.003) in the BNP-guided therapy group compared with the control group	 In pts <75 y, all-cause mortality was significantly lower in the BNP-guided group (RR: 0.52; 95% CI: 0.33–0.82; p=0.005). No reduction in mortality with BNP-guided therapy in pts ≥75 y (RR: 0.94; 95% CI: 0.71–1.25; p=0.70). All-cause hospitalization and survival free of any hospitalization was not significantly different between groups (RR: 0.82; 95% CI: 0.64–1.05; p=0.12 and RR: 1.07; 95% CI: 0.85–1.34; p=0.58, respectively). Additional % pts achieving target doses of ACE-inhibitors and beta blockers 21% and 22% in the BNP group and 11.7% and 12.5% in the control group, respectively.

Troughton et al. 2000 (13) <u>10791374</u>	Aim: To assess the effects of NT- proBNP-guided treatment of chronic HF on outcomes Study type: RCT Size: 69 pts	Inclusion criteria: Ambulatory pts with LVEF <40% and symptomatic HF (NYHA II-IV) Exclusion criteria: Pts with unknown LVEF Follow up : Minimum 6 mo (median 9.5 mo)	Intervention: (NT-pro)BNP-guided therapy with a target of NT-proBNP level <200 pmol Comparator: Standardized clinical assessment (clinical group)	 <u>1° endpoints</u>: Death, CV hospitalization and outpatient HF event Results: Fewer CV events (death, hospitals, or HF decompensation) in the NT- proBNP group than in the clinical group (19 vs. 54; p=0.02) At 6 mo, 27% of pts in the BNP group and 53% in the clinical group had experienced a first CV event (p=0.034). 	 Changes in LVEF, QoL, renal function, and adverse events were similar in both groups. N-BNP-guided treatment of HF reduced total CV events, and delayed time to first event compared with intensive clinically guided treatment. NP was reduced significantly and NP guidance changed therapy
STARS-BNP Jourdain et al. 2007 (14) <u>17448376</u>	Aim: To evaluate the prognostic impact of a therapeutic strategy using plasma BNP Study type: RCT Size: 220 pts	Inclusion criteria: Ambulatory NYHA class II to III pts considered optimally treated Exclusion criteria: N/A Follow up : median 15 mo	Intervention: BNP-guided therapy Target : BNP <100 pg/mL <u>Comparator</u> : Medical treatment according to either current guidelines (clinical group)	 <u>1° endpoint</u> HF-related death or hospital stay for HF Results: Mean dosages of ACE inhibitors and beta blockers significantly higher in the BNP group (p<0.05), BNP-guided strategy reduced the risk of HF related death or hospital stay for HF (24% vs. 52%, p<0.001), mainly obtained through an increase in ACE inhibitor and beta blocker dosages. 	 NP guidance changed therapy Unknown whether BNP-guided therapy resulted in reduction in BNP levels
TIME-CHF Pfisterer et al. 2009 (15) <u>19176440</u>	Aim: To compare 18-mo outcomes of N- terminal BNP- guided vs. symptom guided HF therapy	Inclusion criteria: Ambulatory HF pts 60 y with systolic HF (LVEF ≤45%), NYHA class of II or greater, prior HF hospitalization within	Intervention: Uptitration of guideline- based treatments to BNP level of ≤2 times of UL (BNP-guided therapy) Targets:	 <u>1° endpoints</u>: 18 mo survival free of all-cause hospitalizations Results: N-terminal BNP and 	 Survival free of hospitalization for HF was higher among those in the N-terminal BNP-guided group (72% vs. 62%, respectively; HR: 0.68 [95% CI: 0.50–0.92]; p=0.01). N-terminal BNP-guided therapy

	<u>Study type</u> : RCT <u>Size:</u> 499 pts	1 y, and N-terminal BNP level of ≥2 times the upper limit of normal.	NT-proBNP <400 pg/mL if age <75 y, NT-proBNP <800 pg/mL if 75 y Comparator: Uptitration of guideline- based treatments to reduce symptoms to NYHA class of II or less (symptom guided therapy)	 symptom-guided therapy resulted in similar rates of survival free of all-cause hospitalizations (41% vs. 40%, respectively; HR: 0.91 [95% CI: 0.72–1.14]; p=0.39) BNP guidance changed therapy (higher doses of ACE inhibitors, ARB, Beta blockers and higher use of spironolactone) NT-ProBNP levels were not different between groups 	 improved outcomes in pts 60 to 75 y of age but not in those ≥75 y of age (p<0.02 for interaction). QoL improvements were similar in both the N-terminal BNP-guided and symptom guided strategies
BATTLESCARRED Lainchbury et al. 2009 (16) <u>20117364</u>	Aim: to compare the effects of NT- proBNP)-guided therapy with those of intensive clinical management and with usual care Study Type: RCT (Australia hospitals) Size: 364 pts	Inclusion criteria: Pts admitted to a single hospital with HF, NT-proBNP >50 pmoL/l or 400 pg/mL.(included HFpEF)	Intervention: Outpatient post d/c therapy guided by NT-proBNP levels Target: NT-proBNP <150 pmoL/l (1,270 pg/mL) Comparators: Therapy guided by intensive clinical management, or according to usual care	<u>1° endpoints</u> : Mortality Results: 1-y mortality was less in both the hormone (9.1%) and clinically-guided (9.1%) groups compared with usual care (18.9%; p=0.03)	 3 y mortality was selectively reduced in pts ≤75 y receiving hormone guided treatment (15.5%) compared with either clinically managed treatment (30.9%; p=0.048) or usual care (31.3%; p=0.021). NP guidance changed therapy NT-ProBNP levels were not different between groups
Berger et al. 2010 (17) <u>20170790</u>	Aim: To investigate whether the addition of NT- proBNP-guided, intensive pt management to multidisciplinary care improves outcome in pts following hospitalization due to HF	Inclusion criteria: Pts admitted to a hospital with HF, NYHA III or IV on admission, Cardiothoracic Index>0.5 or LVEF <40%	Intervention: Outpatient post discharge discontinue • BM: NT-proBNP-guided, intensive up-titration of medication by HF specialists in high-risk pts. • Target: NT-proBNP (<2,200 pg/mL) Comparators • Multidisciplinary care: 2 consultations from an HF	 <u>1° endpoints</u>: Hospitalization Results: Pt management reduced HF hospitalization (488 D) compared with the multidisciplinary care (1254 D) and usual care (1,588 d) groups (p<0.0001) Combined end point of death or HF rehospitalization was lower 	 NT-ProBNP levels were not different between groups: Pt management group had the highest proportion of RAAS inhibition triple-therapy Death rate was similar between the pt management (22%) and multidisciplinary care groups (22%), but was lower compared with the usual care group (39%; vs. pt management: p<0.02; vs. multidisciplinary care: p<0.02)

	<u>Study Type:</u> RCT (8 Viennese hospitals) <u>Size:</u> 278 pts		specialist-therapeutic recommendations and home care by a HF nurse • Usual care	 in the BM (37%) than in the multidisciplinary care group (50%; p<0.05) and in the multidisciplinary care than in the usual care group (65%; p=0.04) NT-ProBNP levels were lowered in guided pt management arm 	
PRIMA Eurlings et al. 2010 (18) <u>21144969</u>	Aim: To assess whether management by an individualized NT- proBNP target would lead to improved outcome compared with HF management guided by clinical assessment alone Study Type: RCT Size: 345 pts	Inclusion criteria: Hospitalized HF pts with for decompensated, symptomatic HF with NT-proBNP levels >1,700 pg/mL at admission (included HFpEF)	Intervention: After discharge discontinue out pt management guided by an individually set NT- proBNP (n=174) defined by the lowest level at discharge or 2 wk thereafter. Comparators: Clinically-guided outpatient management (n=171)	<u>1° endpoints</u> : Number of d alive outside the hospital after index <u>Results:</u> _Management guided by NT- proBNP target did not significantly improve the 1° endpoint p=0.49)	 In the NT-proBNP-guided group mortality was lower, as 46 pts died (26.5%) vs. 57 (33.3%) in the clinically guided group, but this was not statistically significant (p=0.21) Individualized NT-proBNP target increased the use of HF medication (p=0.006)
SIGNAL HF Trial Persson et al. 2010 (19) <u>20876734</u>	Aim: To investigate if NT- proBNP-guided therapy in HF pts in 1° care would improve clinical outcomes over and above treatment according to guidelines Study Type: RCT (Sweden 1° care centers)	Inclusion criteria: Ambulatory HF pts NYHA class II-IV, LVEF <50% and NT-proBNP levels males >800, females >1,000 ng/	Intervention: Structured treatment of HF according to guidelines with or without NT-proBNP monitoring • Target: At least a 50% reduction from BL NT- proBNP	<u>1° endpoints:</u> Composite endpoint of d alive, d out of hospital and symptom score <u>Results:</u> There were no differences between the groups concerning either the 1° endpoint (p=0.28) or its components (CV) death, p=0.93; CV hospitalization, p=0.88; or symptom score, p=0.28	• Treatment doses of beta blockers and RAS blockers were markedly increased towards target doses a similar degree in both groups

	<u>Size:</u> 252 pts				
STARBRITE Trial Shah et al. 2011 (20) <u>21807321</u>	Aim: Whether outpatient diuretic management guided by BNP and clinical assessment better compared with clinical assessment alone Study Type: Multicenter (3) RCT Size: 130	Inclusion criteria Hospitalized HF pts with LEVF ≤35% Exclusion criteria: Serum creatinine >3.5 mg/dL and ACS	Intervention: Outpatient post discharge BNP and clinical assessment guided therapy <u>Comparator:</u> Clinical assessment alone.	<u>1° endpoints:</u> Composite endpoint of d alive and d out of hospital, <u>Results:</u> No significant difference HR: 0.72; 95% CI: 0.41–1.27; p=0.25	 Change in serum creatinine, or change in SBP not different BNP strategy pts received significantly more ACE inhibitors, beta blockers
PROTECT Study Gaggin et al. 2012 (21) 22858078	Aim: Whether elders benefit from NP- guided HF care Study Type: Single center RCT Size: 151	Inclusion criteria Chronic HF pts with LV systolic dysfunction	Intervention: Management guided by NT- proBNP with a goal to lower NT-proBNP ≤1000 pg/mL over 10 mo <u>Comparator:</u> Standard of care	1° endpoints: Total CV events in 2 age categories 75 and ≥75 y Results: Pts ≥75 y with NT-proBNP management had lowest rate of CV events (1.76 events per pt with standard of care vs. 0.71 events per pt with NT-proBNP guide, p=0.03)	 Improvement in QoL, LVEF, and indices of LV volume with guided approach NP guidance changed therapy: greater use of aldosterone antagonists and lesser use of loop diuretics in the guided therapy group (no difference in ACE inhibitors or beta blockers)
UPSTEP-study group Karlstrom et al. 2011 (22) <u>21715446</u>	Aim: To determine whether BNP- guided HF treatment improves morbidity and/or mortality	Inclusion criteria Ambulatory HF NYHA II-IV, LVEF <40% and elevated BNP levels	Intervention: BNP-guided (BNP) with a goal <150 or 300 ng/L for elderly Comparator: Conventional (CTR) HF treatment	<u>1° endpoints:</u> Combined death and worsening/hosp for HF <u>Results:</u> No significant differences 1° outcome (p=0.18)	 No differences for d out of hospital, and younger vs. elderly. Subgroup analysis: improved survival (p<0.0001 for the 1° outcome) among responders with >30% decrease in BL BNP value vs. nonresponders.

	Study Type: Multicenter RCT- probe design Size: 279				
Maisel et al. 2002 (23) <u>12124404</u>	Aim: To validate and characterize the use of BNP in the diagnosis of HF in pts with dyspnea Study type: Prospective, blinded, diagnostic accuracy study Size: 1,856	Inclusion criteria: Pts who came to the emergency department with acute dyspnea Exclusion criteria: Age <18 y and those whose dyspnea was clearly not secondary to HF (i.e., those with trauma or cardiac tamponade), acute myocardial infarction, unstable angina, or renal failure	Intervention: Comparisons of BNP values among diagnostic groups including HF and non HF pts Comparator: Non-HF pts such as pulmonary disease, cor pulmonale	 <u>1° endpoint</u>: Diagnostic accuracy of BNP at a cutoff of 100 pg/mL was 83.4%. The negative predictive value of BNP <50 pg/mL was 96%. <u>Secondary endpoint</u>: In multiple logistic-regression analysis, measurements of BNP added significant independent predictive power to other clinical variables in models predicting which pts had HF 	•Used in conjunction with other clinical information, rapid measurement of BNP is useful in establishing or excluding the diagnosis of acute HF failure in pts with acute dyspnea
van Kimmenade et al. 2006 (24) <u>16860029</u>	Aim: To analyze the role of NT-pro-BNP in diagnosis of HF in pts presenting with dyspnea, the so- called natriuretic peptide gray zone. NT-pro-BNP concentrations, clinical characteristics, and 60-d mortality were studied in acutely dyspneic pts from an international	Inclusion criteria: Acutely dyspneic pts Exclusion criteria: With trauma or cardiac tamponade), acute myocardial infarction, unstable angina, or renal failure	Intervention: Comparisons of NT-pro- BNP among diagnostic groups including HF and non-HF pts <u>Comparator</u> : Non-HF pts such as pulmonary disease, cor pulmonale	<u>1° endpoint:</u> Subjects with HF and diagnostically elevated NT- pro-BNP concentrations had the highest mortality rates, subjects without HF and NT- pro-BNP concentrations < 300 ng/L had the lowest mortality rates, and subjects with gray- zone NT-pro-BNP had intermediate outcomes, irrespective of their final diagnoses.	•Adding specific clinical information to NT-pro-BNP improves diagnostic accuracy in subjects with intermediate NT-pro-BNP concentrations. Mortality rates in subjects with intermediate NT-pro- BNP concentrations are lower than in those with NT-pro-BNP concentrations diagnostic for HF but are higher than in subjects with NT-pro-BNP concentrations less than the gray zone

	multicenter study <u>Study type:</u> Prospective, blinded, diagnostic accuracy study <u>Size:</u> 1,256				
Maisel et al. 2004 (25) <u>15364340</u>	Aim: To examine the relationships among BNP levels and HF severity, clinical decision making, and outcomes Study type: Multicenter, prospective, blinded, diagnostic accuracy study Size: 464	Inclusion criteria: Pts over the age of 18 y presenting to the ED with HF and who received treatment in the ED or hospital admission for HF were included. Exclusion criteria: Current MI or ACS with ST-segment deviation of ≥1 mm, renal failure requiring dialysis, or pts with a baseline BNP concentration of ≤100 pg/mL were excluded	Intervention: Physicians were blinded to the actual BNP level and subsequent BNP measurements. Comparator: Comparison between severity of HF determined by physicians or BNP and outcomes	<u>1° endpoint</u> : ED doctor's intention to admit or discharge a pt had no influence on 90-d outcomes, while the BNP level was a strong predictor of 90-d outcome. The 90-d combined event rate (HF visits or admissions and mortality) in the group of pts admitted with BNP <200 pg/mL and >200 pg/mL was 9% and 29%, respectively (p=0.006).	 In pts presenting to the ED with HF, there is a disconnect between the perceived severity of HF by ED physicians and severity as determined by BNP levels. The BNP levels can predict future outcomes and thus may aid physicians in making triage decisions about whether to admit or discharge pts. Emerging clinical data will help further refine biomarker-guided outpatient therapeutic and monitoring strategies involving BNP.
O'Connor et al. 2010 (26) <u>20185037</u>	Aim: To identify high-risk HF pts at hospital discharge Study type: Predictive modeling using variables obtained during hospitalization in the ESCAPE trial	Inclusion criteria: hospitalized with severe HF, LVEF ≤30%, SBP ≤125 mmHg, Exclusion criteria: creatinine >3.5 mg/dL, prior inotrope use	<u>Derivation cohort</u> : ESCPAPE trial, n=423 <u>Validation cohort</u> : FIRST trial, n=471	 <u>1° endpoint</u>: •6-mo mortality and death or rehospitalization rates (64%) •Multivariate discharge predictors of death included: BNP, per doubling (HR: 1.42), cardiac arrest or mechanical ventilation, yes/no (HR: 2.54), BUN, per 20 mg/dL increase (HR: 1.22) and sodium, per unit mEq/L increase (HR: 0.93) 	 A simplified discharge score discriminated mortality risk from 5% (score=0) to 94% (score=8). Bootstrap validation demonstrated good internal validation for the model (c-index 0.78) Limitations: ESCAPE represented pts with severe LV dysfunction and advanced symptoms (not the general population of acute HF) managed at experienced centers; exclusion of pts with characteristics

known to be associated with worse outcomes (e.g., creatinine >3.5 mg/dL, requiring inotropes)

Search Terms and Date: natriuretic peptides, heart failure, human, last 5 years. Last search done on April 18, 2016.

Data Supplement B. Nonrandomized Trials/ Observational Studies/ Registries for Changes in or Discharge NP Levels in ADHF – Biomarkers (Section 6.3)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Primary Endpoint and Results (P values, OR or RR & 95 % Cl)	Summary / Conclusion / Comments
Bayés-Genís et al. 2005 (27) <u>15948093</u>	Aim: Percentage of NT- proBNP reduction during admission and its prognostic significance Study type: NR Prospective cohort Size: 74 pts	Inclusion criteria: Pts diagnosed with acute HF in emergency department and who had follow-up evaluation for 6 & 12 mo after admission Follow up :12 mo	 <u>1° endpoints:</u> Percent reduction in NT-proBNP and its association with CV mortality <u>Results:</u> The area under the ROC curve for % NT-proBNP reduction to predict CV death was 0.78 (95% CI: 0.66–0.90; p=0.002) 	 30% NT-proBNP reduction percentage cutoff value had 75% accuracy for the identification of high-risk pts and was the only variable that was associated with CV death in multivariate analysis (OR: 4.4; 95% CI: 1.12–17.4; p=0.03). Study relatively old and small
Verdiani et al. 2008 (28) <u>18545069</u>	Aim: To evaluate the prognostic significance of NT-proBNP % reduction during ADHF Study type: Prospective cohort Size: 120 pts	Inclusion criteria: Pts consecutively admitted with ADHF Follow up: 6 mo	 <u>1° endpoint</u> Percent reduction in NT-proBNP and its association with CV mortality <u>Results:</u> In ROC, the mean AUC for NT-ProBNP % reduction was 0.63 (95% CI: 0.51–0.75; p=0.04) for the composite endpoint (death or readmission), and 0.81 (95% CI: 0.65–0.97, p=0.01) for CV mortality at risk of events. 	 NT-ProBNP reduction percentage <30% was the best cut off for the identification of pts Study relatively old and small

Bettencourt et al. 2004 (29) <u>15451800</u>	Aim: To compare 18 mo outcomes of NT-BNP- guided vs. symptom guided HF therapy Study type: Prospective cohort single center study Size: 182 pts	Inclusion criteria: Consecutive ADHF pts defined by ESC or Framingham criteria Follow up: 6 mo	 <u>1° endpoints</u>: Death or readmission <u>Results:</u> Pts were classified into 3 groups: (1) decreasing NT-proBNP levels by at least 30% (n=82), (2) no significant modifications on NT-proBNP levels (n=49), and (3) increasing NT-proBNP levels by at least 30% (n=25). Among the 64 pts discharged without volume overload, a positive association between change in NT-proBNP and outcome was observed (HR: 2.66; 95% CI: 0.77–9.18 for change <30%; HR: 16.04; 95% CI: 9.49 – 52.02 for increase ≥30% compared with those with decreasing NT-proBNP by at least 30% 	 Pts demonstrating a ≥30% increase in NT-proBNP levels during the course of their admission had the most adverse prognosis Study relatively old and small
Kociol et al. 2013 (30) <u>23250981</u>	Aim: Examine_relationship between markers of decongestion and symptom relief and clinical outcomes Study type: retrospective analysis of the RCT, DOSE- AHF Size: 308 pts	Inclusion criteria: Pts enrolled in DOSE-AHF Follow up: 60 d	 <u>1° endpoints:</u> Time to death, first rehospitalization or emergency department visit <u>Results:</u> Of the weight loss, fluid loss, and NT-proBNP reduction, only % reduction in NT-proBNP was significantly associated with symptom relief (r=0.13; p=0.04). Reduction in NT-proBNP Associated with better outcome (NT-proBNP HR: 0.95; 95% CI: 0.91–0.99 per 10% reduction). 	 Favorable changes in each of the 3 markers of decongestion were associated with improvement in time to death, rehospitalization, or emergency department visit at 60 d
Kociol et al. 2011 (31) <u>21743005</u>	Aim: To examine if admission, discharge, or change from admission to discharge BNP measure is the most important predictor of long-term outcomes	Inclusion criteria: Linked pts ≥65 y of age from hospitals in OPTIMIZE-HF to Medicare claims Follow up: 1 y	• The discharge BNP had the best performance and was the most important characteristic for predicting 1 y mortality (HR for log transformation: 1.34; 95% CI: 1.28–1.40) and 1 y death or rehospitalization (HR: 1.15; 95% CI: 1.12– 1.18).	 Compared with a clinical variables, discharge BNP model improved risk reclassification and discrimination in predicting each outcome (1 y mortality: NRI: 5.5%, p<0.0001; IDI: 0.023, p<0.0001; 1-y mortality or rehospitalization: NRI: 4.2%, p<0.0001; IDI: 0.010, p<0.0001)

Flint KM et al. 2014 (32) <u>24922626</u>	Study type: Retrospective analysis -from OPTIMIZE HF Trial Size: 7,039 pts Aim: To examine if admission, discharge, or change from admission to discharge BNP measure is the most important predictor of outcomes Study type: Patrospective analysis	Inclusion criteria: All hospital discharges with a 1° diagnosis of HF in the Veterans Affairs Health Care System from 2006 to 2009. Follow up: 30 d	1° endpoints: • 30 d readmission rate for HF Results: 30 d HF readmission was associated with elevated admission BNP, elevated discharge BNP, and smaller percent change in BNP from admission to discharge. • Pts with a discharge BNP ≥1,000 ng/L had	 Discharge BNP had the greatest effect (C-statistic, 0.639–0.664 [p<0.0001]; NRI, 9% [p<0.0001]). Large sample size
	from VA database		an unadjusted 30 d HF readmission rate over 3 times as high as pts whose discharge BNP was ≤200 ng/L (15% vs. 4.1%).	
ELAN-HF Score Salah et al. 2014 (33) 24179162	Aim: To examine if admission, discharge, or change from admission to discharge BNP measure is the most important predictor of outcomes Study type: Individual pt data meta- analyses of prospective cohort studies Size: 1,301 pts	Inclusion criteria: Pts from 7 prospective cohorts with pts admitted because of clinically validated ADHF, discharged alive, and NT-proBNP measurements available at admission and at discharge Follow up: 180 d	 <u>1° endpoints:</u> All-cause mortality and a composite of all- cause mortality and/or first readmission for CV reason within 180 d after discharge <u>Results:</u> NT-proBNP levels at discharge and the changes in NT-proBNP during hospitalization yielded the best C-statistic (AUC: 0.78; 95% CI: 0.74–0.82). 	 In pts hospitalized for ADHF, the addition of the discharge NT- proBNP values as well as the change in NT-proBNP to known risk markers, generates a relatively simple yet robust discharge risk score that importantly improves the prediction of adverse events

Cohen-Solal et al. 2009 (34) <u>19539144</u>	Aim: Examine whether decreases in BNP levels during the first few d of hospitalization were associated with greater survival in pts with ADHF Study type: Retrospective analysis of SURVIVE Size: 1,327 pts	Inclusion criteria: Of 1,327 SURVIVE pts, this analysis included 1,038 who had BNP samples at both BL and d 5 Follow up: 180 d	 <u>1° endpoints:</u> All-cause mortality and/or first readmission for CV reason within 180 d after discharge <u>Results:</u> A pt was classified as a "responder" if the follow-up BNP level was ≥30% lower than BL BNP Short-term 30 d mortality risk reduction was 67% in d 5 BNP responders compared with nonresponders, whereas long-term (180-d) all-cause mortality risk reduction was 47% 	Pts with lowered BNP on treatment for ADHF had reduced mortality risks (31- and 180-d) compared to those with little or no BNP decrease
Logeart et al. 2004 (35) <u>14975475</u>	Aim: To determine the value of BNP predicting post-discharge outcome of pts admitted for ADHF Study type: Prospective cohort Size: 105 pts	Inclusion criteria: Serial BNP measurements were performed from admission to discharge in 2 samples of consecutive pts	<u>1° endpoints:</u> Combined death or first re-admission for HF <u>Results:</u> The predischarge BNP assay had the best discriminative power (AUC for ROC=0.80) and remained the lone significant variable in multivariate analysis (HR: 1.14; 95% CI: 1.02–1.28; p=0.027	 High predischarge BNP assay is a strong, independent marker of death or readmission after decompensated HF, more relevant than common clinical or echocardiographic parameters and more relevant than changes in BNP levels during acute cares Study relatively old and small
O'Brien et al. 2003 (36) <u>12921811</u>	Aim: To determine the value of BNP predicting post-discharge outcome of pts admitted for ADHF Study type: Prospective cohort Size: 96 pts	Inclusion criteria: NT-proBNP was measured at admission in 96 pts hospitalized with acute LVF Follow up: 180 d	<u>1° endpoints:</u> Combined death or HF <u>Results:</u> Only pre-discharge plasma NT-proBNP (OR: 15.30; 95% CI: 1.4–168.9], p=0.026) was independently predictive of the composite endpoint. The AUC ROC curve for pre- discharge NT-proBNP was superior to that for admission NT-proBNP for prediction of death or HF (AUC ROC 0.87 cf 0.70), for death (0.79 cf 0.66), LVF hospitalization (0.78 cf 0.70) or HF as an outpatient (0.71	 Plasma NT-proBNP measured pre- discharge provides useful prognostic information following hospitalization with acute LVF. Study relatively old and small

			(0.0)	
			cf 0.61	
Richards et al. 2001 (37) <u>11401111</u>	Study type: Observational study within a randomized trial	Inclusion criteria: Ischemic CM, EF<45%, chronic stable CHF, NYHA II-III or prior IIIV	1° endpoint: Association of plasma N-BNP and adrenomdeullin with mortality and HF events at 18 mo	NT-proBNP and adrenomedullin levels are independently associated with outcome in pts with heart failure from an ischemic cardiomyonathy
	<u>Size</u> : 297	Exclusion criteria: Current NYHA IV, HR<50 bpm, BP<90 or >160/100, coronary event/procedure last 4 weeks, IDDM, CKD, hepatic/renal disease, sick sinus syndrome, 2 nd or 3 rd degree heart block, treatment with beta-blocker, beta-agonist or verapamil	 <u>Results:</u> Above median proBNP increased risk of mortality (HR: 4.7; CI 2–10.9) and HF admission (HR: 4.7; CI: 2–10) Above median adrenomedullin increased risk of mortality (HR 3.9,CI 1.8-8.7) and HF admission (HR 2.4, CI 1.3-4.5) Associations persist in multivariable modeling 	cardioniyopathy
Tang et al. 2003 (38) <u>14662703</u>	Study type: Retrospective, observational <u>Size</u> : 558	Inclusion criteria: Chronic systolic HF >3 mo duration, stable medical therapy, LVEF<50%, NYHA class I-III, followed in outpatient HF clinic at a single center who had BNP obtained at clinic visit Exclusion criteria: Congenital heart disease, cardiac transplant, primary valvular disease, active ischemia requiring urgent revascularization	 <u>1° endpoint</u>: Prevalence, clinical characteristics, and characteristics of a BNP<100 pg/mL in a HF clinic population <u>Results:</u> 21% of symptomatic HF pts had BNP <100 pg/mL Characteristics associated with this phenotype include younger age, female gender, nonischemic etiology, better preserved cardiac and renal function, less have atrial fibrillation 	 A sizeable minority (21%) of ambulatory pts with chronic HF have a BNP <100 pg/mL This phenotype (HF with non- diagnostic BNP) is associated with identifiable clinical characteristics
Januzzi et al. 2008 (39) <u>18243855</u>	Study type: Review paper regarding utility of NT-proBNP testing for diagnosis or exclusion of HF in pts with acute HF Size: N/A	Inclusion criteria: Studies using NT-proBNP assays used commercially Exclusion criteria: N/A	1° endpoint: N/A Results: • NT-proBNP had comparable sensitivity/specificity to BNP for diagnosis of acute HF in dyspneic pts • NT-proBNP testing may be superior to	 NT-proBNP testing can help with the diagnosis and triage of the patients with acute dyspnea."

			clinical assessment in diagnosing HF	
Santaguida et al. 2014 (40) <u>25052418</u>	Study type: Systematic review Size: 7 publications included	Inclusion criteria: Study assessing incremental value of BNP or NT-proBNP for predicting morbidity and mortality in acute decompensated HF Exclusion criteria: Studies of stable HF; natriuretic peptide could not be included in base model to allow assessment of incremental value	 <u>1° endpoint</u>: BNP or NT-proBNP improved prognostic model performance for mortality as assessed by discrimination and or likelihood statistics <u>5 BNP publications consistently predicted</u> all-cause mortality in short (3–6 mo) and long (9,12 mo) beyond base model but not all statistically significant Two NT-proBNP publications both showed incremental value at 22 mo and 6.8 y with 1 being statistically significant 	Clinical heterogeneity precluded formal meta-analysis
Hill et al. 2014 (41) <u>24957908</u>	Study type: Systematic review Size: 76 publications included (37 BNP alone, 25 NT- proBNP alone, 14 both)	 Inclusion criteria: Age >18 y presenting to ED or urgent care center with signs/symptoms suggestive acute HF English language articles from 1989-2012 FDA-approved assays Exclusion criteria: Studies with pts who had conditions that may impact NP levels (transplant, HCM, valvular) 	1° endpoint: Test performance characteristics Results: •BNP pooled sensitivity=95%, 95% CI: 93– 97%), specificity 67% (58–75%) • NT-proBNP pooled sensitivity 91% (95% CI: 88–93), specificity 67% (50–80%)	 Both BNP and NT-proBNP had high sensitivity but low specificity Overall strength of evidence for sensitivity and all decision cutpoints for both peptides was high; strength of evidence for specificity rated as moderate. Both BNP and NT-proBNP performed well to rule out, but less well to rule in, for the diagnosis of heart failure among patients presenting to the ED or urgent care centers.
Zaphiriou et al. 2005 (42) <u>15921792</u>	Study type: Diagnostic accuracy study (observational) Size: 306 pts	Inclusion criteria: Pts with new symptoms suggestive of HF referred by GP to rapid access HF clinics at 5 centers in UK between 201 and 2003	 <u>1° endpoint:</u> Sensitivity, specificity, PPV, NPV, LR, AUC for diagnosis of HF <u>Results:</u> 104 (34%) of pts had HF 	 2 of 5 sites withdrew after recruiting 18 and 14 pts Both BNP and NT-proBNP are useful for ruling out HF in pts presenting to PCP with possible HF symptoms

		Exclusion criteria: None listed	 AUC BNP 0.84 (95% CI: 0.79–0.89), Nt-proBNP 0.85 (0.81–0.9) BNP: NPV: 0.87, PPV: 0.59 NT-proBNP NPV: 0.97, PPV: 0.44 	
Son et al. 2012 (43) <u>22564550</u>	Study type: Observational, decision making model using rough set and decision tree approaches Size: 159 subjects (71 HF, 88 control)	 Inclusion criteria: ED presentation for dyspnea (HF vs. Noncardiac control) Complete medical records Exclusion criteria: HF excluded if other diagnosis made 	 <u>1° endpoint</u>: HF diagnosis <u>Results:</u> NT-proBNP was one of 6 variables identified in decision-tree rough set and one of 4 variables in logistic regression model 	 NT-proBNP identified as a critical variable for decision making of HF in pts with dyspnea presenting to ED
Kelder et al. 2011 (44) <u>22104551</u>	Study type: Cross-sectional, diagnostic accuracy (observational) Size: 721 subjects	Inclusion criteria: Pts presenting with signs/symptoms of HF who were referred to 1 of 8 rapid access clinics in the Netherlands Exclusion criteria: Known, established HF Acute HF requiring immediate therapeutic intervention	<u>1° endpoint:</u> Diagnosis of HF <u>Results:</u> • 207/721 (29%) had HF • C-statistic without proBNP =0.83 • C-statistic with proBNP =0.86 NRI 69%	NT-proBNP had utility beyond the history and physical for diagnosing HF among primary care outpatients presenting with signs/symptoms of HF
Booth et al. 2014 (45) <u>24969534</u>	Study type: Systematic review <u>Size:</u> 12 BNP publications; 20 NT-proBNP publications	 Inclusion criteria: Pts presenting with signs or symptoms of HF or were at risk of HF a time of presentation Primary care setting Exclusion criteria: Studies with subjects with: Age <18 y Acute HF Known exacerbation of chronic stable HF 	 <u>1° endpoint</u>: Diagnostic accuracy of BNP or NT-proBNP <u>Results:</u> BNP pooled sensitivity (lowest cutpoint 0.85, optimal 0.8, manufacturer 0.74) and specificity (0.54, 0.5, 0.58, respectively) NT-proBNP pooled sensitivity (lowest cutpoint 0.90, optimal 0.86, manufacturer 0.82) and specificity (0.5, 0.58, 0.58, respectively) 	 Both BNP and NT-proBNP have good diagnostic utility for diagnosing HF in the primary care setting in those with signs/symptoms of HF or at risk of developing HF Tests have better sensitivity than specificity Authors felt that it was unlikely that further studies will change these conclusions

		Conditions that may interfere with NP levels (heart transplant, obesity, HCM, valvular lesion)		
Dao et al. 2001 (46) <u>11216950</u>	Study type: Observational, convenience sample at 1 VA urgent care center Size: 250	 Inclusion criteria: SOB as prominent complaint Exclusion criteria: Dyspnea clearly not from HF ACS (unless predominant presentation was HF 	1° endpoint: Diagnostic utility of point-of-care BNP for diagnosis of HF Results: • BNP C-statistic =0.98 • Treating physician C statistic =0.88 • BNP remained independently associated with HF diagnosis in multivariable model beyond H+P, xray, ECG	BNP had diagnostic utility for HF diagnosis in the urgent care setting
Davis et al. 1994 (47) <u>7905953</u>	Aim: Assessed value of ANP and BNP in pts presenting with dyspnea Study type: Observational Size: 52	Inclusion criteria: Suspected HF among elderly pts presenting with acute dyspnea requiring admission Exclusion criteria: Pneumonia, pulmonary thromboembolism, or pneumothorax	<u>1° endpoint</u> : Strong negative correlations between LVEF and log BNP (r=-0.7; p<0.001) and log ANP (r=-0.59; p<0.001).	 One of the original studies that showed that plasma BNP was raised in dyspneic pts with HF But not in acutely breathless pts with lung disease Rapid BNP assays may assist in the diagnosis of pts with acute dyspnea
Cheng et al. 2001 (48) <u>11216951</u>	Aim: To determine if BNP levels predict outcomes of pts admitted with decompensated HF Study type: Observational Size: 72	Inclusion criteria: Pts admitted with decompensated NYHA class III to IV HF, measuring daily BNP levels Exclusion criteria: Lack of levels	1° endpoint: Association between initial BNP and the predischarge or premoribund BNP measurement and subsequent death and 30-d readmission Results: In pts surviving hospitalization, BNP discharge concentrations were strong predictors of subsequent readmission (area under the receiver operator curve of 0.73).	 In pts admitted with decompensated HF, changes in BNP levels during treatment are strong predictors for mortality and early readmission. BNP levels might be used successfully to guide treatment of pts admitted for decompensated HF
Fonarow et al. 2008 (49) <u>18178412</u>	Aim: To determine additive prognostic value of	Inclusion criteria: Hospitalizations for HF from April 2003 to December	<u>1° endpoint</u> : BNP above the median and increased Tn were associated with significantly increased	 Admission BNP and cardiac Tn levels are significant, independent predictors of in-hospital mortality in

	admission BNP and Tn levels in acutely decompensated HF <u>Study type</u> : Registry analysis <u>Size:</u> 48,629	2004 entered into ADHERE were analyzed. BNP assessment on admission was performed in 48,629 (63%) of 77,467 hospitalization episodes Exclusion criteria: Absence of BNP levels	risk of in-hospital mortality (OR: 2.09 and 2.41 respectively, each p<0.0001).	acutely decompensated HF.
Zairis et al. 2010 (50) <u>19157603</u>	Aim: To investigate the combined prognostic value of admission serum levels of BNP, cTnl and hs-CRP, in pts hospitalized because of acutely decompensated severe (NYHA class III/IV) low-output chronic HF. <u>Study type:</u> Multicenter Prospective cohort <u>Size:</u> 577	Inclusion criteria: Consecutive hospitalized acute decompensated HF pts with NYHA class III/IV recruited in the 5 participating centers Exclusion criteria: Competing diagnoses of renal failure, MI	 <u>1° endpoint</u>: Cardiac mortality by 31 d <u>Results:</u> There was a significant gradual increased risk of 31-d cardiac death with increasing in the number of elevated biomarkers (p<0.001). By multivariate Cox regression analysis, elevated serum levels of BNP (p=0.002), cTnl (p<0.001) and hs-CRP (p=0.02) were independent predictors of the study end point. 	 In pts hospitalized for acute decompensation of severe (NYHA III/IV) low-output HF, BNP, cTnl and hs-CRP upon admission offers enhanced early risk stratification.
Peacock et al. 2008 (51) <u>18480204</u>	Aim: Describe the association between elevated cardiac troponin levels and adverse events in hospitalized pts with acute decompensated HF <u>Study type:</u> Registry analysis	Inclusion criteria: Hospitalizations for acute decompensated HF between 2001 and 2004 in ADHERE. Entry criteria included a troponin level that was obtained at the time of hospitalization Exclusion criteria: Pts with a serum creatinine level ≥ 2.0 mg per deciliter	 <u>1° endpoint</u>: Overall, 4,240 pts (6.2%) were positive for troponin. <u>Results:</u> Pts who were positive for troponin had lower SBP on admission, a lower EF, and higher in-hospital mortality (8.0% vs. 2.7%, p<0.001) than those who were negative for troponin. The adjusted odds ratio for death in the group of pts with a positive troponin test was 2.55 (95% CI: 2.24–2.89; p<0.001) 	 In pts with acute decompensated HF, a positive cardiac troponin test is associated with higher in-hospital mortality, independently of other predictive variables.

	e : 07.004			
	<u>Size</u> : 67,924	(177 micromol per liter).		
Lee et al. 2012 (52) <u>22665814</u>	Aim: To derive and validate a model for acute HF mortality applicable in the ED. Study type: Multicenter Registry analysis Size: 12,591	Inclusion criteria: Population-based random sample of 12,591 pts presenting to the ED from 2004 to 2007 Exclusion criteria: No lab availability	<u>1° endpoint:</u> Death within 7 d of presentation <u>Results:</u> Mortality risk increased with higher triage heart rate (OR: 1.15; [95% CI: 1.03–1.30] per 10 beats/min) and creatinine concentration (OR: 1.35; [CI: 1.14–1.60] per 1 mg/dL [88.4 micro mol/L]), and lower triage SBP (OR: 1.52 [CI: 1.31–1.77] per 20 mm Hg) and initial oxygen saturation (OR, 1.16 [CI: 1.01–1.33] per 5%).	• A multivariate index comprising routinely collected variables stratified mortality risk with high discrimination in a broad group of pts with acute HF presenting to the ED.
Dhaliwal et al. 2009 (53) <u>19398076</u>	Aim: Compare the relationship between absolute and relative changes in BNP with future clinical events, and whether serial BNP measurements add prognostic information in pts treated for decompensated HF Study type: Retrospective registry analysis	Inclusion criteria: Pts hospitalized for acute decompesated HF by Framingham criteria Exclusion criteria: Renal failure, severe lung disease, acute coronary syndrome	 <u>1° endpoint</u>: For the combined end point of total mortality or readmission for HF <u>Results:</u> Increasing tertiles of BNP levels after treatment had a hazard ratio of 1.4 (1.1–1.7, p<0.01) and increasing tertiles of percent reduction in BNP, had a HR:0.7 (0.6–0.9; p=0.005), respectively, for the combined end point of total mortality or readmission for HF Follow-up BNP performed better than did baseline BNP or percent reduction in BNP. More BNP measurements other than the follow-up BNP did not improve the fit of the model further. 	 Both lower absolute BNP levels and greater percentage reduction in BNP with treatment of decompensated HF are associated with better event-free survival. Advocating a threshold BNP to which pts should be treated may not be possible given that high BNP levels tend not to decrease to levels associated with better outcomes during the short period of treatment. More BNP measurements do not add prognostic information beyond that provided by a single BNP level after treatment
Alonso-Martinez et al. 2002 (54) <u>12034159</u>	Aim: To determine usefulness of CRP in predicting need for readmission in HF	Inclusion criteria: Intervention group: admission with HF; control group: admission with syncope	 <u>1° endpoint</u>: 18-mo HF readmission CRP levels were higher in pts with HF compared to syncope (3.94 vs. 0.84, p<0.0007) 	 Multivariate predictors of readmission were CRP levels, NYHA class and plasma K on discharge Limitation: small, single-center

	Study type: Observational Size: 76	Exclusion criteria: Clear cause for elevated CRP (e.g., inflammation, infection)	Higher CRP levels were associated with higher NYHA class, increased risk of HF readmission, shorter time to readmission, and increased mortality <u>Safety endpoint:</u> NYHA class on discharge and death	observational study
Dieplinger et al. 2010 (55) <u>20153308</u>	Aim: To evaluate the prognostic value of established and novel biomarkers in pts with acute dyspnea Study type: Observational Size: 251	Inclusion criteria: Pts presenting to ED with acute dyspnea Exclusion criteria: STEMI, NSTEMI or ACS troponin pos. Biomarkers: BNP, MR-proANP, MR- proADM, copeptin, C- terminal pro-ET-1, soluble ST2, chromogranin A (CgA), adiponectin, proguanylin, prouroguanylin	 <u>1° endpoint</u>: All-cause mortality at 1 y 25% died within 1 y At baseline, decedents (n=62) had higher median plasma concentrations of all 10 biomarkers than survivors (n=189) In multivariate model, only MR-proANP (RR: 1.6), ST2 (RR: 1.7) and CgA (RR: 1.5) were independent predictors of death 	 Low systolic BP and advanced age were also independent predictors of 1-y mortality Limitations: post-hoc analysis; sub- group (87 of 251) had dyspnea due to acute HF alone; single-center, majority men (94%)
Ilva et al. 2008 (56) <u>18599345</u>	Aim: To evaluate prevalence and prognostic significance of elevated cTnI and cTnT in acute HF <u>Study type:</u> Observational substudy <u>Size</u> : 364	Inclusion criteria: Hospitalized with acute HF Exclusion criteria: ACS pts; missing sample for cardiac TnI/TnT Biomarkers on admission and 48 hours: cTnT, cTnI, cystatin C, NT- proBNP	 <u>1° endpoint</u>: 6 -mo mortality 51% of pts had +cTnI and 30% had +cTnT 6-mo all-cause mortality was 18.7% Both cTnI (OR: 2.0; 95% CI: 1.2–3.5) and cTnT (OR: 2.6; 95% CI: 1.5–4.4) were associated with adverse outcome in pts with previous, but no de novo HF 	 On multivariable analysis, cystatin C (OR: 6.3; 95% CI: 3.2–13), logNT-proBNP (OR: 1.4; 95% CI: 1.0–1.8) and SBP on admission (/10 mm Hg increase; OR: 0.9; 95% CI: 0.8–0.9) were independent risk predictors, whereas troponins were not Mortality was proportional to troponin release Limitations: exclusion of pts with ACS was based on clinician judgment; cut-off values for troponins was based on 2000 ESC/ACC guidelines
Januzzi et al. 2007	Aim:	Inclusion criteria:	<u>1º endpoint</u> :	ST2 levels were higher in pts with
(57) <u>17692745</u>	no examine the value of measuring ST2 in pts	Pts presenting to ED with acute dyspnea	 death at 1 y ST2 levels were significantly higher in pts 	HF <i>r</i> EF (0.67 ng/ml; IQR 0.31–1.50) vs. HF <i>p</i> EF (0.42 ng/ml; IQR 0.22–

	with acute dyspnea <u>Study type:</u> Observational <u>Size</u> : 593 (pts with acute HF 209, other causes of acute dyspnea 384)	Exclusion criteria: Not reported	 with acute HF (0.50 ng/ml; IQR 0.27–1.22) vs. those without (0.15 ng/ml; IQR 0.06– 0.42) 1-y mortality was 15.7% ST2 levels were significantly higher in decedents than survivors (1.03 vs. 0.18 ng/ml; p<0.001) In multivariable analysis, ST2 ≥0.20 ng/ml strongly predicted death at 1 y 	 0.90) A multi-marker approach with both ST2 and NT-proBNP levels identified subjects with the highest risk for death Limitations: single-center study; biologic role of ST2 in acute HF poorly understood
Manzano-Fernandez et al. 2011 (58) <u>21211603</u>	Aim: To determine whether risk of mortality associated with ST2 differs in pts with acute HFpEF vs. HFrEF Study type: Observational study combining 3 databases (Boston, MA; Linz, Austria; Murcia, Spain) Size: 447	Inclusion criteria: Acute HF Exclusion criteria: N/A Biomarkers: ST2, troponin T, NT-proBNP, CRP	 <u>1° endpoint:</u> 1 y vital status During 1-y follow-up, 117 pts (26%) died ST2 levels were higher among deceased than survivors (median 0.80 ng/ml vs.0.38 ng/ml; p<0.001); and this pattern was true for HF<i>r</i>EF and HF<i>p</i>EF On multivariate analysis, elevated ST2 levels were associated with greater risk of 1-y mortality for HF<i>p</i>EF (HR: 1.41; 95% CI: 1.14–1.76) than HF<i>r</i>EF (HR: 1.20; 95% CI: 1.10–1.32) 	 Pts with HFrEF had higher ST2 levels than HFpEF (median 0.55 ng/ml vs. 0.38 ng/ml; p<0.001) Addition of ST2 to NT-proBNP improved C statistic and both net reclassification improvement and integrated discrimination improvement, regardless of LVEF Limitations: pooled multinational analysis that lacked predefined endpoints and complete echocardiographic measures; no pre-discharge ST2 levels
Rehman et al. 2008 (59) <u>19017513</u>	Aim: To examine patient- specific characteristic of ST2 in pts with acute HF Study type: Observational study combining 2 databases (Boston, MA; Linz, Austria) Size: 346	Inclusion criteria: Acute HF <u>Exclusion criteria</u> : N/A <u>Biomarkers</u> : ST2, BNP, NT-proBNP, CRP	 <u>1° endpoint:</u> ROC curves and multivariable Cox proportional hazards analyses ST2 levels correlated with severity of HF (p<0.001), LVEF and creatinine clearance ST2 levels correlated with BNP, NT-proBNP and CRP In a multivariable model, ST2 remained a predictor of mortality (HR: 2.04; 95% CI: 1.30–3.24) 	 Pts with HFpEF had lower ST2 levels compared to HFrEF 1-y mortality was 42% among 116 pts with elevation in both ST2 and BNP/NT-proBNP In the presence of a low ST2 level, BNP/NT-proBNP did not predict mortality Limitations: lack of serial measures of ST2; biologic role of ST2 in acute HF poorly understood

Shah et al. 2010 (60) <u>20525986</u>	Aim: To determine the relationship between galectin-3 and cardiac structure and function in pts with acute dyspnea Study type: Observational Size: 115	Inclusion criteria: PT presenting to ED with acute dyspnea, detailed echo exams during admission Exclusion criteria: N/A Biomarkers: galectin-3, NT-proBNP	 <u>1° endpoint:</u> Association between galectin-3 and echo and clinical indices Higher levels of galectin-3 associated with older age, poorer renal function, and higher NT-proBNP Significant relationship between galectin-3 and poorer RV function, higher RV systolic pressure and more severe MR and TR 	 Galectin-3 levels higher in pts who died at 1 and 4 y In multivariate analysis, galectin-3 remained a significant predictor of 4-y mortality independent to echocardiographic markers of risk Limitations: delay between collection of biomarkers and echocardiograms; small, single- center cohort
---	--	--	--	---

Search Terms and Date: natriuretic peptides, heart failure, human, last 5 years. Last search done on April 18, 2016.

Data Supplement 1. RCTs Comparing ARNI (Section 7.3.2.10)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
PARAMOUNT Solomon et al. 2012 (61) 22932717	Aim: To address safety and efficacy of LCZ696 (ARNI) in pts with HF <i>p</i> EF Study type: RCT Size: 308	Inclusion criteria: Pts ≥40 y of age, LVEF ≥45%, NYHA class II-III HF, NT-pro BNP >400 pg/mL. Exclusion criteria: Right HF due to pulmonary disease, dyspnea due to noncardiac causes, valvular/myocardial disease, CAD or CVD needing revascularization within 3 mo of screening.	Intervention: LCZ696 (149) target dose 200 mg BID achieved in 81% Comparator: Valsartan (152) target dose 160 mg BID achieved in 78%	 <u>1° endpoint</u>: Change from BL at 12 wk for NT-proBNP Results: Reduction in LCZ696 group vs. valsartan (ratio of change from BL: 0.77, 95% Cl: 0.64–0.92; p=0.005) <u>1° Safety endpoint</u>: LCZ-696 well tolerated. Serious adverse events: 15% in LCZ696 vs. 20% in valsartan group 	 No difference in change in NT-proBNP from BL at 36 wk BP reduced in the LCZ696 group vs. valsartan at 12 wk (p=0.001 for SBP and p=0.09 for DBP) Change in BP correlated poorly with the change in pro-BNP No difference in improvement in NYHA class at 12 wk (p=0.11) and 36 wk (p=0.05). No difference in KCCQ scores Trial not powered to ascertain clinical outcomes. Further studies needed to assess safety and efficacy in HFpEF pts.
PARADIGM-HF McMurray et al. 2014	Aim: To compare survival rates with the use of	Inclusion criteria: ≥18 y of age, NYHA class II, III, IV; EF ≤35%, BNP of at least 150	Intervention: LCZ696 (4,187) target dose 200 mg BID (mean	 <u>1° endpoint</u>: Composite of death (CV causes) or a first 	 Less CV death in LCZ696 arm (558 vs. 693) HR: 0.8 (95% CI: 0.71–0.89; p<0.001)

(62)	LCZ696 with	pg/mL, hospitalized for HF <12 mo	375 <u>+</u> 71 mg daily)	hospitalization for HF	• Less HF hospitalizations in LCZ696 arm
25176015	enalapril in HF Study type: RCT <u>Size</u> : 8,442	(≥BNP100 pg/mL), on ACE inhibitors or ARBs ≥4 wk before screening, required to take stable dose of beta blockers and an ACE inhibitor (or ARB) equal to 10mg of enalapril. Prior to randomization pts were required to complete 2 wk each of enalapril 10 mg BID and LCZ 100 BID. <u>Exclusion criteria</u> : Symptomatic hypotension, SBP <95 mm Hg, eGFR <30 mL/min/min/1.73m ² of body surface area, serum K level >5.2 mmol/L, angioedema history, unacceptable side effects of ACE inhibitors or ARBs	Comparator: Enalapril (4,212) target 10 mg BID (mean 18.9 <u>+</u> 3.4 mg daily)	• Results: Composite less in LCZ696 group vs. enalapril, 914 (21.8%) vs. 1,117, (26.5%) HR: 0.80 (95% Cl: 0.73–0.87; p<0.001)	 (537 vs. 658) HR: 0.79 (95% CI: 0.71– 0.89; p<0.001) Less death from any cause in LCZ696 arm (711 vs. 835), HR: 0.84 (95% CI: 0.76–0.93; p<0.001) The change from baseline to 8 mo in the score on the KCCQ in LCZ696 arm (2.99 points reduction vs. 4.63 points), HR: 1.64 (95% CI: 0.63–2.65; p=0.001) No difference in new onset of AF (84 vs. 83; p=0.84) No difference in protocol defined decline in renal function, HR: 0.86 (95% CI: 0.65–1.13; p=0.28). More symptomatic hypotension (14% vs. 9.2%; p<0.001) No difference in angioedema, 19 vs.10 (p=0.13)

Search Terms and Date: 3 trials identified by chairs in December 2015.

		, ,	,		
Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
ONTARGET ONTARGET Investigators et al. 2008 (63) <u>18378520</u>	Aim: Compare ACE (ramipril), ARB (telmisartan), and combination ACE/ARB in pts with CVD or high- risk DM Study Type: RCT Size: 25,620	Inclusion Criteria: Pts >55 y of age, CAD, PVD, previous stroke, or high-risk DM with end-organ damage Exclusion Criteria: HF at trial entry, ACE or ARB intolerance, revascularization planned or <3 mo	Intervention: Run in, then randomization to ramipril (8,576) target dose 10 mg daily, telmisartan (8,542) target dose 80 mg daily or combination (8,502), titrated to BP	 <u>1° endpoint</u>: Composite of CV death, MI, stroke, or HF hospitalization at 5 y Results: No difference in outcome (16.5% ACE, 16.7% ARB, 16.3% combination; CI: ARB RR: 1.01 (95% CI: 0.94–1.09) 	 Compared to the ramipril arm: Telmisartan had more hypotensive symptoms (p<0.001); less cough (p<0.001) and angioedema (p=0.01); same syncope. Combination arm had more hypotensive symptoms (p<0.001); syncope (p=0.03); and renal dysfunction (p<0.001) BP fell by 6.4/7.4/9.8 mm Hg Less angioedema with telmisartan
TRANSCEND Yusuf et al. 2008 (64) <u>18757085</u>	Aim: To assess the effectiveness of ARB in ACE- intolerant pts with CVD or high-risk DM <u>Study Type:</u> RCT <u>Size:</u> 5,926	Inclusion Criteria: ACE-intolerant pts with CAD, PVD, previous stroke, or high-risk DM with end-organ damage Exclusion Criteria: HF at trial entry, revascularization planned or <3 mo	Intervention: Run in, then randomization to telmisartan titrated to 80 mg as tolerated (2,954) Comparator: Titration of other mediations as needed to control BP (2,944)	 <u>1° endpoint</u>: Composite of CV death, MI, stroke, or HF hospitalization at 5 y <u>Results</u>: No significant difference RR: 0.92 (95% CI: 0.81–1.05); p=0.216 	 No difference in 2° outcomes; ARB was safe in this pt population - no angioedema
SUPPORT Sakata et al. 2015 (65) 25637937	Aim: Discover whether addition of ARB to ACE and beta blockers in pts with chronic HF will	Inclusion Criteria: Pts 20–79 y of age with hypertension, NYHA class II-IV, stable on ACE ± beta blockers	Intervention: Randomization to olmesartan (578) titrated up to 40 mg as tolerated (578) (mean dose achieved at 5 y, 17.9	 <u>1° endpoint</u>: Composite of all-cause death, MI, stroke, or HF hospitalization at 4.4 y <u>Results</u>: No significant difference RR: 1.18 (95% CI: 0.96–1.46); p=0.11 	 Pts on triple therapy with ACE/ARB/Beta blocker had more of 1° composite outcome, 38.1 vs. 28.2%, HR: 1.47 (95% CI: 1.11– 1.95; p=0.006); all-cause death, 19.4 vs. 13.5%, HR: 1.50 (95% CI:

Data Supplement 2. RCTs Comparing RAAS Inhibition (Section 7.3.2.3)

	improve clinical outcomes <u>Study Type:</u> Open label blinded endpoint <u>Size:</u> 1,147	Exclusion Criteria: Creatinine >3.0, MI or, revascularization within 6 mo	mg/d) <u>Comparator:</u> Titration to control BP without use of an ARB (568)		1.01–2.23; p=0.046); and renal dysfunction (21.1 vs. 12.5%, HR: 1.85 (95% CI: 1.24–2.76; p=0.003).
Mineralocorticoids An	tagonist Trials				
EMPHASIS subgroup analysis Eschalier et al. 2013 (66) 23810881	Aim: Investigate the safety and efficacy of eplerenone in pts at high risk for hyperkalemia Study Type: Prespecified subgroup analysis of RCT Size: 2,737	Inclusion Criteria: Pts enrolled in EMPHASIS at high risk for hyperkalemia of worsening renal function (>75 y, DM, eGFR <60, or SBP <123) Exclusion Criteria: eGFR<30	Intervention: Randomization to eplerenone Comparator: Placebo	 <u>1° endpoint</u>: Efficacy: Hospitalization for HF or worsening renal failure. Safety: K >5.5, >6.0, <3.5, hospitalization for significant hyperkalemia, hospitalization for worsening renal function <u>Results:</u> Efficacy: reduced composite endpoint. Safety: increased risk of K+ >5.5 mmol/L, hospitalization for hyperkalemia or discontinuation of study medication due to adverse events. No differences from the main trial results in the high-risk subgroups. K >5.5 was increased in the whole cohort and the subgroups, but K >6.0, clinically significant hyperkalemia, and change in eGFR were not substantially higher. 	The beneficial effects of eplerenone were maintained in the high-risk subgroups.
RALES Pitt et al. 1999 (67) <u>10471456</u>	Aim: To investigate the effect of spironolactone on mortality and morbidity in pts with severe HF. Study Type:	Inclusion Criteria: NYHA class III, IV; HF≤6 mo, Left EF≤35%, On ACE inhibitors, loop diuretic. Digitalis and vasodilators allowed. Exclusion Criteria: 1° operable VHD (other than	Intervention: Spironolactone 25 mg daily (822) Comparator: Placebo (841)	 <u>1° endpoint</u>: Death from all causes <u>Results:</u> Placebo vs. Spironolactone group (46% vs. 35%; RR: 0.70; 95% Cl: 0.60–0.82; p<0.001) Trial stopped early due to favorable results at 24 mo. 	 Reduction in death from cardiac causes and Hospitalization for cardiac causes (p<0.001) Improvement in NYHA class (p<0.001) No clinically important safety concerns for electrolytes. Gynecomastia/breast pain more frequent in the spironolactone

RCT	mitral or tricuspid), ACHD,		group (p<0.001)
	unstable angina, 1° heaptic		C I U I
Size:	failure, active cancer, life		
1,663	threatening disease, heart		
	transplant, serum Cr ≥2.5		
	mg/dL, serum K ≥5.0 mmoL/L		

The ARB evidence table from the 2013 Heart Failure Guideline is included at the end of this document.

The ACE inhibitor evidence table from the 2013 Heart Failure Guideline is also included at the end of this document.

The Beta Blocker evidence table from the 2013 Heart Failure Guideline is included at the end of this document.

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint; Study Limitations; Adverse Events
IMPRESS Rouleau et al. 2000 (68) <u>10968433</u>	Aim: Determine if inhibition of neutral endopeptidase and ACE with the vasopeptidase inhibitor omapatrilat is better than ACE inhibition alone with lisinopril Study type: Double blind RCT Size: 573 pts	Inclusion criteria: Informed consent Age ≥18 Stable (>3 mo) symptomatic HF (NYHA class II–IV HF) Decreased LVEF ≤40 ≥4 wk dose of ACE inhibitors Seated SBP ≥90 mm Hg Exclusion criteria: Uncontrolled hypertension Acute coronary events within 3 mo Serum potassium <3.5 or >5.3 mmol/L Creatinine >221 mcmol/L Transaminases >2 upper limit of normal Leucocytes <3.0x10 ⁹ /L, neutrophils <1.	Intervention: Omapatrilat (289) target dose 40 mg daily <u>Comparator</u> : Lisinopril (284) target dose 20 mg daily	1° endpoint: Change in exercise duration from baseline to wk 12 Results: Similar exercise duration at 12 wk (p=0.45)	 <u>2° endpoint</u>: No difference in combined endpoint of death and admission for worsening HF (p=0.52) Combined endpoint of death and comorbidity for worsening HF was better for omapatrilat HR: 0.52 (95% Cl: 0.28–0.96; p=0.035) Angioedema occurred in no pts taking omapatrilat vs. 1 taking enalapril <u>Comments</u>: Vasopeptidase inhibitor omapatrilat did not improve exercise tolerance compared with ACE inhibitor lisinopril

Data Supplement 3. RCTs Comparing Pharmacological Treatment for of ARNI With ACE (Section 7.3.2.10)

		 Use of beta blockers <6 mo 			
		Calcium channel blockers for use other than			
		AF			
		 Pts included in previous RCTs of omapatrilat 			
			-		
OVERTURE	Aim:	Inclusion criteria:	Intervention:	1° endpoint: Combined	 Omapatrilat reduced risk of death
Packer et al. 2002	Determine dual ACE	NYHA class II–IV HF due to non/ischemic	Omapatrilat (2,886),	risk of death or	and hospitalization for chronic HF
(69)	and NEP inhibitors	cardiomyopathy for ≥2 mo, or	target dose 40 mg daily	hospitalization for HF	HR: 0.89 (95% CI: 0.82–0.98;
12186794	provides greater	 LVEF ≤30% and hospitalized for HF within 12 	achieved 82.5%	requiring IV treatment	p=0.012). For this analysis, pts were
	than ACE inhibitors	mo	Comparator: Epolopril	Deculte: No cignificant	treated with intensification of oral
		Evolucion eriterio	(2.884) target dose 10	difference HP: 0.04 (05%	medications.
	alone	Exclusion chiena:	mg BID achieved 86.4%	Cl: $0.86 - 1.03$ n = 0.187)	• More frequent anglesdoms with
	Study type:			01.0.00 - 1.00, p = 0.107	omanatrilat (0.8% vs. 0.5%)
	Double blind RCT	 Likely to receive cardiac transplant or left 			omapatnat (0.0 % v3. 0.0 %)
	<u>Size</u> :	Severe 1° nulmonary renal or henatic disease			
	5,770 pts	Hx of intolerance to ACE inhibitors			
		ACS within 1 mo			
		Coronary revascularization or an acute			
		cerebral ischemic event within 3 mo			
		Hx of ventricular tachycardia, ventricular			
		fibrillation, or sudden death who did not have an			
		ICD placed and had not fired within 2 mo			
		Hx or hospitalization or intravenous therapy			
		for HF within 48 h			
		 IV positive inotropic agent within 2 wk 			
		 SBP >180 or <90 mm Hg 			
		 Heart rate >130 bpm 			
		 Serum creatinine >2.5 mg/dL 			
		 Serum potassium <3.5 or >5.2 mmol/L 			
OCTAVE	Aim:	Inclusion criteria:	Intervention:	<u>1° endpoints</u> :	<u>2° endpoints</u> :
Kostis et al. 2004	Compare satety and	• Age ≥18	Omapatrilat target dose	Reduction in SBP at wk	 Reduction in DBP at wk 8
(/U)	efficacy of dual ACE	• 3 separate BP criteria for 3 groups: Group 1	ou mg dally	8	Reduction in SBP and DBP at wk
14701000		untreated hypertension (SBP ≥140 mm Hg or	Comparator: England	Need for new	24
		DBP 290 mm Hg); Group 2 hypertension and	target dose 40 mg daily	adjunctive	• BP control (SBP <140 mm Hg and
	Study type:	150 mm Ha and DBD <100 mm Ha or trough	anger upse to my daily	antinypertensive therapy	DBP <90 mm Hg) at wk 8 and 24
	Double blind RCT	DRP 00, 00 mm Ha and SRD <160 mm Ha $^{\circ}$		DY WK 24	Commenter
		DDF = 30-33 mining and $DDF > 100$ milli Pg ,	1		<u>comments</u> :

Size:	Group 3 hypertension with persistent moderate	Greater reductions in BP in omapatrilat within each study
25.302 pts	mm Hg and DBP <110 mm Hg, or trough DBP	(p<0.001)
-,	100–109 mm Hg and SBP <180 mm Hg)	• Overall mean reduction in SBP
	с с,	≥3.6 mm Ha
	Exclusion criteria:	Larger reductions in BP in black
	 Contraindication to therapy with ACE inhibitors 	pts with omapatrilat than with
	or angiotensin II receptor antagonists	enalapril. But overall reduction
	 Hx of angioedema, anaphylaxis, drug-induced 	smaller with both drugs than in other
	or chronic urticarial, or multiple drug sensitivities	subgroups.
	 Recent hospitalization for MI, unstable angina, 	 Adverse events, serious adverse
	stroke, TIA or COPD	events, and deaths were the same
	 Recent treatment for malignancy, chronic renal 	for omapatrilat and enalapril
	disease 2° to autoimmune disease, or end-stage	 More angioedema with omapatrilat
	renal disease of any etiology	(2.17% vs. 0.68%)
	 Hypertensive pts treated with ACE inhibitors 	 More angioedema in blacks with
	whose BP placed them in study group 3	omapatrilat (5.54% vs. 1.62%) and
		current smokers (3.93% vs. 0.81%)

Search Terms and Date: March 2016, angioedema, neprilysin inhibitors, omapatrilat.

Data Supplement 4. RCTs Comparing Pharmacological Treatment for Stage C HFrEF (Section 7.3.2.11)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
SHIFT HF Böhm et al. 2015 (71) <u>26508709</u>	Aim: To assess influence of comorbidities on outcomes and ivabradine treatment effect of heart rate reduction in stable HF. Study type: Post hoc analysis of RCT	Inclusion criteria: Pts ≥18 y of age in sinus rhythm, heart rate at rest ≥70 bpm, MTD for HF meds Exclusion criteria: N/A	Intervention: Ivabradine <u>Comparator</u> : Placebo	 <u>1° endpoint</u>: CV death or HF hospitalization rate increased with the comorbidity load (p<0.0001) with most events in pts with >3 comorbidities for both drug and placebo. Hospitalization rate lower for comorbidity loads of ivabradine 	 Number of comorbidities was related to outcomes Heart rate reduction with Ivabradine is conserved at all comorbidity loads

	<u>Size</u> : 6,505				
SHIFT Swedberg K et al. 2010 (72) 20801500 Ivabradine and outcomes in chronic HF (SHIFT)	Aim: To assess the effect of heart rate reduction by the selective sinus- node inhibitor ivabradine on outcomes in HF Study type: randomized, double-blind placebo-controlled trial. 677 centers 37 countries Size: 6,558 6,505 analyzed 3,241 ivabradine 3,264 placebo	Inclusion criteria: O ver 18 y of age, in sinus rhythm, resting heart rate of ≥70 bpm, stable symptomatic chronic HF (NYHA class II-IV) for ≥4 wk, previous admission to the hospital for HF within 12 mo, LVEF ≤35% Exclusion criteria: HF due to congenital heart disease or 1° severe valvular disease. MI within 2 mo, ventricular or AV pacing for ≥40% of the d, AF or flutter, symptomatic hypotension The following treatments not allowed during study: • diltiazem and verapamil (nondihydropyridine CCB) • class I antiarrhythmics • strong inhibitors of CYP450 3A4	Intervention: Ivabradine Comparator: Placebo	 <u>1° endpoint:</u> Composite of CV death or hospital admission for worsening HF Primary endpoint: ivabradine better. Event rate 24% vs. 29%. HR 0.82 (0.75–0.90); p<0.0001 Hospitalization for worsening HF: ivabradine better. 16% vs 21%, HR: 0.74 (95% CI: 0.66–0.83; p<0.001) Death from HF: ivabradine better. 3% vs. 5%; HF: 0.74 (0.58–0.94); p=0.014 	 Composite of CV death or hospital admission for worsening HF among those receiving at least 50% of target beta blocker dose at time of randomization. All cause death; any CV death; HF hospitalization; all-cause hospitalization; any CV hospitalization; death from HF; composite of CV death HF hospitalization, nonfatal MI. No difference in all-cause mortality or CV mortality Ivabradine better for all-cause hospitalization, HF hospitalization, CV hospitalization, and composite 2° endpoint Analyzed as time to first event. Median follow-up of 22.9 mo In subgroup analysis, effect limited to those with higher baseline heart rate (≥77 bpm) Use of devices was low (CRT in 1% and ICD in 4%) Mean age 61 y When added to GDEM, including beta blocker at optimal dose, ivabradine reduced adverse events, driven largely by HF mortality or HF hospitalization Adverse Effects: 1% withdrew due to bradycardia (p<0.001) Phosphenes 3% (p<0.001)
SIGNIFY Fox et al. 2014 (73)	Aim: Assess the mortality-morbidity	Inclusion criteria: Stable CAD without clinical HF and heart rate of ≥70	Intervention: Ivabradine (n=9,550)	<u>1° endpoint</u> : Composite of CV death and nonfatal MI	 Adverse Events: Increased bradycardia, AF, phosphenes and cardiac disorders.

<u>25176136</u>	benefits of Ivabradine in pts with stable CAD without clinical HF <u>Study type</u> : RCT <u>Size</u> : 19,102	bpm and in sinus rhythm, persistence and confirmation of ≥1 CV risk factors <u>Exclusion criteria</u> : Serum creatinine >200 mcmol /L, significant anemia, ALT or AST >3 times upper normal value, unstable CV condition, LVEF ≤40%; MI, coronary revascularization, stroke ≤3 mo.	Comparator: Placebo (n=9,552)	 Results: No significant difference in incidence of 1° endpoint (HR: 1.08; 95% CI: 0.96–1.20; p=0.20), death from CV causes (HR: 1.10; 95% CI: 0.94–1.28; p=0.25), nonfatal MI (HR: 1.04; 95% CI: 0.90–1.21; p=0.60) and rate of death (HR: 1.06; 95% CI: 0.94–1.21; p=0.35) <u>1° Safety endpoint</u>: Incidence of bradycardia higher in Ivabradine group (p=0.001) 	 Significant interaction between ivabradine and presence of angina in a subgroup analysis (p=0.02).
BEAUTIFUL Fox et al. 2008 (74) <u>18757088</u>	Aim: Assess the mortality-morbidity benefits of Ivabradine in pts with CAD and LV systolic dysfunction Study type: Randomized, double-blind, placebo-controlled Size: 10,917 5,479 ivabradine 5438 placebo	 Inclusion criteria: Pts ≥55 y of age with stable CAD defined as: previous MI, previous revascularization (PCI or surgery), or angiographic evidence of ≥1 stenosis of ≤50%) AND LVEF <40% and end diastolic internal dimension of >56 mm. Sinus rhythm with resting heart rate of ≥60 bpm. Angina and HF symptoms stable for 3 mo Appropriate conventional CV medication for 1 mo. Exclusion criteria: MI or coronary revascularization within the previous 6 mo; stroke or TIA within 3 mo, PPM or ICD, valvular disease likely to 	Intervention: Ivabradine n=5,479 <u>Comparator</u> : • Placebo in addition to appropriate CV medication n=5,438	 <u>1° endpoint</u>: Composite of CV death, admission for MI and admission for HF No difference in composite 1° endpoint (22.5% vs. 22.8%; HR: 1.00; 0.91–1.1; p=0.94) No differences in any prespecified subgroup. 	 <u>2° endpoints</u>: 1) All-cause mortality 2) Cardiac death (death from MI or HF or related to a cardiac procedure) 3) CV death (death from a vascular procedure, presumed arrhythmic death, stroke death, other vascular death or sudden death of unknown cause) or admission for HF, 4) Composite of admission for fatal and nonfatal MI or UA 5) Coronary revascularization 6) CV death 7) Admission for HF 8) Admission for MI No differences in 2° endpoints in overall population. In <u>subgroup with heart rate of ≥70</u>, ivabradine reduced 1) admission for AMI (fatal and nonfatal) (HR 0.64; 0.49–0.84; p=0.001) 2) composite of admission for AMI or UA (HR 0.78; 0.62–0.97; p=0.023)

need surgery within 3 y,	3) coronary revascularization (HR 0.7; 0.52–0.93;
SSS, sinoatrial block,	p=0.16)
congenital long QT,	
complete AV block, severe	 28% in Ivabradine group discontinued medication
or uncontrolled	(vs. 16%), largely due to bradycardia (13% vs. 2%)
hypertension, NYHA class	
IV HF	 No significant difference in adverse effects (23% vs.
	23%; p=0.70)

Search Terms and Date: studies identified by chairs in December 2015, one study added by Jan 2016.

Data Supplement C. RCTs Comparing Pharmacologic Treatment for HF*p*EF: Recommendations (Section 7.3.3)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
HYVET Beckett et al. 2008 (75) <u>18378519</u>	Aim: To determine whether treatment of HTN is beneficial in the elderly. Study type: RCT Size: 3,845	Inclusion criteria: Age >80, persistent HTN (SBP >160) Exclusion criteria: Known HF, creatinine >150 µmol/L (1.7 mg/dL), CVA <6 mo	Intervention: Indapamide + perindopril if needed for BP control. Target 150/80 mm Hg (1,933) Comparator: Placebo (1,912)	 <u>1° endpoint</u>: Fatal or nonfatal stroke. Trend for improved outcome with active treatment 51 strokes (12.4/1,000 pt-y) vs. placebo 69 (17.7/1,000 pt-y), HR: 0.70; 95% Cl: 0.49–1.01; p=0.06) and significantly reduced fatal stroke 27 (6.5/1000 pt-y) vs. placebo 42 (10.7/1000 pt-y), HR: 0.61; 95% Cl: 0.38–0.99; p=0.046) 	 Significantly reduced all-cause death HR: 0.79 (95% CI: 0.65–0.95; p=0.02) and HF incidence HR: 0.36 (95% CI: 0.22–0.58, p<0.001) with active treatment Trend for decreased CV and HF death (p=0.06 for both)
ALLHAT Long-term Follow-up Piller et al. 2011 (76) 21969009	Aim: To compare diuretic- based to ACE- inhibitor or CCB- based treatment of HTN Study type: RCT	Inclusion criteria: Age >55, HTN (SBP ≥140, DBP≥90), at least 1 CV risk factor (MI, stroke, LVH, diabetes, low HDL, PVD) Exclusion criteria:	Intervention: Amlodipine (8,898) 572 with in-trial HF, Lisinopril (8,904); 469 with in-trial HF Comparator: Chlorthalidone (15,002); 720 with in-trial HF	 <u>1° endpoint:</u> Adjusted mortality risk Increased mortality with intrial incident HF, both HF<i>p</i>EF: HR: 2.42 (95% CI: 2.08–2.81, p<0.001) and HFrEF: HR: 3.06; 95% CI: 2.67–3.51; p<0.001) 	 Increased HF mortality with incident HF, both HFpEF: HR: 3.81 (95% CI: 2.18–6.67, p<0.001) and HFrEF: HR: 6.80; 95% CI: 4.36–10.62; p<0.001) No difference in mortality in pts with incident HF by drug treatment
	<u>Size</u> : 32,804	Symptomatic HF, EF <35% at trial entry			
---	---	--	---	--	--
SHEP HF Results Kostis et al. 1997 (77) 9218667	Aim: To assess the effect of antihypertensive treatment in isolated systolic HTN Study type: RCT Size: 4,736	Inclusion criteria: Age > 60, SBP 160– 219, DBP<90 Exclusion criteria: Recent MI or CABG, pts with DM, stroke, AF	Intervention: Antihypertensive therapy: step 1, chlorthalidone, step 2, atenolol (2,365) Comparator: Placebo (2,371)	 <u>1° endpoint:</u> Incident HF Active treatment decreased BP from mean of 170/77 to mean of and decreased HF events from 105 (4.4%) with placebo to 55 (2.3%) RR: 0.51 (95% CI: 0.37–0.71, p<0.001) at 4.5 y 	 1° results of SHEP showed decreased stroke risk with active treatment 149 (8.2%) with placebo to 96 (5.4%) RR: 0.64 (95% CI: 0.49–0.82, p=0.003) at 4.5 y LV function was not measured
CHARM-Preserved Yusuf et al. 2003 (78) <u>13678871</u>	Aim: To ascertain efficacy of candesartan in pts with HF <i>p</i> EF. Study type: RCT Size: 3,023	Inclusion criteria: HF pts in NYHA class II-IV with EF >40% Exclusion criteria: Creatinine >265 µmol/L (3.0 mg/dL), potassium >5.5 mmol/L, MI, stroke, or open-heart surgery in the previous 4 wk	Intervention: Candesartan (1,514) Comparator: Placebo (1,509)	 <u>1° endpoint</u>: CV death or admission for HF. No difference for candesartan 333 (22%) vs. placebo 366 (24%) at 3.5 y, HR: 0.89; 95% CI: 0.77–1.03; p=0.12) covariate adjusted HR: 0.86 (95% CI: 0.74–1.00); p=0.051) 	 No differences for 2° endpoints except for covariate adjusted risk of HF admission HR: 0.84 (95% CI: 0.70–1.00; p=0.047). CV death 11.2 vs. 11.3% HR: 0.99 (95% CI: 0.80–1.22; p=0.918). Adverse effects requiring discontinuation: hypotension (2.4 vs. 1.1%; p=0.009; increased creatinine, 4.8 vs. 2.4%; p=0.005; hyperkalemia 1.5 vs. 0.6%; p=0.029) Limitations: Some pts may have had previous EF <40%.
PEP-CHF Cleland et al. 2003 (79) <u>16963472</u>	Aim: To ascertain efficacy of perindopril in pts with HF <i>p</i> EF. Study type: RCT Size:	Inclusion criteria: Age ≥70, Rx with diuretics for clinical diagnosis of HF, echo criteria for diastolic dysfunction Exclusion criteria:	Intervention: Perindopril (424) Comparator: Placebo (426)	 <u>1° endpoint:</u> All-cause mortality or admission for HF. No difference for perinopril 107 (25.1%) vs. placebo 131 (23.6%) at 3 y, HR: 0.92; 95% CI: 0.70– 1.21; p=0.5. 	 HF hospitalization lower at 1 y with perindopril: 34 events (8.0%) vs. placebo 53 (12.4%), HR: 0.63; 95% CI: 0.41–0.97; p=0.033). Limitations: Many pts withdrew (40% by 18 mo), often to take open-label ACE inhibitors (36% by study end).

	850	Creatinine >200 µmol/L (2.3 mg/dL), potassium > 5.4 mmol/L			
I-PRESERVE Massie et al. 2008 (80) <u>19001508</u>	Aim: To ascertain efficacy of irbesartan on in pts with HF <i>p</i> EF. Study type: RCT Size: 4,128	Inclusion criteria: Age > 60, HF pts in NYHA class II-IV with EF >45% Exclusion criteria: Previous EF <40%, creatinine >222 μmol/L (2.5 mg/dL) ACS, stroke, or revascularization in the previous 3 mo	Intervention: Irbesartan (2,067) Comparator: Placebo (2,061)	 <u>1° endpoint</u>: CV death or hospitalization for CV cause. No difference for irbesartan vs. placebo (742 (36%) vs. 763 (37%), HR: 0.95; 95% CI: 0.86 – 1.05; p=0.35) 	 No differences for mortality or any other 2° endpoints Minnesota living with HF scale improved in both, groups to the same No difference in BNP levels No difference in adverse effects requiring discontinuation: doubling of creatinine, 6% vs. 4%; p<0.001; K >6.0 3% vs. 2%; p=0.01) Limitations: Study drug discontinuation in 34% of pts by end of study. High rate of concomitant ACE-I (40%)
NEAT-HF <i>p</i> EF Redfield et al. 2015 (81) <u>26549714</u>	Aim: To ascertain efficacy of isosorbide mononitrate on daily activity in pts with HF <i>p</i> EF. Study type: Double-blind crossover Size: 110	Inclusion criteria: Age ≥50 y on stable HF therapy, EF ≥50%, activity limited by dyspnea, fatigue, or chest pain Exclusion criteria: SBP <110mm Hg and >180 mm Hg, current nitrates or PDE-5 inhibitors	Intervention: Isosorbide mononitrate (110) Comparator: Placebo (110)	 <u>1° endpoint</u>: Average daily activity assessed by accelerometer units during 120 mg phase. Nonsignificant trend for lower daily activity in the treatment group. (-381 accelerometer units; 95% Cl: -780–17; p=0.06) and significant decrease in h of activity/d (-0.30 h; 95% Cl: -0.55– -0.05; p=0.02) 	 No differences for any of the 3 doses on QoL scores, 6MWT and levels of NT-proBNP (trend unfavorable for nitrates) Limitations: Rapid dose escalation of study drug.
Redfield et al. 2013 (82) <u>23478662</u>	Aim: To ascertain effects of sildenafil on exercise capacity in pts with HF <i>p</i> EF. Study type:	Inclusion criteria: Age ≥18 on stable HF therapy, EF ≥50%, peak VO ₂ <60% normal and either nt-proBNP >400 or elevated	Intervention: Sildenafil (113) Comparator: Placebo (103)	 <u>1° endpoint</u>: Change in peak VO₂ from BL at 24 wk No difference between sildenafil (-0.20, IQR -1.7–1.11) and placebo (-0.20, 	 No differences in clinical rank score or 6-min walk Limitations: Urinary cGMP levels were not increased in sildenafil group, raising questions about dosing. High prevalence of

	Double-blind Size: 216	PCWP <u>Exclusion criteria</u> : Systolic BP <110mm Hg and >180 mm Hg, MMI or revascularization within 60 d, eGFR <20 mL/min		IQR -0.70–1.0) • More worsening of renal function in sildenafil group (p=0.047)	chronotropic incompetence in study population.
TOPCAT Pitt et al. 2014 (83) <u>24716680</u> • New England Research Institutes Post-hoc analysis that captures differences in outcomes by geography - for reference list only	Aim: To assess the effects of spironolactone in pts with HFpEF. Study type: RCT Size: 3,445	Inclusion criteria: Symptomatic HF, Age ≥50y, LVEF ≥45% stratified according to - HF Hospitalization within past y - Elevated NPs Exclusion criteria: Renal disease (eGFR <30 or creatinine >22 µmol/L (2.5 mg/dL), systemic illness with life expectancy <3 y. Specific co- existing conditions, meds, and acute events	Intervention: Spironolactone (1,722) Comparator: Placebo (1,723)	 <u>1° endpoint and results</u>: Composite of CV mortality, HF hospitalization, or aborted cardiac arrest. No difference with spironolactone vs. placebo 320 (18.6%) vs. 351 (20.4%), HR: 0.89; 95% Cl: 0.77–1.04; p=0.138) 	 HF hospitalization was reduced with spironolactone 206 (12.0%) vs. 245 (14.2%), HR: 0.83; 95% Cl: 0.69–0.99; p=0.04) Increased hyperkalemia (18.7% vs. 9.1%), decreased hypokalemia (16.2% vs. 22.9%) and more doubling of creatinine (10.2% vs. 7.0%) with spironolactone

TOPCAT Regional Analysis Pfeffer et al. 2015 (84) 25406305 Post-hoc analysis that captures differences in outcomes by geography	Aim: To assess regional differences in the effects of spironolactone in pts with HF <i>p</i> EF. Study type: RCT Size: 3,445	Inclusion criteria: Symptomatic HF, Age ≥50y, LVEF ≥45% stratified according to • HF Hospitalization within past y • Elevated NPs Exclusion criteria: Renal disease (eGFR <30 or creatinine >22 µmol/L (2.5 mg/dL), systemic illness with life expectancy <3 y. Specific co- existing conditions, meds, and acute events	Intervention: Spironolactone (1,722) Comparator: Placebo (1,723)	 <u>1° endpoint and results</u>: Composite of CV mortality, HF hospitalization, or aborted cardiac arrest across regions. 1° outcome events in 522 (29.5%) pts in the Americas and 149 (8.9%) in Russia/Georgia. 1° outcome event rates with spironolactone and placebo 10.4/100 pt y and 12.6/100 pt y in the Americas and 2.5/100 pt y and 2.3/100 pt y in Russia/Georgia. HR spironolactone vs. placebo 0.82; 95% Cl: 0.69–0.98; p=0.026) in the Americas and 1.10 95% Cl: 0.79– 1.51; p=0.12) in Russia/Georgia. 	 Spironolactone had markedly greater effects on BP (4.2 mm Hg drop vs. 0.6 mm Hg; p<0.001, potassium change relative to placebo (0.26 mmol/L vs. 0.08 mmol/L), and increase in creatinine (0.10 vs. 0.02 mg/dL; p<0.001) Limitations: post-hoc analysis
Chen et al. 2015 (85) 25598008	Aim: To assess effects of MRAs in pts with HF <i>p</i> EF. Study type: Meta-analysis Size: 14 RCTs with 6,428 pts	Inclusion criteria: Prospective, RCTs that enrolled adult pts with LVEF ≥40% (including post-MI and those with symptomatic or asymptomatic HF) with a study duration of ≥4 mo that assessed at least 1 clinical outcome of interest.	Intervention: MRAs (3,249) Comparator: Placebo (2,861) Or standard therapy (301) Or active comparator (31)	 <u>1° endpoint and results</u>: All-cause mortality and HF hospitalization No difference in all-cause mortality (RR: MRAs vs. placebo 0.90; 95% CI: 0.78–1.04; p=0.17) Reduced risk of HF hospitalization (RR: MRA vs. placebo 0.83; 95% CI: 0.70–0.98; p=0.03) <u>1° Safety endpoint</u>: More hyperkalemia with MRAs (12.2% vs. 6.2%, p<0.001) 	 MRAs improved QOL (weighted mean difference -5.2; 95% CI: -8.02.3). MRA's improved echo indices of LV function: E/e', E/A ratio, deceleration time, interventricular relaxation time Renal failure in 1.19% of pts with MRAs vs. 0.39% Gynecomastia in 2.81%R vs. 0.3% Limitations: discrepancies in definitions of HF<i>p</i>EF in different trials; heterogeneity of trial outcomes and their assessment, including follow-up duration; 1° outcome results driven by

Date: Some studies added by chairs in December 2015, others added by the writing committee.

Data Supplement D. RCTs Comparing Anemia (Section 9.2)

Study Acronym;	Aim of Study;	Patient Population	Study Intervention	Endpoint Results	Relevant 2° Endpoint (if any);
Author;	Study Type;		(# patients) /	(Absolute Event Rates,	Study Limitations;
Year Published	Study Size (N)		Study Comparator (# patients)	P values; OR or RR; & 95% Cl)	Adverse Events

CONFIRM-HF	Aim:	Inclusion criteria:	Intervention:	1° endpoint:	2°Endpoints:
Ponikowski et al. 2015	To assess benefits	Pts at least 18 y,	FCM (152)	Change in 6MWT distance	Changes in NYHA class
(86)	and safety of long	NYHA class II or III,		from BL to wk 24	• PGA
<u>25176939</u>	term FCM in iron-	LVEF≤45%,	Comparator:	Results: Change in 6MWT	6MWT distance
	deficient pts with	elevated NPs, ID	Placebo (152)	distance FCM vs. placebo of	Eatique score
	HF	defined as ferritin		$33\pm11 \text{ m} (p=0.002)$	• KCCO
		<100 ng/mL, or		·····	• FO-5D
 Vifor Inc. 	Study type:	ferritin 100-			 Assessed at wk 6, 12, 24, 36, 52
 ICON Clinical 	RCT (1:1)	300 ng/mL if TSAT			Pate of any hospitalization, rate of
Research		<20%, Hb <15			• Rate of any hospitalization, rate of
	<u>Size</u> :	mg/dL			and rate of hospitalization due to
	304	-			worsening HF:
		Exclusion criteria:			 Time to first hospitalization for any
		Pts in need of			reason time to first hospitalization
		transfusion, if not			for any CVCV reason and time to
		able to complete			first hospitalization due to worsening
		6MWI, uncontrolled			HF:
		HIN, infection,			 Time to death for any reason, time
		malignancy,			to death for any CV reason, and time
		impaired liver or			to death due to worsening HF.
		renal function			5
					Results:
					 Significant improvements in NYHA
					class, PGA, QoL and Fatigue
					scores, 6 MWD up to 52 wk
					 Significant reduction in the risk of
					hospitalizations for deteriorating HF,
					HR: 0.39 (95% CI: 0.19–0.82)
					(p=0.009)
					 Preserved treatment effect across
					subgroups
					 No differences in adverse events
					when compared to placebo
					 Study was not designed to test
					morbidity and mortality outcomes of
					the ID therapy with FCM

FAIR-HF Anker et al. 2009 (87) <u>19920054</u>	Aim: To evaluate the effects of intravenous iron (FCM) on HF symptoms in pts with systolic HF and ID, with and without anemia. Study type: RCT (2:1) Size: 459	Inclusion criteria: • Chronic HF • NYHA class II or III, • LVEF ≤40% (for pts in NYHA class III) or ≤45% (for pts in NYHA class III), • Hemoglobin level 95–135 g/L • ID Exclusion criteria: • Uncontrolled HTN • Other clinically significant heart disease • Inflammation • Clinically significantly impaired liver or renal function.	Intervention: Ferric carboymaltose 200 mg weekly until hemoglobin was corrected (n=304) Comparator: Placebo (n=155)	 <u>1° endpoint</u>: PGA at 24 wk Results: improvement in the FCM group compared to placebo 50% much or moderately improved vs. 28% (OR for being in a better rank, 2.51; 95% CI: 1.75–3.61; p<0.001) NYHA class at 24 wk Results: improvement in the FCM arm compared to placebo 47% with NYHA I or II vs. 30% in the placebo arm (OR for improvement by 1 class, 2.40; 95% CI: 1.55–3.71; p<0.001) <u>1° Safety endpoint</u>: Trend towards fewer HF hospitalizations in the FCM group (p=0.08) 	 Improvement in the FCM group in PGA and NYHA at wk 4 and 12 (p<0.001) Mean improvement in 6MWT of 35±8m at 24 wk (p<0.001); also significant improvements at 4 and 12 wk Significant improvement in the EQ-5D and in KCCQ
RED-HF Swedberg et al. 2013 (88) <u>23473338</u> • Amgen	Aim: To assess effects of darbepoetin alfa on pts with systolic HF and anemia. Study type: RCT Size: 2,278	Inclusion criteria: NYHA class II, III, or IV HF; LVEF≤40%; Hgb: 9.0–12.0 g/dL; on guideline- recommended HF treatment. Exclusion criteria: Transferrin saturation <15%, bleeding or other causes of anemia, serum creatinine >3 mg/dL, BP	Intervention: Darbepoetin alfa (1,136) Comparator: Placebo (1,142)	 <u>1° endpoint</u>: Composite of death from any cause or hospitalization for worsening HF Results: 1° outcome occurred in 576 pts in the darbepoeitin alfa group vs. 562 in the placebo group (HR: 1.01; 95% CI: 0.90– 1.13; p=0.87) <u>1° Safety endpoint</u>: Increased thromboembolic adverse events in the treatment group (p=0.01); 	• Limitation: pts with severe anemia were excluded

>160/100 mm Hg.	No significant increase in fatal/nonfatal strokes in treatment group and similar cancer-related adverse	
	events between groups	

Date: Chairs selected trials in December 2015. One trial added by writing committee.

Data Supplement E. RCTs Comparing HTN (Section 9.5)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Xie et al. 2016 (89) <u>26559744</u>	Aim: To assess the efficacy and safety of intensive BP lowering strategies. SR and meta- analysis Size: 19 trials with 44,989 pts; 3.8 y of follow- up.	Inclusion Criteria: RCTs with different BP targets or different BP changes between more vs. less intense therapy with at least 6 mo follow-up. Exclusion Criteria: Trials that did not assess a different target or relevant outcome.	5 RC1s (6,960 pts) enrolled only pts with DM and 6 trials (2,809 pts) specifically recruited pts with CKD.	 <u>1° Outcomes</u>: Major CV events, defined as MI, stroke, HF or CV death, separately and combined; nonvascular and all-cause mortality; ESRD; and adverse events; new onset microalbuminuria/macroalbuminu ria or change from micro- to macroalbuminuria and retinopathy in pts with DM. <u>Results</u>: Pts in the more intensive BP- lowering treatment group had mean BP 133/76 mm Hg compared with 140/81 mm Hg in the less intensive group. Intensive BP-lowering treatment achieved RR reductions for major CV events: 14% (95% CI: 4, 22), MI: 13% (95% CI: 0, 24), stroke: 22% (95% CI: 10, 32), albuminuria: 10% (95% CI: 3, 16), and retinopathy progression: 19% (95% CI: 0–34). However, more 	 Study Limitations: Only 6,960 pts with DM were included in the total study size of 44,989 pts. Conclusions: The absolute CV benefits were greatest in trials in which all enrolled pts had vascular disease, renal disease or DM. However, only 6,960 of the 44,989 pts had DM and no subanalysis for DM was provided; however, the outcome benefits were qualitatively most striking for pts with DM, CKD and/or vascular disease.

				intensive treatment had no clear effects on HF: RR: 15% (95% CI: -11, 34), CV death: 9% (-11, 26), total mortality: 9% (95% CI: -3, 19), or ESRD: 10% (95% CI: -6, 23). The reduction in major CV events was consistent across pt groups, and additional BP lowering had a clear benefit even	
				absolute benefits were greatest in	
				trials in which all enrolled pts had	
				vascular disease, renal disease,	
				or DM. Serious adverse events	
				associated with BP lowering were	
				an event rate of 1.2% per v in	
				intensive BP lowering group pts,	
				compared with 0.9% in the less	
				intensive treatment group (RR:	
				1.35 (95% CI: 0.93, 1.97)).	
				Severe hypotension was more	
				treatment regimen (RR: 2.68	
				(95% CI: 1 21 5 89) n=0.015)	
				but the absolute excess was	
				small (0.3% vs. 0.1% per pt-y for	
				the duration of follow-up).	
SPRINT	<u>Aim:</u>	Inclusion criteria:	Intervention:	<u>1° Endpoint:</u>	Summary:
Wright et al. 2015	To test the	SBP ≥130 mm Hg,	Intensive BP lowering	 Composite of MI, non-MI ACS, 	 More intensive SBP lowering to
(90)	effectiveness of a	with upper limit	treatment to goal SBP	stroke, ADHF, CV death; HR:	a goal of <120 mm Hg with
26551272	goal SBP <120	varying as number	<120 mm Hg (4,678)	0.75 (95% CI: 0.64, 0.89)	achieved mean of ~121 mm Hg
	MM Hg VS. a goal	of pre-trial BP-	Comparison:		resulted in less CVD and lower
	for the prevention	increased	Comparison.	Lower BP target reduced	total mortality over 3.26 y in
	of CVD in ots with	Ane ≥ 50 v	treatment to goal SRP	composite outcome 243 pts	<140 mm Hg and achieved SRP
	SBP \geq 130 mm Ha	Presence of at least	<140 mm Ha (4 678)	(1.05%/y) vs. nigner target 319 (2.19%/y) HR: 0.75: 05% CI:	of ~135 mm Ha
	at BL.	1:	Net treatment difference	0.64-0.89 n < 0.01) and death	There were small increases in
		 Clinical or 	~3 drugs (2.8) on average	lower target 155 vs. 201. HR:	some expected SAEs. Perhaps
	Study type:	subclinical CVD	vs. 2 drugs (1.8) on	0.73; 95% CI: 0.60–0.90;	unexpected, a sizable increase

RCT	CKD stage 3 or	average	p=0.003)	in reduced eGFR in the non-CKD
	greater	• During the trial, mean		group and AKI/ARF overall was
<u>Size:</u>	• Age ≥75	SBP was 121.5 vs. 134.6.		observed in the intensive group.
9361 pts followed	Framingham		Other endpoints:	While of uncertain etiology and
median of 3.26 y.	General CVD risk		 Total deaths HR: 0.73 (95% CI: 	significance, there is speculation
	≥15% in 10 y		0.60–0.90)	this could be an acute
			 1° or death HR: 0.78 (95% CI: 	hemodynamic effect, especially
	Exclusion criteria:		0.67–0.90)	given the findings regarding
	DM, history of		 Components of 1° composite 	albuminuria.
	stroke, ESRD		mostly consistent in direction	 Low target significantly reduced
	(eGFR <20		other than ACS – no difference.	HF: HR: 0.62 (95% CI: 0.45–
	mL/min),			0.84; p=0.002)
	anticipated survival		CKD outcomes:	No difference in composite or
	<3 y		 1° in CKD pts: reduction in GFR 	individual renal outcomes with
			of ≥50% or ESRD HR: 0.89 (95%	lowering of BP
			CI: 0.42, 1.87)	
			Incident albuminuria HR: 0.72	Limitationa
			(95% 0.48, 1.07)	Envirte were untreated at Pl
			In pts without CKD: reduction in	~0% so SPRINT provides little if
			GFR \geq 30% and to <60	any insight at present regarding
			• HR: 3.49 (95% CI: 2.44–5.10)	BP lowering medication initiation
			Incident albuminuria HR: 0.81	for untreated people with SBP
			(95% CI: 0.63–1.04)	130–139.
			A	
			Adverse events:	
			• SAES: 1.04, p=0.25	
			Significant absolute increases	
			seen in intensive group for	
			(0.6%) electrolyte eberrality	
			(0.0%), electrolyte abronnanty (0.8%) $\Delta K I / \Delta P E (1.6\%)$ over the	
			study period	
			• 1 7% fewer nts had orthostatic	
			hypotension in intensive group	
			p=0.01.	

SPRINT Senior	<u>Aim</u> :	Inclusion:	Intervention:	<u>1 endpoint</u> :	Limitations:
Williamson et al.	Intensive SBP goal	Men and women age	Medications and dietary	Composite CVD outcome (AMI,	Does not apply to nursing home
2016	<120mmHg) vs	75+; mean age	advice to achieve SBP of	non-MI ACS, Stroke, HF, CVD	patients or those with dementia
(91)	standard (SBP	79.8 y; 38%	<120 mm Hg	death.	
<u>27195814</u>	goal <140)	women; 17%			Conclusions:
		black, 74%	Comparator:	Results: 102 events in the	Intensive SBP is safe and effective
	Study Type:	Caucasian;	Medications and dietary	intensive treatment group vs 148	for lowering CVD events and
	RCT	Exclusions:	advice to achieve SBP of	events in the standard treatment	total mortality in persons age 75
		Nursing home	<140 mm Hg	group; HR: 0.66;	and older
	<u>Size:</u>	residents;		95%CI: 0.51–0.85 and all-cause	
	2,636	diabetes, Stroke,	Achieved SBP:	mortality (73 deaths vs. 107	
		symptomatic HF in	Intensive= 123.4 mm Hg	deaths, respectively; HR: 0.67;	
	30% met criteria for	past 6 mo or EF	Standard= 134.8 mm Hg	95%CI: 0.49–0.91. No significant	
	being classified as	<35%, dx or		difference in falls, orthostatic	
	ambulatory frail	treatment of		hypotension, or overall SAEs.	
		dementia,		NNT for primary outcome=27 and	
	Mean follow-up:	unintentional wt		NNT for all-cause mortality=41	
	3.1 y	loss >10% in past			
		5 mo. SBP<110			
		after standing 1			
		min, expected			
		survival <3y			
TOPCAT Regional	<u>Aim</u> :	Inclusion criteria:	Intervention:	1° endpoint and results:	 Spironolactone had markedly
Analysis	To assess regional	Symptomatic HF,	Spironolactone (1,722)	 Composite of CV mortality, HF 	greater effects on BP (4.2 mm
Pfeffer et al. 2015	differences in the	Age ≥50y, LVEF	-	hospitalization, or aborted cardiac	Hg drop vs. 0.6 mm Hg; p<0.001,
(84)	effects of	≥45% stratified	Comparator:	arrest across regions.	potassium change relative to
<u>25406305</u>	spironolactone in	according to	Placebo (1,723)	 1° outcome events in 522 	placebo (0.26 mmol/L vs. 0.08
	pts with HF <i>p</i> EF.	 HF Hospitalization 		(29.5%) pts in the Americas and	mmol/L), and increase in
		within past y		149 (8.9%) in Russia/Georgia. 1°	creatinine (0.10 vs. 0.02 mg/dL;
Post-hoc analysis that	Study type:	 Elevated NPs 		outcome event rates with	p<0.001)
captures	RCI			spironolactone and placebo	 Limitations: post-hoc analysis
differences in		Exclusion criteria:		10.4/100 pt y and 12.6/100 pt y in	
outcomes by	Size:	Renal disease		the Americas and 2.5/100 pt y	
geography	3,445	(eGFR <30 or		and 2.3/100 pt y in	
		creatinine >22		Russia/Georgia. HR	
		µmol/L (2.5		spironolactone vs. placebo 0.82;	
		mg/dL), systemic		95% CI: 0.69–0.98; p=0.026) in	
		illness with life		the Americas and 1.10 95% CI:	
		expectancy <3 y.		0.79–1.51; p=0.12) in	
		Specific co-existing		Russia/Georgia.	

		conditions, meds, and acute events			
(92) <u>19454737</u>	Meta-analysis of use of BP lowering drugs in prevention of CVD from 147 randomized trials Size: Of 147 randomized trials of 464,000 pts, 37 trials of beta blockers in CAD included 38,892 pts, and 37 trials of other antihypertensive drugs in CAD included 85,395 pts	The database search used Medline (1966- Dec. 2007 in any language) to identify randomized trials of BP lowering drugs in which CAD events or strokes were recorded. The search also included the Cochrane Collaboration and Web of Science databases and the citations in trials and previous meta- analyses and review articles. Exclusion criteria: Trials were excluded if there were <5 CAD events and strokes or if treatment duration was <6 mo.	 <u>1⁻ endpoint</u>: CAD events; stroke <u>Results:</u> In 37 trials of pts with a history of CAD, beta blockers reduced CAD events 29% (95% CI: 22%–34%). In 27 trials in which beta blockers were used after acute MI, beta blockers reduced CAD events 31% (95% CI: 24%–38%), and in 11 trials in which beta blockers were used after long term CAD, beta blockers were used after long term CAD, beta blockers reduced the comparison of the co	• with the exception of the extra protective effect of beta blockers given shortly after a MI and the minor additional effect of CCBs in preventing stroke, all the classes of BP lowering drugs have a similar effect in reducing CAD events and stroke for a given reduction in BP.	

			trials of thiazide diuretics, 22% (95% CI: 8%–34%) in 13 trials of angiotensin- converting enzyme inhibitors, and 34% (95% CI: 25%–42%) in 9 trials of CCBs.		
Aronow et al. 1997 (93) <u>9230162</u>	Aim: To determine effect of propranolol vs. no propranolol on mortality plus nonfatal MI in pts with prior MI and HF <i>p</i> EF	Inclusion criteria: Pts ≥62 y with MI and LVEF ≥40% and HF NYHA class II or III treated with diuretics and ACE inhibitors for 2 mo	Intervention: 79 pts were randomized to treatment with propranolol Comparator: 79 pts were randomized to no propranolol. All pts continued diuretic and ACE inhibitor therapy.	<u>1° endpoint</u> : At 32-mo mean follow-up, multivariate Cox regression analysis showed that compared with no propranolol, propranolol reduced mortality 35% (p=0.03) and mortality plus nonfatal MI 37% (p=0.018)	Relevant 2° Endpoint: At 1-y follow-up, LVEF was increased by propranolol from 57% to 63% (p<0.001) and LV mass was decreased by propranolol from 312 grams to 278 grams (p=0.001) Propranolol was stopped because of adverse effects in 11 of 79 pts (14%)
Van Veldhuisen et al. 2009 (94) <u>19497441</u>	<u>Aim</u> : To determine the effect of nebivolol vs. placebo in pts with HF <i>r</i> EF and HF <i>p</i> EF	Inclusion criteria: Pts ≥70 y history of HF and HF <i>r</i> EF or HF <i>p</i> EF	Intervention/Comparator: 1,359 pts with a history of HF <i>r</i> EF and 752 pts with a history of HF <i>p</i> EF were randomized to nebivolol or to placebo	<u>1° endpoint:</u> At 21-mo follow-up, the primary endpoint of all-cause mortality or CV hospitalization was reduced by nebivolol 14% (95% CI: 0.72– 1.04) in pts with HF <i>r</i> EF and 19% (95% CI: 0.63, 1.04) in pts with HF <i>p</i> EF	Relevant 2° Endpoint: HR for reduction of all-cause mortality by nebivolol: 0.84 (95% Cl: 0.66–1.08) for HF <i>r</i> EF and 0.91 (95% Cl: 0.62–1.33) for HF <i>p</i> EF
Yusuf et al. 2003 (78) <u>13678871</u>	<u>Aim</u> : To determine the effects of candesartan vs. placebo in pts with HF <i>p</i> EF	Inclusion criteria: 3,023 pts, mean age 67 y, with HF <i>p</i> EF and NYHA class II-IV HF	Intervention/Comparator: 3,023 pts were randomized to candesartan or placebo	<u>1° endpoint</u> : At 36.6 m follow-up, the primary outcome of CV death or hospitalization for HF was reduced 11% (p=0.118) by candesartan	Relevant 2° Endpoint: Hospitalization was reduced 16% (p=0.047) by candesartan
Massie et al. 2008 (80) <u>19001508</u>	<u>Aim</u> : To determine the effect of irbesartan vs. placebo on all- cause mortality or hospitalization for a CV cause in pts with HF <i>p</i> EF	Inclusion criteria: Pts 60 y and older with HF <i>p</i> EF and NYHA class II, III, or IV HF	Intervention/Comparator 4,128 pts were randomized to irbesartan or placebo	<u>1° endpoint</u> : At 49.5-mo follow-up, the primary outcome of all-cause mortality or hospitalization for CV cause was reduced 5% by irbesartan (p=0.35)	Relevant 2° Endpoint: Irbesartan did not significantly reduce the secondary outcomes of death from HF or hospitalization for HF, death from any cause and from CV causes, and quality of life

Piller LB, et al., 2011 (76) <u>21969009</u>	Aim: To determine mortality rates in pts who developed HF in ALLHAT	Inclusion criteria: 1,761 pts, mean age 70 y, developed HF during ALLHAT	Intervention/Comparator At 8.9-y mean follow-up, 1,348 of 1,761 pts (77%) with HF died	<u>1° endpoint</u> : Post-HF all-cause mortality was similar for pts treated with chlorthalidone, amlodipine, and lisiopril. 10-y adjusted rates for mortality were 86% for amlodipine, 87% for lisinopril, and 83% for chlorthalidone	Relevant 2° Endpoint: All-cause mortality rates were similar for those with HF <i>r</i> EF (84%) and for those with HF <i>p</i> EF (81%) with no significant differences by randomized treatment arm
Lv et al. 2013 (95) <u>23798459</u>	MA of RTC that randomly assigned individuals to different target BP levels	15 trials including a total of 37,348 pts.	 7.5/4.5 mm Hg BP difference. Intensive BP lowering achieved. <u>RR for</u> Major CV events: 11%; 95% CI: 1%–21%) MI: 13%; 95% CI: 0%– 25% Stroke: 24%; 95% CI: 8%–37% ESRD: 11%; 95% CI: 3%–18% Albuminuria: 10%; 95% CI: 4%–16% Retinopathy 19%; 95% CI: 0%–34% p=0.051 	More intensive strategy for BP control reduced cardio-renal end point	

Date: Chairs selected trials in October 2016.

Data Supplement F. Nonrandomized Trials for Hypertension (Section 9.5)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Primary Endpoint and Results (P values, OR or RR & 95 % CI)	Summary / Conclusion / Comments
Thomopoulos et al. 2016 (96) <u>26848994</u>	Meta-analysis of RCT's of more versus less intense BP control	16 trials (52,235 pts) compared more vs. less intense treatment 34 (138,127 pts) active vs. placebo	 More intense BP Stroke RR: 0.71; 95% CI: 0.60–0.84) Coronary heart disease RR: 0.80; 95% CI: 0.68–0.95) Major CV events RR: 0.75; 95% CI: 0.68–0.85 CV mortality RR: 0.79; 95% CI: 0.63–0.97 Stratification of SBP cutoffs (150, 140 and 130 	 Intensive BP reduction improves CV outcomes compared to less intense Achieved BP of <130/80 mm Hg may be associated with CV benefit.

	mmHg) showed that a SBP/DBP difference of _10/_5mmHg across each cutoff reduced risk of all outcomes	

Date: Chairs selected trials in October 2016.

Data Supplement G. RCTs Comparing Treatment of Sleep Disorders (CPAP makers) (Section 9.6)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint; Study Limitations; Adverse Events
SAVE McEvoy et al. 2016 (97) <u>27571048</u>	Aim: To whether treatment with CPAP prevents major CV events. Study type: RCT with 1 wk run-in on sham CPAP Size: n=2,717	 Inclusion criteria: Adults 45 - 75 y of age Moderate-to-severe OSA Coronary or cerebrovascular disease Exclusion criteria: 	Intervention: CPAP treatment plus usual care (CPAP group) Comparator: Usual care alone (usual-care group)	 <u>1° endpoint:</u> Composite of death from CVD, MI, stroke, or hospitalization for UA, HF, or TIA <u>Results:</u> Duration of CPAP=3.3 h/night; AHI events/h decreased from baseline to end of follow up at 3.7 y, 29.0–3.7 events/h Primary endpoint – no significant difference in CPAP vs usual-care group (n=229, 17.0% vs. n=207; 15.4%; HR: 1.10 with CPAP; 95% CI: 0.91–1.32; p=0.34). No significant difference in any individual or other composite CV end point. CPAP significantly reduced snoring and daytime sleepiness and improved health-related quality of life and mood. 	 Secondary end points: Other CV outcomes Health-related quality of life Snoring symptoms Daytime sleepiness Mood Study Limitations: Primarily men with moderate-to-severe OSA and minimal sleepiness Adverse Events:
ORBIT-AF Holmqvist et al. 2015 (98) 25965712	Aim: 1) Define frequency of diagnosed	Inclusion criteria: • ≥18 years of age • Electrocardiographic evidence of AF	Intervention: N/A	 <u>1° endpoint:</u> All-cause mortality; First all-cause hospitalization; Composite of first event of CV 	Secondary end points: <u>N/A</u> Study Limitations:

		Multicenter	death_stroke/non_central	Voluntary observational
nationwide	Exclusion critoria:	ambulatory based	nervous system embolism TIA	study selection &
AE	Life expectancy of <6 menths or	rogistry	or MI:	roporting biasos
Ar		registry	First major blood within 2 years	No rendemization
population,	AF secondary to reversible		First major bleed within 2 years	 No randomization - Valuatary, algorithm of a second s
2) Determine	conditions		of baseline enroliment in registry	voluntary, observational
whether USA				study - selection &
is associated			Results:	reporting biases
w/:			Frequency of diagnosed OSA	$_{\odot}$ OSA diagnosis made on
a) Worse			among nationwide AF population	basis of physician report
outcomes;			• 18% (n =1,841)	& medical records.
b) Arrhythmic			OSA associations w/ outcomes	 No data on average
AF			Higher risk of:	duration of CPAP use per
progressi			 Hospitalization (43 vs 35) 	night
on; &			events/100 patient-years	 Maturation – changes in
3) Determine			among patients without OSA	subjects over 2 years not
whether			[adjusted hazard ratio (HR).	accounted for in data
CPAP			1.12: 95% confidence interval	
treatment is			(Cl) 1 03-1 22: n= 00781	Adverse Events:
associated w/			• No higher risk of:	N/A
			○ Death (HR 0.94: 95% CI	N/A
nationts w/			0.77 ± 1.15 ; p= 54);	
			0.77 - 1.15, p = .54),	
AF & USA.			 Composite of CV death, 	
Study to a				
<u>Study type</u> :			system embolism, TIA, or MI	
Prospective			(HR, 1.07; 95% CI, 0.85-1.34;	
descriptive,			p=.57);	
correlational /			 First major bleeding (HR, 1.18; 	
comparative,			95% Cl, 0.96-1.46; p=.11)	
time-series			OSA associations w/ AF	
design			progression	
Data			 Not associated w/ higher risk of 	
collection at			AF progression (HR, 1.06; 95%	
enrollment &			Cl, 0.89-1.28; p=.51).	
6-month			CPAP treatment association w/	
intervals for			outcomes in patients w/ AF &	
minimum of 2			OSA	
vears			Less likely to progress to more	
,0010			permanent forms of AF versus	
Size: Nationally			patients w/out CPAP (HR 0.66)	
representativo			05% CL 0.46 0.04: p= 0.21)	
representative			5570 CI, 0.40-0.54, μ−.021).	

	sample enrolled consecutively • n=10,132 w/ AF o n=1,841 w/ AF & OSA o n=1,837 patients w/ OSA & complete CPAP data o n =1,763 patients w/ OSA & 2- year outcomes data o n=937 patients w/ AF, OSA, & CPAP treatment Sites: 176 national sites that w/ provider & geographic beterogeneity				
SERVE-HF	<u>Aim</u> :	Inclusion criteria:	Intervention:	<u>1° endpoint</u> :	2° Endpoint
Cowie et al. 2015	Effects of	 Chronic HF (defined as ≥12 wk since diagnosis) apparding to 	Adaptive servo	Death from any cause	CV death
26323938	ventilation in	current ESC guidelines	≥5h/night. 7d/wk.	LITESAVING CV Intervention (cardiac transplantation	Unplanned hospitalization from any cause
	HF pts with	 LVEF ≤45% 	(n=666)	implantation of a ventricular assist	Time to death from CV
ResMed	reduced EF	 Hypopnea index of ≥10/h 	0	device, resuscitation after sudden	causes
Ihe Clinical Research Institute	and USA	Stable, GDMT	GDMT (n=659)	cardiac arrest, or appropriate	Change in NYHA class
GmbH	Study type:	 INTHA Class III OF IV, OF INTHA class II with >1 hospitalization for 		Innlanned hospitalization for HE	 Change in 6-MW1 (both at follow up visits)
	RCT	HF in the last 24 mo		Significant Results	General QoL (EuroQOL)
	0.	No hospitalization for HF in 4 wk		• All-cause mortality was higher	HF-specific QoL (MLWHF)
	<u>5126</u> :	prior to enrolment		with the intervention (34.8%) than	Daytime sleepiness

1,325	Optimized GDMT	control (29.3%; HR: 1.28; 95% CI:	(Epworth Sleepiness Scale)
,	 No new class of disease- 	1.06–1.55; p=0.01).	
	modifying drug for prior ≥4 wk	 CV mortality was higher with the 	Limitations:
	 AHI >15/h with ≥50% central 	intervention (29.9%) than control	 Unblinded study - more
	events and a central AHI ≥10/h	(24.0%; HR: 1.34; 95% CI: 1.09–	likely to favor treatment
		1.65; p=0.006).	group, particularly for QOL,
	Exclusion criteria:	 6MWT decreased over time and 	but no QOL improvement
	 Significant COPD with a forced 	were significantly lower with the	seen
	expiratory volume in 1 s in 4 wk	intervention than with the control	HF pts with reduced EF only
	before randomization	(p=0.02).	HF pts with predominantly
	 O₂ saturation ≤90% at rest during 	Daytime sleepiness decreased	USA not obstructive sleep
	d	over time and was significantly	apnea.
	Currently receiving PAP therapy	iower with the control (p<0.001)	Sample nad very limited # of
	Cardiac surgery, PCI, MI or UA	with the control ($p < 0.001$).	women but reflects
	within the previous 6 mo	Non-Significant Results	
	Cardiac resynchronization thereasy implementation	Unplanned hospitalization for HE	111/61
	inerapy implantation scheduled or	was not significantly higher with	
	periormed within o mo prior to	the intervention (43 1%) than	
	TIA or stroke within the providue	control (41.3%; HR; 1.13; 95% CI;	
	 TA OF SURVICE WITHIN THE PREVIOUS 3 mo 	0.95–1.33; p=0.16)	
	 1° homodynamically significant 	 Of the lifesaving CV interventions. 	
		none were significantly higher with	
	requiritant) or any valvular	the intervention than control	
	disease expected to require	(p=0.08-0.61)	
	surgery during the trial:	 Unplanned hospitalization for any 	
	Acute myocarditis/pericarditis	cause was not significantly lower	
	within the previous 6 mo	with the intervention (67.9%) than	
	Untreated or therapy-refractory	control (68.0%; HR: 1.05; 95% CI:	
	restless legs syndrome	.92–1.20; p=0.47)	
	 Contraindication to the use of 	 The NYHA class change was not 	
	AutoSet CS2 because of	significantly different with the	
	symptomatic hypotension or	intervention than with the control	
	significant intravascular volume	(p=0.46)	
	depletion or pneumothorax or	General QoL trends were not	
	pneumomediastinum	significantly higher with the	
	Pregnancy	intervention than with the control	
		(p=0.09).	
		HF-specific QoL trends were not	
		significantly higher with the	

				intervention than with the control (p=0.92).	
CANPAP	Aim:	Inclusion criteria:	Intervention:	1° endpoint:	2° endpoint:
Arzt et al. 2007	Investigate	• Age 18 to 79 y	CPAP=CSA	Transplant free survival -	• AHI
(100)	whether	NYHA II-IV	suppressed, n=57	Combined rate of all-cause	Mean nocturnal SaO2
17562959	suppression of	HF due to ischemic, hypertensive,	CPAP=CSA	mortality & ht tx	●I VFF
	CSA below	or idiopathic DCM	suppressed, n=43		
	threshold by	 Stabilized w/ optimal medical 		Significant Results	Limitations:
	CPAP would	therapy for ≥1 mo	Comparator:	1° endpoint:	Post hoc analysis
	LVEF & ht tx-	• LVEF <40%	Control, n=110:	Transplant free survival	Stratification of CPAP-
	free survival.	• CSA		Significantly different between 3	treated pts based on
				groups (p=0.016)	polysomnogram performed
	Study type: Post	Exclusion criteria:		Significantly higher in CPAP-	3 mo after randomization.
	hoc analysis of	Pregnancy		suppressed vs. control group	 Because suppressed and
	RCI	• MI		(p<0.043)	unsuppressed status could
	0 : 100	Unstable angina		No difference between CPAP-	not be ascertained until
	<u>Size</u> :100	 Cardiac surgery w/in 3 mo of 		unsuppressed vs. control group	completion of PSG, events
		enrollment		(p<0.26)	that occurred during the first
		• OSA			3 mo could not be included
				<u>2° endpoint</u> :	 The CPAP-CSA–
				●AHI	suppressed group was
				 AHI significantly > reduction in 	younger, had a lower AHI,
				both CPAP-suppressed (p<0.001)	and had a slightly lower
				and CPAP-unsuppressed	proportion of central events
				(p<0.001) groups	than the CPAP CSA-
				 AHI significantly > reduction in 	unsuppressed group
				CPAP-suppressed (p<0.001) and	
				CPAP-unsuppressed (p<0.002)	
				than control groups	
				Mean nocturnal SaO2	
				 Mean nocturnal SaO₂ significantly 	
				> increased in CPAP-suppressed	
				vs. control group (p<0.001)	
				 No significant difference between 	
				CPAP-unsuppressed and control	
				group	

CPAP for CSA & HF (CANPAP) Bradley et al. 2005 (101) <u>16282177</u>	Aim: Test long-term treatment of CSA w/ CPAP in HF pts receiving optimal medical therapy on combined rates of death & ht tx. Study type: 11 center RCT Size: 258	Inclusion criteria: • 18-79 y • NYHA II-IV • HF due to ischemia • HTN, Idiopathic DCM • Stable condition • Optimal medical therapy for 1+ mon • LVEF <40% • CSA w/ ≥15 AHI >50% of AHI had to be central. Exclusion criteria: • Pregnancy • MI • UA • Cardiac surgery within prior 3 mon, OSA	Intervention: CPAP n=128 Comparator: No CPAP n=130	 LVEF significantly increased over time in CPAP-suppressed group (p<0.001) LVEF significantly increased in CPAP-suppressed vs. CPAP-unsuppressed (p=0.006) and vs. control (p<0.001) groups. No significant difference between CPAP-unsuppressed and control group (p=0.984) <u>1° endpoint:</u> Transplant free survival No significant difference in transplant free survival between CPAP and control groups (p=0.54) <u>2° endpoints:</u> Hospitalizations: No significant difference between CPAP and control groups (p=0.54) <u>EF</u>: Significant increase in EF between CPAP vs. control groups (p=0.02) Frequency of apnea and hypopnea episodes Significant increase between CPAP vs. control groups (p=0.001) Mean Nocturnal SaO2 Significant increase between CPAP vs. control groups (p≤0.001) 6MWT: Significant increase in 6MWT between CPAP vs. control groups (p=0.16) QoL: No significant difference between CPAP and control groups (p=0.016) QoL: No significant difference between CPAP and control groups (p=0.016) 	2° endpoints: Hospitalizations EF Frequency of apnea and hypopnea episodes Mean nocturnal SaO2 6MWT QoL Neurohormones – norepinephrine and atrial NP Limitations: Underpowered because trial stopped early for low enrollment
---	--	---	---	---	---

Ruttanaumpawan et al. 2009 (102) <u>19189783</u>	Aim: To determine whether attenuation of CSA by CPAP in pts w/ HF reduces the frequency of arousals from sleep or improves sleep structure. Study type: RCT Size: 205	Inclusion criteria: Age 18 - 79 y of age; NYHA II -IV HF due to ischemic, hypertensive, or idiopathic DCM, stabilized on optimal medical therapy ≥1 mo LVEF <40% by radionuclide angiography CSA defined as an AHI ≥15, w/ >50% central apneas & hypopneas Exclusion criteria: Pregnancy MI UA Cardiac surgery within 3 mo of enrollment OSA	Intervention: CPAP n=97 Comparator: Control n=108	 Neurohormones: Norepinephrine Significant reduction in CPAP vs. control groups (p=0.009) Atrial NP: No significant difference between CPAP and control groups <u>1° endpoint</u>: AHI (central and obstructive) Mean and lowest SaO₂ <u>Significant Results</u> In the CPAP group. Central and obstructive AHI decreased significantly <u>over BL</u> and vs. the control group (p<0.001) Mean and lowest SaO₂ improved in both the CPAP (p<0.001) and control (p<0.04) but the improvement was significantly better in the CPAP vs. the control group (p<0.001). <u>2° endpoints</u>: No significant improvement in arousals from sleep or sleep structure within or between groups (p=0.14–0.99) 	 <u>2° endpoints</u>: Arousals from sleep Sleep structure (time in bed, sleep period time, total sleep time, sleep efficiency, sleep onset latency, percentage in each sleep stage, periodic leg movement index) <u>Limitations:</u> 2° analysis of CANPAP data Did not classify arousals as being respiratory or non-respiratory related, and did not examine their timing.
Kaneko et al. 2003 (103) <u>12660387</u>	Aim: To determine the effect of CPAP on LVEF when awake and daytime BP in pts with HF and OSA Study type: RCT	 Inclusion criteria: HF due to ischemic or nonischemic dilated CM for >6 mo; LVEF <45% by radionuclide angiography NYHA class II–IV; Absence, in last 3 mo, of HF exacerbations while receiving optimal pharmacologic therapy at highest tolerated doses; 	Intervention: CPAP n=12 Comparator: Control n=12	1° endpoint: • LVEF when awake • LVEDD • LVESD • Heart rate • Daytime BP Significant Results 1° endpoint: LVEF when awake	 <u>2° endpoint:</u> BMI Episodes of apnea and hypopnea Total Obstructive Central Desaturation index (# hr of sleep) Lowest oxyhemoglobin saturation (%)

<u>Size</u> : 24	 OSA defined as ≥20 episodes of apnea and hypopnea /h of sleep of which >50% were obstructive Exclusion criteria: 1° valvular heart disease; Presence of implanted cardiac pacemaker; UA; MI: Cardiac surgery within 3 mo of enrollment 	 Significant increase in CPAP (p<0.001) but not control group and difference between groups was significant (p=0.009) LVEDD No significant difference for either group or between groups LVESD Significant reduction in CPAP (p=0.009) but not control group and difference between groups was significant (p=0.02) Heart Rate 	 Total sleep time Stage I and II sleep (% of total sleep time) Stage III and IV sleep (% of total sleep time) REM sleep (% of total sleep time) Arousals/hr of sleep Limitations: No placebo Small sample size Pts unblinded to group
		 Episodes of apnea and hypopnea Total Significant reduction in CPAP (p<0.001) but not control group and difference between groups 	

was significant (p=0.002)
Obstructive
 Significant reduction in CPAP
(n < 0.001) but not control group
and difference between droups
was significant ($n < 0.001$)
Central
 No significant difference for CPAP
aroup or between aroups
3. com con 3. com c
Desaturation index (# hr of sleep)
 Significant reduction in CPAP
(p<0.001) but not control group
and difference between groups
was significant (p=0.008)
Lowest oxyhemoglobin
saturation (%)
 Significant increase in CPAP
(p=0.004) but not control group
and difference between groups
was significant (n=0.01)
Total sleep time
 No significant difference for CPAP
group or between groups
Stage I and II sleep (% of total
sleep time)
 No significant difference for CPAP
group or between groups
Stage III and IV sleep sleep (% of
total sleep time)
 No significant difference for CPAP
group or between groups
REM sleep (% of total sleep time)

				 No significant difference for CPAP group or between groups Arousals/h of sleep Significant reduction in CPAP (p=0.003) but not control group and difference between groups was significant (p=0.03) 	
Mansfield et al. 2004 (104) <u>14597482</u>	Aim: To assess long- term effect of OSA treatment with nocturnal CPAP on systolic heart function, sympathetic activity, BP, and QoL in pts with HF Study type: RCT Size: 44	 Inclusion criteria: HF due to ischemic or nonischemic dilated CM for >6 mo; LVEF <45% by radionuclide angiography NYHA class II–IV; Absence, in last 3 mo, of HF exacerbations while receiving optimal pharmacologic therapy at highest tolerated doses; OSA defined as ≥20 episodes of apnea and hypopnea /h of sleep of which >50% were obstructive Exclusion criteria: 1° valvular heart disease; Presence of implanted cardiac pacemaker; UA; MI: Cardiac surgery within 3 mo of enrollment 	Intervention: CPAP X 3 mo n=19 Comparator: Control n=21	 <u>1º endpoint</u>: LVEF Overnight urinary norepinephrine excretion BP QoL <u>Significant Results</u> <u>1º endpoint</u>: LVEF Significant improvement in CPAP group (p<0.001) and vs. control group (p=0.04) Overnight urinary norepinephrine excretion Significant reduction in CPAP group (p<0.05) and vs. control group (p=0.036) BP No significant difference in CPAP group or between groups QoL Significant improvements in most domains within CPAP group SF-36 Significant improvements between groups in 4/8 domains Physical (p=0.03) Vitality (p=0.02) Social (p=0.03) Mental health (p=0.01) 	 <u>2° endpoint:</u> Peak Vo₂ NYHA class Epworth sleepiness scale BMI AHI events per h Minimum SpO₂ saturation <u>Limitations:</u> No placebo Significant difference between groups in peak Vo₂ and mean BP at BL Dropout rate = 27% Higher than expected death rate Higher than expected rate of interventions initiated that may have effected end points Small sample size with only 3 females

Chronic HF questionnaire
 Significant improvements between
groups in 3/4 domains
• Fatigue (p=0.01)
\odot Disease mastery (p=0.02)
2° endpoint:
Peak Voa
a Na ajanificant difference in CDAD
No significant difference CPAP
group or between groups
Epworth sleepiness scale
 Significant reduction in CPAP vs.
control group (p=0.01)
BMI
No significant difference CPAP
group or between groups
AHI events per h
 Significant reduction in CPAP
group (p<0.001) and vs. control
group (p<0.001)
Minimum SpO ₂ saturation
Significant improvement in CPAP
aroun (n<0.001) and ve control
$y_1 = 0.001$ and vs. control
group(p=0.001)

Date: Study selected by the chairs in December 2015 and some trials added by the writing committee.

2013 HF Guideline Data Supplement 18. ACE Inhibitors (Section 7.3.2.2)

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy	Study Size	Etiology	Patient	Population		Endpoints	Mortality	Trial Duration (Years)	Absolute Benefit	P Values & 95% CI:
			Pretrial standard treatment	N (Total) n (Experimental) n (Control)	Ischemic/ NonIschemic	Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint	1st Year Mortality			
CONSENSUS 1987 <u>2883575</u> (105)	To Evaluate influence of enalapril on prognosis of NYHA class IV HF	RCT	Diuretics (spironolactone 53%, mean dose 80mg), digitalis (93%), other vasodilators, except ACEI (ie, nitrates 46%)	253; 127;126	CAD 73%	Severe HF/symptoms at rest/NYHA class IV; Increased heart size >600 mL; BP: 120/75; HR: 80; AF 50%	APE; hemodynamically import aortic/MV stenosis; MI w/in prior 2 mo Unstable angina; planned cardiac surgery; right HF b/c of pulm disease; Cr >300 mmol/L	Mortality	Change in NYHA-FC, LV size, Cr level	52% placebo group and 36% enalapril group (6 mo mortality: 26% in enalpril group and 44% in placebo group)	0.51 y	N/A	Crude mortality at end of 6 mo (primary endpoint), 26% in enalapril group and 44% in placebo group—40% reduction (p =0.002). Mortality was reduced by 31% at 1 y (p=0.001)
10 y FU of CONSENSUS 1999 <u>10099910</u> (106)	Report on the survival at the 10-y follow up of the pts randomized in CONSENSUS. (1st study to show prognostic improvement by an ACEI. Pts in NYHA class IV HF treated with enalapril or placebo. After study completion all pts were offered open- label enalapril therapy).	10-y open- label follow- up study (via completion of a questionnaire) on the survival status of pts in CONSENSUS -a RCT.	All pts were offered open-label enalapril therapy	315; 77; 58		253 randomized pts included in analysis of time from randomization to death; Survivors (135) of the double-blind period included in analysis of the time from end of double-blind period to death; Severe, NYHA IV		Mortality			10 y		5 pts, all in the enalapril group, were long-term survivors (p=0.004). Averaged over the trial (double-blind plus open-label extension) risk reduction was 30% (p=0.008), 95% CI: 11% - 46%. At end of double-blind study period, mortality considerably higher among pts not receiving open ACEI therapy
SOLVD 1991 <u>2057034</u> (107)	Study the effect of enalapril on mortality and hospitalization in pts with chronic HF and EF <u><</u> 35%	RCT	Diuretics + Digoxin	2569; 1285; 1284	Ischemic heart disease 72%	LVEF <35%; Mild to severe (11% class I/<2% class IV); LVEF 25%; BP: 125/77; HR: 80; AF: 8-12%	Age >80 y; Unstable angina; MI w/in past mo; Cr>2.0 mg/dL	Mortality	Hospitalizations; Incidence of MI; Mortality by specific causes; Combined mortality and morbidity from both SOLVD+/SOLVD-	15.70%	3.45 y	Treating 1000 SOLVD+ pts with enalapril for ~3 y would save ~50 premature deaths and 350 hospitalizations.	Reduced mortality by 16%; (95% CI, 5-26%; p=0.0036)

1463530on total mortality mortality from C causes, the development of and hospitalizat for HF in pts wit ≤35%	HF, on hEF	No drug treatment for HF	4228; 2111; 2117	History of ischemic heart disease 85%	EF <35%; Asymptomatic; NYHA class I (67%) + II; EF: 28%; BP: 126/78; HR: 75; AF: 4%	As per SOLVD+	Mortality; Combined mortality and the incidence of HF and rate of hospitalization for HF	Incidence of HF and rate of hospitalization for HF	
SOLVD F/U 200312-y FU of SOLV establish if the mortality reducti with enalapril an pts with HF was sustained, and whether a subsequent redu in mortality wou emerge among with asymptoma ventricular dysfunction.	VD to 12 y f/u of RCTs on [SOLVD+ and nong SOLVD-] uction d those tic	N/A	6784; 3391; 3393	N/A	Participation in SOLVD+ and SOLVD- Asymptomatic to severe; NYHA I-IV	N/A	Mortality	N/A	N/A
ATLAS To compare the efficacy and safe low and high do: of ACEI on the r death and hospitalization in chronic HF. than large doses that been shown to reduce morbidity mortality in pts v HF. AIM: Investigate low doses and h doses of ACEIs similar benefits.	RCT ses isk of h the have y and vith e if igh have	N/A	3164; 1596 to the low- dose strategy and 1568 to the high- dose strategy.	CAD 65%	LVEF <=30%; NYHA class II, III, or IV, despite treatment with diuretics for ≥2 mo (Treatment for HF in ED or hospital within 6 mo required for pts in class II); Prior use of digitalis, ACEIs, or vasodilators allowed but not mandated; NYHA II-IV (mainly class II); LVEF 23%; SBP 126 mmHg; HR 80; NYHA class: III (few II and IV)	Acute coronary ischemic event or revascularization procedure within 2 mo; History of sustained or symptomatic ventricular tachycardia; Intolerant of ACEIs; SCr >2.5 mg/dL	Mortality from all causes	Combined risk of all- cause mortality and hospitalization for any reason; CV mortality, CV hospitalizations; All-cause mortality combined with CV hospitalizations; CV mortality combined with CV hospitalizations; Combined risk of fatal and nonfatal MI plus hospitalization for unstable angina	

3.12 у		Reduced mortality: p=0.30; 95% CI: -8-21%
N/A	Enalapril extended median survival by 9.4 mo in the combined trials (95% CI: 2.8–16.5, p=0.004).	In the prevention trial, 50.9% of the enalapril group had died c/w 56.4% of the placebo group (p=0.001). In the treatment trial, 79.8% of the enalapril group had died c/w 80.8% of the placebo group (p=0.01). Combined prevention and treatment trials: HR for death was 0.90 for the enalapril group c/w placebo group (95% CI: 0.84–0.95, p=0.0003).
5 y		High-dose group had 8% lower risk of all-cause mortality (p=0.128) and 10% lower risk of CV mortality (p=0.073) than low-dose group. Death or hospitalization for any reason, high-dose group had 12% lower risk than low-dose group, p=0.002. Total number of hospitalizations: high-dose group 13% fewer hospitalizations for any reason (p=0.021), 16% fewer hospitalizations for CV reason (p=0.05), and 24% fewer hospitalizations for HF (p=0.002).

SAVE, 1992 <u>1386652</u> (111)	To test the hypothesis that the long-term administration of captopril to survivors of acute MI who had baseline LV dysfunction but did not have overt HF requiring vasodilator therapy would reduce mortality, lessen deterioration in cardiac performance, and improve clinical outcome.	RCT	Beta-blockers 36%; Digitalis 26%; Nitrates 51%	2231; 1115; 1116	Ischemic 100%	Alive 3 d after MI; LVEF <40%; >21 y of age, but <80; Killip class I — 60% (60% of the ps did not have even transient pulmonary congestion at baseline/the time of their acute MI; EF 31%; BP 113/70; HR 78;	Failure to undergo randomization within 16 d after the MI; Relative contraindication to the use of an ACEIs or the need for such an agent; SCr > 2.5 mg/dI	Mortality from all causes	Mortality from CV causes; Mortality combined with a decrease in the EF of at least 9 units in surviving pts; CV morbidity (development of severe CHF or the recurrence of MI); Combination of CV mortality and morbidity; 2 endpoints of severe HF (treatment failure): 1st, development of overt HF necessitating treatment with ACEI and 2nd, hospitalization to treat CHD.	
AIRE 1993 8104270 (112)	Investigated the effect of therapy with ACEI ramipril, on survival in pts who had shown clinical evidence of HF at any time after an acute MI. Also, to compare the incidences of progression to severe or resistant HF, nonfatal reinfarction and stroke between the 2 groups.	RCT		2006; 1014; 992		Aged ≥18 y, with a definite acute MI 3- 10 d before randomization; Clinical evidence of HF at any time since acute MI	Use of an ACEI considered to be mandatory	Mortality from all causes		

3.5 y	Mortality from all causes was significantly reduced in the captopril group (228 deaths, or 20%) as c/w the placebo group (275 deaths, or 25%); the RR: 19% (95% CI, 3-32%; p=0.019). RR:21% (95% CI, 5 -35%; p=0.014) for death from CV causes, 37% (95% CI, 20-50%; p<0.001) for the development of severe HF, 22% (95% CI, 4-37%; p=0.019) for CHF requiring hospitalization, and 25% (95% CI, 5-40%; p=0.015) for recurrent MI.
1.3 y	Mortality from all causes was significantly lower for pts on ramipril compared to pts on placebo. RR: 27%; 95% CI: 11- 40%; p=0.002. Prespecified secondary outcomes: risk reduction of 19% for the 1st validated outcome—namely, death, severe/resistant HF, MI, or stroke (95% CI: 5% - 31%; p=0.008).

TRACE 1995 <u>7477219</u> (113)	To determine whether pts who LV dysfunction soon after MI benefit from long-term oral ACE inhibition.	RCT	Beta blocker 16%; Calcium antagonist 28%; Diuretic 66%; Nitrates 53%; Digoxin 28%.	1749; 876; 873	Ischemic 100%	Consecutive pts >18 y hospitalized with MI; Criteria for MI: chest pain or electrocardiographi c changes, accompanied by >2X increase in ≥1 cardiac enzymes; LV dysfunction (EF <35%); NYHA class 1 - 41%; BP 121/76; HR 81	Contraindication to ACEI or a definite need for them; Severe, uncontrolled DM; Hyponatremia (<125 mmol/L); Elevated SCr level (2.3 mg/dL)	Death from any cause	Death from a CV cause, sudden death; Progression to severe HF (hospital admission for HF, death due to progressive HF, or HF necessitating open- label ACEI); Recurrent infarction (fatal or nonfatal); Change in the wall- motion index (EF)	The mortality from all causes at 1 y was 24%.	24 lives were saved after 1 mo of treating 1,000 pts	During the study period, 304 pts in the trandolapril group died (34.7%), as did 369 in the placebo group (42.3%). RR: 0.78 (95% CI, 0.67 - 0.91; p=0.001). In every subgroup, treatment with trandolapril was associated with a reduction in risk.
--	--	-----	---	----------------	------------------	--	---	-------------------------	--	---	--	---

ACEI indicates angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; AIRE, Acute Infarction Ramipril Efficacy; APE, acute pulmonary embolism; ATLAS, Assessment of Treatment with Lisinopril and Survival; BP, blood pressure; CAD, coronary artery disease; CHD, chronic heart disease; CHD, chronic heart disease; CHD, chronic heart disease; CHD, chronic heart disease; CHF, congestive heart failure; CONSENSUS Cooperative North Scandinavian Enalapril Survival Study; Cr, creatinine; CV, cardiovascular; C/W, compared with; DM, diabetes mellitus; ED, emergency department; FU, follow-up; HF, heart failure.

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy	Study Size	Etiology	Patient Population		Severity Endpoints			Mortality	Trial Duration (Y)	Statistical Results
			Pre-trial standard treatment.	N (Total) n (Experimental) n (Control)	lschemic/ Non-Ischemic	Inclusion Criteria	Exclusion Criteria		Primary Endpoint	Secondary Endpoint	1st Y Mortality		
CHARM Alternativ e; Granger et al; (2003) <u>13678870</u> (114)	Discover whether ARB could improve outcome in pts not taking an ACEI (intolerant)	RCT	Diuretics, Beta-blockers (55%), spironolacton e 24%, Digoxin 45- 46%	2028; 1013; 1015	Ischemic 67- 70%	Symptomatic HF, EF <40%, no ACEI (b/c of intolerance)		NYHA II-IV; mild to severe (<4% class IV); EF: 30%; BP: 130/70; HR: 74-75; AF: 25-26%	Composite of CV death or hospital admission for CHF	CV death, hospital admission for CHF or nonfatal MI; CV death, CHF admission, nonfatal MI, nonfatal stroke; CV death, CHF admission, nonfatal MI, nonfatal stroke, coronary revascularization; Death (any cause); New DM		2.8 у	Absolute reduction of 7 major events per 100 pts threated - NNT 14 pts to prevent 1 CV death or hospitalization. HR: 0.77 (95% CI: 0.67-0.89); p=0.0004
CHARM- ADDED; McMurray et al; (2003) <u>13678869</u> (115)	To investigate if ARB + ACEI in pts with chronic HF improve clincal outcomes	RCT	Beta blocker- 55%; spironolacton e 17%; Digoxin 58- 59%	2548; 1276; 1272	Ischemic 62- 63%	Symptomatic HF; EF <40%; Treatment with ACEI; Age >18 y		NYHA class II-IV; mild to severe (<3% class IV); EF 28%; BP 125/75; HR 74; AF 27%	Composite of CV death or hospital admission for CHF	CV death, hospital admission for CHF or nonfatal MI; CV death, CHF admission, nonfatal MI, nonfatal stroke; CV death, CHF admission, nonfatal MI, nonfatal stroke, coronary revascularization; Death (any cause); New DM		3.4 y	Absolute reduction of 4.4 pts with events per 100 pts treated- NNT of 23 to prevent 1 first event of CV death or CHF hospitalization. RR: 0.85 (95% CI: 0.75-0.96); p=0.011

2013 HF Guideline Data Supplement 19. ARBs (Section 7.3.2.3)

VALIANT; Pfeffer et al; (2003) <u>14610160</u> (116)	Compare the effect of an ARB, ACEI and the combination of the 2on mortality	Randomize d double blind multicenter trial	Beta- blockers; ASA	14,703 Valsartan:490 9 Captopril-: 4909 VAL + CAP: 4885	Ischemic 100% (MI inclusion criteria)	Age >18 y; Acute MI complicated by HF; LV systolic dysfunct (EF <35%), (<40% on radionuclide ventriculography); SBP >100 mmHg; Cr <2.5 mg/dl	Prior intolerance or contra- indication to ACEI/ ARB	NYHA I-IV; asymptomatic- severe, EF 35%; BP: 123/72; HR: 76	Death from any cause		12.5% VAL 12.3% VALCAP 13.2% CAP	2.1 y	VAL and CAP: 1.0 (97.5% CI 0.90-1.11); p=0.98 ; VAL+CAP and CAP: 0.98 (97.5% CI 0.89- 1.09); p=0.73
Val-HeFT; Cohn et al; (2001) <u>11759645</u> (117)	Evaluate long term effects of adding ARB to standard therapy for HF	RCT	Diuretics; Digoxin 67%; Beta blocker 35%; ACEI 93%	5010; 2511; 2499	Ischemic 57%	Age >18 y; NYHA II, II, IV; At least 2 wk of background meds including ACEIs; EF <40% and LVID >2.9 cm/BSA		NYHA II-III, IV (only ~2% class IV); Mild to severe; EF 27%; BP 123/76; AF 12%	Mortality; Combined endpoint of mortality and morbidity	Change in EF; • NYHA class, QoL scores; Signs and symptoms of HF		1.92 y	Mortality similar for the 2 treatment groups. For the combined endpoint: RR: 0.87; 97.5% CI, 0.77-0.97; p=0.009
HEAAL study; Lancet 2009; 374: 1840-48. <u>19922995</u> (118)	Compared the effects of high-dose vs low-dose losartan on clinical outcomes in pts with HF.	RCT	Diuretic drugs (77%), beta blockers (72%), and ARBs (38%).	3846 losartan 150 mg (n=1927) or 50 mg daily (n=1919).	IHD 64%	>18 y; NYHA class II–IV; LVEF <40%, with stable CV medical therapy for at least 2 wk; Intolerance to ACEI; Investigators encouraged to start beta blocker and titrate to a maximum, whenever possible	Pregnancy or lactation; known intolerance to ARBs; Systolic arterial blood pressure <90 mm Hg; Significant stenotic valvular heart disease; Active myocarditis; active pericarditis; Planned heart transplantation w/in 6 mo; coronary angioplasty, CABG, acute MI, UA pectoris, cerebrovascular accident, or TIA within the previous 12 wk; Suspected significant renal artery stenosis	NYHA II-IV (70% II); EF: 33%; BP: 124/77; HR: 71; AF; 28%	Death or admission for HF	Composite endpoint of death or CV admission. Additional prespecified outcomes included: death, death or all-cause admission, CV death, all- cause admission, CV admission, admission for HF, and changes in the severity of heart disease		4.7 y median f/u	Treating pts with 150 mg dose instead of 50 mg dose would result in 1 additional pt w/out the primary event at 4 y for every 31 pts treated. Composite: 828 (43%) pts in 150 mg group vs. 889 (46%) in 50 mg group died or admitted for HF (HR: 0.90; 95% CI: 0.82-0.99 p=0.027) • Components: 635 pts in 150 mg group vs. 665 in 50 mg group died (HR: 0.94, 95% CI: 0.84-1.04; p=0.24), and 450 vs. 503 pts admitted for HF (0.87, 0.76–0.98; p=0.025)
CHARM- Overall <u>13678868</u> (116)	Aimed to find out whether the use of an ARB could reduce mortality and morbidity.	RCT- parallel, randomized , double- blind,	Diuretics 83% Beta blockers 55% ACEI 43% Spironolacton e 17% Digoxin 43%	7601 pts (7599 with data) 3803 3796		>18 y; NYHA class II–IV for at least 4 wk; 3 distinct populations: pts with LVEF <40% who were not receiving ACEIs (previous intolerance) or who were currently receiving ACE, and pts with LVEF >40%	SCr > 265 mcmol /L, serum potassium >5.5 mmol/L Bilateral renal artery stenosis; symptomatic hypotension Women of childbearing potential not using adequate contraception; Critical aortic or mitral stenosis; MI, stroke, or open-heart surgery in the previous 4 wk; Use of an ARB in the previous 2 wk	NYHA II-IV NYHA II-IV Only 3% class IV	The primary outcome of the overall program: all-cause mortality; For all the component trials: CV death or hospital admission for CHF.		The annual CV death rate among the placebo group who had reduced LVEF was around 9% and was only 4% in the placebo group of CHARM- Preserved.	3.1 y	886 (23%) pts in candesartan and 945 (25%) in placebo group died (unadjusted HR: 0.91; 95% Cl: 0.83–1.00; p=0.055; covariate aHR: 0.90 95% CU: 0.82–0.99; p=0.032) • Fewer CV deaths (691 [18%] vs 769 [20%], unadjusted HR: 0.88; 95% Cl: 0.79–0.97; p=0.012; covariate aHR: 0.87; 95% Cl: 0.78– 0.96; p=0.006) • Hospital admissions for CHF (757 [20%] vs 918 [24%], p<0.0001)

ACEI indicates angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin receptor blockers; ASA, aspirin; BP, blood pressure; BSA, body surface area; CABG, coronary artery bypass graft; CHARM, Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity; CHD, chronic heart disease; CHF, congestive heart failure; Cr, creatinine; CV, cardiovascular; DM, diabetes mellitus; EF, ejection fraction; FU, follow-up; HEAAL study, effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure; HF, heart failure; HR, heart rate; IHD, ischemic heart disease; LV, left ventricular; LVD, left ventricular dilatation; MI, myocardial infarction; MV, mitral valve; N/A, not applicable; NNT, number needed to treat; NYHA, New York Heart Association; QoL, quality of life; pts, patients; SBP, systolic blood pressure; RCT, randomized control trial; SCr, serum creatinine; TIA, transient ischemic attack; UA, unstable angina; Val-HeFT, Valsartan Heart Failure Trial; and VALIANT, Valsartan in Acute Myocardial Infarction.

2013 HF Guideline Data Supplement 20. Beta Blockers (Section 7.3.2.4)

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy	Study Size	Etiology	Patient Population		Severity		Endpoints	Mortality		Trial Duration	Statistical Results
				N (Total) n (Experimental) n (Control)		Inclusion Criteria	Exclusion Criteria		Primary Endpoint	Secondary Endpoint	Annualized Mortality	1st Y Mortality		

CIBIS II CIBIS Il investigators and committee members (1999) <u>10023943</u> (119)	Investigate the efficacy of bisoprolol in decreasing all- cause mortality in chronic HF	RCT- multicenter double-blind randiomised placebo controlled trial (Europe)	Diuretics + ACEI; [amiodarone allowed14- I6%]	2647; 1327; 1320	Documented Ischemic 50%	NYHA class III or IV EF: <35% 18-80 y old	Uncontrolled HTN; MI/UA w/in previous 3 mo; PTCA/CABG w/in previous 6 mo; AV-block >1st degree w/o PPM; Heart rate < 60bpm; resting SBP <100mmHg; renal failure; Reversible obstruct lung disease; Use of beta blocker	Moderate to severe. Mean BP: 130/80; Mean HR: 80; Mean EF: 28%; Mean LVEDD: 6.7 cm; AF: 20%	All-cause mortality	All-cause hospital admissions All CV deaths Combined endpoints Permanent treatment withdrawal	13.2% Placebo group 8.8% Treatm't group	N/A	1.3 у	HR: 0.66 (95% CI: 0.54-0.81); p<0.0001
MERIT-HF; MERIT study Group; (1999) <u>10376614</u> (120)	Investigate whether Metoprolol CR/XL lowered mortality in pts with decreased EF and symptoms of HF	RCT multicenter double-blind randiomised placebo controlled trial (Europe + USA)	Diuretics + ACEI [Amiodarone NOT allowed]	3991; 1991; 2001	Ischemic 65%	NYHA II-IV; 40-80 y old; LVEF <40% (36- 40 if 6-min walk <450m); heart rate >68 bpm	MI/UA w/in 28 d; Contra-indication or current use of beta blocker; PTCA/CABG w/in 4 mo Planned transplant or ICD; Heart block >1 st degree w/o PPM; SBP <100mmHg	Mild to severe. Mean BP: 130/78; Mean HR: 78; Mean EF 28%; AF 16-17%	All-cause mortality All-cause mortality in combination with all-cause admission to hospital	N/A	11.0% Placebo group 7.2% Treatm't group	N/A	1 y	Treatment of 27 pt for 1 y can prevent 1 death. 0.66 (95% CI: 0.53- 0.81); p=0.00009
COPERNICUS ; Packer et al; (2002) <u>12390947</u> (121)	Investigate whether Carvadiolo is beneficial in severe HF	RCTdouble blind	Diuretics (PO or IV) + ACEI (or ARB); [Amiodarone allowed 17- 18%]	2289; 1156; 1133	Ischemic 67%	Euvolumic NYHA class IV; LVEF <25%; No positive inotropes or vasodilators w/in 4 d	Pt requiring hospitalized intensive care; Use of positive inotropes or IV; vasodilators w/in 4- d; Coronary revascularization/MI/CVA/ sign VT or VF w/in 2 mo; SBP < 85 mmHg, Heart rate <68, Cr >2.8 mg/dL	Severe Mean BP: 123/76; Mean HR: 83; Mean EF 20%;	All-cause mortality	Combined risk of death or hospitalization-any reason; Combined risk of death or hospitalizationCV reason; Combined risk of death or hospitalizationHF reason; Pt global assessment	19.7% placebo [24.0% in pts with recent or recurrent cardiac decompensations]	18.5% in placebo group 11.4% in Carvedilol group	10.4 mo	Treating 1000 pt for 1 y led to savings of 70 premature deaths p=0.0014
SENIORS; Flather et al; (2005) <u>15642700</u> (122)	Assess effects of the beta blocker Nebivolol in pts_70 y regardless of EF.	RCT	Diuretics + ACEI (+aldosterone antagonist in 29%)	2128; 1067; 1061	Prior h/o CAD in 69%	Age >70 CHF with 1 of the following: hospitalization with CHF w/in a year or EF <35% w/in the past 6 mo	New HF therapy w/in 6 wk or change in drug therapy w/in 2 wk Contraindication to beta blockers, current use of beta blockers Significant renal dysfunction CVA w/in 3 mo.	Mild to severe Mean BP: 139/81; Mean HR: 79; Mean EF 36% (1/3 with EF >35%);	Composite of all-cause mortality or CV hospital admission	All-cause mortality Composite of all-cause mortality or all-cause hospital admissions All cause hospital admissions CV hospital admissions CV mortality Composite of CV mortality or CV hospital admissions NYHA class assessment; 6 MWT	N/A	N/A	1.75 у	Absolute risk reductio 4.2%; 24 pts would need to be treated for 21 mo to avoid one event RR: 0.86; 95% CI: 0.74-0.99; p=0.039
A Trial of the Beta-Blocker Bucindolol in Pt with Advanced Chronic HF The Beta- Blocker Evaluation of Survival Trial Investigators <u>11386264</u> (123)	Designed to determine whether bucindolol hydrochloride, a nonselective beta- adrenergic blocker and mild vasodilator, would reduce the rate of death from any cause among pt with advanced HF	RCT	ACEIs (if tolerated) [91% ACE; 7% ARB], for at least 1 mo. Before the publication of the results of the DIG trial, 12 digoxin therapies were	2708; 1354; 1354	Ischemic 59%	NYHA class III or IV HF LVEF <35% >18 y	Reversible cause of HF present Candidates for heart transplantation Cardiac revascularization procedure within the previous 60 d UA Heart rate <50 bpm, SBP <80mmHg Decompensated HF.	NYHA III or IV (92% class III) EF 23%; HR 82; BP 117/71; AF 12%	Death from any cause	Death from CV causes (death due to pump failure or an ischemic event or sudden death) Hospitalization for any reason Hospitalization because of HF Composite of death or heart transplantation LVEF at 3 and 12 mo Ml; QoL; and any change in	For pt in NYHA functional class III, the annual mortality rate was 16% in the placebo group; For pt with NYHA class IV, the annual mortality rate in the placebo group was 28% OveralI : annual mortality of 17% in placebo group c/w	N/A	~2 y	449 pt in placebo group (33%) died, 41 ⁻ in the bucindolol grou (30%; HR: 0.90; 95% CI, 0.78-1.02; unadjusted p=0.10; adjusted p=0.13)

	and to assess its effect in various subgroups defined by ethnic background and demographic criteria — specifically women and members of minority groups		required, but thereafter its use became discretionary [DIG 94%].							the need for concomitant therapy	15% in the bucindolol group.			
COMET; Poole-Wilson et al; (2003) <u>12853193</u> (124)	To compare the effects of carvedilol and metoprolol on clinical outcome in pts with HF	RCT	Diuretics, ACEIs	3029; 1511 carvedilol; 1518 metoprolol tartrate	N/A	NYHA class II-IV EF <35% Previous CV admission	N/A	Mild to severe	All-cause mortality Composite endpoint of all- cause mortality, or all-cause admission	N/A	N/A	N/A	4.8 y	All-cause mortality 34% carvedilol and 40% metoprolol (HR: 0.83; 95% CI 0.74- 0.93; p=0.0017)
(CIBIS) III; 2005 <u>16143696</u> (125)	Sufficient data do not currently exist to establish the optimum order of initiating chronic HF therapy (ACEI vs. beta blocker). This was the objective of the CIBIS III trial it compared the effect on mortality and hospitalization of initial monotherapy with either bisoprolol or enalapril for 6 mo, followed by their combination for 6 to 24 mo.	Multicenter, prospective, randomized, open-label, blinded endpoint evaluation (PROBE) trial,24 with 2 parallel groups.	Diuretics 84%; Digoxin 32%	1010 Bisoprolol 505; Enalapril 505	CAD 62%	>65 y, NYHA class II or III, and LVEF <35% (By echo within the 3 mo) Clinically stable HF (without clinically relevant fluid retention or diuretic adjustment within 7 d)	Treatment with an ACEI, an ARB, or a beta blocker for >7 d during the 3 mo before randomization Heart rate at rest <60 bpm without a functioning pacemaker Supine SBP <100 mm Hg at rest SCr≥220 mmol/L AV block>1° without a functioning pacemaker Obstructive lung disease contraindicating bisoprolol treatment	NYHA II or III; mild to moderate CHF LVEF 29%; Heart rate 79; SBP 134	The primary endpoint was time-to-the-first- event of combined all- cause mortality or all-cause hospitalization	Combined endpoint at the end of the monotherapy phase and the individual components of the primary endpoint, at study end and at the end of the monotherapy phase. CV death CV hospitalization	N/A	N/A	Mean of 1.22±0.42 y (maximum of 2.10 y).	In the ITT sample, 178 pt (35.2%) with a primary endpoint in the bisoprolol-1 st group, and 186 (36.8%) in the enalapril-1 st group (absolute difference - 1.6%; 95% CI: -7.6 to 4.4%; HR: 0.94; 95% CI: 0.77–1.16; noninferiority for bisoprolol-first versus enalapril-1 st treatment p=0.019)

ACEI indicates angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin receptor blocker; AV, atrioventricular; BP, blood pressure; CABG, coronary artery bypass graft; CHF, congestive heart failure; CIBIS II, Cardiac Insufficiency Bisoprolol Study II; COMET, Carvedilol Or Metoprolol European Trial; COPERNICUS, carvedilol prospective randomized cumulative survival; Cr, creatinine; CR/XL, controlled release; CV, cardiovascular; CVA, cerebrovascular accident; c/w, compared with; DIG, Digitalis Investigation Group; EF, ejection fraction; HF, heart failure; h/o, history of; HR, hazard ratio; ICD, ICD, implantable cardioverter defibrillator; ITT, intent to treat; MERIT-HF, Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure; MI, myocardial infarction; MWT, minute walk test; NYHA, New York Heart Association; PPM, permanent pacemaker; PTCA, percutaneous transluminal coronary angioplasty; Pts, patients; QoL, quality of life; RCT, randomized control trial; RR, relative risk; SBP, systolic blood pressure; SCr, serum creatinine; UA, unstable angina; USA, United States of America; VF, ventricular fibrillation; VT, ventricular tachycardia; and w/o, without.

References

1. Huelsmann M, Neuhold S, Resl M, et al. PONTIAC (NT-proBNP selected prevention of cardiac events in a population of diabetic patients without a history of cardiac disease): a prospective randomized controlled trial. J. Am. Coll. Cardiol. 2013; 62:1365-72.

2. Ledwidge M, Gallagher J, Conlon C, et al. Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA. 2013; 310:66-74.

3. Brunner-La Rocca HP, Eurlings L, Richards AM, et al. Which heart failure patients profit from natriuretic peptide guided therapy? A meta-analysis from individual patient data of randomized trials. Eur. J. Heart Fail. 2015; 17:1252-61.

4. Don-Wauchope AC and McKelvie RS. Evidence based application of BNP/NT-proBNP testing in heart failure. Clin. Biochem. 2015; 48:236-46.

5. Xin W, Lin Z and Mi S. Does B-type natriuretic peptide-guided therapy improve outcomes in patients with chronic heart failure? A systematic review and meta-analysis of randomized controlled trials. Heart Fail Rev. 2015; 20:69-80.

6. Troughton RW, Frampton CM, Brunner-La Rocca HP, et al. Effect of B-type natriuretic peptide-guided treatment of chronic heart failure on total mortality and hospitalization: an individual patient meta-analysis. Eur. Heart J. 2014; 35:1559-67.

7. De Vecchis R, Esposito C, Di Biase G, et al. B-type natriuretic peptide-guided versus symptom-guided therapy in outpatients with chronic heart failure: a systematic review with meta-analysis. J Cardiovasc Med (Hagerstown). 2014; 15:122-34.

8. Balion C, McKelvie R, Don-Wauchope AC, et al. B-type natriuretic peptide-guided therapy: a systematic review. Heart Fail Rev. 2014; 19:553-64.

9. Savarese G, Trimarco B, Dellegrottaglie S, et al. Natriuretic peptide-guided therapy in chronic heart failure: a meta-analysis of 2,686 patients in 12 randomized trials. PLoS One. 2013; 8:e58287.

10. Li P, Luo Y and Chen YM. B-type natriuretic peptide-guided chronic heart failure therapy: a meta-analysis of 11 randomised controlled trials. Heart Lung Circ. 2013; 22:852-60.

11. Felker GM, Hasselblad V, Hernandez AF, et al. Biomarker-guided therapy in chronic heart failure: a meta-analysis of randomized controlled trials. Am. Heart J. 2009; 158:422-30.

12. Porapakkham P, Porapakkham P, Zimmet H, et al. B-type natriuretic peptide-guided heart failure therapy: a meta-analysis. Arch. Intern. Med. 2010; 170:507-14.

13. Troughton RW, Frampton CM, Yandle TG, et al. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet. 2000; 355:1126-30.

14. Jourdain P, Jondeau G, Funck F, et al. Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J Am. Coll. Cardiol. 2007; 49:1733-9.

15. Pfisterer M, Buser P, Rickli H, et al. BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified vs Standard Medical Therapy in Elderly Patients With Congestive Heart Failure (TIME-CHF) randomized trial. JAMA. 2009; 301:383-92.

16. Lainchbury JG, Troughton RW, Strangman KM, et al. N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: results from the BATTLESCARRED (NT-proBNP-Assisted Treatment To Lessen Serial Cardiac Readmissions and Death) trial. J Am Coll Cardiol. 2009; 55:53-60.

17. Berger R, Moertl D, Peter S, et al. N-terminal pro-B-type natriuretic peptide-guided, intensive patient management in addition to multidisciplinary care in chronic heart failure: a 3-arm, prospective, randomized pilot study. J Am Coll Cardiol. 2010; 55:645-53.

18. Eurlings LW, van Pol PE, Kok WE, et al. Management of chronic heart failure guided by individual N-terminal pro-B-type natriuretic peptide targets: results of the PRIMA (Can PRo-brain-natriuretic peptide guided therapy of chronic heart failure IMprove heart fAilure morbidity and mortality?) study. J. Am. Coll. Cardiol. 2010; 56:2090-100.

19. Persson H, Erntell H, Eriksson B, et al. Improved pharmacological therapy of chronic heart failure in primary care: a randomized Study of NT-proBNP Guided Management of Heart Failure--SIGNAL-HF (Swedish Intervention study--Guidelines and NT-proBNP AnaLysis in Heart Failure). Eur. J. Heart Fail. 2010; 12:1300-8.

20. Shah MR, Califf RM, Nohria A, et al. The STARBRITE trial: a randomized, pilot study of B-type natriuretic peptide-guided therapy in patients with advanced heart failure. J. Card Fail. 2011; 17:613-21.

21. Gaggin HK, Mohammed AA, Bhardwaj A, et al. Heart failure outcomes and benefits of NT-proBNP-guided management in the elderly: results from the prospective, randomized ProBNP outpatient tailored chronic heart failure therapy (PROTECT) study. J. Card Fail. 2012; 18:626-34.

22. Karlstrom P, Alehagen U, Boman K, et al. Brain natriuretic peptide-guided treatment does not improve morbidity and mortality in extensively treated patients with chronic heart failure: responders to treatment have a significantly better outcome. Eur. J. Heart Fail. 2011; 13:1096-103.

23. Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N. Engl. J. Med. 2002; 347:161-7.

24. van Kimmenade RR, Pinto YM, Bayes-Genis A, et al. Usefulness of intermediate amino-terminal pro-brain natriuretic peptide concentrations for diagnosis and prognosis of acute heart failure. Am. J. Cardiol. 2006; 98:386-90.

25. Maisel A, Hollander JE, Guss D, et al. Primary results of the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT). A multicenter study of B-type natriuretic peptide levels, emergency department decision making, and outcomes in patients presenting with shortness of breath. J. Am. Coll. Cardiol. 2004; 44:1328-33.

26. O'Connor CM, Hasselblad V, Mehta RH, et al. Triage after hospitalization with advanced heart failure: the ESCAPE (Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness) risk model and discharge score. J Am Coll Cardiol. 2010; 55:872-8.

27. Bayes-Genis A, Lopez L, Zapico E, et al. NT-ProBNP reduction percentage during admission for acutely decompensated heart failure predicts long-term cardiovascular mortality. J. Card Fail. 2005; 11:S3-S8.

28. Verdiani V, Ognibene A, Rutili MS, et al. NT-ProBNP reduction percentage during hospital stay predicts long-term mortality and readmission in heart failure patients. J. Cardiovasc. Med. (Hagerstown.). 2008; 9:694-9.

29. Bettencourt P, Azevedo A, Pimenta J, et al. N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation. 2004; 110:2168-74.

30. Kociol RD, McNulty SE, Hernandez AF, et al. Markers of decongestion, dyspnea relief, and clinical outcomes among patients hospitalized with acute heart failure. Circ. Heart Fail. 2013; 6:240-5.

31. Kociol RD, Horton JR, Fonarow GC, et al. Admission, discharge, or change in B-type natriuretic peptide and long-term outcomes: data from Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF) linked to Medicare claims. Circ. Heart Fail. 2011; 4:628-36.

32. Flint KM, Allen LA, Pham M, et al. B-type natriuretic peptide predicts 30-day readmission for heart failure but not readmission for other causes. J. Am. Heart Assoc. 2014; 3:e000806.

33. Salah K, Kok WE, Eurlings LW, et al. A novel discharge risk model for patients hospitalised for acute decompensated heart failure incorporating N-terminal pro-B-type natriuretic peptide levels: a European coLlaboration on Acute decompeNsated Heart Failure: ELAN-HF Score. Heart. 2014; 100:115-25.

34. Cohen-Solal A, Logeart D, Huang B, et al. Lowered B-type natriuretic peptide in response to levosimendan or dobutamine treatment is associated with improved survival in patients with severe acutely decompensated heart failure. J. Am. Coll. Cardiol. 2009; 53:2343-8.

35. Logeart D, Thabut G, Jourdain P, et al. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J. Am. Coll. Cardiol. 2004; 43:635-41.

36. O'Brien RJ, Squire IB, Demme B, et al. Pre-discharge, but not admission, levels of NT-proBNP predict adverse prognosis following acute LVF. Eur. J. Heart Fail. 2003; 5:499-506.

37. Richards AM, Doughty R, Nicholls MG, et al. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. Australia-New Zealand Heart Failure Group. J Am Coll Cardiol. 2001; 37:1781-7.

38. Tang WH, Girod JP, Lee MJ, et al. Plasma B-type natriuretic peptide levels in ambulatory patients with established chronic symptomatic systolic heart failure. Circulation. 2003; 108:2964-6.

39. Januzzi JL, Jr., Chen-Tournoux AA and Moe G. Amino-terminal pro-B-type natriuretic peptide testing for the diagnosis or exclusion of heart failure in patients with acute symptoms. Am J Cardiol. 2008; 101:29-38.

40. Santaguida PL, Don-Wauchope AC, Ali U, et al. Incremental value of natriuretic peptide measurement in acute decompensated heart failure (ADHF): a systematic review. Heart Fail Rev. 2014; 19:507-19.

41. Hill SA, Booth RA, Santaguida PL, et al. Use of BNP and NT-proBNP for the diagnosis of heart failure in the emergency department: a systematic review of the evidence. Heart Fail Rev. 2014; 19:421-38.

42. Zaphiriou A, Robb S, Murray-Thomas T, et al. The diagnostic accuracy of plasma BNP and NTproBNP in patients referred from primary care with suspected heart failure: results of the UK natriuretic peptide study. Eur. J. Heart Fail. 2005; 7:537-41.

43. Son CS, Kim YN, Kim HS, et al. Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches. J Biomed Inform. 2012; 45:999-1008.

44. Kelder JC, Cramer MJ, Van WJ, et al. The diagnostic value of physical examination and additional testing in primary care patients with suspected heart failure. Circulation. 2011; 124:2865-73.

45. Booth RA, Hill SA, Don-Wauchope A, et al. Performance of BNP and NT-proBNP for diagnosis of heart failure in primary care patients: a systematic review. Heart Fail Rev. 2014; 19:439-51.

46. Dao Q, Krishnaswamy P, Kazanegra R, et al. Utility of B-type natriuretic peptide in the diagnosis of congestive heart failure in an urgent-care setting. J. Am. Coll. Cardiol. 2001; 37:379-85.

47. Davis M, Espiner E, Richards G, et al. Plasma brain natriuretic peptide in assessment of acute dyspnoea. Lancet. 1994; 343:440-4.

48. Cheng V, Kazanagra R, Garcia A, et al. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study. J. Am. Coll. Cardiol. 2001; 37:386-91.

49. Fonarow GC, Peacock WF, Horwich TB, et al. Usefulness of B-type natriuretic peptide and cardiac troponin levels to predict in-hospital mortality from ADHERE. Am. J. Cardiol. 2008; 101:231-7.

50. Zairis MN, Tsiaousis GZ, Georgilas AT, et al. Multimarker strategy for the prediction of 31 days cardiac death in patients with acutely decompensated chronic heart failure. Int. J. Cardiol. 2010; 141:284-90.

51. Peacock WFI, De Marco T, Fonarow GC, et al. Cardiac troponin and outcome in acute heart failure. N. Engl. J. Med. 2008; 358:2117-26.

52. Lee DS, Stitt A, Austin PC, et al. Prediction of heart failure mortality in emergent care: a cohort study. Ann. Intern. Med. 2012; 156:767-75.

53. Dhaliwal AS, Deswal A, Pritchett A, et al. Reduction in BNP levels with treatment of decompensated heart failure and future clinical events. J. Card Fail. 2009; 15:293-9.

54. Alonso-Martinez JL, Llorente-Diez B, Echegaray-Agara M, et al. C-reactive protein as a predictor of improvement and readmission in heart failure. Eur. J. Heart Fail. 2002; 4:331-6.

55. Dieplinger B, Gegenhuber A, Kaar G, et al. Prognostic value of established and novel biomarkers in patients with shortness of breath attending an emergency department. Clin. Biochem. 2010; 43:714-9.

56. Ilva T, Lassus J, Siirila-Waris K, et al. Clinical significance of cardiac troponins I and T in acute heart failure. Eur. J. Heart Fail. 2008; 10:772-9.

57. Januzzi JL, Jr., Peacock WF, Maisel AS, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J. Am. Coll. Cardiol. 2007; 50:607-13.

58. Manzano-Fernandez S, Mueller T, Pascual-Figal D, et al. Usefulness of soluble concentrations of interleukin family member ST2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction. Am. J. Cardiol. 2011; 107:259-67.

59. Rehman SU, Mueller T and Januzzi JL, Jr. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J. Am. Coll. Cardiol. 2008; 52:1458-65.

60. Shah RV, Chen-Tournoux AA, Picard MH, et al. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur. J. Heart Fail. 2010; 12:826-32.

61. Solomon SD, Zile M, Pieske B, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012; 380:1387-95.

62. McMurray JJV, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014; 371:993-1004.

63. Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med. 2008; 358:1547-59.

64. Yusuf S, Teo K, Anderson C, et al. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet. 2008; 372:1174-83.

65. Sakata Y, Shiba N, Takahashi J, et al. Clinical impacts of additive use of olmesartan in hypertensive patients with chronic heart failure: the supplemental benefit of an angiotensin receptor blocker in hypertensive patients with stable heart failure using olmesartan (SUPPORT) trial. Eur Heart J. 2015; 36:915-23.

66. Eschalier R, McMurray JJV, Swedberg K, et al. Safety and efficacy of eplerenone in patients at high risk for hyperkalemia and/or worsening renal function: analyses of the EMPHASIS-HF study subgroups (Eplerenone in Mild Patients Hospitalization And SurvIval Study in Heart Failure). J Am Coll Cardiol. 2013; 62:1585-93.

67. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 1999; 341:709-17.

68. Rouleau JL, Pfeffer MA, Stewart DJ, et al. Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial. Lancet. 2000; 356:615-20.

69. Packer M, Califf RM, Konstam MA, et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation. 2002; 106:920-6.

70. Kostis JB, Packer M, Black HR, et al. Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. Am J Hypertens. 2004; 17:103-11.

71. Bohm M, Robertson M, Ford I, et al. Influence of cardiovascular and noncardiovascular co-morbidities on outcomes and treatment effect of heart rate reduction with ivabradine in stable heart failure (from the SHIFT Trial). Am J Cardiol. 2015; 116:1890-7.

72. Swedberg K, Komajda M, Böhm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet. 2010; 376:875-85.

73. Fox K, Ford I, Steg PG, et al. Ivabradine in stable coronary artery disease without clinical heart failure. N. Engl. J. Med. 2014; 371:1091-9.

74. Fox K, Ford I, Steg PG, et al. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet. 2008; 372:807-16.
75. Beckett NS, Peters R, Fletcher AE, et al. Treatment of hypertension in patients 80 years of age or older. N. Engl. J. Med. 2008; 358:1887-98.

76. Piller LB, Baraniuk S, Simpson LM, et al. Long-term follow-up of participants with heart failure in the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). Circulation. 2011; 124:1811-8.

77. Kostis JB, Davis BR, Cutler J, et al. Prevention of heart failure by antihypertensive drug treatment in older persons with isolated systolic hypertension. SHEP Cooperative Research Group. JAMA. 1997; 278:212-6.

78. Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003; 362:777-81.

79. Cleland JG, Swedberg K, Follath F, et al. The EuroHeart Failure survey programme-- a survey on the quality of care among patients with heart failure in Europe. Part 1: patient characteristics and diagnosis. Eur Heart J. 2003; 24:442-63.

80. Massie BM, Carson PE, McMurray JJ, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N. Engl. J Med. 2008; 359:2456-67.

81. Redfield MM, Anstrom KJ, Levine JA, et al. Isosorbide Mononitrate in Heart Failure with Preserved Ejection Fraction. N. Engl. J Med. 2015; 373:2314-24.

82. Redfield MM, Chen HH, Borlaug BA, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013; 309:1268-77.

83. Pitt B, Pfeffer MA, Assmann SF, et al. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J Med. 2014; 370:1383-92.

84. Pfeffer MA, Claggett B, Assmann SF, et al. Regional variation in patients and outcomes in the Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist (TOPCAT) trial. Circulation. 2015; 131:34-42.

85. Chen Y, Wang H, Lu Y, et al. Effects of mineralocorticoid receptor antagonists in patients with preserved ejection fraction: a meta-analysis of randomized clinical trials. BMC Med. 2015; 13:10.

86. Ponikowski P, van Veldhuisen DJ, Comin-Colet J, et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur. Heart J. 2015; 36:657-68.

87. Anker SD, Comin CJ, Filippatos G, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 2009; 361:2436-48.

88. Swedberg K, Young JB, Anand IS, et al. Treatment of anemia with darbepoetin alfa in systolic heart failure. N. Engl. J Med. 2013; 368:1210-9.

89. Xie X, Atkins E, Lv J, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and metaanalysis. Lancet. 2016; 387:435-43.

90. Wright JT, Jr., Williamson JD, Whelton PK, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N. Engl. J Med. 2015; 373:2103-16.

91. Williamson JD, Supiano MA, Applegate WB, et al. Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged >/=75 years: A randomized clinical trial. JAMA. 2016; 315:2673-82.

92. Law MR, Morris JK and Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009; 338:b1665.

93. Aronow WS, Ahn C and Kronzon I. Effect of propranolol versus no propranolol on total mortality plus nonfatal myocardial infarction in older patients with prior myocardial infarction, congestive heart failure, and left ventricular ejection fraction > or = 40% treated with diuretics plus angiotensin-converting enzyme inhibitors. Am J Cardiol. 1997; 80:207-9.

94. van Veldhuisen DJ, Cohen-Solal A, Bohm M, et al. Beta-blockade with nebivolol in elderly heart failure patients with impaired and preserved left ventricular ejection fraction: Data From SENIORS (Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors With Heart Failure). J Am Coll Cardiol. 2009; 53:2150-8.

95. Lv J, Ehteshami P, Sarnak MJ, et al. Effects of intensive blood pressure lowering on the progression of chronic kidney disease: a systematic review and meta-analysis. CMAJ. 2013.

96. Thomopoulos C, Parati G and Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 7. Effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levels - updated overview and meta-analyses of randomized trials. J Hypertens. 2016; 34:613-22.

97. McEvoy RD, Antic NA, Heeley E, et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N. Engl. J. Med. 2016; 375:919-31.

98. Holmqvist F, Guan N, Zhu Z, et al. Impact of obstructive sleep apnea and continuous positive airway pressure therapy on outcomes in patients with atrial fibrillation-Results from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). Am Heart J. 2015; 169:647-54.

99. Cowie MR, Woehrle H, Wegscheider K, et al. Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure. N. Engl. J Med. 2015; 373:1095-105.

100. Arzt M, Floras JS, Logan AG, et al. Suppression of central sleep apnea by continuous positive airway pressure and transplant-free survival in heart failure: a post hoc analysis of the Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure Trial (CANPAP). Circulation. 2007; 115:3173-80.

101. Bradley TD, Logan AG, Kimoff RJ, et al. Continuous positive airway pressure for central sleep apnea and heart failure. N. Engl. J. Med. 2005; 353:2025-33.

102. Ruttanaumpawan P, Logan AG, Floras JS, et al. Effect of continuous positive airway pressure on sleep structure in heart failure patients with central sleep apnea. Sleep. 2009; 32:91-8.

103. Kaneko Y, Floras JS, Usui K, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N. Engl. J. Med. 2003; 348:1233-41.

104. Mansfield DR, Gollogly NC, Kaye DM, et al. Controlled trial of continuous positive airway pressure in obstructive sleep apnea and heart failure. Am. J. Respir. Crit Care Med. 2004; 169:361-6.

105. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The CONSENSUS Trial Study Group. N. Engl. J. Med. 1987; 316:1429-35.

106. Swedberg K, Kjekshus J and Snapinn S. Long-term survival in severe heart failure in patients treated with enalapril. Ten year follow-up of CONSENSUS I. Eur. Heart J. 1999; 20:136-9.

107. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N. Engl. J. Med. 1991; 325:293-302.

108. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The SOLVD Investigators. N. Engl. J Med. 1992; 327:685-91.

109. Jong P, Yusuf S, Rousseau MF, et al. Effect of enalapril on 12-year survival and life expectancy in patients with left ventricular systolic dysfunction: a follow-up study. Lancet. 2003; 361:1843-8.

110. Packer M, Poole-Wilson PA, Armstrong PW, et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. ATLAS Study Group. Circulation. 1999; 100:2312-8.

111. Pfeffer MA, Braunwald E, Moyé LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: results of the Survival and Ventricular Enlargement Trial. The SAVE Investigators. N. Engl. J Med. 1992; 327:669-77.

112. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Lancet. 1993; 342:821-8.

113. Kober L, Torp-Pedersen C, Carlsen JE, et al. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N. Engl. J Med. 1995; 333:1670-6.

114. Granger CB, McMurray JJ, Yusuf S, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet. 2003; 362:772-6.

115. McMurray JJ, Ostergren J, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet. 2003; 362:767-71.

116. Pfeffer MA, Swedberg K, Granger CB, et al. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet. 2003; 362:759-66.

117. Cohn JN, Tognoni G and Investigators VHFT. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 2001; 345:1667-75.

118. Konstam MA, Neaton JD, Dickstein K, et al. Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAAL study): a randomised, double-blind trial. Lancet. 2009; 374:1840-8.

119. Authors CI. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet. 1999; 353:9-13.

120. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999; 353:2001-7.

121. Packer M, Fowler MB, Roecker EB, et al. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation. 2002; 106:2194-9.

122. Flather MD, Shibata MC, Coats AJ, et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J. 2005; 26:215-25.

123. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N. Engl. J. Med. 2001; 344:1659-67.

124. Poole-Wilson PA, Swedberg K, Cleland JG, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet. 2003; 362:7-13.

125. Willenheimer R, van Veldhuisen DJ, Silke B, et al. Effect on survival and hospitalization of initiating treatment for chronic heart failure with bisoprolol followed by enalapril, as compared with the opposite sequence: results of the randomized Cardiac Insufficiency Bisoprolol Study (CIBIS) III. Circulation. 2005; 112:2426-35.